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Abstract—The MUSIC algorithm is one of the most popular
techniques today for line spectral estimation. If the line spectrum
is that of a periodic signal, can we adapt MUSIC to exploit the addi-
tional harmonicity in the spectrum? Important prior work in this
direction includes the Harmonic MUSIC algorithm and its vari-
ations. For applications where the period of the discrete signal is
an integer (or can be well approximated by an integer), this paper
introduces a new and simpler class of alternatives to MUSIC. This
new family, called iMUSIC, also includes techniques where simple
integer valued vectors are used in place of complex exponentials
for both representing the signal subspace, and for computing the
pseudo-spectrum. It will be shown that the proposed methods not
only make the computations much simpler than prior periodicity-
adaptations of MUSIC, but also offer significantly better estimation
accuracies for applications with integer periods. These advantages
are demonstrated on examples that include repeats in protein and
DNA sequences. The iMUSIC algorithms are based on the recently
proposed Ramanujan subspaces and nested periodic subspaces.
The resulting signal space bases are non-Vandermonde in struc-
ture. Consequently, many aspects of classical MUSIC that were
based on the Vandermonde structure of complex-exponentials,
such as guarantees for identifiability of the frequencies (periods
in our case), are addressed in new ways in this paper.

Index Terms—Period estimation, MUltiple sIgnal Classification
(MUSIC), Ramanujan subspaces, nested periodic subspaces, pro-
tein repeats, iMUSIC.

I. INTRODUCTION

THE MUSIC algorithm (MUltiple SIgnal Classification)
[51] is one of the most popular techniques for estimating

line spectra in discrete time signals. It has widespread applica-
tions, including Direction of Arrival estimation [55], [56], [72],
time delay estimation [45], neuro-imaging [27], [38], and many
more. But when the signal of interest is periodic, its spectrum
is not just arbitrary lines. There is a nice harmonic structure in
the spectrum as shown in Fig. 1, which can be modeled mathe-
matically as:

x(n) =
K−1∑

k=0

ckejkω0 n (1)
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Fig. 1. (a) An arbitrary line spectrum. (b) The harmonic line spectrum of a
periodic signal. Can we use the additional structure in the spectrum of a periodic
signal to improve MUSIC?

where 2π/ω0 (possibly not an integer) is usually considered as
the ‘period’. While MUSIC itself does not exploit this addi-
tional harmonic structure, it was shown in an important series
of publications [11]–[13] that modifying MUSIC’s search over
complex exponentials so that we look for harmonically spaced
peaks, improves the period estimates significantly. These meth-
ods were called Harmonic MUSIC (or HMUSIC). However,
these methods are computationally much more complex than
traditional MUSIC, especially when the input is a mixture of
multiple periodic signals.

While (1) generically applies to several instances of periodic-
ity such as speech, cardiology, EEG analysis and so forth, there
is a second class of applications which have more structure than
what is captured by (1). These are periodic signals whose pe-
riods are integers (or can be well approximated by integers) so
that

x(n + P ) = x(n) ∀ n ∈ Z (2)

Here, the integer P is known as a repetition index of the sig-
nal, and the smallest positive repetition index is known as the
period. Such applications include repeats in protein and DNA
sequences. For instance, periodicity in the amino acid sequence
of proteins often manifests as rich 3D repeating structures that
play important roles in several diverse contexts (see Fig. 2)
[1], [32]. Similarly, tandemly repeating nucleotide sequences
in the DNA, known as micro-satellites, are widely used as bio-
markers in forensics and kinship analysis, and are associated
with several genetic disorders [4]. In these examples the period
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Fig. 2. Applications with Integer Periodicity: The protein AnkyrinR (PDB
1n11) that enables red blood cells to resist shear forces. Its period 33 structural
repeats can be clearly identified in the plot on the right, produced by the proposed
techniques.

is naturally an integer. In fact, many state of the art methods
for conventional periodicity applications such as speech [10],
[44], [71] are also based on integer period approximations. This
paper shows that the simplicity of the integer period model (2)
opens up the possibility for designing a more diverse class of
MUSIC-like algorithms than prior works.

More specifically, for such signals with integer periods, this
paper proposes a new formulation of MUSIC called iMUSIC,
using the recently proposed Ramanujan Subspaces [68], [69]
and Nested Periodic Subspaces (NPSs) [61]. The frequencies
corresponding to signals with integer periods can be compactly
represented by a non-uniform grid known as the Farey grid
[70]. Based on the Farey grid, we propose an alternative to the
classical MUSIC pseudospectrum: All the complex exponen-
tials on the Farey grid belonging to a common Ramanujan sub-
space [68] are grouped together when computing this proposed
pseudo-spectrum. It will be shown that the resulting algortihm
yeilds much higher accuracies than classical MUSIC and its
prior periodicity variants such as HMUSIC, while keeping the
computational complexity very low.

Furthermore, the Ramanujan subspaces can alternatively be
spanned by simple integer valued vectors instead of the Farey
grid [70] (Fig. 3). In fact, using more general Nested Peri-
odic Subspaces [61], one can construct many such examples of
simple integer valued vectors that can be used to compute the
proposed iMUSIC pseudospectrum instead of complex expo-
nentials. Some of these new bases are very sparse, consisting of
only 1’s and 0’s (Fig. 3(a)). These new representations give rise
to a rich class of MUSIC-like algorithms that are well suited for
integer period applications. Their advantages are demonstrated
using examples that include Protein and DNA repeats. To the
best of our knowledge, this is the first time MUSIC-like methods
have been used on such bio-molecular repeats.

It should be mentioned here that there are other interesting
algorithms such as the harmonic matching pursuit (HMP) [25],
and expectation-maximization (EM) based algorithms [14] for
taking advantage of the harmonicity in line spectra. While our
focus in this work is only on MUSIC-like algorithms, we do
include HMP and EM in our comparisons in Section V.

The mathematical formulation of classical MUSIC benefits
greatly from the Vandermonde structure of complex exponen-
tials. For instance, this is used in deriving the conditions for
avoiding spurious peaks in the MUSIC psuedospectrum [51],
[55]. The absence of a Vandermonde structure in NPSs intro-
duces many new, but interesting challenges. For example, while

Fig. 3. Simple Integer Alternatives to Complex-Exponentials: Bases of
(a) The Natural Basis Subspaces, and (b) The Ramanujan Subspaces.

we cannot guarantee the absence of additional (spurious) peaks
in the iMUSIC pseudo-spectrum, we can still prove that any such
peak will not affect the estimated period. These, and other such
deviations from classical MUSIC will be rigorously addressed
throughout the paper.

Before proceeding, we would like to make a small remark.
The techniques we develop in this paper, and also MUSIC and
its prior variants such as the HMUSIC algorithms [11]–[13], are
based on the auto-correlation matrix of the signal. The reader
may wonder if we can just estimate the period of a signal x(n),
0 ≤ n ≤ L − 1, by looking at the peaks in the autocorrelation
function instead:

r(k) =
1

L − k

L−1−k∑

n=0

x(n)x∗(n + k) (3)

If x(n) has period P , we would expect r(k) to have a peak
whenever k is a multiple of P . Unfortunately, this does not work
well often, such as for short datalengths, noisy inputs and for
mixtures of periodic signals. For example, Fig 4(a) shows 100
samples of a signal that is a sum of randomly generated signals
with periods 5, 7 and 13. Fig. 4 (b) plots the autocorrelation of
this signal at 75 lags. As evident, there are no clear peaks at the
true periods 5, 7 and 13. This happens even though there was no
noise in the input signal to begin with. This is because, a mixture
of periods 5, 7 and 13 has a resulting period = LCM(5, 7, 13) =
455, which is where a peak in the autocorrelation is expected.
From a theoretical perspective, there is no reason to expect peaks
at each of the component periods in the mixture. Also, since
the available datalength (100 samples) is much less than 455,
we cannot even compute the autocorrelation at 455. All is not
lost however, as these same 75 samples of the autocorrelation
function can be used in a different way to obtain the plot shown
in Fig. 4 (c), where there are clean peaks at periods 5, 7 and 13.
This was done using one of the proposed iMUSIC techniques
known as Farey MUSIC. Thus one way to look at the techniques
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Fig. 4. MUSIC based techniques can be viewed as a more sophisticated way of estimating the periods using the auto-correlation function, than just looking for
peaks in (3). Part (a) A sum of randomly generated signals with periods 5, 7 and 13. Part (b) The autocorrelation function at 75 lags. Part (c) The proposed Farey
iMUSIC psudospectrum using the same autocorrelation values that were computed in Part (b). See Section I for details.

in the following sections is as more sophisticated ways of using
the autocorrelation function than just looking for peaks in (3).

A. Outline

Section II summarizes MUSIC and its prior adaptations to pe-
riodic signals (the HMUSIC algorithms). Section III starts with
a brief summary of Ramanujan and Nested Periodic Subspaces
(NPSs). The proposed iMUSIC framework is then introduced,
first using the Farey grid of complex exponentials. This is gener-
alized to iMUSIC using other NPSs in Section IV, allowing the
use of integer valued vectors for spanning the signal subspace.
The conditions for identifiability of the true periods using such
integer bases are rigorously derived here. Section V contains
several simulations and comparisons with other techniques, in-
cluding examples of protein and DNA repeats.

B. Notations

1) d|p denotes that d is a divisor of p.
2) (k, d) denotes the greatest common divisor (GCD) of k

and d. The least common multiple of k and d is denoted
by LCM(k, d).

3) φ(d) is the Euler-totient function of d. It is equal to the
number of positive integers ≤ d and coprime to d.

4) Vectors are denoted by bold lower case font (e.g., x),
matrices by bold upper case font (e.g., A) and sets by
blackboard font (e.g., B).

5) x† denotes the transpose conjugate of x.

II. MUSIC AND PERIODICITY: AN OVERVIEW OF

PRIOR WORKS

In this section, we will briefly outline the MUSIC algorithm
[51], [66], and its prior adaptations to periodic signals. Let us
begin with the following signal model:

x(n) =
K−1∑

k=0

ckejωk n + e(n), (4)

where ωk are distinct frequencies in [−π, π) and e(n) is zero-
mean white noise with variance σ2

e . Most prior MUSIC-based
works model ck ∈ C as random variables [12], [34], [66]. But
we will assume them to be constants here, since such is the case
in most applications of periodicity. Note that (4) can also model

real valued signals, in which case the frequencies occur in pairs
{ωk ,−ωk}, with the corresponding coefficients occurring as
complex conjugates {ck , c∗k}. So the discussion in the following
applies to both real and complex valued signals.

Assume that there are L samples of x(n), 1 ≤ n ≤ L, and
define the ith block of data as

x(i) =
[
x(i) x(i + 1) · · · x(i + N − 1)

]T
, (5)

where N < L is the blocksize. We can call x(i) the ith “snap-
shot” but note that successive blocks are not independent (they
have an overlap of N − 1 samples). There are

M = L − N + 1 (6)

blocks. Note that we can write the ith block as

x(i) =
[
a0(i) a1(i) · · · aK−1(i)

]

⎡

⎢⎢⎣

c0
c1
...

cK−1

⎤

⎥⎥⎦

︸ ︷︷ ︸
c

+ e(i) (7)

where ak (i) are Vandermonde vectors up to scale:

ak (i) =
[
ejωk i ejωk (i+1) · · · ejωk (i+N −1)

]T

= ejωk i
T[

1 ejωk · · · ejωk (N −1)
]

︸ ︷︷ ︸
wk

Thus

x(i) = AΛω (i)c + e(i) (8)

where

A =

⎡

⎢⎢⎢⎢⎢⎣

1 1 · · · 1
ejω0 ejω1 · · · ejωK −1

ej2ω0 ej2ω1 · · · ej2ωK −1

...
...

. . .
...

ej (N −1)ω0 ej (N −1)ω1 · · · ej (N −1)ωK −1

⎤

⎥⎥⎥⎥⎥⎦
(9)

is a Vandermonde matrix independent of i, and

Λω (i) = diag {ejω0 i , ejω1 i , . . . , ejωK −1 i} (10)

Define the data matrix to be

X =
[
x(1) x(2) · · · x(M)

]
. (11)
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Then the sample autocorrelation matrix is

R̂ =
1
M

XX† =
1
M

M∑

i=1

x(i)x†(i) (12)

For large M this can be approximated as

R̂ ≈ AΛcA† + σ2
e IN (13)

where Λc = diag {|c0 |2 , |c1 |2 , . . . , |cK−1 |2}. (Please see the
Appendix for a proof of (13)).

Let λ1 ≥ λ2 ≥ · · · ≥ λN be the eigenvalues of R̂. Since
Rank(AΛcA†) = K, it can be shown that λK +1 = λK +2 =
. . . = λN = σ2

e . These are commonly referred to as the
noise eigenvalues, and their corresponding eigenvectors Ue =
[uK +1 , uK +2 , . . . ,uN ], as the noise eigenvectors. Using (13),
we obtain

AΛcA†Ue = 0 (14)

As long as N ≥ K, Λc will have a full rank and A will have a
full column-rank, because ck �= 0 and ωk are distinct in [−π, π).
So (14) is equivalent to:

A†Ue = 0 (15)

That is, the complex-exponentials in (4) turn out to be orthogonal
to the noise eigenspace. So one can then use the following to
estimate the ωk :

min
ω∈(−π ,π ]

‖a†(ω)Ue‖2
2 (16)

where a(ω) = [1, ejω , e2jω , . . . , e(N −1)jω ]T . It can be proved
[51], [55] that as long as N > K, the only complex-exponentials
that are orthogonal to the noise eigenspace are those in (4).
Hence, there will be no spurious estimates when solving (16).

Now, for applications with periodicity, MUSIC by itself does
not exploit the fact that the lines in the spectrum are harmonically
spaced (Fig. 1). Taking this into account, Christensen et al. [12]
proposed to modify (16) as

min
ω∈(−π ,π ]

min
K

‖B†(ω)Ue‖2
F

KN(N − K)
(17)

where B(ω) = [a(0),a(ω), a(2ω), . . . ,a((K − 1)ω)]. The
factor of KN(N − K) is a normalization term. The resulting
algorithm was called the Harmonic MUSIC (HMUSIC) algo-
rithm. It was further generalized to the case of mixtures of
periodic signals in [11] as follows:

min
{Kl }Q −1

l = 0

min
{ωl }Q −1

l = 0

Q−1∑

l=0

‖B†
Kl

(ωl)Ue‖2
F

KN(N − K)
(18)

where Q is the number of component periodic signals in the
mixture. The various ωl , 0 ≤ l ≤ Q − 1, represent the Q fun-
damental frequencies. Kl is the number of spectral lines that
corresponsd to harmonics of ωl . BKl

is a matrix similar to the
B in (17), with columns being complex exponentials with fre-
quencies ωl and its harmonics. K =

∑
l Kl is the total signal

space dimension.
Both (17) and (18) were shown to offer better estimates than

MUSIC in the context of pitch estimation [11], [12]. However,
notice that both (17) and (18) involve computationally intensive

integer optimizations, apart from the optimization over the ω’s.
The most commonly used approach for optimizing over the ω’s
in (16), (17) and (18) is to evaluate them over uniform frequency
grids, as was done in [12]. The uniform grid allows to exploit
FFT in the computations, as shown in [12]. We will be using
the same in the simulations of Section V. An interesting ana-
lytical framework on how to select the grid resolution for such
problems, considering the trade-off between estimation accu-
racy and computational time, is presented in [41]. For MUSIC,
alternatives based on polynomial root finding (such as the Root-
MUSIC algorithm in [3], [48]) have also been proposed in the
literature.

For signals that can be approximated well by the integer
period model of (2) (such as DNA and Protein repeats), we can
develop much simpler techniques than the above methods, with
a significantly higher accuracy as well. One of the proposed
methods includes using a non-uniform frequency grid known as
the Farey grid [70], which will be shown to be ideally suited for
the integer period model. We shall present these next.

III. THE PROPOSED METHODS

We begin with a brief review of Ramanujan subspaces [68]
and nested periodic subspaces (NPS) [61]. These were intro-
duced recently for the representation of sequences with integer
periods. Our proposed iMUSIC algorithms (Secs. III-B and IV)
will be based on these.

A. Ramanujan and Nested Periodic Subspaces: An Overview

For any integer q > 0, the Ramanujan subspace Sq is the
space of period-q signals spanned by

s(k)
q (n) � ej2πkn/q (19)

where 1 ≤ k ≤ q and (k, q) = 1 (i.e., k is coprime to q). Sq

has dimension φ(q) (Euler totient function, Section I-B). It can
be shown [69] that any period-P signal (P = integer) can be
spanned by the signals from Sqi

where qi |P (i.e., qi are divisors
of P ). So the number of basis functions involved is

∑
qi |P φ(qi),

which turns out to be precisely P [28].
A dictionary for representing all sequences with integer peri-

ods ≤ Pmax takes the form

φ(1) φ(2) · · · φ(Pmax)
D = N (D1 | D2 | · · · | DPm a x ) (20)

where Dq has φ(q) columns (basis for Sq ) as indicated. One
choice for the vectors in Dq is the set of φ(q) complex Vander-
mode vectors

[
1 ej2πk/q ej4πk/q ej6πk/q · · · ]T (21)

where (k, q) = 1 (with 1 ≤ k ≤ q). Notice that these are noth-
ing but a subset of φ(q) columns from the q × q DFT matrix
(periodically extended). Another alternative set of φ(q) basis
functions for Sq (i.e., columns of Dq ) is based on the Ramanu-
jan sum

cq (n) =
∑

(k , q )= 1
1≤k ≤q

ej 2 π k
q n (22)
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Fig. 5. The Non-Uniform Farey Grid: The Farey frequencies needed to span
periods in the range 1 ≤ P ≤ 8. See Section III for details.

defined in [47] and reviewed in [68]. Then the mth column of
Dq has the form

[
cq (−m) cq (1 − m) cq (2 − m) · · · ]T (23)

for 0 ≤ m ≤ φ(q) − 1. Since cq (n) are known to be real in-
tegers, this forms an integer basis for Sq . Examples of such
Ramanujan basis are shown in Fig. 3(b). Now, given an inte-
ger Pmax, the set of all columns of the form (21) represents
frequencies of the form

2π
k

q
, 1 ≤ k ≤ q, (k, q) = 1 where 1 ≤ q ≤ Pmax (24)

This is said to be the Farey frequency grid for Pmax [70] (in-
spired by Farey sets [28]). It is the grid of frequencies repre-
sented by (20). Note that this is a nonuniform grid as demon-
strated in Fig. 5, and has

P∑

q=1

φ(q) ≈ 3P 2
max

π2 (25)

frequencies [28], [70]. We say that Eq. (20) is a Farey dictionary
if Eq. (21) is used for the columns of the matrix Dq , and a
Ramanujan dictionary if Eq. (23) is used [70]. Even though the
spaces Sq are orthogonal for different q [68], the columns from
Dq are not exactly orthogonal for different q when D has only
N < ∞ rows.

It can be shown [68] that signals in Sq (hence the columns
in Dq ) have period exactly q (they cannot be smaller, such
as, a divisor of q). If a signal with period P is represented
as a linear combination of elements in the subspaces Sqi

, 1 ≤
qi ≤ Pmax , then only those qi that are divisors of P can have
nonzero coefficients. In fact, once the representation x(n) =∑

i αixqi
(n) has been found where xqi

(n) ∈ Sqi
and αi �= 0,

the period P can be shown to be

P = LCM {qi1 , qi2 , · · · } (26)

This is called the LCM property [69], [61]. That is, given an input
signal, if we can find the exact set of Ramanujan subspaces that
span the signal, then the LCM of the periods of those subspaces
will be equal to the period of the input.

It was shown in [63], that the Ramanujan subspaces can alter-
natively be defined using the Exactly Periodic Subspaces of [39]
and the Intrinsic Integer Periodic Functions of [46]. The nested
periodic subspaces Nq introduced in [61] are a generalization
of Ramanujan spaces Sq . Examples include the so-called natu-
ral basis, and random basis for periodic signals defined in [61].
The natural basis is demonstrated in Fig. 3(a). Unlike Sq , the
spacesNq are not necessarily orthogonal for different q. But just
like Sq , the space Nq has dimension φ(q). A dictionary similar
to Eq. (20) can be defined based on such subspaces, and just
like Ramanujan subspaces, any set of nested periodic subspaces
can be used to represent periodic signals and enjoys the LCM
property (26). The advantage of the generalized spaces Nq over

Sq is that their basis functions can be very simple (consisting
just 0’s and 1’s), as demonstrated in Fig. 3.

The LCM property easily extends to the case of mixtures of
periodic signals. For example, if the input is a mixture of period
4 and period 6 signals, then the subspaces with periods 1, 2, 3,
4 and 6 are involved in spanning it (i.e., divisors of 4 and 6).
More generally, if a mixture of periodic signals can be spanned
by nested periodic subspaces of periods P = {P1 , P2 , . . . PK },
then it can be shown that the component periods in the mixture
are given by the following set1 [61], [65]:

PH = {Pi ∈ P : MPi �∈ P ∀M > 1} (27)

that is, those numbers in P that do not have any multiples also
present in P . Dictionaries based on NPSs have been shown to
offer several new advantages over traditional period estimation
techniques [16], [61], [63].

B. The Proposed iMUSIC Formulation

As explained in Section II, when the Vandermonde vectors
(columns of A) in Eq. (9) have a harmonic structure, it can
be exploited to improve the MUSIC algorithm (e.g., HMUSIC
[12]). Now, when x(n) has integer period ≤ Pmax , the frequen-
cies ωi in (9) can only have the specific form (24). That is,
the Vandermonde vectors are similar to the atoms in the Farey
dictionary (20). In this case there is a different way to define
the MUSIC spectrum which works much better than traditional
MUSIC and HMUSIC. We refer to this as Farey MUSIC; as we
shall see below, this is more than just restricting the computa-
tion of traditional MUSIC spectrum to the Farey grid. Since the
Farey MUSIC algorithm is specifically designed to find integer
periods, we also call it iMUSIC (where the i stands for integer
period). Also, replacing the Farey atoms with other types of
nested periodic bases leads to several generalizations of iMU-
SIC, as we shall see in Section IV.

Let us begin by assuming that x(n) in (4) is a period-P
signal. So the K columns of A in (9) are a subset of the atoms
of the Farey dictionary, with periods being divisors of P . We
can follow the derivation in Section II to obtain (15). That is,
the atoms of the Farey dictionary that span the signal turn out to
be orthogonal to the noise subspace. As long as N , the size of
the snapshots in (5), is larger than K, no other Farey atoms will
satisfy (15). At this point, we propose the following alternative
to the MUSIC (Eq. (16)) and HMUSIC pseudo-spectra (Eqs.
(17) and (18)): For every integer P , we compute

SF (P ) =
1

φ(P )

φ(P )∑

m=1

1

‖Ue
†s(m )

P ‖2
2

(28)

where {s(m )
P }φ(P )

m=1 are the φ(P ) period-P atoms of the Farey
dictionary. The φ(P ) term in the denominator is a normalizing
factor. A plot of (28), with the integer P as the x-axis is the
discrete iMUSIC pseudospectrum based on the Farey dictionary.

1The question of the extent to which the component periods in a mixture
can be uniquely identified is a fundamental problem, that was only recently
addressed in [65]. Since those details are quite involved, we will skip them here
and refer the reader to Section III in [65]. Eq. (27) in essence ensures that we
do not declare a harmonic of a component period as another component period
in the mixture.
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Fig. 6. Demonstrating the proposed iMUSIC method using a Farey dictionary on a mixture of periods 3, 10 and 13. (a) The noisy periodic signal, (b) conventional
MUSIC, and (c) the new iMUSIC method in (28). See Section III-B for details.

C. Farey MUSIC Versus MUSIC and HMUSIC

Note that Eq. (28) is not just restricting ordinary MUSIC to
a special non-uniform grid. It is differs from classical MUSIC
and HMUSIC in the following ways:

1. Ramanujan Subspaces: Eq. (28) consolidates all the Farey
atoms in each Ramanujan subspace into one sum. In this way
each iMUSIC spectrum line is for one Ramanujan subspace.
The LCM property of the Ramanujan subspaces applied to the
peaks of (28), yields the period. The number of lines is therefore
different from the number of lines in ordinary MUSIC.

Notice that HMUSIC in (17) and (18) also groups together
harmonic multiples of a fundamental frequency. But while
HMUSIC combines consecutive harmonics ωl, 2ωl, 3ωl, . . . ,
Kl − 1ωl in (18) via the BKl

matrix, in Farey-MUSIC, for
every period P , we only combine those ej2πkn/P for which
(k, P ) = 1. Kl itself in HMUSIC (18) is found by optimizing
over all possible values. On the other hand, in Farey-MUSIC,
the number of complex exponentials we associate with period
P in (28) is fixed (= φ(P )).

2. Mixtures of Periodic Signals: Unlike HMUSIC in (18), the
complexity of iMUSIC does not increase with the number of
component signals in a mixture, or with the number of harmonics
for each component. The complexity of HMUSIC increases
exponentially with the number of hidden periodic components Q
in (18). This is because the number of ways in which Kl’s in (18)
can be chosen to add up to the total signal space dimension K
increases exponentially with Q (see Appendix B). The proposed
iMUSIC (28) does not need to compute the exact partition of the
total signal space dimension into individual Kl’s. We just need
to compute (28) irrespective of the number of hidden periodic
components.

3. The Period of a Complex-Exponential: There is a subtle
distinction in how we interpret the period of a complex expo-
nential. In prior works, the period of ej2πkn/P was interpreted
as P/k. However, we follow the strict integer period definition
as given in (2), so that the period is actually P/gcd(P, k).

All these differences when put together, result in significantly
better accuracies and much simpler algorithmic complexity for
integer period estimation, as will be seen in Section V. Before
proceeding, we will show a simple demonstration of the iMUSIC
equation (28). Fig. 6(a) shows a sum of randomly generated
signals with periods 3, 10 and 13 and SNR 5dB. The total signal
length (L in Section II) was 400. This signal was broken down
into successive blocks of length 101 samples (N in (5)). K, the
number of complex exponentials in (4), turns out to be 24 for this

choice of periods. In practice, this true value of K is unknown
a priori, so we estimate it here using a simple metric: all the
eigenvalues of the auto-correlation matrix smaller than 5% of
the maximum eigenvalue were considered as noise eigenvalues.
Fig. 6(b) shows the conventional MUSIC pseudospectrum for
reference. The peaks correspond to periods 12.79, 9.85, 6.56,
5.02, 4.34, 3.32, 3.24, 3.01, 2.59, 2.51 and 2.17. Notice that it
is quite inconvenient to spot the true periods 3, 10 and 13 from
this set. Fig. 6(c) shows the iMUSIC pseudospectrum computed
using (28). It is easy to identify distinct peaks at periods 2, 3, 5,
10 and 13. Using the LCM property, we can deduce that these
correspond to periods 3, 10 and 13.

IV. GENERALIZING IMUSIC FROM FAREY ATOMS TO

OTHER NPS BASES

Eq. (28) can alternatively be implemented using integer val-
ued basis vectors instead of complex exponentials. This can be
done using the Nested Periodic Subspaces (NPSs) [61], [63]
described in Section III-A. The NPSs are generalizations of
Ramanujan subspaces, and include several examples of integer
bases for representing periodic sequences (Fig. 3). In fact, as
explained in Section III-A, the Ramanujan subspaces can them-
selves be spanned by integer valued vectors instead of the Farey
atoms.

Algorithmically, generalizing the iMUSIC spectrum using
such NPSs is done as follows: We compute the following for
every integer P instead of (28):

SN (P ) =
1

φ(P )

φ(P )∑

m=1

1

‖Ue
†b(m )

P ‖2
2

(29)

where {b(m )
P }φ(P )

m=1 are the φ(P ) period-P NPS basis vectors.
Using the LCM property of NPSs, we can once again determine
the period from the peaks of Eq. (29). For example, Fig. 7 shows
plots of Eq. (29) vs. P for various integer valued NPS bases, for
the signal shown in Fig. 6(a). When the atoms b(m )

P come from
a Ramanujan dictionary (Fig. 3(b)), we call (29) as Ramanujan
MUSIC. Natural basis MUSIC and Random NPS MUSIC can
be defined similarly using their respective dictionaries [61]. All
these plots have clean peaks at periods 2, 3, 5, 10 and 13. Using
the LCM property of NPSs, it is easy to see that they represent
periods 3, 10 and 13.

Although the above idea is simple, the non-Vandermonde
nature of the NPS bases introduces several challenges in the
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Fig. 7. Demonstrating the NPS based iMUSIC methods on the signal shown in Fig. 6 using (a) a Ramanujan dictionary, (b) a natural basis dictionary and (c) a
randomly generated NPS dictionary. See Section IV for details.

mathematical formulation of (29) when compared to classical
MUSIC. So in the remainder of this section, we will study (29)
in a rigorous fashion. To start with, let us assume that x(n)
is a period P signal. Following the derivations of Section II,
we can arrive at (14). Now, since x(n) has integer period, the
columns of A themselves have integer periods (atoms of the
Farey dictionary), and hence can be spanned by any other set of
NPSs (such as say natural basis). We can write this as:

AN ×K = BN ×K ′TK ′×K (30)

where the K ′ columns of B are the basis vectors of the other
NPS. It can be shown [61] that the LCM property applied to the
columns of either A or B yields the same answer, namely P . It
is useful to consider two separate cases at this point, depending
on whether K equals K ′.

A. The Case When K = K ′

In general, K and K ′ can be different. But to start with,
we assume K = K ′ since it is the most common situation in
applications with integer periods. Conceptually, K = K ′ means
that one would require the same number of NPS basis vectors
to span the snapshots, no matter which NPS is chosen. For
instance, if x(n) was randomly generated, say by repeating a
P × 1 Gaussian random vector xP , then it can be shown that
K = K ′ with probability 1 (Appendix C). This also applies to
mixtures of periodic signals, when each component signal is
randomly generated. In applications such as DNA and protein
repeats, where the nucleotides or the amino acids are mapped to
numbers using scales such as the molecular size, hydrophobicity
etc. [1], it is quite natural to expect that K = K ′. The case of
K �= K ′ will be addressed later in Section IV-B.

We can re-write (14) using (30) as follows:

BTΛcT†B†Ue = 0 (31)

In (30), as long as N > K, A will have a full column rank
(Vandermonde property). This implies that B and T will also
have full column ranks K (= K ′), and hence BTΛcT† will
have a full column rank in (31). So (31) is equivalent to:

B†Ue = 0 (32)

Notice that this is similar to (15), but involves the columns of
an NPS dictionary rather than complex exponentials. So given
such an NPS dictionary, plotting (29) for every period ≤ Pmax

will result in peaks at periods corresponding to the columns

of B. So we may think of using the LCM property on those
peaks to estimate the period. But before we can do so, just like
in classical MUSIC, we need to address the following question
first: Can there be NPS basis vectors other than the columns of
B that are also orthogonal to Ue?

We have an interesting deviation from classical MUSIC in
this aspect. While we cannot guarantee the absence of such
additional (spurious) NPS basis vectors producing peaks in (29),
we can nevertheless prove that any such additional peaks will
not affect the period estimate. To see this, we first need the
following result proved in [65]:

Theorem 1: Let x(n) be a noiseless periodic signal whose
period is known to lie in the integer set P = {P1 , P2 , . . . , PK }.
To be able to uniquely identify its period using L consecutive
samples, it is both necessary and sufficient that:

L ≥ Lmin = max
Pi ,Pj ∈P

Pi + Pj − (Pi, Pj ) (33)

♦
The above result is a fundamental identifiability result that

is independent of which estimation technique is used [65]. We
will use it to prove the following:

Theorem 2: Suppose the period of x(n) in (4) is known a
priori to lie in the integer set P = {P1 , P2 , . . . , PK }. If N , the
length of the snapshots in (5), satisfies:

N ≥ Lmin = max
Pi ,Pj ∈P

Pi + Pj − (Pi, Pj ) (34)

then the LCM of the periods of all the NPS basis vectors that are
orthogonal to Ue , will be equal to the true period of the signal.

Proof: Let us assume that the input’s period is P . As men-
tioned earlier, the LCM of the periods of the columns in A in
(9) and B in (30) will be equal to P . Suppose b is an NPS basis
vector that is not a column of B, but still satisfies b†Ue = 0.
There are two possibilities:

Case (i): Period of b divides P . In this case, even if b†Ue =
0, a peak in the psuedospectrum at period of b will not change
the LCM estimate. So such a spurious peak will not lead to a
false period estimate.

Case (ii): Period of b does not divide P . We will show using
contradiction that such a b cannot exist. If there was such a
b, then b, along with the columns of B will constitute K + 1
vectors in the K dimensional null-space of U†

e . When N satis-
fies (34), it follows in particular that N > Pmax ≥ K. N > K
implies that A in (30) will have full column rank (Vandermonde
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property), and so B will also have full column rank K (recall
that we assumed K = K ′ to start with). This would mean that
B is a basis for the null space of U†

e , and so:

b = Bv (35)

for some vector v. Notice that the L.H.S. is a length N segment
of a signal whose period does not divide P . The R.H.S. is a seg-
ment of a signal whose period necessarily divides P , since the
columns in B are NPS basis vectors whose periods are divisors
of P . As long as N ≥ Lmin according to Theorem 1, such an
ambiguity in identifying the period is not possible. Hence we
arrive at a contradiction to the existence of such a b. �

Remark 1: When the set of possible periods in Theorem 2 is
P = {1, 2, 3, . . . , Pmax}, Lmin turns out to be 2Pmax − 2.
This is because, the pair of candidate periods Pmax and Pmax −
1 not only maximize Pi + Pj in (34), but also have the minimum
possible GCD.

Remark 2: Theorem 2 can be generalized to mixtures of pe-
riodic signals. If x(n) were a mixture of M periodic signals
with periods in {1, 2, 3, . . . , Pmax}, then the minimum N is
approximately:

N ≥ 2MPmax (36)

For readers familiar with [65], (36) is in fact an approximation
of the following precise lower bound:

N ≥ Nmin = max
Pi ,Pj ⊂P
Pi ,Pj are

M−sets of size =N

∑

d∈D .S.({Pi ∪Pj })
φ(d) (37)

The proof is based on the generalization of Theorem 1 to mix-
tures of periodic signals [65]. The details are quite involved for
the scope of this paper, so we will skip the proof here, and refer
the interested reader to [65] for directions.

Remark 3: Theorem 2 is tight in the following sense: It is
possible to construct examples of NPSs for which spurious peaks
will affect the period estimate when N doesn’t satisfy (34). But
for most NPSs, a smaller N may be sufficient. For instance, if we
use the Farey atoms, it is easy to show using their Vandermonde
structure [55] that we just need:

N > max
Pi ∈P

Pi (38)

instead of (34) in Theorem 2. However, deriving the precise
necessary and sufficient bounds for other NPSs that do not have
a Vandermonde structure is difficult. Theorem 2 is useful in this
regard.

So we have so far shown that as long as K = K ′, and the
snapshot length satisfies (34), the period of the signal can be
estimated using (29). We will now discuss the case of K �= K ′.

B. The case of K �= K ′

Let us consider the following two cases separately:
Case A. K > K ′: This will not happen as long as the snapshot

length N > K, because then A in (30) will have full column
rank K. So at least K linearly independent columns are needed
in B in the R.H.S. of (30).

Case B. K < K ′: This can occur in some cases. For instance,
if x(n) = ej2πn/P , then K = 1, as only one Farey column is

Fig. 8. The effect of K < K ′ on the pseudo-spectrum of (a) Ramaujan Sub-
spaces (Farey basis) (b) Ramanujan Subspaces (integer basis) (c) Natural Basis
Subspaces and (d) Randomly generated NPSs. See Section V for details.

required to span the snapshots of x(n). But if we use natural
basis subspaces (Fig. 1), then K ′ = P , as it can be shown that P
basis vectors of the natural basis subspaces are needed to span
each snapshot of this x(n).

When K < K ′, T in (30) will not have a full rank. Hence,
(31) does not imply (32). So it is quite possible that some of
the columns of B are not orthogonal to Ue . So using (29) and
LCM property is not theoretically guaranteed to give the correct
period estimate. This is a fundamental limitation of any non-
Farey NPS basis. Nevertheless, it was experimentally observed
that:

� For iMUSIC using Ramanujan subspaces, (28) gave the
correct period estimates even for the non-Vandermonde
integer basis vectors.

� For Natural Basis subspaces and randomly generated
NPSs, the only spurious peaks observed were smaller peaks
at multiples of the true period. So the period could still be
estimated upto a multiple.

As an illustration, let us consider the following signal: x(n) =
ej2πn/10 . For this signal, we would need only one Farey basis
vector to span its snapshots, while we would need 10 basis
vectors from Ramanujan integer basis, and similarly from the
Natural Basis subspace. For randomly generated NPSs as well,
we would need 10 basis vectors with probability 1. So for each
of these other NPSs, we have K ′ = 10 in (30). Fig. 8 shows
the pseudo-spectra obtained from each of these NPSs using
(29). As is evident, K < K ′ wasn’t really an issue when using
Ramanujan subspaces, even for the non-Vandermonde integer
basis vectors. There were no spurious peaks or missing peaks.
For the natural basis and the randomly generated NPSs, we can
see spurious peaks at multiples of the true period, which is 10.
So the period can only be estimated up to a multiple of the true
period. Hence in practice, for signals such as pure sinusoids,
it is recommended to use the Ramanujan subspaces instead of
more general NPSs.

This completes the formulation of the NPS based iMUSIC
algorithms.



TENNETI AND VAIDYANATHAN: iMUSIC: A FAMILY OF MUSIC-LIKE ALGORITHMS FOR INTEGER PERIOD ESTIMATION 375

Fig. 9. Probability of Estimating both the component periods exactly. Com-
parison of the proposed Farey-MUSIC with other techniques. See Section V for
details.

Fig. 10. Probability of Estimating both the component periods exactly. Com-
parison of the various NPSs for iMUISC, and also HMP and EM methods. The
Farey-MUSIC plots from Fig. 9 have been repeated for reference. See Section V
for details.

V. EXPERIMENTS

In this section, we present several examples and comparisons
to highlight various aspects of the proposed methods.

A. Comparison of Estimation Accuracies

Figs. 9 and 10 compare the accuracy of period estimation for
several techniques as a function of SNR. For each SNR shown,
200 Monte Carlo trials were carried out with randomly gener-
ated signals, each signal being an additive mixture two periods
randomly chosen from the interval2 [1, 25]. The total datalength
for each signal was L = 500 samples. The snapshot length (N
in (5)) was chosen as 301. For simplicity, we assumed that the
value of the total signal space dimension K is known to all the
methods here, including MUSIC and HMUSIC. In subsequent
simulations, we will show that the iMUSIC techniques are quite
robust to using very simple estimators for K. Pmax , the max-
imum period that is searched for in the signal, was chosen to
be 35. The probability of correct estimation is plotted for each

2We ensured that the two numbers are not multiples of each other, as in that
case, there is fundamentally no way to determine whether the input is a mixture
of two periods, or just one periodic signal. Please see Section III of [65] for
details on to what extent the component periods in a mixture can be uniquely
identified in general.

method,3 which is the fraction of trials in which the detected pe-
riods were exactly equal to the input periods. For visual clarity,
we have split the different methods into two figures, Figs. 9 and
10. Our observations are as follows:

1. Traditional MUSIC and HMUSIC: The MUSIC pseu-
dospectrum (i.e., a plot of the inverse of ‖a†(ω)Ue‖2

2 in (16)
vs ω) is expected to contain peaks at all the harmonics of the
component periods in the input. To identify the periods using
MUSIC, we first computed a list of 2π/ω values for each peak
in the pseudospectrum. This gives a list of candidate periods,
some of which might just be harmonics of larger periods. So
we eliminated those numbers in this list that have a larger mul-
tiple also present in the same list. This way, if one of the peaks
was a harmonic of a larger period, it will not be declared as an
independent period in the mixture.

While MUSIC and the proposed iMUSIC algortihms just re-
quire an estimate of the total signal space dimension K, the
HMUSIC algorithm in (18) requires to compute the exact parti-
tion of K into the Kl’s. Recall that Kl is the number of lines in
the spectrum that correpond to the lth fundamental frequency.
In Fig. 9, HMUSIC was given the benefit of knowing a priori the
true values of Kl’s, which is usually not available in practice.
For a fair comparison, the final period estimates of both MUSIC
and HMUSIC [11]–[13] were rounded to the nearest integers.
Both these methods, evaluated on a frequency grid that has the
same size as the Farey grid, yield probability of correct estima-
tion close to 0 even at high SNRs. They required at least five
times denser grids than the Farey grid to reach the performances
shown in Figs. 9 and 10. Further increase in the grid size did
not improve their accuracy significantly. As is seen, HMUSIC
and MUSIC do not perform as well as the proposed iMUSIC
methods, especially when using Farey and integer Ramanujan
based methods. At lower SNR’s however, HMUSIC does seem
to offer good accuracies when compared with the Natural Basis
and Random NPS based iMUSIC.4

2. Prior Ramanujan-Subspace Based Methods: An alternate
way of using NPSs for period estimation is using compressed-
sensing based dictionary methods [61], [70]. While they work
very well compared to other methods for very short datalengths
[61], [63], for the parameters considered here, the dictionaries
turn out to be tall. Least squares based approach using such

3Mean Squared Error (MSE), a popular metric in general, is not appropriate
here due to two reasons: (a) Different methods could detect different number
of component periods. It is not straightforward to compare vectors of different
lengths using MSE. (b) Estimating the period upto a multiple may be acceptable
in many applications. For example, in Fig. 2, proteins with Ankyrin repeats are
known to have periods in the range 30–40. So it might be more acceptable to
estimate 66 as the period, instead of say 40, since we can readily deduce that 66
might actually indicate period 33 repeats. MSE on the other hand penalizes 66
more than 40. In any case, probability of correct estimation is in fact a stricter
metric than MSE.

4An important practical aspect when using MUSIC-based techniques is how
we pick the peaks from the psedo-spectra. In the experiments of this section,
for MUSIC, we first applied a minor thresold (7.5% of the max. peak) to zero
out very small peaks in the spectum. We then selected those frequencies as
peaks where the value of the pseudo-spectrum is larger than at the immediately
neighboring points. This latter step is also used in the implementations of
HMUSIC provided by the authors of [13].5 For the iMUSIC techniques, we
selected all those peaks that are larger than a certain x% of the largest peak
in the pseudo-spectrum. We noticed empirically that different NPSs seemed to
require different values of x. To be specific, we used: Ramanujan: 5%, Farey:
10%, Random: 20% and Natural Basis: 30%.

5https://www.morganclaypool.com/page/multi-pitch
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dictionaries can be efficiently implemented as a filter bank
called the Ramanujan Filter Bank (RFB) [64], [67]. As seen
in Fig. 9, the proposed iMUSIC methods based on farey and
integer Ramanujan bases easily outperform the RFB. At lower
SNRs though, the RFB performs better than the Natural Basis
and Random NPSs. It is useful to note however that the most
appropriate applications for the RFB are signals exhibiting lo-
calized or time varying periodicity such as chirps [64], [67].

3. Harmonic Matching Pursuit and Expectation Maximiza-
tion: Fig. 9 also shows the performance of two other multi-pitch
methods: Expectation Maximization [13], [14] and the Har-
monic Matching Pursuit [13], [25] algorithms. Once again, both
these methods give close to 0 probability of correct estimation
when their frequency grid sizes are comparable to those of the
Farey dictionary. Both of them required at least 10 times denser
grids than the Farey grid to achieve the accuracies shown in
Fig. 9, which made them significantly more computationally
expensive.

4. The Proposed iMUSIC Methods: As seen in Figs. 9 and 10,
iMUSIC using the Farey dictionary (denoted as FareyA in the
plots) clearly outperforms all other methods considered here.
An interesting observation in Fig. 10 is that, although Farey
and Ramanujan dictionaries both span the same (Ramanujan)
subspaces, Farey based iMUSIC performs slightly better. This
might be because the Farey columns tend towards orthogonality
for large enough N , while the Ramanujan integer basis vectors
do not. Nevertheless, at almost all SNR levels shown, both
these methods outperform all the other techniques considered
in this simulation. The Natural Basis and Random NPSs based
iMUSIC algorithms have good accuracies compared to other
non-iMUSIC techniques at SNR’s larger than about 7.5 dB.
It is worth noting however, that at −5 dB, HMUSIC (with 5
times larger grid size, and the additional knowledge of Kl’s)
and the Ramanujan Filter Bank do perform well compared to
the proposed methods.

For simplicity, we assumed that the iMUSIC techniques here
have an a priori knowledge of the true total signal space dimen-
sion K. FareyB however uses a simple approach to estimate
K: namely, all the eigenvalues of the auto-correlation matrix
smaller than 5% of the maximum eigenvalue were considered
as noise eigenvalues. As seen, the change in accuracy is not too
severe compared to FareyA , especially at higher SNRs. This will
also be seen in the experiments in the following subsections, in-
cluding the examples of proteins and DNA repeats. When using
such a method to estimate K, we noticed empirically that the
exact percentage to use depends on the SNR level. Using lower
threshold levels for high SNRs and vice versa gave the best
results.

Remark: Apart from the methods considered above, there are
several other techniques that are popular in the literature such as
[9], [10], [18], [19], [31], [52], [57]. While being the state-of-
the art for applications such as pitch estimation, these methods
cannot be directly used in the above example since they are
not easily extended to the case of mixtures of periodic signals.
It is important to note that, although iMUSIC outperforms the
other techniques in Figs. 9 and 10, these other methods, includ-
ing the aforementioned papers on single pitch estimation, can
handle the more general case of non-integer periods. Whether
the iMUSIC algorithms can be adapted to such applications

Fig. 11. A comparison of the CPU Times. See Section V for details.

requires a detailed analysis in itself, and will be a part of our
future research. In a following subsection, we will compare the
iMUSIC methods with the state-of-the-art for an application
with inherently integer periods: namely, protein repeats.

B. Comparison of CPU Times for Eigenspace Methods

To show the computational savings that iMUSIC algorithms
achieve over prior variants of MUSIC, Fig. 11 compares the
average CPU times (MATLAB 2014b on a 2.4 GHz CPU with
8 GB RAM) as a function of the size of the autocorrelation ma-
trix (which is also the size of the snapshots N in (5)). The total
datalength of the signal, L was chosen as 3N , and the dimension
of the signal subspace K was fixed at 25 for simplicity. MUSIC
and HMUSIC were implemented with a uniform frequency grid
of the same size as the Farey grid. Recall however that both these
methods typically require much more denser grids than Farey
MUSIC (Section V-A). Unlike in Section V-A, here HMUSIC
was not given a priori knowledge of the true values of Kl’s
in (18). As derived in Appendix B, significant computational
complexity is incurred by HMUSIC while finding the correct
partition of the signal space dimension K into the Kl’s. Notice
that our natural basis (NB) MUSIC is the fastest in Fig. 11.
Farey-MUSIC and MUSIC are similar to each other in terms of
CPU time due to identical grid sizes. In Fig. 11, HMUSIC(≤ T )
denotes using (18) with the prior knowledge that the number of
hidden periodic components in the signal Q ≤ T . It is shown
in Appendix B that the complexity of HMUSIC increases ex-
ponentially with the number of hidden periodic components.
In contrast, since we check the NPS basis vectors one-by-one
in (28), the complexity of our proposed techniques does not
depend on T . From Figs. 10 and 11, it is evident that our meth-
ods offer much better accuracy for integer period estimation
than prior variants of MUSIC, while keeping the computational
complexity low at the same time.

C. Effect of Increasing the Number of Hidden Periods

In Section V-A, we considered input signals that were mix-
tures of two hidden periods. How do the proposed iMUSIC
algorithms perform as the number of hidden periods increases?
Fig. 12 plots the estimation accuracy vs. the number of hid-
den periods for various NPS based iMUSIC methods. The total
datalength was fixed at 750 samples, the autocorrelation win-
dow length at 301 samples, and the SNR at 10 dB. The number
of hidden periods was increased from 1 to 8, with the hidden
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Fig. 12. Effect of increasing the number of hidden periods on the accuracy of
the proposed iMUSIC techniques. See Section V-C for details.

periods themselves being chosen uniformly at random from the
set [1, 20]. For each value of number of hidden periods, 1000
realizations of randomly generated signals were used to com-
pute the probabilities of correct estimation. For each NPS, the
estimation accuracies for both the following cases are shown:
(a) using the iMUSIC algorithms with an a priori knowledge of
the true value of K (denoted by the subscript A in Fig. 12), and
(b) estimating K using the simple percentage metric described
in the previous subsection (denoted by subscript B). For the
chosen SNR level, we noticed that using a threshold value of
1% of the maximum eigenvalue gave the best results.

Our observations are as follows: First, it is natural to expect
that the probability of correctly estimating all the component
periods in a mixture of N signals will decrease as N increases.
This is indeed seen in Fig. 12. The accuracy of the Farey iMUSIC
method however does not decrease as quickly as the other NPSs,
indicating that it is the best choice when the number of hidden
periods is large. At this point, we do not have a theoretical
justification for why this happens, but it will be interesting to
investigate the same. Another interesting observation in these
plots is that using an estimated K using the simple percentage
rule described above, seems to give better performance than
using the true value of K for certain NPSs like the Ramanujan
(integer) case. Once again, it will be interesting to study why
this happens from a fundamental perspective.

D. Examples of Protein Repeats and DNA Microsatellites

We will now demonstrate the proposed iMUSIC algorithms
on repeats in proteins. A protein is essentially a chain of
amino acids taken from an alphabet of 20 possible amino
acids. Protein repeats are segments within the amino acid
sequence that exhibit periodicity. For example, the sequence
. . .MWACFACFACSY . . . has 2 complete, and a partial cy-
cle of the repeat ACF . Such repeats manifest as characteristic
3D periodic structures (for e.g., see Fig. 2), and play impor-
tant roles in several diverse contexts [1]. For instance, they are
known to admit a much higher mutation rate (substitution and
insertion-deletion error) than usual. Such mutations have been
associated with several diseases, including addictive behaviors
to alcohol, nicotine and so on [42].

Detecting these repeats is not easy in practice, due to the high
mutation rate. Several techniques have been proposed in this

TABLE I
PROTEIN REPEATS COMPARISON

regard [6], [26], [30], [40], [58], [59]. In the following examples,
we will demonstrate that the proposed iMUSIC algorithms can
also be used for identifying such repeats. To the best of our
knowledge, this is the first time any MUSIC based approach
is being used for this application. In the following examples,
we used the Kyte-Doolittle hydrophobicity scale [36] to map
amino acids to numbers. This scale quantifies the hydropathy
of amino acids, and has been widely used in studying protein
structures and domains. To estimate the signal space dimension,
we noticed empirically that using the simple percentage metric
described above with thresholds between 5% and 10% of the
maximum eigenvalue gave the best results.

In our first example, we consider the protein AnkyrinR (PDB
1n11) that enables red blood cells to resist shear forces dur-
ing circulation. The period 33 repeats in AnkyrinR can easily
be identified in the pseudo-spectra shown in Fig. 13. These
plots show the results of applying the proposed methods using
Ramanujan (integer basis), Natural Basis and Random Integer
NPSs (The Farey basis can also be used; it was shown earlier
in Fig. 1). All four plots have clear peaks at 33 and its divisors.
Notice that the Ramanujan (integer basis) plot in Fig. 13(c) has a
weak peak at 33. This is not a problem, since there are significant
peaks at periods 11 and 3 in this case. The iMUSIC algorithm
takes an LCM of all the strong peaks in the pseudospectrum,
which in this case turns out to be 33 again.

Fig. 14 shows a second example, the protein Ribonuclease
Inhibitor, which contains 15 luciene-rich repeats, alternately 28
and 29 residues long [35]. So according to our definition of
periodicity in (2), the period of these repeats is 57. This can
once again be easily identified in the pseudo-spectrum plots
shown in Fig. 14. In all our experiments, we observed that the
Ramanujan Subspaces (both Farey and the integer basis) gave
the cleanest plots, followed by randomly generated NPSs. The
Natual Basis Subspaces, although showing the tallest peaks at
the correct periods, often had smaller spurious peaks. Recall that
the natural basis subspaces performed well in Section V-A at
higher SNRs. But the noise there was additive, whereas here we
have substitution and insertion-deletion errors. It seems that the
natural basis subspaces are more sensitive than the other NPSs
for such errors.
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Fig. 13. Pseudospectra of the proposed NPS based techniques for the Ankyrin protein repeats shown in Fig. 2. See Section V for details.

Fig. 14. Top: The protein Ribonuclease Inhibitor (PDB: 1dfj) exhibiting
luciene-rich repeats. The psuedo-spectra obtained from (a) Ramanujan Sub-
spaces (Farey basis) (b) Ramanujan Subspaces (Integer Basis) (c) Natural Basis
Subspaces and (d) a randomly generated NPS, are shown. See Section V for
details.

For comparison, Table I shows the period estimates of various
techniques for three examples of protein repeats.6 Apart from
the examples shown in Figs. 13 and 14, we also consider the
protein HetL (PDB:3du1), which is 237 amino acids long and
contains tandem pentapeptide (period 5) repeats. This protein is
known to play an important role in the nitrogen fixation process
in cyanobacteria [43]. In Table I, notice that the estimates of
HMUSIC and MUSIC are not as accurate as those of iMUSIC.

6HMUSIC, as described in [12], [13], uses a computationally intensive dis-
crete optimization to find the signal space dimension. However, the implemen-
tation of HMUSIC provided by its author Christensen (as a part of [13]) requires
the user to specify the signal space dimension as an input. For simplicity, we
used the same 5% (and 10%) rule that we used with iMUSIC, for estimating
the signal space dimension for HMUSIC and traditional MUSIC as well.

TABLE II
REPEATS IN HUMAN GENOME SEQUENCE AC010136

Moreover, it can be seen that HMUSIC and MUSIC were very
sensitive to errors in the estimation of signal space dimension.
On the other hand, iMUSIC was very robust in this regard. While
Figs. 13 and 14 used a cut-off of 5% for identifying the noise
eigenvalues, the plots were very similar at 10% as well. The ‘(s)’
next to natural basis iMUSIC’s estimates in Table I indicates the
presence of smaller spurious peaks in its pseudospectrum (such
as the one at period 38 in Fig. 14).

Table I also compares three state of the art techniques used
for protein repeats. RADAR [30] and TRUST [58] algorithms
are based on self-alignment techniques (trace matrices and dy-
namic programming), while HHrepID [6] uses Hidden Markov
Models. These methods were desinged speicifically for finding
repeats from symbolic sequences (in this case, proteins). Once
again, iMUSIC performs well in comparison to these methods.

As the last set of examples, we consider tandem repeats in the
human DNA. Such repeats are of significance in a number of
contexts, and several interesting techniques have been proposed
in the past for identifying them [2], [4], [7], [23], [33], [54],
[60]. For example, repeats in the DNA are the primary bio-
markers used today in DNA fingerprinting, kinship analysis etc.
[4], [20], [50]. They are also associated with several genetic
disorders such as the fragile X syndrome, myotonic dystrophy,
Huntington’s disease and Friedreich’s ataxia [4]. Fig. 15 shows
an example of repeats (GenBank G08921) that are used in DNA
fingerprinting. We mapped the nucleotides to numbers that were
randomly generated using a Gaussian distribution. The iMUSIC
psuedospectra in Fig. 15(a) to (d) clealry identify the period 4
repeats.

The iMUSIC methods can be used with other one-to-one
mappings of nucleotides to numbers as well. For example,
Table II shows examples of repeats from the GenBank se-
quence AC010136, found on the second chromosome of the
human DNA. Here we used the simple mapping of assigning
{A,C, T,G} to the integers {1, 2, 3, 4} respectively instead of
a random mapping. For reference, one of the most popular
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Fig. 15. Top: An example of DNA microsatellites that are used in DNA finger-
printing. The psuedo-spectra obtained from (a) Ramanujan Subspaces (Farey
basis) (b) Ramanujan Subspaces (Integer Basis) (c) Natural Basis Subspaces
and (d) a randomly generated NPS, are shown. See Section V for details.

techniques for identifying DNA repeats, the Tandem Repeat
Finding algorithm [4], is compared with the Farey based
iMUISC method. The %-match and the %- indel metrics are
a meaure of substitution and insertion-deletion errors respec-
tively [60]. In Table II, a

√
indicates that a particular repeat was

correctly identified by the corresponding method. Table II shows
an interesting observation that we consistently observed in all
our DNA experiments. The iMUSIC methods seem very good
at idenitfying repeats with short periods (known in the literature
as DNA micro-satellites). The TRF method on the other hand
was better at detecting larger periods with very small number
of repeating copies. Here, we used a cut-off of 2.5% to identify
the noise eigenspace for iMUSIC. One may be able to improve
the performance of the iMUSIC methods for larger periods by
changing this threshold. This will be investigated as a part of our
future work. In a recent work [60], this sequence AC010136 is
analyzed in greater detail using a related Ramanujan subspaces
based method known as the Ramanujan Filter Bank. We refer
the reader to [60] in this regard.

A note on numerical mappings: An important practical as-
pect when using iMUSIC for protein and DNA repeats is the
mapping used to convert them to numerical sequences. Notice
that such mappings introduce geometric distances between the
amino acids/nucleotides. Are such induced geometric distances
appropriate for finding repeats in these symbolic sequences?
The answer to this could be slightly different for protein and
DNA repeats.

For protein repeats, we are generally trying to infer periodicity
in the 3D structure of the protein from its amino acid sequence
[1]. If there were no errors in the sequence, one may use any

one-to-one mapping to identify periodicity in the amino acid se-
quence. However, when there are substitution errors, it is known
that certain substitutions of amino acids do not change the 3D
structure as much as other substitutions. In the presence of such
substitution errors, even though there may not be exact period-
icity in the amino acid sequence, there will still be periodicity
in the 3D structure of the protein. Numerical mappings such as
the Kyte Doolittle (KD) scale that we have used here are very
useful in capturing this phenomena. The KD scale quantifies the
similarity between amino acids based on their hydrophobic na-
ture. Since the hydropathy of the constituent amino acids plays
an important role in how a protein folds in solutions, the KD
scale is very popular in studies that identify protein structure
from sequence. In particular, it has been used in popular works
on protein repeat detection, such as [26], [40]. The rASA (rel-
ative accessible surface area) is another such mapping used in
[40]. Similarity score matrices (or substitution matrices) have
also been used in works such as REPPER [26] to quantify this
notion of ‘closeness’ between amino acids in the context of
substitutions.

In contrast, in applications of DNA repeats such as forensics,
kinship analysis etc. [4], [20], [50], we are primarily interested
in repeats in the nucleotide sequence itself (and not concerned
as much about the 2D or 3D structure). So as long as each
nucleotide is mapped to a unique number, periodicity in the
nucleotide sequence can be detected using periodicity in the nu-
merical sequence. We showed two different kinds of mappings
in the examples above. However, in practice, we noticed that
the iMUSIC pseudo-spectrum obtained from one mapping may
reveal the periods in a much more clearer fashion than a differ-
ent mapping. The best mapping to use with iMUSIC methods
is something the authors would like to explore in the future. A
starting point in this direction could be [23], which proposes
a way to define a spectrum of a DNA sequence based on a
minimum entropy condition. It is also worth noting that some
techniques such as [2], [4], by default, do not rely on an explicit
numerical mapping.

Regarding modeling of noise: The iMUSIC formulation in
Section III-B models noise as additive and white. Is this ap-
propriate for DNA and proteins? To investigate this, let us start
by noting that there are two kinds of noise in such sequences:
substitution and insertion-deletion errors. When a sequence is
corrupted by substitution errors, in terms of the correspond-
ing numeric sequences, the difference between the original se-
quence x(n) and the corrupted sequence xe(n), can surely be
modeled as additive:

xe(n) = x(n) + e(n) (39)

The whiteness assumption on the noise essentially means that
we assume these substitution errors to occur independent of
each other. The aforementioned mappings based on substitution
probabilities and similarity measures ensure that e(n) is usually
small. An additive noise model unfortunately cannot take into
account insertion deletion errors. We noticed in our simulations
however (for e.g., see Table II), that for reasonable amount of
insertion deletion errors, the iMUSIC methods are still able to
identify the repeats. It is also worth noting that many popularly
used repeat finding works such as [7], [26], [40], [54] do not
model insertion deletion errors explicitly in any manner when
formulating their algorithms.
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While the above examples do demonstrate the proposed meth-
ods as good candidates for these applications, a more thorough
experimental evaluation of their performance in comparison
with prior works in these application domains is still neces-
sary. Such an analysis merits a much broader discussion than
the scope of this paper. Our focus here has been to introduce
and establish these methods on a sound theoretical footing. Op-
timizing them for specific applications such as DNA and protein
repeats will be a part of our future work.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper presents a new family of MUSIC-like algorithms
for integer period estimation, based on Ramanujan subspaces
[69] and nested periodic subspaces [61]. These new algorithms
offer very simple integer valued basis vectors for spanning the
signal space, and result in significantly better accuracy and com-
putational simplicity than existing techniques for integer peri-
ods. The non-Vandermonde nature of the basis vectors intro-
duces a number of subtle differences from the traditional MU-
SIC formulation. These were carefully addressed in the paper.
A number of simulation experiments were presented demon-
strating these algorithms, including examples from protein and
DNA repeats.

While the model in (2) is especially relevant to applications
with inherent integer periodicity, many state of the art methods
for conventional periodicity applications such as in speech [10],
[44], [71] also use integer period approximations. Adapting our
techniques for such applications will be of interest to us in our
future work. Even for integer period applications such as pro-
teins and DNA repeats, we are interested in specifically tailoring
our algorithms for each of these applications in a more thorough
fashion by optimizing over larger databases, and comparing their
performance with the existing state of the art methods in those
domains. We used simple metrics (the 5% and 10 % rules) to es-
timate the total signal space dimensions in our simulations here.
There have been more carefully designed criteria proposed in
the literature [15], [17], [22], especially for sinusoidal model
order estimation, and it will be useful to extend them to the
case of general nested periodic subspaces. We also used a sim-
plistic model of the noise being additive while formulating the
iMUSIC algorithms. For repeats in proteins and DNA, the noise
in practice takes the form of substitution and insertion-deletion
errors. While substitution errors can still be modeled as addi-
tive noise, the exact effect of insertion-deletion noise on the
the signal model (especially the autocorrelation matrix) will be
interesting to study in the future. Finally, apart from MUSIC,
techniques such as ESPRIT [49] and the recent atomic norm
based methods [5], [8] are also popularly used for various line
spectral applications. While we specifically focused on MUSIC
in this paper, it will be very interesting to see if we can similarly
adapt these other techniques for harmonic spectra in the future.

APPENDIX A

Proof of (13): Substituting from (8), the signal component of
(12) is

V

(
1
M

M∑

i=1

Λω (i)cc†Λ†
ω (i)

)
V†. (40)

The noise component is

1
M

M∑

i=1

e(i)e†(i), (41)

and the cross terms are

V

(
1
M

M∑

i=1

Λω (i)ce†(i)

)
, (42)

and its transpose conjugate. The matrix inside bracketts in Eq.
(40) has ml-th element

cm c∗l
1
M

M∑

i=1

ej (ωm −ωl )i (43)

For m �= l we have ωm − ωl �= 0 mod 2π, so (43) approaches
zero for large M . So, (40) has the form VΛcV† where Λc is a di-
agonal matrix with diagonal elements |ck |2 . Secondly, for large
M Eq. (41) approaches σ2

e I. Thirdly the matrix inside bracketts
in Eq. (42) has ml-th element cm

∑M
i=1 ejωm ie∗l (i)/M. This is a

zero-mean random variable with variance |cm |2σ2
e /M → 0 for

large M. These three observations justify (13). ���

APPENDIX B

Complexity of HMUSIC: Solving (18) incurs an exponential
complexity in Q. Here is the justification for the same. Let us
assume that the total signal space dimension K =

∑Q−1
l=0 Kl

has been estimated using the eigenvalue distribution of the au-
tocorrelation matrix. Notice that, to solve (18), for each choice
of the integer parameters {Kl}Q−1

l=0 , we must solve a continuous
variables optimization in {ωl}Q−1

l=0 . So the complexity is propor-
tional to the number of positive integer solutions for {Kl}Q−1

l=0
such that:

K0 + K1 + K2 + · · · + KQ−1 = K (44)

This is a standard partitions problem, whose number of solution
can be shown to be:

(
K − 1
Q − 1

)
(45)

We would like to study the behaviour of (45) as Q increases.
It is reasonable to expect K, the total number of lines in the
spectrum, to increase with the number of periodic signals in
the mixture, i.e., Q. For simplicity in analysis, let us assume
a linear depenedence in the following expressions: K ≈ MQ.
Notice that each periodic component in the mixture will add at
least one line to the net spectrum, so it is reasonable to consider
M > 1 in this model. So (45) can be written as:

(
MQ − 1
Q − 1

)
(46)

We can now use Stirling’s approximation to factorials [21],
which claims:

n! ≈
√

2πn
(n

e

)n

(47)
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where e is the Euler’s number. Using this, it can be shown that
(46) is approximately equal to the following for large Q:

1√
2πQM(M − 1)

[
MM

(M − 1)M −1

]Q

(48)

For large enough Q, the exponential term dominates the denom-
inator, which is a sub-polynomial in Q. Hence, the complexity
is exponential in Q.

APPENDIX C

Explanation of why K = K ′ occurs with probability 1 for
random periodic signals: Suppose x(n) was a period P signal
generated by repeating a P × 1 Gaussian random vector xP .
Let A ∈ CP ×P be any full rank matrix. To span xP using the
columns of A, with probability 1 we will need to use all P
columns of A. Now, the P basis vectors of any Nested Pe-
riodic Subspaces (NPS), with periods P and its divisors, are
essentially periodically extended verisons of P × P full rank
matrices called Nested Periodic Matrices [61]. In other words,
spanning x(n) using NPSs is equivalent to spanning xP using
the corresponding P × P Nested Periodic Matrix. Hence, to
span such an x(n), one would need all P NPS basis vectors
with probability 1, irrespective of which family of NPSs is cho-
sen. In particular, this implies that K = K ′ = P in the context
of Section IV-A, with probability 1. This same idea applies to
the case where x(n) is a mixture of multiple periodic signals,
where each component has been generated using Gaussian ran-
dom vectors.
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