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Random Node-Asynchronous Updates on Graphs

Oguzhan Teke

Abstract—This paper introduces a node-asynchronous commu-
nication protocol in which an agent in a network wakes up ran-
domly and independently, collects states of its neighbors, updates its
own state, and then broadcasts back to its neighbors. This protocol
differs from consensus algorithms and it allows distributed com-
putation of an arbitrary eigenvector of the network, in which com-
munication between agents is allowed to be directed. (The graph
operator is still required to be a normal matrix). To analyze the
scheme, this paper studies a random asynchronous variant of the
power iteration. Under this random asynchronous model, an ini-
tial signal is proven to converge to an eigenvector of eigenvalue 1
(a fixed point) even in the case of operator having spectral radius
larger than unity. The rate of convergence is shown to depend not
only on the eigenvalue gap but also on the eigenspace geometry
of the operator as well as the amount of asynchronicity of the up-
dates. In particular, the convergence region for the eigenvalues gets
larger as the updates get less synchronous. Random asynchronous
updates are also interpreted from the graph signal perspective, and
it is shown that a non-smooth signal converges to the smoothest sig-
nal under the random model. When the eigenvalues are real, second
order polynomials are used to achieve convergence to an arbitrary
eigenvector of the operator. Using second order polynomials the pa-
per formalizes the node-asynchronous communication model. As
an application, the protocol is used to compute the Fiedler vector
of a network to achieve autonomous clustering.

Index Terms—Autonomous networks, node asynchronous up-
dates, fixed point iteration, randomized iterations, smooth graph
signals, polynomial filters.

I. INTRODUCTION

ECENT years have witnessed an elevated interest in net-

work structured data where the underlying graph is as-
sumed to model the relation between the data sources. This is a
very broad model that can be found in a variety of different con-
texts such as social, economic, and biological networks, among
others [1], [2]. Analysis of such networked models is not new,
and can be traced back to the consensus problem studied more
than four decades ago [3]. The recent advancements in [4]-[7]
studied the networked data (or, signals defined over graphs) from
the signal processing point of view, in which the analysis is based
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on the “graph operator” whose eigenvectors serve as the graph
Fourier basis (GFB). Examples of graph operators include the
Laplacian matrices [4], the adjacency matrix [5], or a signal co-
variance matrix [8]. With the help of GFB, a number of topics
such as sampling and reconstruction, multirate filter banks, and
uncertainty principles have been extended to the case of graphs
in [9]-[16]. Studies in [17]-[19] also use the graph operator for
regression and learning over graphs.

Although eigenvectors of the graph operator provide a use-
ful basis to analyze signals defined over the underlying network,
graph Fourier transform appears to be an off-line procedure used
only for analysis purposes. The main reason for this is the fact
that the computation of eigenvectors (hence, the graph Fourier
transform) requires the knowledge of the graph operator in the
first place. This poses a significant limitation for an autonomous
network, in which there is no centralized control mechanism
(e.g. abase station). Examples include wireless ad-hoc networks
[20], brain networks [21], and networked robots [22]. In these
scenarios, agents (nodes) are assumed to know only their imme-
diate neighbors, and the global structure of the network (graph)
is not known. Thus, a computation that depends on eigenvectors
directly (graph Fourier transform, spectral clustering, spectral
coloring etc.) cannot be accomplished by the agents themselves.

The main goal of this study is to construct a communication
protocol under which an arbitrary eigenvector of the underly-
ing graph operator can be found by the agents. In this protocol,
agents communicate with each other in an asynchronous man-
ner. More precisely, we consider the following collect-compute-
broadcast scenario: states of the agents as a whole will be consid-
ered as a graph signal. At arandom time instance, an agent wakes
up independently and collects states of its neighbors. Then, the
agent updates its own state as a linear combination of the re-
ceived data, which is assumed to be described precisely by the
graph operator. Then, the agent broadcasts the amount of change
in its state to its neighbors. It is important to emphasize three
points regarding this scenario: 1) The signal over the network
is driven only by the initial conditions (and the graph operator).
Agents do not take measurements, they only exchange data (their
states) between each other. 2) This is an iterative scheme, and
the graph signal converges to the desired eigenvector through re-
peated communications. 3) Unlike an edge-asynchronous proto-
col, in which only a connected pair of agents communicate with
each other, the scenario we consider here is node-asynchronous
where an agent wakes up randomly and communicates with all
of its neighbors.

A. Assumptions on the Graph Operator

In this study we will not require the graph operator to be a
symmetric matrix, that is, edges in the network are allowed to be
directed, possibly with unequal edge weights. Self-loops are also
allowed. However, we do require the operator to be a normal ma-
trix (equivalently, a unitary-diagonalizable matrix). We note that
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symmetric (Hermitian) matrices are necessarily normal. Thus,
results here are applicable to any graph with undirected edges.
On the contrary, an arbitrary directed graph may not have a nor-
mal graph operator; it may even be non-diagonalizable (like the
cases studied in [23]).

We assume that the graph operator (hence, the underlying
network) is not time dependent. Only the node behaviors are
time-varying (in a random fashion), but not their connectivity
structure. We also assume that each node knows its neighbors.

B. Connections With Asynchronous Fixed Point Iterations

In this paper we will study the described node-asynchronous
network model from a fixed point iteration view-point, in which
the notion of graph shift (introduced in graph signal processing
[7]) will be considered as the update step. In this approach, suc-
cessively graph shifted signals can be examined as a sequence
generated by a fixed point algorithm similar to the well-known
power method. However, the notion of graph shift is not di-
rectly applicable to the node-asynchronous model considered
here since a graph shift requires all the nodes to communicate at
the same time instance, which contradicts with the asynchronic-
ity assumption. In order to tackle this problem, we will focus on
an asynchronous variant, in which only a subset of indices are
updated in each iteration.

We note that asynchronous fixed point iterations are well-
studied problems [24]. The papers in [25], [26] presented impor-
tant convergence results for general non-linear update models.
In fact, the first analysis of the problem can be traced back to the
study in [27] (and references therein) under the name “chaotic
relaxation,” in which a linear model with an input was inves-
tigated. In these studies the convergence is guaranteed mainly
under two assumptions: 1) The update step is a contraction. 2)
The indices are updated frequently enough. (See [25]-[27] for
precise descriptions of these assumptions.)

In our study, we will consider linear updates without an input
(power method on the graph operator) in a probabilistic setting
in which a random subset of indices is updated in each iteration.
In this setting, we prove that iterations converge to a fixed point
of the graph operator in the mean-squared sense even in the
case of the graph operator not being a contraction. More precise
conditions will be spelled out later.

It is also important to note that the random asynchronous
variant of the power method studied here can be thought of as
a special case of coordinate descent algorithms [28]. In particu-
lar, coordinate-wise (or, asynchronous as we refer here) power
iteration was studied recently in [29], [30]. Both techniques are
demonstrated to perform well on data sets when computing the
dominant eigenvectors, however they are not directly applicable
to the autonomous network model we consider here. Further-
more, our results show thatiterations do not necessarily converge
to the dominant eigenvector, but they converge to an eigenvec-
tor of the unit eigenvalue (a fixed point) even if there are other
eigenvalues with magnitudes greater than unity.

C. Connections With Gossip Algorithms and Consensus

The most common form of gossip protocols assumes that an
adjacent pair of nodes share their current states with each other
at random time instances and update their states by an averaging
[31]. Due to their versatility, gossip-like algorithms have been
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studied extensively for distributed parameter estimation and op-
timization problems [31]-[39]. Further examples include push-
sum [40], [41] and subgradient-push [42] (where the updates
are synchronous, but the network is time-varying.) We refer the
reader to [43]-[46] for more general distributed/asynchronous
optimization problems.

Although gossip protocols allow asynchronous communica-
tions, the canonical examples have edge-asynchronous (or, ran-
dom link) behavior in which an edge gets activated randomly
and a pair of nodes, linked by the edge, communicate with each
other. See [47] for atreatment in random filtering in the context of
graph signal processing. On the contrary, the model we consider
here is node-asynchronous, that is, a node wakes up randomly
and communicates with all of its neighbors. Thus, our analysis
here deviates from the known results on gossip protocols.

More importantly, gossip protocols are designed in such a
way that nodes reach a consensus. Depending on the problem
formulation, the value of the consensus may be the estimated
parameter(s), or the optimal solution of the objective function in
general. For the consensus, graph operators, e.g., average con-
nectivity matrix, the averaging matrix etc., have the property
that the constant vector is the unique fixed point of the operator
(assuming the graph is connected [31]). A signal over a network
operating under a gossip protocol converges to the constant vec-
tor, which means that nodes reach a consensus. For example,
the study in [48] searches for the optimal graph operator (for
the fastest distributed averaging) under the constraint that the
operator has constant vector as an eigenvector of eigenvalue 1.
Differently in this study, we assume that the given graph oper-
ator has a fixed point, i.e., eigenvalue 1 exists, and show that
randomized node-asynchronous updates converge to an eigen-
vector of eigenvalue 1 (a fixed point). However, the eigenvector
need not be a constant vector. Thus, nodes may not reach a con-
sensus. We will also show how to use polynomial filters in order
to obtain convergence to an arbitrary eigenvector of the given
graph operator. From this perspective, the problem we consider
is more general than the consensus. In fact, the consensus can
be considered as a particular instance of the problem studied
here, in which the graph operator has the constant vector as an
eigenvector.

D. Outline and Contributions

In Section II we first define the deterministic asynchronous
update. This scheme is like the synchronous power iteration but
values of only a subset of indices are updated. Afterwards, we
consider the case where the update sets are selected at random.
We impose a statistical model on the asynchronous updates, and
derive, for later use, the expected value of the random update
mechanism (Lemma 1). In Section III we consider cascades of
random updates, and first analyze the expected signal in terms of
the eigenvectors of the operator (Theorem 1). In order to prove
the convergence of the updates, we consider the residual signal
and bound its expected squared ¢5-norm (Theorem 2). Using
this result we provide a sufficient condition (Corollary 2) and
a necessary condition (Corollary 4) on the operator such that
the signal is guaranteed to converge to an eigenvector of the
unit eigenvalue through random updates in the mean-squared
sense. We also show that asynchronous updates are better than
the synchronous ones in terms of the convergence region of
the eigenvalues (Corollary 3). In Section IV we demonstrate
how the eigenspace geometry of the operator plays a role in the



2796

convergence of the random asynchronous updates. In Section V
we consider the problem from the graph signal processing point
of view (Theorem 3). Since an arbitrary nonzero signal is proven
to converge to the steady state, the signal in this state is said to
be a “typical graph signal.” We can interpret the typical signal
as the smoothest signal on the graph (with respect to the graph
operator). In Section VI we consider polynomials of the graph
operator in order to make the iteration converge to other eigen-
vectors (corresponding to non unit eigenvalues) (Theorem 4). By
an explicit construction, we prove that second order polynomials
are sufficient to achieve this purpose in the case of real eigenval-
ues (Theorem 5). Then, in Section VI-D, we formally present the
node-asynchronous communication protocol (Algorithm 1) that
implements a second order polynomial of the graph operator.
In Section VII we use the proposed algorithm to compute the
Fiedler vector of a network in order to achieve an autonomous
clustering via localized communication.

E. Preliminaries and Notation

We will assume that A € CV*¥ is an operator on the graph
with IV nodes. We consider A to be a local operator, that is,
A;,; = 0 when the nodes ¢ and j are not neighbors. In particular,
A; ; denotes the weight of the edge from the j*" node to the 7"
node. We allow A; ; to be non-zero. Hence, the operator A canbe
the adjacency matrix, the Laplacian, the normalized Laplacian,
and so on. We will use Vi, (i) and Moy () to denote the incoming
and outgoing neighbors of the i node. More precisely we have:

Nin(0) = {5 [ Aij # 0}, Now(i) ={j | Aju # 0} (D)

We always assume that A is a normal matrix, i.e.,
AAH = AMA, where AH denotes the conjugate transpose of
A. Eigenvalue decomposition of A will be denoted as:

A=V AVH 2)

where V is a unitary matrix consisting of eigenvectors of A,
and A is the diagonal matrix with the eigenvalues, which may be
complex in general. Given a signal x, its graph Fourier transform
(GFT), X, on the operator A is defined as:

N
x=Vix o X:Z@ vi, (3)
i=1

where v;’s are the eigenvectors of A.

We will use IP[-] and E[-] to denote the probability and expec-
tation, respectively. For a vector x we will use ||x||~, to denote
its largest element in absolute sense. Positive semi-definite or-
dering will be denoted by <. For a matrix X we will use || X]||
to denote the largest absolute row-sum, ||X|m.x to denote its
largest element magnitude-wise, and tr(X) to denote its trace.
We will use diag(X) to denote the diagonal masking of X, that
is, (diag(X))i,; = X;,; and (diag(X)); ; = Ofori # j. We will
use 7 todenote a subsetof {1, ..., N}, and its size is denoted as
t = |T|. We will use the notation ) |- to denote the summation
over all subsets of {1,..., N} of a fixed size ¢ where the value
of t should follow from the context. We will use D7 € RV*N
to denote a diagonal matrix that has value 1 only at the indices
specified by the set 7. That is,

D7 =) e;el, 4)

€T
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where e; € RY is the i'" standard vector that has 1 at the i*"
index and 0 elsewhere. We will use 1 to denote a vector of all
1’s. Further notice that D satisfies the following identities for
a given size t:

N-—-1
D7 = ( ) I, &)
o= (1

t(N —t)diag(A) +t(t— 1) A
N(N —1)

1
mZDTADTZ
t T

, (6)
which will be used in the subsequent proofs.

II. ASYNCHRONOUS POWER ITERATION

Given a matrix of interest A and an initial signal x( the con-
ventional power iteration has the following form:

Xy = A xi.1, sothat xi = AF X, @)

where the updates here are considered without normalizing the
signal at each iteration. Normalization is avoided here inten-
tionally to preserve the local nature of the updates as will be
elaborated next.

In the context of graph signal processing, the matrix A is
assumed to be a local graph operator (shift matrix) and the signal
Ax is referred to as the shifted version of x on the graph [7].
From this perspective xj, in (7) is the graph shifted version of
Xg-1. Since A is assumed to be a local operator a single shift
can be implemented on the graph as a data exchange between
the neighboring nodes. That is,

(xk); = Z Aij (Xp1); Vi. (8)
JEN ()

Notice that a norm of the signal depends on values of all of the
nodes in the graph. Therefore, a norm cannot be known locally in
the graph setting, which is why we have avoided normalization
in (7).

Although a “graph shift” can be performed locally, the model
in (7) forces all the nodes to send and receive data at the same
time. Therefore, the graph shift does not have an autonomous
implementation since it requires a centralized timing mechanism
(synchronization) over the underlying graph.

In this study we will consider a variation of the power itera-
tion, in which not all but a subset of indices, denoted by 7, are
updated simultaneously and the remaining ones stay unchanged.
More precisely, given an update set 7 we consider the following
asynchronous (coordinate-wise) power iteration:

L (AX)i, 7 S T,
i T, i ¢ Ta

where x is the vector before update, and y is the vector after the
update. In words, this update computes the multiplication Ax,
but it only updates the values of the elements indexed by the set
T, and keeps the remaining elements the same. In short, (7) is
a “synchronous” update, whereas (9) is asynchronous. Both (7)
and (9) are also referred to as state recursions, where the graph
signal x is regarded as the state of a system. The model in (9) was
also studied in [25]-[27] with slight differences. Furthermore,
(9) is reminiscent of the Hopfield neural network [49], with the
difference that there is no nonlinearity in (9). (Studies in [25],
[26] have non-linearity.)

(€))
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The asynchronous update defined in (9) can be written as a
matrix-vector multiplication as follows:

y:ZeZ— x+Zee Ax=Q(T)x,

i¢T €T

(10)

where Q(7) is the matrix representing the asynchronous update
on a set 7, and it can be written as follows:

Q(7T)=1+D7r (A-1). (11)

In the next few sections, where we perform a convergence
analysis, A can be treated as a generic matrix without consid-
ering specific relations to graphs. The relation to graph signals
will be considered in Section V. When the model in (9) is imple-
mented on a graph (i.e., A is a graph operator), only the nodes
in the update set 7 need to be synchronized. If the update set
is selected as 7 = {1,..., N}, then Q(7) = A. That is, the
asynchronous update in (9) reduces to the classical synchronous
update (graph shift) in (7). On the other extreme, if a single node
isupdated, | 7| =1, then no synchronization is required at all and
the nodes are allowed to behave autonomously. We would like to
note that the relation in (8) appears as if a node collects states of
its neighbors, update its own state, and sits still. However, as we
shall describe later in Section VI, we will consider the updates
on a polynomial of the given graph operator, which will require
the nodes to follow a collect-compute-broadcast scheme. These
details will be elaborated in Section VI-D.

A. Randomized Asynchronous Updates

In this paper we will study the behavior of a cascade of asyn-
chronous updates where the update set 7 is assumed to be se-
lected at random in each iteration. More precisely, we assume
that the k'" iteration has the following form:

Xp = Q Xp-1, (12)

where x;, denotes the signal at the k*" iteration, and Q is a
random matrix due to the fact that the underlying update set is
selected at random.

It should be noted that Q and Q(7) are different from each
other. The matrix Q(7") in (11) is a deterministic matrix. Given
an update set 7, Q(7) represents the asynchronous update of
(9). On the other hand, Q in (12) is a random variable whose
outcomes are in the form of Q(T ). More precisely, we consider
the following probabilistic model:

N

-1
t> , where t=1T|, (13)

P[QZQ(TH=pt<

where p; denotes the probability of 7 having size ¢, that is,
=P[|T|=t], (14)

N
and ),  pr = L.

According to the model in (13), subsets of equal size are se-
lected with equal probabilities. Therefore, the update scheme
does not have any bias toward any node(s). To put differently,
all the nodes are treated equally in the network. When py = 1,
the model in (13) reduces to the regular power iteration in (7).
When p; = 1, only one node is selected uniformly at random,
which corresponds to the autonomous network model of interest.

The number of nodes to be updated, 7' = |7, is a discrete
random variable whose distribution will be shown to determine
the behavior of the asynchronous updates. We will see later in
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Section III-B that the following definition is very useful in our
quantitative analysis:

E[T(N-T)]
E[T(N-1)]

_ N — pr — 07/ pr

6T: N —1 )

15)

where i and 0% denote the mean and the variance of the random
quantity 7°, respectively. It can be verified that 0 < d7 < 1 with
o7 = 0 if and only if all the nodes are updated in each iteration
(synchronous power iteration), and 6 = 1 if and only if exactly
one node is updated in each iteration. As a result of this, dp will
be referred to as the amount of asynchronicity of iterations in
the rest of the paper.

We now prove:

Lemma 1: Expectation of the random matrix Q in (13) is:

_ kT _ BT
E[Q] = N A+ <1 N > I (16)
Proof: The expectation of QQ can be written as
E[Q] =E[E[QIT]]. 17

where the outer expectation is with respect to 7" (size of the sets),
and the inner expectation is with respect to the content of the
subsets of size T'. Using (13) we have that

E[Q|T] = ZPQ Q(T

oy

where ZT denotes a summation over subsets of size 1". Then,

) T]

Q(7), (18)

(I+DT(A—I)), (19)

E[Q|T] = ZH— }V)ZDT(A—I), (20)
T
:I+$(]¥:DI(A—I), (21)
=T/NA+(1-T/N)I (22)
where (21) follows from (5). Due to (17), we have
EQ=E[T/NA+(1-T/N)I1], (23)
=pr/N A+ (1—prp/N)I (24)

which gives the result in (16). [ |

Notice that E[Q] is a convex combination of the operator A
and the identity matrix. The quantity pr /N is the average frac-
tion of the nodes that are updated simultaneously per iteration,
and it appears as the weight of the operator A in E[Q)]. The case
of i = N results in E[Q] = A, which corresponds to the case
of synchronous power iteration.

III. CASCADE OF ASYNCHRONOUS UPDATES

For the most practical scenarios we are interested in studying
a sequence of random updates and the effect of the underlying
matrix A on the convergence of the iterations. In the case of
the synchronous (unnormalized) power iteration in (7), it is well
known that an arbitrary nonzero initial signal x, converges to a
nonzero x if and only if x satisfies Ax = x (i.e., | is an eigen-
value of A), and the remaining eigenvalues of A satisfy || < 1.
If there is another eigenvalue satisfying |\| = 1, then the signal
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x, may fall into limit cycles, and if |A| > 1, the signal grows in
an unbounded manner through the iterations.

The random asynchronous update in (12) has very different
convergence properties as we shall see. Iteratively using (12),
the signal at the k" iteration can be written as:

Xp = Qr Q1 -+ Q2 Qi xo,

where xo denotes the initial signal, and Q;’s are independent
and identically distributed copies of the random matrix Q in
(13). It should be noted that x;, is a random vector due to the
fact that Q;’s are random variables.

(25)

A. Expected Amount of Projection onto the Eigenvectors

In order to characterize the behavior of x;,, we first define the
following quantity:

Ty = Vj Xp, (26)
which is the amount of projection on the ;% eigenvector (or,
the j*" graph Fourier coefficient) of x;, at the k" iteration. Due
to the randomness of the updates, Zj, ; are random quantities as
well. The following theorem gives the expected value of these
coefficients:

Theorem 1: Let v;j and \; be an eigenpair of A. Then,

k
Efer) = (1+ 55 = 1) o @7)
Proof: From (25) and (26) we have
E[Zr, ;] = v} E[Qk x¢a] = v E[Q] E[xx],  (28)

where the last equality follows from the fact that Qy’s are in-
dependent and identically distributed random variables. Using
the spectral decomposition of A in (2), E[Q] in (16) can be
written as:

E[Q =V (“—T A+ (1 - ”—T) I) VH. (29

N N

Therefore, (28) results in the following:

EZy, ;] =viV (“—TA 4 (1 _ ’%) 1) VH Efx;.1], (30)

N
= (1 + ,LLT/N ()\] — 1)) E[f}c_lﬂ (31)
Iterative use of (31) gives the result in (27). [ |

Theorem 1 shows that expected value of the graph Fourier
coefficients depends not only on the corresponding eigenvalues
but on the average number of nodes updated in each iteration as
well. An immediate corollary is as follows:

Corollary 1: Let v; and \; be an eigenpair of A. If

mr
1+W(/\j_1) < 1. (32)
Then,
li T ] = 0.
kLIgOE[xk’J] 0 (33)
Proof: This follows from Theorem 1 and (26). [ ]

In the case of synchronous updates 7 = N, hence the rela-
tion in (27) reduces to E[Zy, ;| = Tk, ; = A? o, ; as expected.
Furthermore, (32) reduces to || < 1, which is the well-known
condition for the convergence of the power iteration of (7).
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When the updates are asynchronous we have pr < N, and
the region of convergence (32) in the complex eigenvalue plane
is larger. In particular, one can readily verify the following:

Al <1 o

1+ 55 (A, —

| <1
A A1 N <L

(34)
which implies that E[Z}, ;] converges to zero even if \; is on the
unit circle, except when A\; = 1. This is very much unlike to the
synchronous case where the coefficients corresponding to unit
magnitude eigenvalues do not die out through the iterations.

The unit eigenvalue A; = 1 deserves a specific attention since
it has E[Zy, ;] = 2, ; irrespective of the value of pi7. If the ini-
tial signal x( has a nonzero projection onto the eigenspace of
the unit eigenvalue, then E[xj] always has a nonzero projec-
tion onto the eigenspace of the unit eigenvalue. Furthermore,
the following lemma shows that a signal is invariant to the ran-
dom asynchronous updates if and only if the signal lies in the
eigenspace of the unit eigenvalue.

Lemma 2: A signal x is invariant under all asynchronous up-
dates if and only if it is invariant under the synchronous update.
That is,

Ax=x < Q(T)x=x VT. (35)

Proof: (<) Assume that Q(7) x — x = 0 for all 7. Since it
is true for any subset 7T, it should hold true for all subsets of a
fixed size t as well. Then,

0=) QT)x-x=>» Dr(A-I)x, (36)
T T
- (f:f) (A -T) x, 37

which proves that Ax = x.

The converse (=) simply follows from (11). |

Lemma 2 shows that if the random signal x;, ever reaches
a steady-state point x through iterations, then x should be in
the eigenspace of the unit eigenvalue. The result of Corollary 1
supports this claim as well. This is not a surprising result as the
eigenspace of eigenvalue 1 consists of non-zero fixed points of
the operator. However, neither Lemma 2 nor Corollary 1 says
anything about the convergence of the random asynchronous
iteration as k increases. In the following section, we will prove
that x, indeed converges to an eigenvector of the unit eigenvalue
(a fixed point) as k goes to infinity.

B. Convergence in Mean-Squared Sense

In the following we will assume that A has a unit eigenvalue
with multiplicity M > 1. This assumption ensures that the asyn-
chronous update equation has a fixed point (Lemma 2). Without
loss of generality we will order the eigenvalues of A such that
Aj # 1for1 < j <N — M. Notice that non-unit eigenvalues
are allowed to be complex in general, and complex eigenval-
ues on or outside the unit circle are not ruled out. Then, the
eigenvalue decomposition of A can be written as:

A =[U V]diag([A1 -+ Ax-mr 1 -+ 1)[U V] (38)

where V| € CV*M is an orthonormal basis for the eigenspace
of the unit eigenvalue, and U € CN*(N-M) ¢corresponds to the
eigenvectors of the non-unit eigenvalues. Since A is assumed to
be a normal matrix, we have U"V; = 0, and UN U = L.
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We now define the following quantities:
P+ = Amax ( UH dlag(U UH) U )7
P~ = Amin (UM diag(UU") U),

(39)
(40)

which will play a crucial role in the analysis of convergence.
Notice that p* and p~ do not depend on the particular selec-
tion of the basis matrix U. Just the column space of U deter-
mines their values. Notice that UUY < I, which implies that
diag(UU") < I, hence Utdiag(UUM)U < I. Based on these
we have,

0<p <pt<i, (41)

where 0 < p~ is readily shown to be valid.
For an arbitrary xy, let r;, denote the residual from the pro-
jection of x;, onto the column space of V. That is,

I‘k:Xk—Vl \ﬂiI Xk:UUH Xk (42)
Then, the convergence of x;, to an eigenvector of the unit eigen-
value is equivalent to the convergence of r, to zero. The follow-
ing theorem, whose proof is presented in Appendix B, provides
bounds for rj, as follows:

Theorem 2: The expected squared ¢5-norm of the residual at
the k'" iteration is bounded as follows:

Y lroll3 < Elllrll3] < 9% Iroll3, (43)
where

_ HT 02 + 12
\I/_1<§'Ig\)/(-M 1+ N(|>\] 1+6r(pm —1)|A; — 1 >
(44)

_ . HT 02 - 12
o= iy 1SR - LG =Dy - 1),
(45)
&

The importance of Theorem 2 is twofold: First, it reveals the
effect of the eigenvalues () ), the eigenspace geometry (p™, p7),
and the amount of asynchronicity of the updates (d7) on the rate
of convergence. In the synchronous case 7 = 0 and up = N,
hence we have U = max;<;j<n-ar |Aj|?. This result is consis-
tent with the well-known fact that the rate of convergence of
the power iteration is determined by the second largest eigen-
value. However, in the asynchronous case (7 > 0), not just the
eigenvalues but the eigenspace geometry of A has an effect.
As a result, similar matrices may have different convergence
rates due to their different eigenspaces. This point will be elab-
orated in Section IV. Furthermore, in order to guarantee that
E[||rk 3] < € ||ro|3 for a given error threshold , inequalities in
(43) show that it is necessary to have at least |log(g)/log(v) |
iterations, and sufficient to have [log(g)/log(¥)] iterations.

Secondly, Theorem 2 reveals a region for the eigenvalues such
that the residual error through asynchronous updates is guar-
anteed to convergence to zero in the mean-squared sense. The
following corollary presents this result formally.

Corollary 2: Assume that all non-unit eigenvalues of A sat-
isfy the following condition:

(46)

\ a - 1
a+1 a+1’
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Fig. 1. Some realizations of the trajectories of the signal through updates for
(a) the non-random synchronous case, (a) the random asynchronous case.

where
a=46ér (pt —1). (47)
Then,
Jlim - E[ i3] = 0. (48)
Proof: From (44) it is clear that ¥ < 1 if and only if
N2 —14+alXA—12 <0, (49)

for all non-unit eigenvalues A. The inequality in (49) can be
equivalently written as in (46). Since it implies that W < 1,
Theorem 2 guarantees the convergence of E[||ry||3] to zero as
the number of updates, k, goes to infinity.

An important remark is as follows: Corollary 2 provides a
condition under which r;, is guaranteed to converge to a point
(zero) as k goes to infinity. On the other hand, x; itself only
converges to a random variable defined over the eigenspace
of the unit eigenvalue. This is illustrated in Figure 1 where
the eigenspace of the unit eigenvalue is spanned by the vector
[1 1]%, and xo = [~1 1]H. In the synchronous case the signal
converges to a point through a deterministic trajectory as shown
in Figure 1(a). For the random asynchronous case, Figure 1(b)
illustrates the trajectories of the signals for different realizations.
Convergence of rj, to zero implies that the limit of x;, always lie
in the eigenspace of the unit eigenvalue (with a random orien-
tation). Since any point in the eigenspace is an eigenvector, we
can safely say that x; converges to an eigenvector of the unit
eigenvalue.

Notice that the convergence region for the eigenvalues defined
in (46) is parametrized by «, and it is a disk on the complex plane
with radius 1/(a+ 1) centered at /(a4 1). This region is
visualized in Figure 2. Notice that 0 < d7 < land 0 < p™ < 1
always hold true. As a result « satisfies —1 < a < 0. The key
observation is that the region in (46) grows as « approaches —1,
and it is the smallest (and corresponds to the unit disk) when
« = 0. The quantity 3 and the large circle in Figure 2 will be
explained after Corollary 4.

Corollary 2 reveals the combined effect of the eigenspace
geometry of A (quantified with p™) and the amount of asyn-
chronicity (quantified with é7) on the convergence of the it-
erations. In the case of d7 = 0 the region reduces to the unit
disk, which is the well-known condition on the eigenvalues for
the synchronous updates to converge. This is an expected result
since the case of d7 = 0 corresponds to the synchronous update
itself. More importantly, the synchronous updates imply o = 0
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Convergence region,
random asynchronous.

Region of no convergence,
random asynchronous.

Both (46) and (51) are violated.
Convergence inconclusive.

Convergence region,
synchronous.

Fig. 2. Regions (given in (46) and (51)) for the eigenvalues such that random
asynchronous updates are guaranteed to converge and diverge, respectively.

independent of the eigenspace geometry of A. Therefore, the
convergence is determined entirely by the eigenvalues of A in
the synchronous case.

On the other hand, the case of asynchronous updates results
in a larger convergence region for the eigenvalues. First of all, it
should be noted that asynchronous updates increase the conver-
gence region if the eigenspace geometry of A permits. If p* = 1
then o = 0, and the region of convergence is not improved by
asynchronous iterations. However, if p™ < 1 (which is the case
in most practical applications), then it is possible to enlarge the
region of convergence using asynchronous iterations. As 1 gets
larger (less number of nodes are updated concurrently), v gets
smaller, hence the convergence region gets larger. Even if one
index is left unchanged in some iterations, we have é7 > 0, and
the residual r; can converge to zero, even when non-unit eigen-
values outside the unit circle might exist. This is a remarkable
property of the asynchronous updates since the residual (hence
the signal itself) would blow up in the case of synchronous up-
dates. Notice that in the extreme case of d7 = 1, the region of
convergence is the largest possible. That is to say, updating ex-
actly one node in each iteration maximizes the region of conver-
gence of the eigenvalues. On the other extreme, the synchronous
update is the most restrictive case, which is formally stated in
the following corollary:

Corollary 3: If the synchronous updates on A converge, then

Jim - E[ i3] =0, (50)

for random updates on A with any amount of asynchronicity.
Proof: If the synchronous updates converge, then all non-unit
eigenvalues of A satisfy |\| < 1.Hence, they also satisfy (46) for
any value of a.. Therefore, Corollary 2 ensures the convergence
of the updates irrespective of the value of dr. |
It should be clear that converse of Corollary 3 is not true.
Thus consider a scenario in which a signal over a network of
nodes with autonomous (asynchronous) behavior stays in the
steady-state. If the nodes start to operate synchronously, then it
is possible for the signal to blow up. This happens if some of
the eigenvalues fall outside of the reduced convergence region
due to the reduction in the amount of asynchronicity. In fact, the
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study in [21] claims that large-scale synchronization of neurons
is an underlying mechanism of epileptic seizures. Similarly, the
study in [50] presents the relation between increased neural syn-
chrony and epilepsy as well as Parkinson’s disease. It should be
noted that neural networks follow nonlinear models whereas the
model we consider here is linear. Thus, results presented here do
not apply to brain networks. Nevertheless, these neurobiological
observations are consistent with the implications of Corollary 2
and Corollary 3 from a conceptual point of view.

Apart from the convergence of the iterations, Theorem 2 is
also useful to characterize the case of non-converging iterations.
In this regard, the following corollary presents a region for the
eigenvalues such that asynchronous updates are guaranteed not
to converge.

Corollary 4: Assume that all non-unit eigenvalues of A sat-
isfy the following:

where

B=6r(p~—1). (52)
Then,

E[llrxl3] > llroll3- (53)

Furthermore, if (51) is satisfied with strict inequality, then
E[||r%]|3] grows unboundedly as k goes to infinity.
Proof: From (45) it is clear that b > 1 if and only if
AP =148 =1 >0, (54)
for all non-unit eigenvalues A. The inequality in (54) can be
equivalently written as in (51). Since (51) implies that ¢» > 1,
Theorem 2 indicates that E[||ry||3] is lower bounded by ||ro]|3. If
(51) is satisfied strictly, then 1) > 1. As aresult, E[||ry||5] grows
unboundedly as £k goes to infinity. ]

From the definitions in (47) and (52) note that o > [ is al-
ways true due to the fact that p™ > p~. Therefore, the condi-
tions in (46) and (51) describe disjoint regions on the complex
plane. See Figure 2. Corollary 4 also shows that the condition
A= B/(6+1)| < 1/(B+ 1) is necessary for the iterations to
converge, whereas the condition in (46) is sufficient for the con-
vergence (both in the mean square sense). If there exists an
eigenvalue that violates both (46) and (51), then convergence
is inconclusive. This region is also indicated in Figure 2.

At this point it is important to compare the implications of
Corollary 2 with the classical result presented in [26], [27]. Un-
der the mild assumption that all the indices are selected suf-
ficiently often (see [27] for precise definition), the study [27]
showed that the linear asynchronous model in (9) converges for
any index sequence if and only if the spectral radius of |A] is
strictly less than unity, where | A| denotes a matrix with element-
wise absolute values of A. On the other hand, our Corollary 2
allows eigenvalues with magnitudes grater than unity. Although
these two results appear to be contradictory (when A consists
of non-negative elements), the key difference is the notion of
convergence. As an example, consider the matrix A defined in
(55). Its spectral radius is exactly 1, and [27] proved that there
exists a sequence of indices under which iterations on Ao do
not converge. For example, assuming N is odd, consider the
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Fig.3. Simulated convergence of random asynchronous updates on the cyclic
shift matrix of size N = 32 together with the bounds provided by Theorem 2.

index sequence generated as ¢ = (2k — 1)(mod N) + 1. How-
ever, Corollary 2 proves the convergence in a statistical mean-
square averaged sense. (See Figure 3.) In short, when compared
with [27], Corollary 2 requires a weaker condition on A and
guarantees a convergence in a weaker (and probabilistic) sense.

IV. THE IMPORTANCE OF THE EIGENSPACE GEOMETRY

Corollary 2 presented in the previous section showed that
the signal converges to an eigenvector of the unit eigenvalue
via random asynchronous updates even in the case of A hav-
ing other eigenvalues with magnitudes larger than one. Thus,
asynchronous updates can enlarge the convergence region of
the eigenvalues if the eigenspace geometry of A permits. In this
section we will consider a simple example to demonstrate the
effect of the eigenspace geometry on the convergence of the
asynchronous updates. For this purpose we will consider the
following matrices of size V:

Ay 1

A= (55)

AN 1

where the diagonal entries of A are A,, = e/2™/N and A, is
the cyclic permutation matrix. Note that A; and A, are related
by a similarity, so they have identical eigenvalues. In particular
they have eigenvalue 1 with multiplicity M = 1. However, they
have different eigenspace geometries that affect the behavior of
asynchronous iterations as demonstrated next.

Notice that an update with A; corresponds to element-wise
multiplication with complex exponentials that does not change
the magnitude of the entries. As a result, iterations with A; do
not converge or blow up, whether the updates are synchronous
or asynchronous. Indeed in this case p™ = p~ =1 and § = 0,
which lead to the same conclusion by Corollary 4.

Next, A is circulant matrix, and the normalized DFT matrix
diagonalizes it. In this case p*™ = p~ =1 — 1/N. In the syn-
chronous case d7 = 0, hence 8 = 0, and Corollary 4 shows that
the residual error is bounded below. In fact, the power itera-
tion on A neither converges nor blows up since it corresponds
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to the cyclic shift of the vector, and the initial signal repeats
itself after every N iterations. In the asynchronous case, Ao
has « = —d7 /N, hence any nonzero amount of asynchronicity
implies o < 0, in which case the convergence region in (46) con-
tains the unit closed disk. Thus, the initial signal converges to
an eigenvector of the unit eigenvalue. As an example consider
the case of updating exactly one index in each iteration. This
is equivalent to randomly selecting an index and assigning its
value to the next one. As random updates are applied repeatedly
the signal will have more and more duplicate elements until all
the elements are the same. The final vector is n 1 where 7 is a
random variable. Thus, the initial signal converges to a constant
vector, which is the eigenvector of A, with the unit eigenvalue.
(See Figure 1(b).) Theorem 2 verifies this convergence in the
mean-squared sense with the following bounds on the rate:

11

- _ A e 12 0 2 e
v 1532}1%-11 N € 1 1—4nx°/N*,
(56)
and
1 .
Y= min 11— 2N 1P 1 —4/N?. (57)

In order to compare the bounds in (56) and (57) with the
actual rate of convergence, asynchronous iterations with o = 1
are simulated on Ag of size N = 32. Figure 3 visualizes the
expected squared /5-norm of the residual with respect to the
iteration index as well as the bounds given by Theorem 2. The
result is obtained by averaging over 107 independent runs.

Simulations show that the bounds suggested by Theorem 2 are
off by an order of magnitude in this specific example. Since the
random updates converge faster than the upper bound given by
Theorem 2, i.e., (56), tighter bounds on the rate of convergence
may be possible to obtain.

V. INTERPRETATION OF THE ASYNCHRONOUS UPDATES IN THE
CONTEXT OF GRAPH SIGNAL PROCESSING

In Sections IT and III we defined and studied the random asyn-
chronous updates from a linear algebraic point of view where
the results (Theorems 1, 2, and their corollaries) are general
enough to apply them to an arbitrary normal matrix. When A
is assumed to be a graph operator, the asynchronous iterations
offer an insightful way to interpret a “typical” graph signal. Con-
sider a network of fully autonomous nodes (agents) and assume
that a node updates its value via retrieving information from its
neighbors. This update scheme can be modeled with (9) where
the update set 7 has only one element (67 = 1). In this model,
the local graph operator A models the way nodes update their
values. If a node computes the sum of its neighbors, then A
is the adjacency matrix; if a node computes the sum of differ-
ences with its neighbors, then A is the graph Laplacian; if a
node computes a weighted average of its neighbors, then A is a
weighted adjacency matrix. Therefore, the matrix A describes
what the nodes compute, the update scheme in (9) describes the
time dynamics of the nodes, and the values held by the nodes are
considered as a signal on the graph (with respect to the operator
A). In the following, we will interpret random asynchronous
updates in this context and argue that a “typical signal” on a
graph is necessarily a “smooth signal” with respect to the graph
operator. For this purpose first notice that the GFT of Ax — x
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is given by (A — I) X. Then, we define a notion of smoothness
accordingly as follows:

Definition 1 (Smoothness Set): A graph signal x belongs to
the set S, if its graph Fourier transform X = VHx satisfies

@l I\ — 1] < e Vi, (58)

for the given graph operator A. &

A signal x belongs to S, if the differences between the graph
Fourier coefficients of x and Ax are not larger than ¢ in abso-
lute sense. That is, small values of € implies that x and Ax are
similar to each other. Hence, we can interpret ¢ as a scale of
the smoothness of the signal x with respect to the operator A.
Here, the smoothness is quantified according to the total varia-
tion (TV) of the eigenvectors, TV (v;) = |\; — 1|, as introduced
in [6]. For a given value of ¢, the set S, describes the signals
with |Z;] < e/ |\; — 1|. So, for a smooth signal, the Fourier co-
efficient Z; should be smaller for those A\; whose v; has large
total variation. The condition in (58) is equivalent to bounding
a weighted max-norm of the GFT of x, that is,

xeS = [[(A-DX|x<¢ (59)

where the weight matrix is selected as |A — I|. The set S, de-
pends on the underlying graph operator. A signal that is smooth
on one graph may not be smooth on another graph.

In the following we will consider the effect of a single asyn-
chronous update on the smoothness of the signal. For this pur-
pose let x be the initial signal and y be the signal after an up-
date. According to (11) they are related as y = Q(7) x, which
can be equivalently written in the graph Fourier domain as
follows:

y=VIQT)Vx=%x+)> Vlieel!V(A-T)%. (60)
€T
The following theorem reveals a relation between smooth
graph signals and a single asynchronous update of (9).
Theorem 3: Assume that the signal x belongs to S, of a graph
with operator A. Then, the signal y computed as in (9) satisfies

the following:
1Y = X[loo < €T][V]lmax [V]loo- (61)

Proof: Assumethatx € S¢. Then, we can write the following
set of inequalities for a fixed index j:

15— 2l =[] Y Vel V(A -T) %/, (62)
€T
<Y lelivie| e V(A1) %, (63)
€T

< Vimax Y | V(A=) %], (64)

€T
< Vimas Y V0, A=) ]|, (©65)

€T
S Vlmax [TT [Vl €, (66)

where (62) follows from (60), (63) follows from the triangle
inequality, (64) follows from the definition of || V|| max, (65) fol-
lows from the Holder inequality, and (66) follows from the fact
that || V||« is the largest ¢1-norm of the rows of V. Then, we
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have the following:

1y = Xlloo = max[g; — 2 < € [T][Vllmax [Vll, - (67)

where the inequality follows from the fact that the bound in (66)
is valid for any index j. |

If the underlying graph is circulant, then V is the normalized
DFT matrix, and Theorem 3 reduces to the following simple
form as a corollary: ||y — X[ < € |T] [51].

The bound given by Theorem 3 is not tight in general. Never-
theless, it provides a useful interpretation: if the initial signal is
smooth on the graph (belongs to S, with € being small), then the
amount of change in each GFT coefficient is also small, hence
a smooth signal remains to be (relatively) smooth on the graph
after a single asynchronous update. If the initial signal is not
smooth (e is large), then the right-hand-side of (61) is a large
quantity, thus we cannot reach a conclusion regarding the effect
of an asynchronous update.

We will say that a signal x is typical to the graph (with respect
to the operator A) if it satisfies Ax = x. This definition is moti-
vated by the following three observations. First of all Lemma 2
shows that a typical signal is invariant (stationary) under any
asynchronous update. Secondly, a signal is typical if and only if
it is the smoothest signal (w.r.t. Definition 1):

Xxe§ = Ax=x. (68)

This is consistent with the studies in [4], [7], [9] that consider
typical signals to be smooth on the graph. Thirdly, and most im-
portantly, Corollary 2 proves that when the nodes communicate
autonomously for a sufficiently long time, the signal becomes
typical to the graph irrespective of the starting point. Once the
signal gets typical it stays the same over the network. Therefore,
a steady signal over an autonomous network is necessary typical
with respect to the operator A.

The equivalence given in (68) also shows the smoothing ef-
fect of the asynchronous updates. An arbitrary initial signal is
not expected to be smooth over a graph, but Corollary 2 proves
that the signal over an autonomous network eventually becomes
typical, hence the smoothest. However, it should be noted that
the smoothing (convergence) does not happen monotonically
unlike the power iteration of (7). Some updates might be ad-
versarial that increase the variation of the signal over the graph.
See Figure 1 of [51] for an illustrative example. Nevertheless,
some other updates cancel them out in the long run as proven by
Theorem 2.

VI. ASYNCHRONOUS POLYNOMIAL FILTERS ON GRAPHS

Lemma 2 of Section III showed that there exists a signal in-
variant under an asynchronous update if and only if A has an
eigenvalue 1. In this case, according to Corollary 2, an arbitrary
nonzero initial signal converges to an eigenvector with eigen-
value 1. These results show that asynchronous updates on A
can only converge to the eigenspace of A with the unit eigen-
value. In this section we will challenge this limitation: what if we
want asynchronous updates to converge to an eigenspace of A
with eigenvalue other than 1? In order to approach this problem
we will start with an L order polynomial of the given operator,
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that is,

L
h(A) =" h, A", (69)
n=0

for some set of coefficients h,,’s, and consider asynchronous
updates on h(A) that are defined as follows:

(h(A) Xk)i’ 1€T,
(%% )i, i ¢ T.

Polynomials of a graph operator are useful to consider be-
cause of the following two reasons. Firstly, they are localized.
Computation of (h(A)x); requires the i*" node to retrieve in-
formation only from its L-hop neighbors. If the polynomial is of
low order (L has a small value), then 2 (A ) x can be computed
locally, which is crucial to the autonomous model we consider
in this study. Secondly, A and h(A ) have the same eigenvectors,
that is,

(Xge1 )i = { (70)

h(A) =V h(A) VI, (71)

Therefore, a carefully constructed polynomial can manipulate
the eigenvalues of A in such a way that asynchronous iterations
on h(A) can be guaranteed to converge to a desired eigenspace
of A even though iterations on A itself fail to do so. This idea
is formally presented in the following theorem.

Theorem 4: Let \; denote the eigenvalues of a given graph
operator A. For a specific target eigenvalue \;, assume that a
polynomial /(-) satisfies the following conditions:

Then, random updates on h(A) as in (70) converge to an
eigenvector of A with eigenvalue \; for any amount of asyn-
chronicity 0 < 6p < 1.

Proof: Since h(-) is assumed to satisfy (72), h(A) has a unit
eigenvalue, and the non-unit eigenvalues are strictly less than
one in magnitude. Hence, Corollary 2 ensures that the updates
converge to a point in the eigenspace of h(A) with the eigenvalue
1, which is equivalent to the eigenspace of A with the eigenvalue
A; due to the property in (72). |

Polynomial filters play an important role in the area of graph
signal processing. Starting from the early works [4]-[6], polyno-
mial filters are designed to achieve a desired frequency response
on the graph. On the contrary, the condition (72) disregards the
overall response of the filter since its objective is to isolate a sin-
gle eigenvector. Thus, the design procedure and the properties
of the polynomials (to be presented in the subsequent sections)
differ from the polynomial approximation ideas considered in
[4]-[6].

Theorem 4 tells that an arbitrary eigenvector of the graph can
be computed in a decentralized manner if a low order polyno-
mial satisfying (72) is constructed. In this regard the updates on
polynomial filters resemble the beam steering in antenna arrays
[52]: assume that the order of the polynomial, L, is fixed. Then,
the communication pattern between the nodes is completely de-
termined by the operator A and the order L (See Algorithm 1).
Once the nodes start to update their values randomly and asyn-
chronously, the behavior of the signal is controlled by the poly-
nomial coefficients. By changing the coefficients in the light of
(72), one can steer the signal over the graph to desired “direc-
tions,” which happen to be the eigenvectors of the operator. Here,
L corresponds to the number of elements (sensors) in the array,
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and the filter coefficients serve the purpose of steering in both
cases.

Note that the condition in (72) is not necessary in general
for the convergence of random updates with a fixed amount of
asynchronicity. (See Section IV.) However, (72) is necessary
to guarantee the convergence for all levels of asynchronicity
including the most restrictive case of power iteration.

Notice that if the operator A is the graph Laplacian, and the
target eigenvalue is A\; = 0, then the corresponding eigenvector
is the constant vector. In this case the problem reduces to the
consensus problem, and the condition in (72) becomes a relaxed
version of the polynomial considered in [53].

In the following sections we will assume that eigenvalues
of A are real valued, which is the case for undirected graphs,
and assume that h,, € R. Although the complex case can also
be considered in this framework, as we shall see, some of the
results do not extend to the complex case.

A. The Optimal Polynomial

In this section we consider the construction of the polynomial
that has the largest gap between the unit eigenvalue and the rest.
In order to represent the condition (72) in the matrix-vector form
we will use a vector of length L + 1 to denote the polynomial
in (69), that is, h = [hg --- hz]T. In addition, let ® be a Van-
dermonde matrix constructed with the eigenvalues of A in the
following form:

1A A
1 A, A2 o N

P — : 2 erV D (73
1 Ay A o 2k

In the case of repeated eigenvalues, we assume that the repeated
rows of the matrix @ are removed. Let ¢; denote the row of ®

corresponding to the target eigenvalue \;, and let ) ;j denote the
remaining rows of ®.

In order to find the optimal L** order polynomial satisfying
(72), we consider the following optimization problem:

t o h=1 74
S Y@ h <101 74

First of all notice that the constraints in (74) are linear due to
the fact that ® and h are real valued. The objective function is
linear as well. Hence, (74) is a linear programming that can be
solved efficiently given the eigenvalue matrix ®.

The constraints of (74) enforce the polynomial to satisfy the
desired condition in (72) while the objective function maximizes
the distance between the unit and non-unit eigenvalues of 4 (A).
Therefore, the formulation in (74) searches for the polynomial
that yields the fastest rate of convergence on h(A) among all
polynomials of order L satisfying (72). Hence, we will refer to
the solution of (74) as the optimal polynomial.

It should be noted that the solution of (74) is optimal with
respect to the worst case scenario of the synchronous up-
dates. In general, the polynomial generated via (74) may not
give the fastest rate of convergence for an arbitrary amount of
asynchronicity.
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B. Sufficiency of Second Order Polynomials

In order to make use of the construction in (74), the order of
the polynomial, L, should be selected appropriately so that the
problem is feasible and admits a solution. One way to guarantee
the feasibility is to select L = N — 1, in which case a solution
always exists due to the invertibility of the Vandermonde ma-
trix ® (by disregarding the multiplicity of eigenvalues). In this
case, however, updates are no longer localized, which prevents
the asynchronous model of (9) from being useful. At the other
extreme, the case of L = 1 is insufficient to ensure the condition
(72) in general. Therefore, nonlocal updates are required for the
sake of flexibility in the eigenvectors. Nevertheless, the local-
ity of the updates needs only to be compromised marginally, as
the following theorem shows that L = 2 is in fact sufficient to
satisfy (72).

Theorem 5: Assume that the operator A has real eigenvalues
A; € R. For a given target eigenvalue J;, the condition in (72)
is satisfied by the following second order polynomial:

h(A) =1—2¢€ (A= X;)?/s3, (75)
for any € in 0 < € < 1 and s; satisfying the following:
55 = 121;25\[ [Ai — A (76)

Proof: 1t is clear that h();) = 1. In the following we will
show that —1 < h(\;) < 1forall \; # A;. For the upper bound
note that (\; — A\;)? > 0 for all \; # \;. Therefore,

1—h(A) =2€ (X —X;)?/s7 >0, (77)
which provesthat h(\;) < 1forall \; # ;. For the lower bound
notice that we have s7 > (\; — A;)* for all \; by the condition
in (76). Therefore we have

h(Ai)=1-2€(X—\j)?/s; 21—2¢> -1, (78)

for all \;. [ |

Notice that € in (75) is a free parameter which can be tuned to
increase the gap between the eigenvalues. Thus, the polynomial
given in (75) is not guaranteed to be optimal in general. It merely
shows that a second order polynomial satisfying (72) always
exists, which also implies the feasibility of (74) in the case of
L = 2, or larger.

An important remark is as follows: the sufficiency of sec-
ond order polynomials does not extend to the complex case in
general. To see this consider the following set of N complex
numbers: \, = 727/ (N-1) for 1 < n < N-1and Ay = 0. As
shown in the supplementary document, no polynomial of or-
der L < N-2 (possibly with complex coefficients) can satisfy
[h(An)] <1 for 1 <n < N-1and h(Ay) = 1. This adversar-
ial example shows not only that second order polynomials are
insufficient, but also that a polynomial of order N-1 is in fact
necessary in the complex case in general. Although no guarantee
can be provided, low order polynomials might still exist in the
complex case depending on the values of the eigenvalues of a
given operator A.

C. Spectrum-Blind Construction of Suboptimal Polynomials

Although the solution of (74) provides the optimal polyno-
mial, it requires the knowledge of all the eigenvalues of A. Such
information is not available and difficult to obtain in general.
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By compromising the optimality, we will discuss a way of con-
structing second order polynomials satisfying (72) without us-
ing the knowledge of all eigenvalues of A, except the target
eigenvalue \;.

First of all notice that a value for the coefficient s; used in
(75) can be found using only the minimum and the maximum
eigenvalues of the operator. That is, the following selection

Sj = max{)\max — Aj, )\] - )\min}7 (79)

satisfies (76). Therefore, the minimum, the maximum and the
target eigenvalues suffice to construct the polynomial (75).

In fact (76) can be satisfied by using an appropriate upper
bound for A\p,x and lower bound for Ap;,. For example if A is
the adjacency matrix or Laplacian, we can use the largest degree
dmax of the graph to select s; as follows:

1) The Laplacian: In this case the eigenvalues are bounded
as 0 < \; < 2 dnax. Hence,

Sj = Amax + |>\j - dmax|' (80)

2) The Adjacency: In this case the eigenvalues are bounded
as —dmax < \; < dmax. Hence,

Sj = dmax + ‘)\]| (81)

3) The Normalized Laplacian: In this case the eigenvalues
are bounded as 0 < \; < 2. Hence,

Sj:1+|)\j—1|. (82)

Since the selections in (80), (81), and (82) do not use the eigen-
values of the (corresponding) operator A, the polynomial in (75)
can be constructed using only the target eigenvalue \;.

Aforementioned constructions also provide a trade-off be-
tween the available information and the rate of convergence.
This point will be elaborated in Section VIIL.

D. Implementation of Second Order Polynomials

In Section VI-B graph signals are shown to converge to an ar-
bitrary eigenvector of the underlying graph operator A through
random asynchronous updates running on an appropriate sec-
ond order polynomial filter. In this section, we will show that
asynchronous updates on a second order polynomial can be im-
plemented as a node-asynchronous communication protocol in
which nodes follow a collect-compute-broadcast scheme inde-
pendently from each other. For this purpose, we first write a
second polynomial of A explicitly as follows:

h(A) = hoI+ hy A + hy A2, (83)

where the filter coefficients hg, hy, ho are assumed to be pre-
determined such that (72) is satisfied for the eigenvalue of the
target eigenvector. Then, we define an auxiliary variable y as:

y =Ax, (84)

where x denotes the signal on the graph, and y is the “graph
shifted” signal. We will assume that the i** node stores x; and
y; simultaneously. Thus, (z;, y;) can be considered as the state
of the i*" node. Then, we can write the following:

(h(A)x); = ho Ti + h1 yi + ha (Ay);.

Using (85), asynchronous updates with 7 = 1 (only one node
is updated per iteration) running on h(A) can be equivalently

(85)
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Algorithm 1:
Protocol.
procedure INITIALIZATION(%)
Initialize x; randomly.
Collect x; from nodes j € Niy(i).
Yi = 2 jenin) Ai T
procedure PASSIVE STAGE(7)
if a broadcast u is received from the node j then
Yi < Yi + Aij .
if the node j sends a request then
Send y; to node j.
procedure ACTIVE STAGE(%)
Collect y; from nodes j € Niy (7).
U < (ho — 1) x; + hy Y; + ho Z]EMn(z) Ai,j Yj-
€X; — X +Uu.
Broadcast u to all nodes j € Noy (7).

Node-Asynchronous ~ Communication

written in the following three steps:

w4 (ho — 1) + hiyi + ha Ay, (86)
T; — x; +u, (87)
y<ytALgvy, (88)

where Aj; . and A, ; denote the it" row and column of A,
respectively.

It is important to note that equations in (86)—(88) are in the
form of a collect-compute-broadcast scheme. In (86), the term
Aj; ) y requires the i*" node to collect y;’s from all j € N, (4).
In (87), the node simply updates its own signal. In (88), the term
A . ;) u requires the it" node to broadcast u to all j € Nyy (7).
These three steps can be converted into a node-asynchronous
communication protocol as in Algorithm 1.

Algorithm 1 consists of three procedures: initialization, ac-
tive stage, and passive stage. In the initialization, the 7" node
assigns a random value to its own signal x;, then it constructs
the auxiliary variable y; by collecting x; from its neighbors.
Once the initialization is completed, the it" node waits in the
passive stage, in which the graph signal x; is not updated. How-
ever, its neighbors can request y;, or send a broadcast. When
a broadcast is received, the i*" node updates only its auxiliary
variable 1;. When the i*” node wakes up randomly, it gets into
the active stage, in which it collects the auxiliary variable y;
from its neighbors, updates its signal x;, and then broadcasts the
amount of update to its neighbors. Then, the node goes back to
the passive stage.

Five comments are in order: 1) The random update model in
(13) implies that all nodes have the same probability of going
into the active stage. 2) As the signal x converges to the target
eigenvector of A, the ratio y; /x; converges to the corresponding
eigenvalue of A (assuming z; is non-zero), thus h(y;/x;) con-
verges to 1 due to (72). 3) In the active stage, the broadcast (the
step in (88)) is essential to ensure that x and y satisfy (84). 4)
The amount of update for z; is computed by the i*" node itself.
The amount of update for y; is dictated by the neighbors of the
it" node. Thus, y; can also be considered as a buffer. 5) Since
edges are allowed to be directed, a node may collect data from
the j** node in the active stage, but may not send data back to
the j*" node.
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Fig. 4. (a) A graph on N = 100 nodes with 2 clusters. The graph has undi-

rected edges with binary weights. (b) The result of the spectral clustering based
on (89) with colors representing the clusters.

As a final remark we note that Algorithm 1 assumes reli-
able communication between the nodes, i.e., no link failures. In
this case Algorithm 1 is exactly equivalent to the model in (9)
running on h(A). As long as the polynomial coefficients are se-
lected properly (see Theorem 4), the signal x in Algorithm 1 is
guaranteed to converge to the eigenvector targeted by the poly-
nomial. In the case of link failures, Algorithm 1 deviates from the
model in (9), thus the convergence guarantees presented here are
not applicable. Nevertheless, we have numerically observed that
Algorithm I converges even in the case of random link failures.
This case will be studied in future.

VII. AN APPLICATION: AUTONOMOUS CLUSTERING

In this section we will consider the problem of clustering in
autonomous (ad-hoc) networks [22], [54], [55]. For this purpose
we will combine the well-known spectral clustering [56] with
the polynomial filtering proposed in the preceding section.

Given a network, the second smallest eigenvalue of its graph
Laplacian, Ao, is known as the algebraic connectivity of the
graph [57]. Roughly speaking graphs with larger A\, tend to
be more “connected” than the others. Furthermore, the corre-
sponding eigenvector va, also known as the Fiedler vector, can
be utilized to cluster the graph into two partitions. The signal x
computed as

x = sign(vy), (89)
indicates the corresponding cluster of the nodes. Similar spectral
ideas are used in [58] to obtain approximate graph coloring and
in [59] to identify the hidden M-Block cyclic structure from
noisy measurements under random permutations.

In the following we will consider the idea of asynchronous
polynomial filtering in order to compute the eigenvector vy of
the Laplacian. For this purpose Ao will be selected as the target
eigenvalue. As a result, nodes will be able to identify the cluster
they belong to in an autonomous manner. Such a behavior can
be considered as swarm intelligence as well: independent simple
computation by individual agents (nodes) can obtain a global
information regarding the whole community (graph) [60].

For the graph visualized in Figure 4(a), the result of the spec-
tral clustering based on (89) is demonstrated in Figure 4(b) where
the clusters are represented with different colors. In the remain-
ing, labels found by (89) will be referred to as the correct labels.
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Fig. 5. Results of the autonomous clustering experiment, which are obtained
by averaging over 10 independent experiments.

The autonomous clustering on this network is simulated using
the following four different polynomial filters:

1) The optimal third order filter via (74).

2) The optimal second order filter via (74).

3) A second order filter of (75) by selecting s as in (79)

using A2, Amax, and setting A, = 0.

4) A second order filter of (75) by selecting s, as in (80)

using Ao and dpax.

In the simulations all the nodes are initialized randomly, and
the random asynchronous iterations run on the constructed poly-
nomials of the Laplacian. We use 7 = 1, i.e., one node is ran-
domly chosen and updated at every iteration. The label of a node
is the sign of its most recent value as in (89). The average frac-
tion of incorrect labels versus number of iterations is presented
in Figure 5 for four filters mentioned above.

Figure 5 shows that the number of incorrect labels go down
to zero as iterations progress, which is proven to be the case by
Corollary 2 due to the construction of the filters in Section VI.
The figure also illustrates the trade-off between the complexity,
the amount of spectral information used and the rate of con-
vergence. Although filters #1 and #2 are constructed using all
the eigenvalues of the Laplacian, filter #1 yields a faster conver-
gence due to its higher order (complexity). Filters #2, #3, and
#4 have the same order, but their constructions use lesser and
lesser amounts of spectral information. As a result, they yield
lower and lower rates of convergence.

VIII. CONCLUSIONS

In this paper, we proposed a node-asynchronous communica-
tion protocol in which nodes follow a collect-compute-broadcast
scheme randomly and independently from each other. Different
than the consensus, this protocol can converge to an arbitrary
eigenvector of the graph operator of interest. In order to an-
alyze the convergence behavior, we introduced a randomized
asynchronous variant of the power iteration, which performs the
regular power iteration (or, the graph shift) but only a random
subset of the indices are updated. Assuming that the underlying
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operator has eigenvalue 1, we proved that repetition of such ran-
domized updates converges to an eigenvector of the eigenvalue
1 (a fixed point) even in the case of operator having other eigen-
values with magnitudes larger than one. We also showed that
not only the eigenvalue gap but also the eigenspace geometry
of the operator affects the behavior of the convergence. More-
over, we showed that as the updates get more asynchronous
the convergence region for the eigenvalues gets larger. In or-
der to make the updates converge to an arbitrary eigenvector,
we considered polynomials of the operator. In particular, we
showed that second order polynomials are sufficient to achieve
such a convergence. By combining the asynchronous iterations
and second order polynomials, we formally presented the node-
asynchronous communication protocol. As an application, we
used the proposed algorithm to compute the Fiedler vector of
a network in order to achieve autonomous clustering. Simu-
lations verified that the algorithm indeed clusters the network
successfully.

Although we presented an upper and a lower bound on the rate
of convergence of the randomized updates, simulations showed
that neither of them is tight. We plan to obtain tighter bounds
in future studies. We also plan to study the relation between the
eigenspace geometry of the operator and the underlying graph
structure. Such a result would relate the convergence behavior
directly to the underlying graph.

APPENDIX A
A USEFUL INEQUALITY

Lemma 3: Let U € CN*M and X > 0. Then,

tr(UMdiag(UXUM)U) H -
<\ .
=X < Amax (Udiag(UUT)U), - (90)
and
tr(UMdiag(UXUM)U) " q
2 Amin i ) 1
(X Amin (UMdiag(UUMU), D
<
Proof: Consider the following problem
H 1 H —
max tr(U diag(UXU )U) st tr(X) =1 (92)

Using the eigenvalue decomposition X = Vdiag(A)VH, and
the fact that X has unit trace, we can write the problem as

Q=UV
ViV =1
H i: : H
I\I}af\( tr(Q diag(Qdiag(A)Q )Q) s.t. NN (93)
A=0
Notice that the objective function can be written as
tr(QHdiag(Qdiag(A)QH) Q) —1MZHZ N, (94
where the matrix Z € RN*M is defined as Z; ; = |Q;;|*
Now, consider the problem of maximization over A
max 1HzhzZXx st 1HA=1, Ax>0 = (95

Since the vector A is constrained to be nonnegative and sum to
1, the objective function of (95) is the convex combination of the
elements of the vector Z" Z 1, whose elements are nonnegative
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as well. Since a convex combination is maximized when the
largest element is selected, the solution of (95) is ||ZHZ 1| .
This can also be seen from the fact that the problem in (95) is in
the form of the dual-norm formulation of the ¢; norm.

Notice that

1721 = max (Q'diag(QQ") Q), ;. (96)
_ HyTH 3 H
= max (VIU"diag(UUMUV), . ©7)
_ H {7H g H ,
= 122};4v1 U"diag(UU") U vy, (98)

where we use Q = UV from the conditions in (93), and the fact
that V is unitary. Hence, the maximization over V can then be
written as

max vi Uldiag(UUM Uv; st viiv, =46, (99
Vi
which can be simplified to

max v Uldiag(UUM Uv st |v]|2=1, (100)

whose solution is simply the largest eigenvalue of the matrix
UMldiag(UUM) U. Therefore for any X = 0 we have

tr(UMdiag(UXU")U)
tr(X)

For the inequality in (91), the maximization in (95) is re-
placed with the minimization. Since the minimum of the objec-
tive function is achieved when the minimum element of ZH Z 1
is selected, maximization in (96) (hence the one in (100)) is re-
placed with minimization, which yields the minimum eigenvalue
problem in (100). This validates the inequality in (91). |

< Amax (UMdiag(UUM)U) (101)

APPENDIX B
PROOF OF THEOREM 2

Consider the following covariance matrix:

C, = E[U"x, xIU], (102)
which gives tr(Cy) =E|[|[U"x,|13] = E[|[|r,[|3]. We can
write Cy, as follows

C, =E[U" Q. Ix,, x}, IQ] U (103)

Notice that we have I=V,;Vi4+ UU! Furthermore,
QV; = V; is valid for any outcome of the random matrix Q
in (11). We note that Vi1 Q # V1 in general. Further using the
fact that Vll{ U = 0, we can write (103) as follows:

C,=E[U"Q,UU"x, , xll, UU" QI U], (104)
=E[U"Q, U E[U"x;., x;.; U UM Qi U, (105)
=E[U"Q,UC,,U"Q; U], (106)

where (105) follows from the fact that each update is independent
of the previous ones.

In order to compute the expectation in (106), in the follow-
ing we will first find the conditional expectation (conditioned
onT) as

Cr,=E[U"QUC,,U"Q"U|T]. (107)
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Then, Cy, will be found as C, = E[ Cy, | where the expectation
is with respect to 7'.

Since A is assumed to be normal matrix, its eigenspaces
are orthonormal to each other. Therefore, the matrix U cor-
responds to the eigenvectors of A with non-unit eigenvalues.
Furthermore, the normality implies also that the left and the
right eigenvectors of A are conjugate transpose of each other.
That is, Vi1 (A —1I) =0, and U (A — 1) = X U", where
3 € CIV-M)x(N-M) i a diagonal matrix with diagonal entries
{01, ..., on-am} where 0; = \; — 1. Thus, the normality of A
implies the following equality:

uviQmu=1+U"D;UZ. (108)
Using (108) in (107), the expectation can be written as:

Cr= > (I+UHDT U 2) Cit (I+2HUHDT U) ,

N
(7) 7
_ T W, I(T'-1) H
=Cp1+ N(E Cip1+CraX ) + mz Ci1 X
T(N-T) .y .. HyH
— YCri1 X 1
+ N(N=1) U" diag(UX Cy 4 U™ U, (109)

where the last step follows from (5) and (6).
By taking the trace of both sides of (109) and using (90) from
Lemma 3 we obtain the following:

_ T
tr(Cp) < tr (Ck-l [I + N(E +3M+ 3 )

(b = 1) EHED,

(110)

T(N-T)
N(N-1)

where p™ is defined as in (39). By taking the expectation of both
sides in (110) with respect to 7', we get the following:

tr(Cy) < tr <Ck-1 [I + %T (z+x"+3Mm)

+ “WT 5r (pt —1) EHED, (111)

N-M

= Z (Cia)ii Vi < VU tr(Cya),

i=1

(112)

where W;’s are defined as

U= 1+ (AP 1) + B or (ot - ) - 12,
(113)
and U is defined as ¥ = max; V,. Iterative use of the inequality
in (112) gives the upper bound in (43).

For the lower bound in (43), we consider the trace of both
sides of (109), use (91) from Lemma 3, and take the expectation
with respect to T'. This will provide a lower bound for tr(Cy,)
similar to (111) where p is replaced with p~ from (40). Hence,
we get

N-M

tr(Cy) = Z (Ck-1)ii i = ¥ tr(Cga),

i=1

(114)
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where 1);’s are defined as
Hr 2 Iy - 2
i =1+ —(N|]"—1 — - 1)\ =17, (115
v =14 S (Dl = 1) + 57 0 (o7 = DA = 1%, (115)

and v is defied as ¢ = min; v;. Iterative use of the inequality
in (114) gives the lower bound in (43).

APPENDIX C
A COUNTER-EXAMPLE TO THE INSUFFICIENCY OF SECOND
ORDER POLYNOMIALS IN THE COMPLEX CASE

Consider the following set of N complex numbers:
Ay = 92/ (N-1) for 1 < n < N-1 and Ay = 0. Assume that
there exists a polynomial of order L < N-2 such that it satisfies
the following mapping:

|h(An)] <1 for

h(Ay) = 1.

1<n<N-1, (116)

(117)

When the polynomial is written explicitly as h(\) = Zi:o
hi ¥, the condition in (116) can be written as

L 2 L
th ej?‘n'nk/(Nfl) _ Z s h: ej27rn(k—s)/(Nfl) < 1.
k=0 k,s=0

(118)
Notice that the inequality in (118) holds true for all n in
1 < n < N-1. Therefore, the following also holds true:

N-1 L
N_1>Z Z hkhz ej27rn(k—s)/(N—1)7

(119)
n=1 Fk,s=0
L N-1
_ Z i h: Z ej27rn(k:—s)/(N—1)' (120)
k,s=0 n=1

Note that 0 < k, s < L < N-2. As aresult, the inner summa-
tion in (120) is nonzero if and only if k = s. That is,

N-1
S /N Z (N 5, (12D)
n=1

where dj, s stands for the Dirac delta function. Then, the inequal-
ity in (120) becomes:

L L
1> Z hk hz 5]675 = Z |hk|2

k,s=0 k=0

(122)

Notice that the condition in (117) implies that hy = 1. There-
fore, (122) can be written as:

L L
1> Z |hk|2 =1+ Z |hk|2,
k=0 k=1

whichimplies 0 > S |h|2, which is a contradiction. Hence,
no polynomial (possibly with complex coefficients) of order
L < N-2 can satisfy the conditions in (116) and (117). There-
fore, a polynomial of order N-1 is in fact necessary in the com-
plex case in general.

(123)
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