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Abstract Biomolecular simulations are typically performed in an aqueous environment where the number
of ions remains fixed for the duration of the simulation, generally with either a minimally neutralizing ion
environment or a number of salt pairs intended to match the macroscopic salt concentration. In contrast,
real biomolecules experience local ion environments where the salt concentration is dynamic and may
differ from bulk. The degree of salt concentration variability and average deviation from the macroscopic
concentration remains, as yet, unknown. Here, we describe the theory and implementation of a Monte Carlo
osmostat that can be added to explicit solvent molecular dynamics or Monte Carlo simulations to sample
from a semigrand canonical ensemble in which the number of salt pairs fluctuates dynamically during the
simulation. The osmostat reproduce the correct equilibrium statistics for a simulation volume that can
exchange ions with a large reservoir at a defined macroscopic salt concentration. To achieve useful Monte
Carlo acceptance rates, the method makes use of nonequilibrium candidate Monte Carlo (NCMC) moves
in which monovalent ions and water molecules are alchemically transmuted using short nonequilibrium
trajectories, with a modified Metropolis-Hastings criterion ensuring correct equilibrium statistics for an
(Au, N, p,T) ensemble. We demonstrate how typical protein (DHFR and the tyrosine kinase Src) and nucleic
acid (Drew-Dickerson B-DNA dodecamer) systems exhibit salt concentration distributions that significantly
differ from fixed-salt bulk simulations and display fluctuations that are on the same order of magnitude as
the average.

*For correspondence:
john.chodera@choderalab.org (John D. Chodera)

Present address: 'Schrodinger, New York, NY 10036

> Introduction

3 Molecular dynamics simulations have proven themselves a powerful tool for studying the structure, dynamics,
4 and function of biomolecular systems in atomic detail. Current state-of-the-art approaches simulate a small
s volume around the biomolecule using explicit atomistic solvent to model the local environment. To more
¢ realistically emulate electrostatic screening effects in the local solvent environment, explicit ions are generally
7 added, both to achieve net neutrality and to mimic the macroscopic salt concentration in the in vitro or in
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Figure 1. Schematic illustrations of typical salt concentrations in mammalian environments and anions and
cations being exchanged with a saline buffer in the region around a biomolecule.

Left: The ion compositions of intra- and intercellular mammalian environments are shown as millimolar equivalents (mM Eq),
which is the ion concentration multiplied by the absolute charge of the ion. The primary contribution to the ionic-strength
are monovalentions (Na*+, K*, CI~), divalent cations (predominantly Mg2*), complex salt and buffer molecules, and charged
proteins. In addition to the significant difference between the ionic composition of the cytoplasmic fluid and extracellular
fluid, organelles can also have markedly different ionic concentrations to the cytoplasmic fluid'. Over large lengthscales,
environments are approximately electrostatically neutral; electrostatic potentials across cell membranes are maintained
by an imbalance of anions and cations that is minuscule relative to the total number ions?. Figure adapted from? and?.
Middle: In a very large system, where the number of water molecules and number of ions are fixed, significant fluctuations
can occur in the ionic strength of the local environment of a biomolecule (in purple). The local environment is represented
by a dashed line, within which the number of water molecules and ions fluctuate at equilibrium. Right: A simulation
with an osmostat replicates the natural variations in ionic strength around a biomolecule that would occur if the system
were embedded in an infinite saline reservoir at a fixed macroscopic salt concentration. Anions and cations (blue and
orange spheres) are inserted and deleted (green stars) from the system using semigrand canonical Monte Carlo moves
that exchange explicit water molecules for the ions in a manner that maintains total charge neutrality. The reservoir is
completely defined by its thermodynamic parameters, which in this case include the difference in the chemical potential
for two water molecules and NaCl, Ay (= App.,0-nact)r Pressure p, and temperature, T.

s Vivo environment being studied.

9 Salt concentrations and ionic composition are tightly regulated in biology“. lon composition differs
10 between inter/intracellular environments?, tumor microenvironments®, and organelles’ (see Figure 1,
11 left). The local ionic concentration in the environment around real biological macromolecules, however,
12 can significantly deviate from macroscopic concentrations. Many biomolecules possess a significant net
13 charge, and the energetic penalty for physical systems to maintain charge separation over large distances
12 serves to recruit more or less ions from bulk to maintain charge neutrality over macroscopic lengthscales.
15 Yet, the number of ions within the immediate vicinity may not necessarily counter the net charge of the
16 macromolecule, as proteins can predominantly bind to ions that have the same polarity as their net charge®.
17 Additionally, statistical fluctuations in the total number of ions in the region around the biomolecule may
18 resultin significant variance in the local salt concentration, where relative concentration fluctuations diminish
19 slowly with increasing simulation volume (Figure 1, middle).

2 Biomolecular behavior can be sensitive to salt environments

21 The conformations, dynamics, function, and binding of biological macromolecules can be exquisitely sensitive
2 to the salt concentration and composition of the local environment. The Hofmeister effect, in which ions
;3 modulate the strength of the hydrophobic effect—a major driving force in protein folding and association’-#—
22 has been known since at least the nineteenth century®'". Biomolecular interactions involving highly charged
»s  nucleic acids—such as DNA:protein interactions critical for DNA repair'’—have been observed to show
2 sensitivity to macroscopic salt concentrations', as have DNA:antibiotic interactions'®. In the realm of
27 pharmaceutical design, where there is great interest in engineering small molecule ligands, salt effects are
;s known to modulate the interactions of small molecules with proteins'> or with supramolecular hosts '°.
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2 Current simulation practice arbitrarily fixes microscopic salt composition

30 In contrast to real physical systems, where the local region near the biomolecule is able to exchange ions with
31 a macroscopic reservoir at a fixed salt concentration (Figure 1, middle), simulations of biomolecules typically
32 fix the number of salt molecules present in the simulation volume. There is a great deal of diversity in how the
;3 fixed number of added ions is typically determined: Along with the specified macroscopic ion concentration,
s simulation packages may make use of the total cell volume (e.g., Gromacs'’), the total solvent volume
35 excluding the biomolecular solutes (e.g., CHARMM-GUI '8), or the number of water molecules (converting the
3 ion concentration into mole or mass fraction, as in OpenMM °2%), Some simulation packages choose to use
37 only minimal neutralizing counterions or no counterions at all, relying on uniform background neutralizing
;s charge to allow treatment of long-range electrostatics by particle mesh Ewald (PME) methods?'?? (such as
3 Schrodinger’'s FEP+ alchemical free energy calculations?3). In simulation volumes large enough to mimic the
4 inclusion of a macroscopic salt reservoir far from the biomolecular system of interest, the environment near
4« the biomolecule may be accurately represented, but long correlation times for well-ordered ions may still
2 hinder equilibration of the ion environment?4-2°,

s Simulations in the semigrand canonical ensemble can mimic real salt fluctuations

42 Simulations in the (semi)grand canonical ensemble, however, can—at least in principle—remedy this situation
4 by explicitly allowing one or more components (such as ions) to fluctuate over the course of the simulation
4 via grand canonical Monte Carlo (GCMC) moves (Figure 1, right). In grand and semigrand canonical methods,
47 simulations are placed in thermodynamic equilibrium with a theoretical reservoir of components. The
4 simulation can exchange molecules/particles with the reservoir, and the concentration the components in
49 the reservoir are specified by their respective chemical potentials. Before running these simulations, one
so  first has to determine the mapping between the concentration in the reservoir and chemical potentials, a
51 process we refer to as calibration. Sampling over ion concentrations in explicit water via straightforward
52 GCMC is difficult: Monte Carlo insertion/deletions have to overcome long-range effects, low acceptance rates
s3  for instantaneous Monte Carlo moves, and the concentration is sensitive to small (< k,T) variations in the
s« chemical potential. Some efforts have circumvented these issues by using implicit solvent models %7, cavity-
ss biased insertions in specialized solvent models %, and explicit solvent reorganization moves?°. Osmotic
ss ensemble Monte Carlo schemes that use fractional ions and Wang-Landau approaches have also proven
57 themselves to be useful in simulations of simple aqueous electrolytes 30T,

ss  Nonequilibrium candidate Monte Carlo (NCMC) can achieve high acceptance rates

ss More recently, nonequilibrium candidate Monte Carlo (NCMC) has been shown to be an effective solution to
e the problem of low acceptance rates when inserting or deleting particles. In contrast to an instantaneous
¢ Monte Carlo (MC) proposal in which an inserted particle is switched instantaneously on and may clash with
62 other solvent or solute particles, in an NCMC proposal, the particle is switched on slowly as the system is
63 allowed to relax via some form of dynamics. NCMC uses a modified acceptance criteria that incorporates
e the nonequilibrium work to ensure that the resulting endpoints sample from the equilibrium distribution.
es  With well-tuned nonequilibrium protocols, NCMC acceptance rates can be astronomically higher than their
6 instantaneous MC counterparts. In work simulating biomolecules at constant-pH, for example, Roux and
67 coworkers have demonstrated how NCMC is effective at achieving high acceptance rates for NCMC proposals
e that also transmute an ion to/from a water molecule to maintain net charge neutrality of the system 3334,
69 While calibration of the effective chemical potential for the water and ion forcefields and simulation
70 parameters at hand is nontrivial, this technical challenge can be satisfyingly addressed with existing technolo-
7 gies: Self-adjusted mixture sampling (SAMS)>°, a form of adaptive expanded ensemble sampling>°, can be
72 used to conveniently achieve uniform sampling of all relevant salt concentrations in a single simulation, while
73 the Bennett acceptance ratio (BAR) can optimally extract estimates of the relevant free energy differences
72 from all NCMC proposals along with good estimates of statistical error and minimal bias®’-*°. Independent
75 simulations at each salt concentration could be performed separately, with nonequilibrium switching trajec-
76 tories used to estimate relative free energies between different numbers of salt pairs. However, SAMS helps
77 more rapidly decorrelate the configurations of ions and, in principle, allows a single simulation to be used
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7 for calibration.

7 An NCMC osmostat can be used alongside thermostats and barostats

s Here, we present a new approach that makes use of NCMC to insert/delete salt pairs with high acceptance
s probability in a manner that correctly models the statistical mechanics of exchange with a macroscopic salt
82 reservoir. The osmostat needs to be calibrated once for the specified solvent and ion models, simulation
83 parameters, and thermodynamic conditions (temperature, pressure, pH, etc.). Following calibration, the
s« osmostatis used in a manner similar to a Monte Carlo barostat, attempting to modify the system composition
ss (and hence interaction potential) at regular intervals to ensure sampling from a target probability density
ss that models a system in equilibrium with a macroscopic salt reservoir (Figure 2). Similar to a Monte Carlo
&7 barostat'’4’, the osmostat moves can be integrated alongside molecular dynamics simulations and other
s Monte Carlo schemes to sample from equilibrium distributions with specified thermodynamic control
s parameters. This composability is a general feature of Markov chain Monte Carlo moves, which provide a
%0 useful framework for designing modular algorithms for biomolecular simulation“'.

o1 How do salt environments vary in realistic biomolecular simulations?

%2 Once we have developed and validated this tool, we use it to ask biophysical questions about the nature of salt
93 environments around biological macromolecules: What is the average salt concentration in the simulation
s volume, and how does it compare to bulk? Which heuristic scheme, if any, most closely approximates the
95 local salt concentration: macroscopic concentration times total cell volume or solvent volume, or mole
9 fraction of water molecules? How much does the local salt concentration and ionic strength vary in “typical”
97 biomolecular simulation conditions for different classes of biomolecular systems, such as proteins and
98 nucleic acids? And can a Monte Carlo osmostat reduce correlation times for ions over that seen in standard
% MD simulations, such as the slow correlation times in ion environments around nucleic acids?>? We consider
100 some test systems that represent different classes of common biomolecular simulations: TIP3P# (and
101 TIP4P-Ew*?) water boxes, dihydrofolate reductase (DHFR), the apo kinase Src, and the Drew-Dickerson B-DNA
102 dodecamer? as a typical nucleic acid.

w3 Outline

104 This paper is organized as follows: First, we review the theory behind (semi)grand canonical ensembles that
105 model the fluctuations experienced by small subvolumes surrounding biomolecules. Second, we describe
106 the algorithmic design of the osmostat used to allow salt concentrations to fluctuate dynamically. Finally, we
107 apply the osmostat to address biophysical questions of interest and discuss the nature of salt distributions
e and their fluctuations.

0o Theory and methodology

110 An NCMC osmostat for sampling ion fluctuations in the semigrand ensemble

11 An osmostat is like a thermostat or barostat but allows the number of salt pairs in the simulation box
12 to change dynamically under the control of a conjugate thermodynamic parameter—here, the chemical
13 potential of salt. Salt pairs can be thought of as being exchanged with a macroscopic reservoir, with the
s free energy to add or remove salt to this reservoir described by the applied chemical potential. In principle,
1s an osmostat could be implemented by including a number of noninteracting (“ghost") molecules in the
16 simulation volume, turning their interactions on and off to allow the number of active salt molecules to
17 fluctuate dynamically; alternatively, new salt molecules could be introduced or removed dynamically using
ng  reversible-jump Monte Carlo (RIMC) methods“*. In either case, solvent cavity formation to accommodate
119 ions would almost certainly require nonequilibrium protocols that employ soft-core potentials and significant
120 tuning of these insertion/deletion protocols to achieve high acceptance rates.

121 To simplify implementation for the ions most commonly used in biomolecular simulations (such as NaCl
122 or KCl), we instead choose to exchange the identities of water molecules and salt ions, where our conjugate
123 thermodynamic parameter Au,y oy, (Which we will abbreviate as Au) will represent the difference in
124 chemical potential between withdrawing an NaCl molecule from the reservoir while returning two H,O
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Figure 2. Schematic illustration of the workflow used to calibrate and implement the osmostat. (a) Self-adjusted
mixture sampling (SAMS) simulations sample an entire range of salt pairs, Ny,c € [0, Nnaci, max)s in @ sufficiently large
box of water to model a saline reservoir. Nonequilibrium candidate Monte Carlo (NCMC) is used to achieve high
acceptance rates during salt insertion/deletion attempts, in which an NaCl molecule is transformed into a pair of
water molecules, or vice versa. (b) The Bennett acceptance ratio (BAR) estimator uses the work values from all NCMC
proposals (including rejected proposals) to compute an optimal estimate of the (dimensionless) relative free energy,
Af(Nnac)) = f(Nnac) + 1) — f(Nnac)), to add an additional NaCl salt pair to the box of saline as a function of the number of
salt pairs already present, Ny,c- BAR allows f(Nyac)) to be estimated to a higher precision than the estimates from SAMS.
(c) Once A f(Ny,c)) has been computed for the desired water/ion forcefield and simulation parameters governing the
energy computation (such as long-range electrostatics treatment), the chemical potential Au that produces the desired
macroscopic salt concentration (¢) is numerically computed using equation 19. (d) This same chemical potential Au
is subsequently used as the thermodynamic parameter governing the osmostat to simulate a biomolecular system in
equilibrium with an infinitely sized saline reservoir at the specified macroscopic salt concentration.

125 molecules. Because solvent cavities are not being created or destroyed—only modified slightly in size—this
126 should provide superior phase space overlap between initial and final states.

127 We denote the total number of water molecules and ions as N, and define the identities of the water
128 molecules and ions with the vector 6 = (6,,0,....,0,) with 6, € {-1,0,+1} to denote anions (¢, = —1), water
129 (6, =0), and cations (9, = +1), respectively (with the potential to extend this to divalent ions by adding -2, +2).
130 This choice of labeling allows us to define the total number of Na* ions as

N
Nyat(0) = Y 6(+1,0,), ©)
131 the total number of Cl-ions as N
Ng-(0) = )’ 6(=1,6), (2)
12 and the number of water molecules as
N
Niyo®) = Y 60,0,), (3)

133 Where §(x, y) denotes the Kronecker delta, which is unity when x = y and zero otherwise, and sums run from
134 i to N. Note that the total number of waters and ions, N = Ny,+(0) + N¢-(60) + Nyy,0(0), is fixed, and does not
135 depend on 4. We define the total charge number of the biomolecules, excluding counterions, as z.

136 When z # 0, counterions will be added to ensure that the total charge of the simulation system is zero.
137 The system can be neutralized by any of choice of 6 that satisfies n(9) = —z, where the total charge due to
138 ions is given by

N
) =70, 4

130 As neutralizing the system will lead to unequal numbers of Na* and CI-, we define the amount of salt as the
140 number of neutral pairs,
Nyaci(6) = min{ Ny,+ (), N¢-(0)}. (5)
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w1 The semigrand ensemble models salt exchange with a macroscopic salt reservoir

122 When our osmostat is combined with a scheme that samples the isothermal-isobaric (N, p, T) ensemble,
143 we formally sample the semigrand-isothermal-isobaric ensemble (Au, N, p, T). The associated equilibrium
124 probability density is given by

1
,0;Au,N,p,T) = 5(n(0), — —ﬁ[U(Xﬂ)+1r1V(>c)+AMNNaC|(0)]7 6
mx N2 T E(Au,N,p,T) (@), =2)e ©

125 where the Kronecker delta 6(n(6), —z) imposes net charge neutrality, § = 1/k,T is the inverse temperature,
16 and E(Au, N, p,T) is the normalizing constant, given by

E(Au,N,p,T) = Z 5(n(), —z) / dx e—ﬂ[U(x,9)+PV(x)+A;4NNaC|(9)], (7)
0

127 where the outer sum is over all identity vectors and the integral is over all configuration space. For brevity,
148 the dependence of = and E on z will be omitted. It is also possible to express the probability density of
129 the system as a function of the total number of cations and anions, rather than as function of 9. This can
150 be achieved by summing z(x,9; Au, N, p, T) over all identity vectors that preserve the neutral charge of the

151 system and Ny, () at some constant value No

70, Nljyes At N, p, T) > 6(Nyaci(6). Niyye) 7(x.0: A, N p. T)
0

! .
Nacl?
N! e PIUCEN GV CO+AUN] o] 8)

' INL INT )
N INGIN !

152 where U(x; N ) is the potential energy for a system with fixed particle identities that contains Ny, salt
153 pairs. The factorial prefactors account for the degeneracy number of identity vectors 6 that satisfy the

154 constraints Ny,q(8) = N, and n(0) + z = 0.

155 Gibbs sampling provides a modular way to sample from the semigrand ensemble
156 A Gibbs sampling framework can be used to create a modular simulation scheme in which the osmostat
157 updates molecular identities infrequently while some MCMC scheme (such as Metropolis Monte Carlo or
158 Metropolized molecular dynamics) updates particle positions using fixed particle identities:

x ~ m(x]|0,N,p,T) o e WOV 9

0 ~ x(0lx,Au,N,p,T) o ¢ PV D+AuNnac @) (10)

159 By embedding this approach in a Gibbs sampling framework, it allows the osmostat to readily be combined
160 with other sampling schemes that make use of a Gibbs sampling framework such as replica exchange and
161 expanded ensemble simulations“°.

162 Instead of instantaneous MC switching to propose changes in the chemical identities 6 at fixed configura-
163 tion x, nonequilibrium candidate Monte Carlo (NCMC) is used to propose updates of chemical identities and
164 positions simultaneously as sufficiently long switching trajectories can sampling efficiencies that are orders
s of magnitude larger than instantaneous proposals=>?:

x ~ 7m(x|0,N,p,T) x e POV (UND]

X0 ~ 7(x,01N,p,T, Au) o IOV CI+8kNyaq O] (12)

166 NCMC uses a modified Metropolis-Hastings acceptance protocol in which the appropriate total work for
167 switching is accumulated during the nonequilibrium proposal and used in the acceptance criterion.

s The chemical potential Ay must be calibrated to model macroscopic salt concentrations

10 Simulating a system that is in chemical equilibrium with an infinitely large saline reservoir at a specified
170 salt concentration first requires the calibration of the chemical potential Au. There are multiple ways that
171 one could compute the necessary chemical potential. For instance, one could approximate the reservoir
172 with a sufficiently large box of water, and narrow-in on the chemical potential that produces the desired
173 salt concentration using stochastic approximation or the density control method recommended by Speidal
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174 et al.“®, However, this requires carrying out separate calibration calculations for each desired macroscopic
175 concentration. Instead, we aim to construct a simple calibration procedure by computing the free energies to
176 insert salt pairs into a sufficiently large box of water. We then use these free energies to analytically compute
177 macroscopic salt concentrations over a wide range of chemical potentials, providing a relationship that can
178 be numerically inverted. This procedure need be done only once for a specified ion and water model, though
179 it may need to be repeated if the method used to compute long-range electrostatic interactions is modified.
180 Our calibration method is similar in principle to that of Benavides et al.#’, who estimated the chemical
181 potential of NaCl by calculating the free energy to insert NaCl to over a range of concentrations. However,
12 unlike*’—where the goal was to estimate the solubility of NaCl—our interest in estimating the chemical
183 potential lies solely in its ability to determine the chemical potential of the osmostat saline reservoir corre-
184 sponding to the desired macroscopic salt concentration in order to induce the appropriate salt distribution
185 ON Microscopic simulation systems.

186 Our approach to calibration computes the free energies to add Ny, € {1,2,..., Nyaq, max} Salt pairs to
157 an initially pure box of water. We limit our free energies calculations to insert NaCl up to some maximum
188 Nyac, max << NV for practical convenience. No constraint is placed on the amount of salt that can be added in
189 osmostat simulations—instead, the value of Ny,¢ mayx iMmpacts the accuracy with which the osmostat can
190 reproduce high macroscopic salt concentrations. We define the absolute dimensionless free energy of a
191 system with Ny, salt pairs at pressure p and temperature T as f(Nyac» N, p,T),

Z(NNaChN,P,T))

Z(,N,p,T) (13)

f(Nnac» N.p,T) = _1n<

192 where the partition function Z(N/,__, N, p,T) is given by

NacCl’
Z(Nr,\JaCI’N’p’ T = Zé(NNaclw), N,(‘acl)/dx o PIUGO+PY ()] 14)
0
= I\/]!l ’ t/dx e_ﬂ[U(X;N'/\laC'HPV(X)], (15)
NNa+‘NCI*'NH20'

13 where the number of water molecules Ny o =N'=2-N{_ . For convenience, we define relative free energies
194 aS

Af(Nnac, N.p, T) = f(Nnaar + LN, p, T) = f(Nnaci, N.p, T). (16)

105 For simplicity, we shall use f(Ny,c) and A f(Ny,q) as abbreviations to equations 13 and 16, respectively. The
106 free energies f(Ny,c) €an then be used to calculate the average number of salt pairs as a function of the
197 chemical potential Ay,

NNacl, max
(Nachapnpr = EQm N p T D Ny e M Panta (17)
Nnaci=0
198 where the semigrand partition function E(Au, N, p, T) (the same one from equation 7) can be compactly
199 Written as
NNacl, max
E(Au, N,p,T)= Z e~/ (NNac)+PAUN NI (’| 8)
NNac1=0
200 Knowledge of f(Ny,c) will also provide a convenient estimate of the macroscopic salt concentration. We
201 define the macroscopic salt concentration as the mean salt concentration of a system in the thermodynamic
202 limit, and derive in Appendix 2 the following expression for the macroscopic concentration that is amenable
203 to computational analysis:

NNacl, max
—/(NNacD+BAUN
2 Nyaa € Nacl Nacl

NNacl=0

; (19)

2 =
< >A/4.N,p,T NNaCI, max

—f(N +AAuN,
<V>NNaCIvN-Pv e~ (NNac)+PAUNN,CI
NNaci=0
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204 where (V)y . n,r IS the average volume for a fixed Ny,q. The macroscopic concentration (E)AM,N%T isa
205 monotonic function of the chemical potential Au. Therefore—provided one has estimates of f(Ny,¢) and
206 (V) ny.qnpr—the value of the chemical potential Au(c) that yields a desired macroscopic concentration
207 {€)a,.n,r CAN be obtained by numerically inverting equation 19.

23 Free energies for salt insertion can be efficiently computed using SAMS

200 One could estimate the free energies f(Nyaq) Ny € {0, 1, ..., Nyacl, max} USING @ Nyacr max — 1 €quilibrium
20 calculations of the relative free energies A f(Ny,c) or the recently developed grand canonical integration
a1 technique“®49. As the latter requires a priori knowledge of the approximate scaling of the chemical potential
212 with the concentration, we instead opt to use the recently proposed self-adjusted mixture sampling (SAMS)=>
23 method to facilitate the calculation of the free energies from a single simulation. SAMS is a development
212 on the method of expanded ensembles=° (sometimes known as serial tempering>) and generalized Wang-
215 Landau algorithms>"2, It is a stochastic approximation scheme that produces unbiased estimates of the
26 free energies (unlike Wang-Landau) that—in the asymptotic limit—have the lowest variance out of all other
217 stochastic approximation recursion schemes=°. It can be used to sample over a discrete state space and
218 simultaneously estimate the relative log-normalizing constant for each state. For our calibration simulations,
219 the discrete states correspond to the number of salt pairs in the systems Ny, € {0,1, ..., Nyac, max} @nd the
20 log-normalizing constant are the desired free energies f(Ny,c)- By dynamically altering a series of biasing
21 potentials, one for each state, the SAMS algorithm asymptotically samples the discrete states according to
22 user specified target weights>°. When the target weights are uniform over the state space—as we choose
23 herein to ensure the uncertainties in the estimated free energies are approximately equal—the biasing
24 potentials are themselves estimates of the free energies f(Ny,c)- Thus, SAMS can, in principle, calculate all
25 f(Nyaq) in a single simulation more efficiently and conveniently than numerous independent equilibrium
26 free energy calculations.

227 As we describe below, our osmostat employs NCMC, which allows us to calculate the salt-insertion free
28 energies by processing all of the NCMC protocol work values in the SAMS simulations with BAR, even from
29 the attempts that are rejected. BAR requires samples of forward and reverse work samples of salt insertion
20 and deletion attempts to compute A f(Ny,) and its statistical uncertainty for Ny, € {0,1, ..., Nyac, max} -
231 These relative free energies can then be summed to estimate f(Ny,¢) and corresponding statistical uncer-
232 tainties. Our calibration simulations therefore exploit the sampling efficiency of SAMS and the estimation
233 efficiency of BAR.

234 In general, the chemical potential Ay will need to be recalibrated if the practitioner changes temperature,
235 pressure, water or ion forcefield models, nonbonded treatment, or anything that will affect f(Ny,c) or
56 (V) nyaner Asufficiently large water box must be used when calculating f(Ny,c) to reach a regime in which
237 f(Nyac) IS insensitive to changes in simulation size; as we will show, our calibration simulations achieve this
238 Size insensitivity even for modest water boxes of a few thousand molecules.

29 The osmostat maintains electrostatic neutrality

20 To use PME?!, a popular choice for accurate long-range electrostatics, charge neutrality of the entire
21 system needs to be maintained to avoid the artifacts induced by application of a uniform background
22 neutralizing charge??. Even if an alternative long-range electrostatics treatment is employed (e.g. reaction
23 field electrostatics or other non-Ewald methods®>?), there is, in general, approximate equality between the
24 total number of negative charges and positive charges in biological microenvironments as they approach
25 macroscopic lengthscales (see Figure 1 left). From a purely theoretical perspective, the existence of a
26 thermodynamic limit a system with a net charge depends on the particular details of the system>*. For these
247 reasons, we ensure that our proposals always maintain charge neutrality by inserting or deleting a neutral
248 Nat and Cl~ pair.

249 We insert and delete a salt pair by converting Na* and CI- ions to two water molecules (see Figure 3).
250 These moves convert the nonbonded forcefield parameters (partial changes g, Lennard-Jones radii ¢, and
251 Lennard-Jones potential well-depths ¢) of the water and ion parameters. The Na* and Cl~ ions are given the
252 same topology, geometry, and number of atoms as the water model used for the simulation. Irrespective of
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Figure 3. Schematic illustration of the nonequilibrium candidate Monte Carlo (NCMC) alchemical protocol used
to insert NaCl. Two water molecules are chosen at random for transformation into Na* (blue sphere) and CI~ (orange
sphere). Over a number of NCMC steps, the nonbonded parameters of each atom in the water molecules, namely the
partial charges, g, Lennard-Jones energy well depths, ¢, and Lennard-Jones separation parameters, ¢, are transformed into
the nonbonded parameters of the ions along a linear interpolation of the parameters. The hydrogen atoms and extra
charge sites (if present) of the water model remain attached to the ions as non-interacting dummy atoms. The entire
NCMC proposal is then accepted or rejected according to the probability given in equation 56. Note that osmostat NCMC
moves are mixed with standard Langevin integration at a fixed timestep to obtain fully ergodic sampling. A full description
of the Monte Carlo and NCMC procedure used here is provided in Appendix 3.

253 the choice of water model, the nonbonded ion parameters are placed on the water oxygen atom, and the
254 hydrogen atoms or additional charge sites (such as in TIP4P) have their nonbonded interactions switched off.
255 The manner in which salt and water are transmuted to one another are is described in Appendix 3. The mass
6 of the ions is set as the same as water, which has no impact on the equilibrium configuration probability
257 density, though it may distrupt the kinetics (which are not of interest here).

s Nonequilibrium candidate Monte Carlo is used to enhance sampling efficiency

29 A benefit of exchanging ion and water nonbonded forcefield parameters is that this procedure avoids
260 the need to create new cavities in solvent, a difficulty that significantly complicates particle creation and
261 destruction techniques. Nevertheless, instantaneous Monte Carlo attempts to interconvert salt and water
262 Will be overwhelmingly rejected as it is highly unlikely that the dipoles of the molecules that surround a
263 transmuted ion—usually solvent—will be orientated in a manner that favorably solvates the new charge.
264 This effect is compounded by the long-range nature of Coulombic interactions. The acceptance probability
265 for saltinsertion and deletion would improve drastically if the dipoles and locations of the solvent could be
266 redistributed during an MCMC attempt. Previously, Shelly and Patey developed a configuration bias Monte
27 Carlo technique for the insertion and deletion of ions in grand canonical Monte Carlo?°. Their method
268 reorients dipoles in a shell surrounding the inserted or deleted ion, which improved the sampling efficiency
260 by over two orders of magnitude?°.

270 Here, we use nonequilibrium candidate Monte Carlo (NCMC)*?, a technique that is closely related to
1 sequential Monte Carlo and annealed importance sampling>>°%, to automatically relax systems around
272 inserted or deleted ions, thereby boosting acceptance rates and sampling efficiencies to values far higher
273 than reported elsewhere.

274 In NCMC, a Monte Carlo attempt is divided into a nonequilibrium protocol that drives the system through
275 many intermediate states. Candidate configurations are generated by driving a chosen set of variables
276 (thermodynamic or configurational) through these intermediate states whilst allowing unperturbed degrees
277 of freedom to relax via dynamical propagation in response to the driving protocol. The total amount of work
278 thatis accumulated between interleaved steps of perturbation (of the variables of interest) and propagation
279 (of the unperturbed degrees of freedom) is used to accept or reject the candidate configuration. Good NCMC
280 acceptance rates can be achieved for a reasonable choice of nonequilibrium protocol; often, a parametric
21 protocol is specified and the total protocol length (or NCMC switching time) is tuned to be long enough to
232 ensure a system is sufficiently relaxed with respect to the completed perturbation but short enough to be
283 efficient.
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284 In our NCMC osmostat, the nonbonded parameters of the ions and water molecules being exchanged
285 are linearly interpolated into a series of equally spaced alchemical states. Each perturbation step along the
236 alchemical path was followed by a fixed number of time-steps of Langevin dynamics where the configurations
287 of the whole system were integrated (see Figure 3). Afull description of our Monte Carlo and NCMC procedure
28 is provided in Appendix 3. Here, NCMC propagator uses the same Langevin integrator as used in equilibrium
289 sampling to ensure there was no significant mismatch between the sampled densities. Our particular choice
20 of Langevin integrator (described below) was used to avoid the long correlation times that results from
201 fully Metropolized molecular dynamics integrators and to mitigate the configuration sampling bias that is
292 incurred by unmetropolized finite time-step integrators.

23 We use an integrator that minimizes configuration sampling bias

204 Care must be taken to ensure that the total work is properly accumulated in NCMC, as incorrect accumulation
205 of work or the use of alternative definitions will lead to erroneous computation of the acceptance probability
206 and simulation results. For time reversible MCMC integrators, such as with generalized Hamiltonian Monte
297 Carlo (GHMC), the total work is the protocol work: the sum of the instantaneous potential energy changes that
208 result from each perturbation during the driving process®’. If the system is relaxed in-between perturbations
299 USing propagators that do not leave the target distribution invariant, such as unmetropolized Langevin
30 integrators, NCMC can drive systems to undesirable nonequilibrium steady states, whose statistics may
so1  differ from equilibrium. On top of the work that is already performed by the driving protocol, propagators
;2 that do not satisfy microscopic reversibility can also be considered to perform work on a system®’. This work,
33 known as the shadow work, must either be minimized or eliminated (i.e., via Metropolizing the dynamics) for
304 NCMC to sample very close to, or exactly, from the target probability density.

305 The issue of shadow work accumulation is not limited to propagators in NCMC. Indeed, all finite time-
306 step molecular dynamics integrators incur a discretization error that results in biased sampling when
307 used without metropolization. While configuration sampling errors do not occur with GHMC, the correct
308 acceptance criterion requires that the momenta of all particles are reversed upon rejection (or acceptance)
a9 Of a proposal. The reversal of momenta results in a simulation ‘retracing its steps’, thereby significantly
30 increasing correlation times and decreasing sampling efficiencies. Hamiltonian Monte Carlo sampling
s can suffer from even longer correlation times, as momenta are randomized for each trial, irrespective of
sz whether the previous move was accepted or not. This problem can be mitigated by using GHMC reduced
33 momentum flipping schemes that still rigorously sample from the target distribution>8-%°, Correlation times
312 are minimized by GHMC schemes that do not reverse momenta at all, although this incurs sampling bias®'.
315 Recently, Leimkuhler and Matthews have proposed an unmetropolized Langevin dynamics technique that
316 incurs minimal configuration sampling bias®?. The minimal error is achieved using a particular numerical
317 scheme to update the positions and momenta at each time-step. Denoting half time-step velocity updates as
318V, half time-step position updates as R, and the addition of an Ornstein-Uhlenbeck process as O (the Brownian
319 motion “kick”), the symmetry in the VRORV splitting scheme leads to a particularly favorable cancellation of
320 configuration sampling error. Leimkuhler and Matthews also found that than VRORV exhibited the lowest
321 error on configuration dependent quantities, such as the potential energy, in biomolecular simulations
322 compared to other symmetric splittings. As Langevin dynamics with VRORYV splitting samples very closely
323 to the true configuration Hamiltonian, we expect its neglect within NCMC moves designed to sample
324 configurational properties to induce very little error in sampled configurational densities. For this reason, we
325 used the protocol work to accept or reject proposals from NCMC in our osmostat.

26 Salt concentration and ionic strength

a7 lonic strength influences the effective salt concentration

s We are interested in quantifying the variation of the instantaneous salt concentration ¢ in our osmostated
29 biomolecular simulations, where

c(x,0) = %NNE,G(H). (20)
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30 Although the salt concentration of the saline reservoir, i.e. the macroscopic concentration, is known precisely
331 and controlled by the user, the presence of a biomolecule in a simulation, along with any neutralizing
32 counterions, may lead to significant differences in the mean salt concentration in the simulation volume
313 from the macroscopic salt concentration. In contrast, the mean salt concentration in an initially pure box of
3¢ water should match the macroscopic salt concentration of the reservoir if the chemical potential used in the
333 osmostat is accurately calibrated.

336 The Debye-Huckel theory of electrolytes provided an early, analytical treatment of dilute ionic solutions
337 Using continuum electrostatics. In Debye-HUckel theory, the ionic strength I of a system, which for our
s simulations is

N
1 1 (. 2
I(x,6) = T (z +;9i>, (1)

39 is used to predict how the effective concentrations, or activities, of ions are affected by the presence
30 of electrolytes in the solution. The key insight of Debye-Hckel theory is that—because of electrostatic
s screening—the ionic strength tempers the activity of ions, such that increasing the ionic strength of a solution
322 lowers the effective concentration of electrolytes. Although Debye-Huckel theory is too simplistic to be
343 used to accurately predict the salt concentration in biomolecular simulations, the ionic strength may still
s« provide insight into the salt concentrations that we will observe in our osmostated simulations. Thus, we will
345 investigate the variation of the ionic strength as well as the salt concentration. As a large charge number of
a6 the biomolecule z will dominate I for small simulation volumes, we will also consider the variation of ionic
37 strength of the solvent only, i.e., by neglecting z? in equation 21.

us  Simulation packages add different amounts of salt

39 There is diversity in the way that current practitioners of all-atom biomolecular simulations add salt (salinate)
350 to systems during the preparation stages of simulations. While it is common that only neutralizing counteri-
351 ons are added, a number of workflows elect not to add counterions at all?*. Salt pairs may be added, or not
32 added at all, and when they are added, simulation packages use differing definitions of salt concentration,
353 such that each package can add different numbers of salt pairs to the same system even if the desired
354 salt concentration is the same. All packages ignore the presence of neutralizing counterions when adding
355 salt. In this study, we are concerned with quantifying the accuracy of some of the most popular salination
356 techniques.

357 Given a target salt concentration of ¢, a popular method to add salt—exemplified by the Gromacs
353 package '’ —uses the initial volume of the system V(x,) to count the required number of pairs. We determine
9 the number of salt pairs that would be added by this strategy as

Nia = V(xoels 22)

0 where |y| denotes the floored value of y. We are interested in assessing the accuracy of the corresponding
61 concentration of salt é,(x) = NI\ITaCI/V(x)' Preparation tools such as CHARMM-GUI '8 add salt based on the
2 initial volume of the solvent V (x,y,0), Which we reproduce with

Nisa = [V om0 el (23)

363 to estimate the corresponding concentration ég(x) = NﬁaG/V(x) that would occur for all later configurations.
34 Estimates that use strategies similar to equations 22 and 23 are sensitive to initial volume of the system; if
365 saltis added before the volume is sufficiently equilibrated, the salt concentration during the simulation can
366 deviate significantly from the target concentration. In contrast, packages such as OpenMM '°29, use the ratio
37 Of salt pairs to water molecules in bulk solvent to add

A NH [¢]

R _ 2

Nyaci = {@_CrJ’ 24
H,0

s salt pairs, where ¢, is concentration of bulk water, for which 55.4 M is used by OpenMM. The corresponding

369 Salt concentration éx(x) = NﬁaO/V(x), as well as é,(x) and é4(x) will be compared to the concentration of salt

370 that results from the application of our osmostat to help inform future simulation strategies.
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;71 Simulation details

sz Systems considered in the study

373 The primary aims of this study are to quantify and understand how the concentration of salt and ionic
374 strength vary around typical biomolecules, to assess the accuracy of methods that insert salt in typical
375 simulation strategies, and to ascertain whether an NCMC osmostat can decorrelate biomolecule:ion interac-
376 tions faster than fixed-salt dynamics. To meet these aims, we considered four biological systems that are
377 representative of those that are commonly simulated with molecular dynamics: pure water, dihydrofolate
373 reductase (DHFR), the apo kinase Src, and the Drew-Dickerson B-DNA dodecamer palindromic sequence.
379 All systems were taken from the OpenMMTools [0.11.1] set of test systems 3, such that each system has a
0 different provenance.

381 Dihydrofolate reductase (DHFR) is a small, globular enzyme that has frequently been used as a model
32 system in molecular simulations. The DHFR structure used here was taken from the joint Amber-CHARMM
353 (JAC) benchmark (obtained from the Amber 14 benchmark archive®*). The protein structure was stripped
;2 of hydrogen atoms, and using tleap®®, was re-protonated at pH 7 and solvated in an orthorhombic box
sss  Of TIP3P waters that had a clearance of at least 10 A. The Amber 14SB forcefield from the AmberTools 16
;s package was used for the protein . As an initial relaxation of the system, the solvated system was minimized
37 and propagated for 3 ps with Langevin dynamics.

388 The tyrosine kinase Src, a member of the non-receptor tyrosine kinase family, was selected for this
389 study as an example of a prototypical drug target. The apo Src structure was taken from the OpenMMtools
0 testsystems data set and resolvated with TIP3P in an orthorhombic box that was at least 10 A away from the
s protein. As part of the preparation, the energy of system was minimized and subsequently relaxed using 3 ps
32 of Langevin dynamics to remove any bad contacts. Further equilibration was performed as detailed below.
33 The original system was not suitable for simulation with the osmostat as fixed neutralizing counterions
394 were present in the system. The OpenMMTtools structure was downloaded from the Protein Data Bank,
s identification code 1Y16, and prepared using PDBFixer®® and protonated at pH 7. The small molecule in the
396 binding site was also removed during the preparation. The Amber 14SB forcefield from the AmberTools 16
37 package was used for the simulations .

398 The Drew-Dickerson dodecamer (CGCGAATTGCGCQ) is a classic model DNA system. The B-DNA structure
399 Of the Drew-Dickerson dodecamer was downloaded from the Protein Data Bank (identification code 4C64).
w0 The structure was stripped of ions and solvated in a box of TIP3P water to ensure at least 9 A of clearance
401 around the DNA. To test the effect of the amount of solvent on the distribution of salt and ions, the structure
w2 Was also solvated in a box of TIP3P water that had a clearance of at least 16 A around the DNA. As with
203 the apo kinase Src, the system was energy minimized and subsequently relaxed using 3 ps of Langevin
404 dynamics. As described below, further equilibration was also performed. The Amber OL15 forcefield from
ws the AmberTools 16 package was used for the DNA®7,

ws General simulation details

w07 Simulations were performed with OpenMM [7.1.0]°°. The osmostat was implemented within the open-source
a8 package SaltSwap [0.5.2] that was written for the purpose of this publication. Simulations utilized either
a9 TIP3P#? or TIP4P-Ew“* water models, and Joung and Cheatham parameters were used for Na* and Cl- ions 5.
a0 Unless otherwise stated, the amount of salt in a simulation was initialized by salinating the system according
41 to equation 24 with the macroscopic concentration as the target concentration c,.

a2 For all simulations, long-range electrostatic interactions were treated with particle mesh Ewald (PME),
x3  with both direct-space PME and Lennard-Jones potentials making use of a 10 A cutoff; the Lennard-jones
ma  potential was switched to zero at the cutoff over a switch width of 1.5 A to ensure continuity of potential
a5 and forces. PME used a relative error tolerance of 10~* at the cutoff to automatically select the « smoothing
@6 parameter, and the default algorithm in OpenMM was used to select Fourier grid spacing (which selected a
w7 grid spacing of ~0.8 A in each dimension). All bonds to hydrogen were constrained to a within a fractional
ais error of 1 x 1078 of the bond distances using CCMA®7°, and waters were rigidly constrained with SETTLE"".
4«19 OpenMM'’s long-range analytical dispersion correction was used to avoid pressure artifacts from truncation of
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40 the Lennard-Jones potential. Simulations were run at 300 K with a Monte Carlo barostat with 1 atm external
a1 pressure and Monte Carlo update interval of 25 steps. Equilibrium and NCMC dynamics were propagated
42 using high-quality Langevin integrators taken from the OpenMMTools [0.11.1] package, with a 2 fs timestep
223 and collision rate of 1 ps~!. Integrators used deterministic forces and OpenMM’s mixed single and double
44 precision implementation. In addition to the dynamics used to prepare the systems, every simulation was
a5 briefly thermalized using 4 ps of dynamics. Where stated, additional simulation data was discarded from the
a6 start of simulations using the automatic procedure in the pymbar timeseries module as detailed in”2. As
47 described above, positions and velocities were updated using the VRORV splitting scheme (also known as
428 BAOAB) to mitigate the configuration space error in equilibrium sampling and NCMC proposals that result
a0 from unmetropolized Langevin dynamics %2

430 The insertion or deletion of salt was attempted every 4 ps using the procedure described in Appendix 3.
41 Allions used the same number of atoms, topology, and geometry as the water model used in the simulation.
42 Asillustrated in Figure 3, the “insertion” of an ion was achieved by switching the nonbonded parameters of
433 the water oxygen atom to either Na* or CI~ and by simultaneously switching the nonbonded parameters
44 of the water hydrogen atoms (along with any extra charge sites) to zero—the “deletion” of an ion involved
435 the reverse procedure. With the exception of the simulations where the NCMC protocol was optimized, the
43 NCMC protocol was 20 ps long, and consisted of 1000 perturbation steps, where each perturbation followed
437 by 10 steps of Langevin integration with a 2 fs timestep. The pseudo-code for the entire NCMC osmostat,
433 including how it is combined with molecular dynamics can also be found in Appendix 3. Unless otherwise
49 stated, the NCMC protocol length is not accounted for in the reported lengths of the simulations.

440 The simulations were analyzed with open source scripts that used a combination of numpy 1.13.173,
an scipy 0.19.174, pymbar 3.0.17°, MDTraj 1.8.07¢, VMD 1.9.477 (see Code and data availability); the saltswap
42 conda package provided automatically installs the dependencies needed to run the simulation scripts. Plots
w3 and figures were produced using Matplotlib 2.0.278 and Inkscape 0.91.

«s  Calibration of the chemical potential

45 The chemical potential was calibrated in cubic boxes of TIP3P water and TIP4P-Ew water. Both boxes initially
ws had edge lengths of 30 A with water molecules at roughly the same density as bulk water; the box of
a7 TIP3P water contained 887 molecules and the box of TIP4P-Ew water contained 886 molecules. Ten 80 ns
43 SAMS simulations were performed on each box, and were targeted to sample uniformly over salt pairs
a9 Nyq(@) € {0,1,...,20}. The insertion or deletion of salt was attempted every 4 ps. Half of the simulations were
40 initialized with 0 salt pairs, whereas the other half were initialized with 20 salt pairs. The maximum number
a1 of salt pairs Ny,q max Was chosen to be 20 in these calibration simulations because the corresponding
42 salt concentration (roughly 1.2 M) is beyond the concentrations in biological microenvironments that are
453 typically considered. (Note that the maximum amount of 20 salt pairs applies only to these calibration
44 simulations—the osmostat simulations with solutes have no such maximum number of salt pair limitation.)
a5 The volumes of the boxes at each salt occupancy were recorded during the SAMS simulations in order to
ss6  estimate (V)y, ,npr (henceforth abbreviated as (V)y, ). The SAMS simulation procedure automatically
457 provides on-line estimates of the free energies f(Ny,q), Which, along (V)y, . are required to calibrate
43 the chemical potential. The protocol work from all of the NCMC insertion and deletion attempts were
a9 post-processed with BAR (using the pymbar package’®) to provide additional estimates of f(Ny,c) along
a0 With statistical uncertainties.

461 To assess whether f(Ny,c) and (V)y,,,, had been accurately calculated, larger boxes of TIP3P and TIP4P-
42 Ew water were simulated for 32 ns at a range of chemical potentials Au. The mean salt concentrations from
463 the simulations were compared to concentrations predicted using equation 19 with the estimated values for
a4 f(Nyac) and (V)y,.,- The boxes of these validation simulations were initially 50 Ain length, and contained
465 4085 TIP3P and 4066 TIP4P-Ew water molecules. These simulations were initialized without any salt present
466 in the systems.
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w7 Optimization of the NCMC protocol

43 We consider only two parameters in optimizing the nonequilibrium protocol used in NCMC proposals: the
a9 total number of times the potential is perturbed, T, and the number of Langevin steps that occur before
40 and after each perturbation, K. Generally, we expect the acceptance probability to increase as the overall
a7 perturbation is broken into smaller pieces—as T increases. Increasing the number of propagation steps
a2 following each perturbation, K, also improves the acceptance probability in a manner that is dependent on
473 the computational efficiency details of the simulation code. To quantify the trade-off between acceptance
474 probability and compute time, we define the NCMC efficiency E(T, K) as

(ANT,K)

LB =71

(25)

475 where (A)T, K) is the average acceptance probability and C(T, K) is the average computer time per inser-
476 tion/deletion attempt. All simulations were performed and timed on single Nvidia GTX-1080 GPUs. The total
477 protocol length of an NCMC attempt is equal to T x K multiplied by the Langevin integration timestep, which
478 is 2 fsin this case.

479 Simulations using various NCMC protocols lengths were performed on cubic boxes of TIP3P and TIP4P-Ew
0 that had initial edge lengths of 30 A. The simulations sampled configurations for a total of 32 ns (excluding the
41 NCMC sampling) and had NCMC protocol lengths up to 40 ps for different combinations of total perturbation
42 steps T and propagation steps K. The insertion or deletion of salt was attempted every 4 ps, such that there
433 were a total of 8000 insertion/deletion attempts for each simulation. The efficiency of each protocol E was
434 estimated relative the efficiency of instantaneous insertion and deletion. Shelly and Patey also used the ratio
a5 Of the average acceptance probability to the compute time to estimate the efficiency of their configuration
s bias ion insertion scheme relative to instantaneous insertions?°. In this work, no effort was made to optimize
47 the alchemical path.

s Quantifying the scaling behavior of the osmostat

49 To investigate the sampling efficiency of our osmostat under physiological conditions, DHFR was simulated
a0 with macroscopic concentrations of 100 mM, 150 mM, and 200 mM. Each simulation was 30 ns long and
4 there were three repeats per macroscopic concentration. Equation 24 was used to add an initial amount
a2 Of salt to the simulation. The timeseries module in pymbar’> was used to estimate the autocorrelation
43 function of salt concentration as well as the integrated autocorrelation time for each macroscopic salt
494 concentration.

495 It is important to establish how the distributions of salt concentration and salt numbers scale with the
a%s number of water molecules in the system and the macroscopic concentration. To this end, we simulated
a7 different sizes of water boxes with macroscopic concentrations of 100 mM, 150 mM, and 200 mM. Each
a8 simulation was repeated three times.

w0 Estimating the efficiency of ion configuration sampling with NCMC

soo  Ponomarev et al. previously used the Drew-Dickerson DNA palindromic sequence to quantify the rate of
so1  convergence of spatial ion distributions in DNA simulations?>. Three osmostated simulations and three
sz fixed-salt simulations of the Drew-Dickerson dodecamer were performed for 60 ns with a macroscopic salt
so3 concentration of 200 mM. As the insertion or deletion of salt was attempted every 4 ps, there was a total of
so4 15,000 attempts. The fixed salt simulations used the same ion topologies and masses as those used by the
sos Osmostat, are were added to the system using the scheme summarized by equation 24. The autocorrelation
sos  Of ion:phosphate interaction occupancies were estimated from the osmostated and fixed-salt simulations
so7  Using the open-source analysis scripts that accompany this manuscript.

ss Quantifying the salt concentration around biomolecules

so9  Three 30 ns simulations of apo Src kinase were performed, with salt insertion or deletion attempted every
sio 4 ps, using a macroscopic concentration of 200 mM. The amount of salt that was initially added to this
st system was calculated using equation 24. These simulations, as well as those of TIP3P water, DHFR, and the
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sz DNA dodecamer described above, were used to analyze the distributions of salt concentration (equation 20),
s13  ionic strength (equation 21), and the concentrations of salt that would occur for the heuristic salination
sia  schemes described in equations 22, 23, and 24.

515 To further understand the scaling behavior of the distributions of salt concentration with system size, and
st to assess the extent of finite size effects on the ion spatial distributions around DNA, additional simulations
si7 - were performed on DNA. The Drew-Dickerson DNA dodecamer was resolvated in a box of TIP3P water that
sis was at least 16 A away from the molecule. Three repeats of 45 ns long osmostated and fixed-salt simulations
si9 - were performed, with the insertion or deletion of salt was attempted every 4 ps. The salt concentration
s20  distribution was estimated, as were the Na+ and CI- spatial distributions around the DNA.

s Results

s2  SAMS simulations and BAR estimates accurately capture salt insertion free energies.

s23  In order to estimate the chemical potential Au corresponding to a desired macroscopic salt concentration,
s We must have precise estimates of both free energies to insert salt into a box of water containing Ny,
s25  salt molecules, f(Ny,c), and the average saline box volume as a function of Ny.c, (V) nyqr fOr Nyuar €
s26 {0,1,..., Nyac, max}- Figure 4 (upper left) depicts the computed relative free energy difference for inserting an
s27  additional salt pair into a box of water molecules already containing Ny, salt molecules for both TIP3P and
s2s TIPAP-Ew for Ny,q € {0,...,19}. The relative free energies were estimated with BAR using all nonequilibrium
s work values for salt pair insertion/deletion NCMC proposals, irrespective of whether the proposal attempt
ss0  was accepted or not, from ten SAMS simulation. Although SAMS also provides online estimates for f(Ny.c)
31 over this same range, these online estimates were found to have significantly higher variance than the
s22 BAR estimates (see Figure A5.1), so we make use of BAR-derived estimates of f(Ny,) derived from SAMS
s simulations throughout.

s34 The primary accuracy of the calibration simulations lies in their ability to reproduced desired salt con-
s35  centrations in bulk water. Nevertheless, it is encouraging to note that calculated free energy to insert one
sss  NaCl pair in a box of TIP3P and TIP4P-Ew are broadly in agreement with previous computational estimates
s7 - and experimental measurements. As implied by equation 16, the free energy to insert the first salt pair,
s Af(Nyaq = 0), can be expressed as the difference in hydration free energy between NaCl and two water
s39  molecules. Assuming the hydration free energy of TIP3P and TIP4P-Ew water to be -6.3 kcal/mol’°, we
ss0  estimate the hydration free energy of NaCl to be —171.73 + 0.04 kcal/mol and —170.60 + 0.04 kcal/mol in
ser  TIP3P and TIP4P-Ew water, respectively. Using a different treatment of long-rang electrostatics but same
se2  ion parameters as this study, Joung and Cheatham calculated the individual hydration free energies of Na*
sa3 and Cl~ in TIP3P and TIP4P-Ew, which can be summed to approximate the hydration free energy of NaCl %,
ssa  These hydration free energies (-178.3 kcal/mol in TIP3P -177.7 kcal/mol in TIP4P-Ew) are within 5% of our
ses  estimates. For comparison, estimates of standard NaCl hydration free energies based on experimental data
sas  are -170.4 kcal/mol®°, -171.8 kcal/mol®', and -177.8 kcal/mol .

s7 The chemical potential for a macroscopic salt concentration can be reliably determined

sss  The salt insertion free energies and average volumes in Figure 4 upper left provide a way to relate the
se9  chemical potential Ax to macroscopic salt concentration (¢) via equation 19. Figure 4 upper right shows the
sso  predicted macroscopic salt concentration for a range of chemical potentials Ay computed using equation 19.
ssi - The average salt concentration in a saline box (c¢) should equal the predicted macroscopic concentration
ss2  for sufficiently large saline boxes if the chemical potential has been properly calibrated. To verify the
ss3 accuracy of the calculated values for f(Ny,q) and (V)y, . simulations of water boxes, that initially had no
sse  salt present, were performed using an osmostat with different fixed chemical potentials and the average salt
sss - concentrations in the simulations were estimated (Figure 4; upper right). These boxes of TIP3P and TIP4P-Ew
sss  waters contained 4085 and 4066 molecules respectively, whereas the TIP3P and TIP4P-Ew boxes used to
ss7  estimate f(N) and (V)y, . contained 887 and 886 molecules respectively. As Figure 4 upper right shows, the
sss Macroscopic concentrations (é) predicted using equation 19 fall within the statistical error of the average
sso concentrations {c) determined from the fixed-Ayu simulations.
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560 Although Ay is the thermodynamic control parameter for osmostated simulations, experimental wetlab
ss1  conditions instead generally specify the macroscopic salt concentration (¢) rather than Au. As the relationship
ss2  between Ay and (¢) is monotonic, as illustrated by Figure 4 upper right, we can numerically invert equation 19
s63  to enable practitioners to choose the desired macroscopic salt concentration and extract the required Au for
ss«  the osmostat to model equilibrium with the macroscopic salt concentration (¢).

sss The average salt concentration is highly sensitive to chemical potential

6 The macroscopic salt concentration (¢),, for a fixed chemical potential Ay is a highly sensitive and non-
ss7  linear function of the chemical potential (Figure 4; upper right) for both water models. Small changes to
ses  the chemical potential, on the order of 1 kT, can alter the mean concentration by hundreds of millimolar.
sso  Correspondingly, to accurately model a given macroscopic concentration ¢, the function Au(c) must be very
s70  precisely calibrated.

sn  Different water models have distinct chemical potentials for the same salt concentration

s Strikingly, both the value and shape of (¢),, is very sensitive to choice of water model (Figure 4; upper
s73 right). For instance, a Au of about 316 kT results in a mean salt concentration in TIP3P water that is
s74  approximately 500 mM, compared to approximately 200 mM in TIP4P-Ew water for the same value of Au.
s7s  These features highlight the importance of specifically calibrating the chemical potential for each water and
s ion model as well as estimating f(Ny,c) and (V) y, ., to a sufficient degree of precision. Figure A5.2 shows
s77  that for TIP3P and the treatment of long-rang interactions used herein, the free energies f(Ny,q) for each
578 Nyacl € {0, 1,...,20} need to be determined to a standard error of 4 kcal/mol to consistently determine the
579  MaAaCroscopic concentration to an inaccuracy of at least about 80 mM for 1 mM < (¢) < 1000 mM. The average
sso standard error achieved in the calibration simulations for the free energies f(Ny,q) is 0.02 kcal/mol, which
ss1  determines the concentration to an inaccuracy no larger than about 1 mM.

sz NCMC greatly enhances the sampling efficiency of salt insertion and deletion moves

sss  We estimate that instantaneous salt insertion and deletion moves have acceptance probabilities of 3.0 x 107!
ssa [95% Cl: 5.0 % 107%, 9.0x 107>'7and 1.0 x 107 [95 % Cl: 3.0 x 107%*, 4.0 x 10~#¢] in TIP3P and TIP4P-Ew water
sss  respectively, implying that the implementation of an osmostat is practically impossible using such naive
sss Mmoves. In contrast, we found that in our longest protocol, NCMC insertion/deletion attempts achieved
ss7 acceptance probabilities of about 30% in TIP3P water and approximately 15% in TIP4P-Ew water (see the
sss  lower left of Figure 4). Although the acceptance probability increases monotonically with the length of the
sso  protocol, so does the computational cost and time for each attempt. The efficiency, defined in equation 25,
s quantifies the trade-off between the acceptance rate and computational expense. Figure 4 lower right shows
so1  that NCMC protocols in TIP3P water that are between 15 ps and 30 ps in length are the most efficient
se2 for our procedure. For this reason, all subsequent simulations used TIP3P water and a 20 ps long NCMC
se3  protocol. In addition, it was found that 10 propagation steps (at 2 fs) between each perturbation was found
so4  to be the most computationally efficient for our simulation code SaltSwap [0.5.2] and OpenMM [7.1.0] (see
sos  Figure A5.3). Further optimization of the NCMC protocol would be required for NCMC attempts in TIP4P-Ew
so6  to achieve sampling efficiencies that are competitive with those in TIP3P water.

s An NCMC osmostat can rapidly equilibrate the salt concentration in biomolecular systems

s9s  Figure 5 shows example salt concentration trajectories around DHFR as well as plots of the corresponding au-
se0  tocorrelation functions for three biologically plausible macroscopic salt concentrations. The autocorrelation
e0 times for the three macroscopic salt concentrations are on the order of 1 ns, implying that our osmostated
eo1  simulations should be at least tens of nanoseconds long to generate sufficient uncorrelated samples of salt
62 concentrations. Importantly, the magnitude of the instantaneous salt concentration fluctuations increases
e03 with the macroscopic salt concentration, which causes an increase in the correlation time as our osmostat
604 implementation proposes the insertion/deletion of one salt pair a at a time. As a result, more attempts
es are required to explore salt concentration distributions of higher variance. This suggests that inserting or
es deleting multiple salt pairs in each attempt could improve the sampling efficiency of our osmostat at higher
607 Macroscopic salt concentrations, though longer NCMC insertion/deletion protocols would likely be required
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Figure 4. Calibration of chemical potential Ay for two different water models (TIP3P and TIP4P-Ew) and NCMC pro-
tocol optimization. Top left, main: The relative free energy A f (Nyac))—estimated from the SAMS calibration simulations—
to insert an Nat and CI~ salt pair and remove two water molecules in boxes of TIP3P and TIP4P-Ew water as a function of
the number of salt pairs Ny, already present in the box (see equation 16). Top left, inset: The average volume (V)y,_,
of the saline box as a function of Ny, estimated from the SAMS calibration simulations. The TIP3P box contained
a total of 887 molecules (including water and ions) and the TIP4P-Ew box contained 886 molecules. The relative free
energies and 95% confidence intervals have been calculated using BAR and are smaller than the circular markers. Top
right: Predicted relationship between the macroscopic salt concentration (¢) and chemical potential difference Ap esti-
mated with equation 19 for TIP3P and TIP4P-Ew (dark lines) compared to the average concentrations (c) estimated from
equilibrium osmostat simulations of boxes of water at specified chemical potentials (circles). There were 4085 and 4066
molecules in the boxes of TIP3P and TIP4P-Ew water, respectively. Bootstrapping of BAR uncertainty estimates of f(Nyac))
and bootstrap uncertainties of (V) Were used to calculate 95% confidence intervals for the mean concentration
curves—these fall inside the thick lines. Error bars on the average simulation concentrations show 95% confidence
intervals, and have been estimated using bootstrap sampling of statistically independent subsamples of the simulation
concentrations. For the osmostat simulations, equilibration times were automatically estimated and independent samples
extracted using the timeseries module of pymbar ’°. For these osmostat simulations, the shortest and largest estimated
equilibration times were 0.2 ns and 26.9 ns respectively, with the largest equilibration time occurring for TIP3P simulation
at the lowest Au—the staring salt concentration for this simulation was furthest from the equilibrium value. Bottom
left: Average acceptance probability for salt insertion and deletion as a function of the NCMC protocol length. Simula-
tions were run with a 200 mM osmostat in boxes of TIP3P (887 molecules) and TIP4P-Ew (886 molecules). The mean
instantaneous MC acceptance probabilities for TIP3P and TIP4P-Ew are very small: 3.0 x 107! [5.0 x 1076, 9.0 x 10!] and
1.0 X 10746 [3.0 x 107, 4.0 x 1074] respectively, (with 95% confidence intervals denoted in brackets). Bottom right: The
efficiency (defined by equation 25) of the NCMC protocols relative to instantaneous insertion and deletion attempts in
TIP3P for a 200 mM osmostat; all protocols are at least 10* times more efficient than instantaneous insertion and deletion.
NCMC protocols of about 20 ps for TIP3P are optimal for our nonequilibrium procedure, though longer protocols are
required to achieve similar efficiencies for TIP4P-Ew.
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Figure 5. Dynamic salt sampling for DHFR in TIP3P water at three macroscopic salt concentrations. Left: Trajecto-
ries of the salt concentration in 30 ns simulations of DHFR in a boxes of TIP3P waters as a function of time for 100 mM,
150 mM, and 200 mM Nacl, along with distribution of equilibrium salt concentrations to right of the time-series plots. The
distributions were estimated using a Gaussian smoothing kernel with bandwidth of 0.3 mM from all three simulation
repeats at each macroscopic concentration. Before the insertion of NaCl, the simulation contained 7023 water molecules.
Right: Normalized fluctuation autocorrelation functions and integrated autocorrelation times () of salt concentrations for
each simulation. Shaded regions and uncertainties on the autocorrelation time signify 95% confidence intervals calculated
using bootstrap estimation from three independent simulations.

es to achieve similar acceptance probabilities.

0o Fluctuation magnitude grows with system size and macroscopic salt concentration

s10 Figure 6 upper left demonstrates that for a pure box of saline and fixed macroscopic salt concentration,
611 increasing the number of molecules in the system increases both amount of salt and the spread of the salt
612 number distribution; in contrast, Figure 6 (upper right) reveals that the distribution of the concentration
e13 remains centered around the macroscopic concentration, but the variance decreases. Both of these trends
614 are to be expected from statistical mechanics (see Appendix 2). The salt concentration distribution for the
e smallest water box (with 2094 molecules) in Figure 6 (upper right) can be seen to be highly multimodal. Each
616 peak corresponds a particular number of salt pairs in the system; there are so few water molecules in this
e17  system that changing Ny, by one results in a large jump in the concentration. Figure 6 (bottom left and right)
e1s  highlight that for a system with a fixed number of water molecules, the number of salt pairs increases in
e19 proportion with the macroscopic concentration.

s20 Salt concentrations vary significantly in typical biomolecular systems

621 Figure 7 shows the distribution of salt concentration and ionic strength for 3 typical biomolecular systems:
62 DHEFR, apo Src kinase, and the Drew-Dickerson DNA dodecamer. The distributions in a box of TIP3P are also
623 shown for reference. The fluctuations of the salt concentration around the macromolecules are substantial:
624 95% of all salt concentration samples fall within a range of 90.2 mM for DHFR, 87.7 mM for Src kinase, and
625 135.6 mM for the DNA dodecamer system. We expect these values to be indicative of the natural variation in
626 Salt concentration in the local environments of real biomolecules.

18 of 44


http://dx.doi.org/10.1101/226001
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Nov. 29, 2017; doi: http://dx.doi.org/10.1101/226001. The copyright holder for this preprint

(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

Probability

Probability

Preprint ahead of submission — ivlarch 18, 2018

Box size dependence

—— 40 A3 (2094 waters)
—— 60 A3 (7128 waters)
—— 80 A3 (16814 waters)

Probability density

0 10 20 30 40 50 60

Number of salt pairs Nyac

Macroscopic concentration

0 50 100 150 200 250 300 350 400
Concentration ¢ (mM)

dependence (7128 waters)

= 100mM
— 150mM
= 200mM

Probability density

5 10 15 20 25 30 35 40
Number of salt pairs Nyaci

50 100 150 200 250 300
Concentration ¢ (mM)

Figure 6. Distribution of salt numbers and concentrations for TIP3P water boxes of varying size and macroscopic
salt concentration Top: Equilibrium distribution of salt numbers (Ny,c;. eft) and salt concentrations (c, right) as a function
of the number of water molecules in the simulation. The applied macroscopic concentration was 150mM. blueAs expected
(see Appendix 2), at fixed macroscopic salt concentration, the magnitude of fluctuations in the number of salt pairs
Nyacr 8rows with box size (left), whereas the magnitude in the concentration decreases with box size. The average salt
concentration {(c¢) remains fixed at the specified macroscopic concentration (right) showing that the calibrated chemical
potential Au is invariant to box size provided the calibration box is selected to be sufficiently large to avoid finite-size effects.
The small range of Ny, in the 40 A box results in a multimodal salt concentration distribution. Bottom: Equilibrium
distribution of salt numbers (Ny,c, left) and salt concentrations (c, right) as a function of salt concentration for a water box
containing 7128 waters.
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27 Simulations containing charged biomolecules can experience salt concentrations that deviate
28 Systematically from the macroscopic concentrations

629 The DHFR, apo Src kinase, and the Drew-Dickerson DNA dodecamer structures have net charges of -11 |e|,
630 -6 |e| and -22 |e|, respectively. The net charge of the DNA dodecamer is a result of the phosphate group on
631 each of the nucleotides (with each of the eleven phosphate groups carrying -1 |e| charge), whereas the net
62 charges on DHFR and Src kinase are due to an excess of glutamate and aspartate residues over arginine,
633 histidine, and lysine residues. Neutralizing Na* ions were added to both systems to avoid the uniform
e3¢ background charge that would be applied automatically with PME electrostatics. Like the other ions in our
635 0OSmostat, these counterions had transmutable identities.

636 Figure 7 shows that in our osmostated simulations of the macromolecules, the average salt concentration
637 IS on average less than the macroscopic salt concentration. This is particularly apparent with the DNA
63z dodecamer, which has a mean concentration of 128.0 [121.5, 134.5] mM (where the quantity in brackets
639 denotes the 95% confidence interval of the mean concentration). The salt concentration distribution in
e the DHFR and Src kinase systems are centered closer to the macroscopic concentration of 200 mM, with
e estimated means of 174.0 [164.4, 180.4] and 176.3 [171.6, 189.5] mM, respectively. To compute these
e2 statistical estimates and confidence intervals, no data was discarded at the start of the simulation, and
e3 approximately statistically independent concentration samples were extracted using the pymbar timeseries
sa module’s,

645 The larger number of water molecules in the Src kinase system is partly the reason why its mean
e46 concentration is closer to the macroscopic value than the DNA dodecamer. Bulk-like conditions anchor the
e7 sampled salt concentrations about the macroscopic concentration; the more water molecules and salt pairs
es there are, the smaller the effect a macromolecule has on the salt concentration relative to the whole system.
e49 Figure 8 inset highlights this phenomenon with the DNA dodecamer; the mean salt concentration moves
es0  closer to the macroscopic value when more water molecules are added to the simulation.

st The accuracy of heuristic salination schemes is system dependent

62 On its own, the excluded volume of the macromolecule will reduce the number of salt pairs that can occupy
63 the simulation volume compared to bulk saline. So, as we define the salt concentration as the number
esa  Of salt pairs over the total volume of the system (equation 20), one would expect there to be a lower salt
ess concentration than the macroscopic value. The preparation schemes that are typically used to add salt in
ess  fixed-salt simulations that account for this effect use either the volume of the solvent (equation 23), or the
67 ratio of the number of salt pairs to water molecules (equation 24). As a result, these methods are closer
ess  to the mode of the concentration distributions in the osmostated simulations than the heuristic method
6o that uses the total volume of the system (equation 22). The volume-based methods are sensitive to how
e0 equilibrated the volume is when salt is added, and, in Figure 7, the volume at the start of the production
61 simulation was used to estimate the amount of salt that would be added with equations 22 and 23. The
62 salt-water ratio method (equation 24) has no such volume dependence, which is partly why it is a better
e3 predictor for the salt concentration than the others.

s4 The ionic strength exceeds the salt concentration for charged macromolecules

ess In addition to the distributions of salt concentrations, Figure 7 also shows the ionic strength of the saline
es  buffer. While the ionic strength is used in analytical models to estimate the activities of ionic species®, the
67 only discernible common feature of the ionic strength in our simulations is that it tends to be greater than the
68 Salt concentration, which is predominantly due to the presence of neutralizing counterions. The estimated
69 mean ionic strength of the saline buffer in the macromolecular systems are 208.2 [198.2, 213.6] mM for
670 DHFR, 189.0[179.5, 196.4] mM for Src kinase, and 263.4 [256.6, 269.8] for the DNA dodecamer. It is important
e71 to note that the calculated ionic strength can be much larger when the contribution of the macromolecule
672 is included: the estimated ionic strengths for the whole of the DHFR, Src kinase, and DNA systems are
&3 551.0 [541.0, 556.4] mM, 263.6 [253.8, 270.8] mM, and 3241.6 [3227.3, 3244.7] mM respectively. These high
674 values, particularly for the DNA system, is because the ionic strength is proportional to the square of the
675 charged number of the ionic solute. It could be more informative to consider the macromolecule and the
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Figure 7. Equilibrium salt concentration distributions for various biomolecular systems simulated with a 200 mM
osmostat. Equilibrium salt concentration distributions (blue shaded area) are shown as a kernel density estimate of the
probability density, along with the ionic strength of the solvent (light green shaded area with dotted lines). No samples
of the salt concentration were discarded for these density estimates. For reference, the mean salt concentrations that
would be achieved in three typical fixed-salt salination strategies are shown in transparent gray lines. The continuous
line uses equation 22 and the total volume of first frame of the production simulation; the dashed line uses equation 23
and the volume of solvent at the start of the production simulation, and the dotted line uses equation 24 and the ratio
of the number of salt pairs and water molecules. Illustrations of each system are also shown in the top right of each
plot, with Na+ (purple) and Cl- (orange) densities from equilibrium 200 mM osmostat simulations shown around the
three macromolecules. Isovalues for the each of 3D ion densities were chosen for visual clarity. Upper left: Box of TIP3P
waters; Upper right: DHFR (dihydrofolate reductase) in TIP3P with isosurfaces containing 14.3% and 0.8% of Na* and CI~
densities, respectively; Lower left: apo Src kinase in TIP3P with isosurfaces containing 8.5% and 0.6% of the Na+ and Cl-
densities, respectively; Lower right: Drew-Dickerson DNA dodecamer in TIP3P with 8.9% of the Nat density contained in
the isosurface.

e76 counterions that are bound to it as a single, aggregate macro-ion, such that the contribution to the ionic
&7 strength would be lessened®3; however, as there is no clear boundary between bound and unbound ions
678 (see Figure 8), this approach is conceptually difficult.

e The osmostat accurately represents the local salt concentration around DNA

60  The aim of our osmostat is to replicate the local ion concentrations that would occur around biomolecules
et when embedded in large saline reservoirs. However, the use of periodic simulation cells and the addition of
62 neutralizing counterions constrains length scale at which charges are screened (the Debye length) to be less
es3 than or equal to the length scale of the periodic cell. An artificial constriction of the Debye length would
es4  be finite size effect that would limit the accuracy of the salt concentrations from osmostated simulations.
ess  Figure 8 shows the total charge contained within ever increasing distances from the Drew-Dickerson DNA
ess dodecamer for two simulation box sizes. The smallest box was constructed by solvating the DNA up to a
e7  minimum distance of 9 A away from the DNA (4296 water molecules), whereas the larger box resulted from
s solvating up to a distance of 16 A from the DNA (9276 water molecules). If the Debye length was significantly
es0 affected by the periodic cell size of the smallest simulation, there would be large discrepancies between the
e0 Charge distributions around the DNA of the smallest box and the larger box. Figure 8 indicates that if such
eo1  discrepancies exists, they are small, and are not found to be statistically significant in our analysis.

692 Shown first in Figure 7 (lower right), the osmostated simulation of the Drew-Dickerson DNA dodecamer
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Figure 8. Dependence of the charge screening length and salt concentration on simulation size for the Drew-
Dickerson DNA dodecamer. Main: The mean total charge within a minimum distance from the Drew-Dickerson DNA
dodecamer for 200 mM NaCl osmostated simulations and 200 mM fixed salt fraction simulations. To compare the
effect of solvent content on charge screening effects, the DNA dodecamer was solvated in water boxes of two different
sizes. The smallest system had water added up to a distance no less than 9 A away from the DNA dodecamer (adding
4296 waters), whereas the larger was solvated up to a distance at least as large as 16 A (adding 9276 waters). As each
simulation is electrostatically neutral, the total charge must decay to zero as the distance from the DNA dodecamer
increases, but the rate at which this decay occurs provides insight into the lengthscales for which biomolecules accrete a
neutralizing ion constellation. The charge distributions appear robust with respect to the size of the simulation cell, as all
95% confidence intervals (transparent colors) of the mean charge-distance profiles overlap over all distances considered.
The charge-distance profiles were estimated by counting the number of ions within fixed distances of the DNA dodecamer
every 1 ns and the confidence intervals were estimated by using boostrap sampling. Inset: Salt concentration probability
densities estimated using kernel density estimation for 200 mM osmostated simulations with different amounts of solvent.
The simulation with the small solvent box (purple) recruits far fewer salt pairs from bulk on average (dotted black line
denotes 200 mM), while the average salt concentration of the simulation with the larger solvent box (pink) is significantly
less perturbed from bulk.
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Figure 9. Phosphate-cation normalized fluctuation autocorrelation functions for binary occupancies around a
DNA palindrome. The Drew-Dickerson DNA dodecamer (CGCGAATTGCGC) is a palindromic DNA sequence that has been
traditionally been used as a demonstration of the slow convergence of ion distributions around the phosphate backbone
of DNA. Phosphate-cation normalized fluctuation autocorrelation functions for binary occupancies in standard MD (thick
green) and MD with dynamic ion sampling either neglecting the NCMC switching time (thick cyan), or the effective number
of samples taken with accepted NCMC moves (dashed pink), or accounting for all NCMC MD steps whether the moves
were accepted or not (dotted purple). The latter accounts for the total computational expense of our NCMC protocol.
Shaded regions highlight 95% bootstrap confidence intervals, with bootstrap samples taken from all the adenine groups
from the three simulations.

603 experienced significantly lower NaCl concentrations than the applied 200 mM macroscopic NaCl concentra-
eo4 tion. This difference highlights how the local ionic environment of a solute can be strikingly different from
eos bulk saline. Increasing the amount of water in the simulation diminishes the relative effect that DNA has on
696 perturbing the salt concentration distribution of the whole system. Figure 8 (inset), shows that increasing
67 the number of water molecules in the system from 4296 to 9276 molecules partially masks the local salt
e0s concentration around the DNA, such that the total salt concentration over the whole system is closer to the
69 Macroscopic concentration of 200 mM.

70 The NCMC osmostat can efficiency of ion-biomolecule interactions

701 To compare the computational efficiency of NCMC ion sampling to that of fixed-salt MD simulations, the
702 autocorrelation functions of cation-phosphate interactions were estimated from the DNA dodecamer
73 simulations. Cation-phosphate interactions were recorded as every time a cation was within 5 A of the
704 phosphorous atoms in adenine nucleotides. This cutoff was chosen following the DNA convergence analysis
705 of Ponomarev et al.?>. The autocorrelation function of these interactions measures the probability that a
706 cation that is initially within the distance cutoff will also be present after a given amount of time. As our
707 osmostat uses NCMC to add and remove ions, one would expect the osmostat interaction autocorrelation
708 function to decay significantly faster than that from the fixed salt simulations when only considering the
700 molecular dynamics—Figure 9 shows that this is indeed the case.

710 When the simulation time from NCMC is not considered, the phosphate-cation interaction autocorrelation
711 function from the osmostat simulations decays significantly faster than the fixed salt simulations (Figure 9).
712 The corresponding integrated autocorrelation times for osmostated simulations and fixed-salt simulations
713 are 0.11 [0.09, 0.13] ns and 0.29 [0.23, 0.36] ns respectively. As each accepted NCMC move has propagated
714 the configurations of the whole system, the faster decorrelation of DNA-ion interactions could be a result of
715 these extra propagation steps, as opposed to the fact that ions are being inserted and deleted. As described
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716 in the methods, a salt insertion or deletion attempt occurs every 4 ps, and an NCMC attempt involves 20 ps
77 of dynamics. The average acceptance probability in the DNA simulations was calculated to be 11.9 [11.7,
718 12.2] %. Therefore, the osmostated simulations propagate the system 1.6 [~ (0.119 x 20 ps +4 ps)/4 ps] times
719 as much dynamics than fixed salt simulations. Multiplying the osmostated integrated autocorrelation time
720 by this factor results in a value that remains significantly less than the integrated autocorrelation time from
71 the fixed salt simulations. Figure 9 right shows the osmostated autocorrelation function when the timescale
722 has been multiplied by the effective NCMC sampling factor (1.6). Despite the application of this factor, the
723 fixed-salt autocorrelation function can be seen to decay significantly slower than the stretched osmostated
724 autocorrelation function. Thus, the increased sampling efficiency observed in the osmostated simulations
725 cannot be explained by the extra dynamics sampled in the NCMC simulations. This implies that the random
726 insertion and deletion, not the NCMC that was used to enhance the move efficiency, is responsible for the
727 rapid decorrelation of ion interactions observed in the DNA osmostated simulations.

728 The total number of NCMC timesteps (including from rejected moves) can be used to account for the
729 additional computational burden of the NCMC osmostat in the phosphate-cation autocorrelation times.
70 There is an additional 20 ps of dynamics for every insertion/deletion attempt, irrespective of whether
731 the proposal was accepted or not. As each attempted is preceded by 4 ps of equilibrium dynamics, our
732 osmostated simulations have 6 (= (20 ps + 4 ps)/4 ps) times as timestep evaluations than the fixed-salt
733 simulations. Multiplying the mean integrated autocorrelation time from the osmostat simulations by this
734 factor yields an effective autocorrelation of 0.65 [0.55, 0.75] ns. Although this estimate now exceeds the
735 upper confidence interval of the fixed-salt integrated autocorrelation time (0.29 [0.23, 0.36] ns), there is only
736 approximately 0.1 ns difference between the lower and upper confidence intervals. Figure 9 also shows
737 the osmostat phosphate-ion autocorrelation function when the all the NCMC propagation steps (including
738 rejected moves) are accounted for. One can see that for below ~1 ns, the 95% confidence intervals of the
739 autocorrelation functions overlap with those of fixed-salt autocorrelation function. These results imply the
740 dynamic NaCl sampling achieved by our osmostat has a similar cost effectiveness—with regards to ion
41 sampling—than fixed-salt simulations, with the additional benefit of sampling realistic salt concentrations.

2 Discussion

73 In this work, we have implemented an osmostat that dynamically samples the NaCl concentration in
744 biomolecular simulations. The osmostat couples a simulation cell to a saline reservoir at a fixed macroscopic
745 concentration and allows the salt concentration in the simulation to fluctuate about its equilibrium value.
746 We have applied our osmostat to simulations of dihydrofolate reductase (DHFR), apo Src kinase, and the
727 Drew-Dickerson B-DNA dodecamer (CGCGAATTGCGC), and found that the mean salt concentration can differ
78 significantly from the amount salt added by common molecular dynamics methodologies. In addition, we
749 found that the salt concentration fluctuations were large, being of the same order of magnitude as the
750 mean. These results show that the ionic composition around biomolecules can be highly variable and system
751 dependent.

752 The insertion and deletion of salt was greatly enhanced by nonequilibrium candidate Monte Carlo (NCMC),
753 to the extent that the protocol used in our simulations was approximately 5 x 10 times more efficient than
754 instantaneous attempts in TIP3P water. The Drew-Dickerson B-DNA dodecamer is a palindromic sequence
755 that facilitated a study of the convergence of ion distributions around the DNA. We found that, despite the
756 additional computational expense of the NCMC osmostat, the sampling and computational efficiency of
757 DNA:ion interactions remained comparable to fixed-salt simulations. However, it is important to note that
78 made no effort to optimize the NCMC protocols beyond selecting an appropriate total switching time for
759 NCMC moves—it is possible that further optimization of these protocols using recent techniques based on
760 Mapping geodesics in the thermodynamic metric tensor space®4-%8 can lead to increased efficiency.

7 Potential applications

762 While the dependence of enzyme-substrate activity on ionic strength is well documented, the impact of salt
763 concentration on protein-ligand binding affinity is much less clear. Recently, Papaneophytou et al. performed
76« a systematic analysis on the effect of buffer conditions on the in vitro affinity of three complexes'>, finding

24 of 44


http://dx.doi.org/10.1101/226001
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Nov. 29, 2017; doi: http://dx.doi.org/10.1101/226001. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

Preprint ahead of submission — ivlarch 18, 2018

765  salt concentration dependence to be system dependent and largest for complexes that formed hydrophilic
766 interactions. Our osmostat provides the opportunity to rigorously study the impact of salt concentration on
767 protein-ligand binding affinities in silico. We are interested to know if similar trends to what Papaneophytou
76s et al. observed can be reproduced in all-atom binding free energies calculations, and whether binding free
760 energy estimates differ significantly between simulations carried out with and without an osmostat. Free
770 energy calculations on complexes whose association is sensitive to the concentration of salt are likely to
771 be most affected by the osmostat, given the large fluctuations of concentration and the deviation from the
772 fixed-salt values that occurred in our simulations (see Figure 7). The combination of self adjusted mixture
773 sample (SAMS) and Bennett acceptance ratio (BAR) that we used to calibrate the chemical potential can
774 also be used to estimate the difference between traditional and osmostated free energy calculations. If
775 significant differences between binding free energy calculations in fixed-salt and osmostat simulations are
776 observed, itis also possible to apply the same SAMS-BAR methodology to correct the free energy calculations
777 that have been performed with fixed salt.

778 As our osmostat has been designed to reproduce realistic salt environments around biomolecules, it is
779 well suited to study systems whose function are sensitive to the salt concentration, or biomolecules that
780 are regulated by interactions with Na* or Cl=. While our osmostat can efficiently sample ion binding to
781 biomolecular surfaces, the sampling of deeply buried ion binding sites is likely to be no more than efficient
782 than in typical molecular dynamics simulations due to the fact that our osmostat is implemented by swapping
783 water with salt. To this end, the osmostat could be improved and generalized if position-biased insertions
784 of fully-decoupled ghost molecules could be added to its sampling repertoire. An example of one such
785 biasing scheme can be found in the biomolecular simulation package ProtoMS, where the grand canonical
78  insertion and deletion of water are attempted in a pre-defined region within proteins“®4°, Previously, Song
77 and Gunner studied the interplay between protein conformation, residue pKas, and ion binding affinity using
788 a grand canonical ion insertion scheme within the MCCE framework®. Their work provided structural insight
789 into the often tight-coupling between ion and proton affinity as well as the pH sensitivity of ion binding,
790 and highlights the power of specialized ion sampling schemes to rationalize and understand experimental
791 measurements. The insertion of decoupled ghost molecules—while it would likely require more highly
792 optimized alchemical protocols for insertion—would also permit generalizing the method to more complex
793 salt or buffer molecules or other excipients.

74 Enhancing realism in molecular simulations

795 Because the pKa of protein residues are dependent on the ionic strength of the medium, a natural extension
796 Of the osmostat is to combine it with constant-pH simulations in explicit water. Previously, Chen and
797 Roux coupled protonation state changes with the insertion and deletion of ions to maintain electrostatic
78 Neutrality>=%. The application of an osmostat to such transformations would allow for the macroscopic
799 ion concentration—as well pH—to be rigorously maintained, and could be implemented in modular MCMC
s0  scheme that updates protonation states and ion identities in tandem.

801 This work only considers the concentration of NaCl, but both the formalism we introduce in the Theory
g2 section and the flexibility SaltSwap code-base can be readily extended to sample over biologically relevant
g3 salt mixtures by including additional monovalent species such as K* and divalent species like Ca**. More
s COMplex ions or buffer molecules, such as HCO; would require a more significant extension to code (such as
sos the insertion of ghost particles described earlier), and could be implemented by using a softcore alchemical
s.s  NCMC pathway that converts the molecule between fully interacting and noninteracting states.

807 The combination of a multicomponent osmostat with a constant-pH methodology would allow for realistic
s0s  physiological conditions to be better approximated in molecular simulations. While it is well appreciated that
s0  pathological tissue can be found with altered pH—tumor microenvironments can have low pH, while cancer
g0 cells can have elevated pH, for example® —pathologies can also disrupt healthy ion compositions®. The
g1 ability to reproduce specific ionic concentrations as well as pH would open the possibility of using molecular
812 simulations to target compounds to specific microenvironments or achieve selectivity via salt-dependent
a3 environmental differences. Indeed, Spahn et al. recently used molecular simulations to develop an analgesic
g2 that selectively targets the pu-opioid receptors in damaged, low pH, tissues*°.
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s1s  Improving osmostat efficiency

a6 We have demonstrated that our implementation of the NCMC osmostat was sufficient to sample equilibrium
g7 distributions of ions around biomolecules in practical simulation times. We have not yet extensively optimized
s the osmostat for computational or algorithmic efficiency beyond exploring NCMC protocol lengths (Figure 4
s19  and Figure A5.3), such that there a number of ways that the computational efficiency could be further
g0 improved.

821 In our current implementation, which only proposes insertion/deletion of a single salt pair in each
822 proposal, the correlation time for the instantaneous salt concentration increases with increasing system size
223 as the size of the equilibrium fluctuations also grow in terms of total numbers of ions (Figure 5). Inserting
s24 or deleting multiple ion pairs—likely using longer specialized NCMC protocols tuned to the number of
825 ions being inserted or deleted—could help maintain efficiency. Adaptive MCMC proposals, currently in
226 widespread use in the Bayesian inference community (e.g., PyMC®"), could be used to automatically tune the
827 number of ions proposed to be deleted or inserted based on the current concentration and the history of
328 the sampler, provided care was taken to ensure the adaptation method maintained ergodicity and ensured
820 the target density was properly sampled??. One of the earliest adaptive scheme was originally validated on
g0 unimodal distributions®, such that a discretized variant could be well suited to sampling the number of
831 pairs.

832 Acceptance rates can also be increased by using proposals that do not simply select ions at random,
833 butinstead select ions that are more easily inserted/deleted based on some rapidly-evaluated surrogate
s34 (such as their instantaneous Monte Carlo acceptance probabilities or the electrostatic potential on water
g3 and ion sites), provided this biased selection probability is accounted for in a modified Metropolis-Hastings
83 acceptance criteria.

837 There is a great deal of potential to improve the efficiency of the NCMC protocol used for the insertion
s and deletion proposals. The current work uses a linear interpolation of the salt and water nonbonded
s parameters as the alchemical path and perturbations steps that are equally spaced with respect to the
s0 parameters, primarily because this is the simplest scheme to implement. The only optimization carried out
san here was tuning the total protocol length to be sufficiently long to achieve high acceptance rates but not
s2 SO long that the overall efficiency would be diminished by further extending the protocol length (Figure 4).
si3  Optimized NCMC protocols can reduce protocol switching times required to achieve high acceptance rates,
s thereby increasing overall efficiency. The ability to quantify the thermodynamic length of the nonequilibrium
a5 protocol allows the problem of protocol optimization to be tackled rigorously. The thermodynamic length
a6 (an application of the Fisher-Rao metric to statistical mechanics ®) is a natural, albeit abstract, measure of
a7 the distance traversed by a system during a thermodynamic driving process .

848 Within this framework, optimal NCMC protocols are given by geodesics in a Riemannian metric tensor
a0 space®®. The thermodynamic length of the NCMC protocol can be estimated in separate equilibrium
g0 simulations spaced along the alchemical path, or estimated directly from the protocol work values of
g1 the NCMC switching trajectories, including those from rejected proposals®. For optimizing a preselected
82 alchemical path, spacing the perturbation steps to be equidistant with respect to the thermodynamic length
83 can improve acceptance rates by reducing the total variance of the protocol work. As optimal paths are
s« geodesics in thermodynamic space, the most efficient alchemical path for the insertion or deletion will likely
sss  be a nonlinear, rather than linear, interpolation of the water and ion nonbonded parameters. Previous
sss  efforts to optimize nonequilibrium paths have included directly solving for the geodesic®’, sampling the
g7 protocol from an ensemble®, and by restricting the optimization to a family of functional forms®. The close
sss  relationship between thermodynamic length and the dissipation along the path also suggests that restricting
89 the propagated dynamics to only the first few layers of the solvation shell around the transmuted molecules
g0 could also improve the NCMC protocol.

ssr Conclusion

g2 The philosophy of this work is that increasing the realism of biomolecular simulations will aid structural
s3 inference and improve the quantitative accuracy of predictions. We believe that the NCMC osmostat we
s« have presented here will be a useful tool for probing the interactions of ions and biomolecules under more
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ss  physiological conditions than considered in traditional molecular dynamics simulations. It is our hope that
sss  the application of the osmostat to protein-ligand binding free energy calculations and extending the method
87 to more comprehensive ion compositions will improve its utility even further.

s Code and data availability
869 + Code is available at https://github.com/choderalab/saltswap
870 + Data analysis scripts available at https://github.com/choderalab/saltswap-results
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Appendix 1

Symbols and their definitions
* x: Instantaneous configuration (positions, box vectors)
* Ny,o: Number of water molecules
* Ny+ : Number of cations
* Ng- : Number of anions
* Nyac - Number of salt pairs beyond minimal neutralizing ions; equal to min{ Ny,+, N~}
« N : Sum of total number of waters and ions in the system
0 : Vector species labels with N elements that identifies which molecules are waters and which
are ions; 0, = 0 indicates water, §, = +1 indicates monovalent cations, and §, = —1 indicates
monovalent anions
+ z: total charge number of the macromolecules in the simulation
n(0) : total charge number of the ions in the simulation

N
n(6) = Z 0, (26)
i=1

+ U(x,0) : Potential energy for a system with configuration x and water/ion identities 9, units of
energy

* p: External pressure, units of energy - length>

« V : Instantaneous box volume, units of length?

+ T : Absolute temperature, units of temperature

* kg : Boltzmann constant, units of energy - temperature™!

* B:Inverse temperature (= 1/k,T), units of energy~!

« I : lonic strength, where instantaneous ionic strength for configuration x is given by

N
1.1 [ 2
I(x,0)= 5 e <z 2 ; 9,.> (27)

Note that ionic strength includes minimal neutralizing counterions in the sum.

« Au: Chemical potential difference for extracting a NaCl molecule from bulk water and depositing
two water molecules to bulk water; an abbreviation of Au, o yaci

* f(Ny,) : Free energy to replace 2Ny o water molecules with Ny, salt pairs in bulk water; an
abbreviation of f(Ny,c;» N, p,T).

* Af(Ny,) : Free energy to add one more salt pair and remove two additional water molecules
in a box of water than contains Ny, salt pairs already; equal to f(Ny,q + 1) — f(Ny)i @n
abbreviation of A f(Ny,c;s N.p, T)

* Z(Nyac» N, p,T) : Isothermal-isobaric configurational partition function

(Vg Nop.T) = [ dxePUesticrmsr 28)

* E(Au, N,p,T): Semigrand-isothermal-isobaric configurational partition function expressed as a
sum over all 6

2(@Nop.T) = T, 5(00),=2) [ dxe U0 rsuthoao, (29)
0

and expressed as a sum of number of ions and water molecules
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1109

1110

111 = — VN/2 N! AAUNNa
o ZE(Au,N,p,T) = ZNNuCl=0 NNa+!NC|-[NH20!Z(NNaC|,N,p, T) ef2rNnaci (30)
113 where Ny,¢ = min{ Ny,+, No-} and N = Ny,+ + N¢- + Ny 0. The upper bound of the summation—
1114 valid when z = 0 and N is even—is required as two water molecules are removed for every
1115 Nyaci-
1116 « #(x,0; N,p,T, ) : Semigrand-isothermal-isobaric probability density with charge neutrality con-
Mz straint
1119
1120 1 _
ﬂ(X,H;A[I, N,p, T) = 5(}1(0), —z)e ﬂ[U(x,9)+pV(x)+AuNNac|(9)], (3’])

1121 E(Ap,N,p,T)
122 where the dependence of z(x,0; Au, N, p,T) on z is omitted for brevity
13 * (A)punpr - EXpectation of A(x,6) in (Au, N, p,T) ensemble
1125
1126 _ 1 _ AuN, Q)]

(A) =——— Y s(m®),-2) / dx A(x, 0) e POV (I+AuNNsci (32)
127 ANt = 2 (A, N, p,T) ;

e * (A) Ny pr - EXpectation of A(x) in (Nyac, N, p, T) ensemble
1129

1130 | '
A E dx A —BLU (x;NNac)+pV (X)] 0
1131 ¢ >NNaCl’N’p’T Z(Nac» N, p, T) / xAlx)e (33)
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132 Appendix 2

1133 Salt concentration in the thermodynamic limit

1134 The purpose of this section is to derive an expression that relates the chemical potential to the
1135 salt concentration in a macroscopic saline reservoir (equation 19). This relationship is used in
1136 the calibration of our osmostat. The derivation will proceed by first, justifying the macroscopic
137 concentration as the thermodynamic limit of the mean concentration, and second, rewriting the
1138 resultant expression in a manner that is amenable to computation.

1139 The mean concentration in the thermodynamic limit

1140 Following the definition of the concentration given in equation 20, the mean salt concentration in the
141 semigrand ensemble considered here is given by

1142

143 (Vapnpr = <N1N/afi'c()®> : (34)
1144 Ap.NopT

1145 We seek an approximation to this expression that it is appropriate for large, macroscopic amounts
1146 of liquid saline. For brevity, all expectation values with respect to the thermodynamic ensemble
1147 (Au, N, p,T) in this section will henceforth be abbreviated as (-).

The concentration is a function of two correlated random variables, the number of salt pairs
Ny,c(6) and the total volume V' (x). A common way to approximate the expectation value, or mean, of
a function of random variables is to perform a Taylor expansion about the mean of the arguments.
The Taylor expansion (up to the second-order) of the function g(a, b)) about the means (a) and (b), is

g@b) = g({a). (b)) + da <><b>( a—{a >) <a><b>( = () + |<><b>( a= (@)’
1% )+ (a —(a))(b—(b))+ (35)
2 9b? la).(b) oa ab (a).(b)

This expansion is particularly useful because the first order terms of the expanded mean (g(a, b)) are
zeroi.e. (a—{a)) =0 and (b — (b)) = 0. Hence, truncating the expansion to the second order leaves us
with the approximation

~ Llo% (a4 102 — (b))
(s@h) ~ g(a).(eN+52| A@=(@P)+555] (G- b))
v T8 (@) o)
0a 0b l(a).(b)
_ 10°g 10%g d’g
= £l D+ o lwm PO 258 Lo V2O Gzaplwm COVED B0

where Var(a) and Cov(a, b) denote the variance and covariance, respectively. Returning to the salt
concentration, we relate ¢ to the above with g(Ny.c, V) = Nyaa/V, and evaluate the partial derivatives
to find that

N N
() R 4 Qs var(y) -

5 COVV, Nyaca): (37)

The leading term (Ny,¢)/{V) is the macroscopic expression that we seek. Thus, we require that
the variance and covariance terms vanish in the thermodynamic limit. To show that they indeed
do, we exploit the useful correspondence between partial derivatives and covariance in statistical
thermodynamics. First, note that

Var(V) (kBT)” In(S)
—kBT"<V>, (38)

ap
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1172

1173

174 where E = E(Au, N, p, T) and is defined in equation 7. Also, note that
1175
9*In(2)
Cov(V, N = (kgT)
1176 ( NaCI) ( B ) dp()A,u
1177 a<V>
1178 = kBT_aA/d . (39)
1179
Second, we make use of the isothermal compressibility
1180
4
= L2 (40)
1182 (V) op
1183 and introduce the isothermal susceptibility of the volume with respect to the chemical potential
1184
1 o)
== 41
1185 A ) obu (41)
1186
1187 The susceptibilities k. and g, are bulk properties that measure the relative amount the volume of
1188 a system responds to changes in pressure and chemical potential, respectively. They are intensive
1180 quantities, such that they do not scale with the size of the system. These allow us to re-write the
1190 approximation of the mean concentration (equation 37) as
1191 N N
() (Nnac) 1 Nag) - 1 L){T. 42)
1oz V)  kgT (V) kT (V')

1193
To proceed, note that in the second term, both Ny, and (V') are extensive, and rise in proportion

to the total number of molecules in the system N. Thus, approximating the mean concentration
as (Nyac)/{V') incurs an error that is O(V')~"), which tends to zero in the thermodynamic limit. We
therefore define the macroscopic concentration of a saline reservoir as

1194

1195

1196

1197

1198 <é> = (NNaCI>. (43)
1199 <V>

1200 We require the macroscopic concentration to be amenable to computational analysis

1201 While the expression for the macroscopic concentration above does not appear immediately use-
1202 ful, we now show how (¢) can be calculated for wide range of applied chemical potentials by pre-
1203 calculating the free energies to insert salt into a system, f(Ny,c) (E f(Nyac» Aus N, p,T)), and the
1204 average volume as a function of the number of salt pairs, (V). . (= (V) nynpr)-

To begin, it is useful to expand the definition of ( Ny, ) given by equation 17 into

—f (NNac)+PAHNNacI
2z Myacr=0 Vnac1 € ! !
e~/ (NNac)+PAUNN,CI
ZNNac1=0

(Nnact) = (44)

Next, we derive an expression for (V') that will cancel with the denominator of equation 44 when
evaluating (¢). Using the representation of the semigrand density given by equation 8, the mean
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volume is given by

ZN o / dx V (x) e PUCENNac)+PY ()+AuNNaci0)
NaCl=

= Y o € M8k Nc
1205 ~ T gm0 €72 Nt [ dx V(x) e PUGNxac)+2V ()
1206 - ZNNaC] _o €/ (NNac)+AAK NNt
1207 . ) _ ,. ’
o _ T o P2 M [ dx V(x) e PUCNNc)+V () . [ dx! o= PUG Nyac) oV (<)
120 ZNNchO e~ f(NNacD+PAUNNC -« f dx"" e=PUG";NnacD+pV (X))
1210 2 N =0 PRI (7 o e
1211 B D N g €S NNac)+HAAKNNaCl

NaCl—
1212 ~ ZNN3C1=0 <V>NNaC1 e~/ (NNac)+AAHNNac 45)
1213 - 3 g € NNac)HPB NN ’
1214 NaCI™
1215 where the third and fourth line exploit the definition of the ensemble average for a fixed Ny,q-
1216 Inserting the expressions for the average number of salt pairs (equation 44) and the average volume
1217 (equation 45) into the macroscopic concentration (equation 43), we arrive at
1218 > N o Nacy €/ Mnacd A8k NNacy
1219 (¢) = Dl = s
. ZNNaG:O(V)NNmCI e~/ (NNacD+BAUNN,CI
1221 which is the same as equation 19 from the main text. Pertinently, the denominators in equations 44
1222 and 45 have canceled, which greatly simplifies the evaluation of the macroscopic concentration for a
1223 given Apu.
135 The magnitude of salt fluctuations
1226 The concentration of salt fluctuates in osmostat simulations. This section briefly outlines how one
1227 would expect the magnitude of salt fluctuations to vary with the size of the system based on statistical
1228 mechanical principles. By differentiating equation 17, one can show that the variance of the number
1229 of salt pairs Ny, is proportional to the gradient of ( Ny,) with respect to the chemical potential Ay,
1230 specifically
1231
I(N
1232 Var(Ny,q) = kBTM. (46)
dAu
1233
1234 By dividing both sides by (Ny,q). i.e.
1235
1 1 O Nyuci)
——Var(Ny,q) = k,T , (47)

12 (Nyacr) et (Nyacr) i 0Ap
1237
1238 reveals that Var(NNdCl) is proportional to the relative change in the mean of Ny, in response to
123 altering the chemlcal potential. As the right-hand-side of the above equation is an intensive quantity,
1240 <Nm)Var(NNaCl) is also an intensive, implying that
e Var(Nyger) % Nygcr- (48)
1242
1243 Therefore, the scale of the fluctuations in salt amount, as measured by the standard deviation, grows
1244 as (Nyue)'/?

In contrast to the amount of salt, the size of the fluctuations of salt concentration decreases with
the size of aqueous systems. Water is a highly incompressible fluid, such that small changes in
pressure have a very small effect on the volume of aqueous systems. From equations 38 and 40, a
low isothermal compressibility implies that the variance of the volume is small with respect to the
mean volume (i.e. the relative variance). Assuming that the relative variance of the volume is smaller
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1246

1247

1248

than the relative variance of the number of salt pairs, one can use the same approach as that of

1 equation 35 to show that
1250

N,

1251 Var(c) — Var ( NaCl ) (49)
1252 4

1
7y Vi (V) (50)
1254
1255 Using the fact that, for bulk-like water, (V) « (Ny,q) o (Ny,q) along with equation 48, we arrive at
1256 Var(c) ~ (Ny,c)~! for systems with large amounts of water. Thus, the standard deviation of the salt
1257 concentration scales like (Ny,o)™"/? or (Ny,q,)™'/* for a fixed chemical potential.
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1258 Appendix 3

1259 Algorithmic implementation of the osmostat
1260 This section describes the Metropolis-Hastings procedure from Saltswap [0.52] used to insert and
1261 delete salt. Insertion and deletion moves were enhanced with NCMC?32. To describe its implemen-
1262 tation of NCMC within SaltSwap, a more compressed notation is used compared to the original
1263 publication. For a more general and detailed exposition on NCMC, we refer readers to the original
1264 manuscript.
1265 The osmostat move begins with the random choice of whether to insert or delete salt. The protocol
1266 is denoted A € { Ajpserts Agelete }» @Nd the time reversed protocol is denoted A, where Ajpeert = Agelete
1267 and Agejete = Ainserc- 1he probability to insert or delete a salt pair, P(A| Ny,), depends on the number
1268 of salt molecules, Ny,q, in the system in the following way:
1269
1270 i 1 if Ny =0;
o P(Ainsert| Nxac) =91/2 i 0 < Nyuer < Nactmas (51
1272 .

0 if Nyuct = NyacLmax
1273 0 if Ny =0;
e P(Agetete| Nyac) =91/2 1 0 < Ny < Nyactmans (52)
e 1 if Nyaet = Nyaclmax

1276

1277 where for all simulations except the SAMS calibration simulations, Ny = %(N — (N mod 2)) was

aCl,max
1278 chosen as two water molecules are required for the insertion of a Na* and CI~ pair. In the SAMS
1279 calibration simulations, Ny, ..« Was set to twenty. The particular choices of P(Ajeete| Nyae) @and
1280 P(Ajpsert| Nnocr) €Nsure that insertions are always attempted when there is no salt in the system, and
1282 deletions are always attempted when the number of salt pairs has reached maximum capacity.
1283 For the insertion of salt, any two water molecules could be selected for transformation into Na*
1284 and CI=. Similarly, for the removal of salt, any Na* ion and Cl~ ion could be selected for transformation
1285 into two water molecules. Formally, let S(V) denote the set {1,2,..., N}, i.e. the set of indices for all
1286 water molecules and ions. For salt insertion, the index of candidate Na* ion was a random uniform
1287 sample from the set {i € S(N) : 6, = 0} and the index of the CI~ ion was a random uniform sample
1288 from the set {j € S(N) : 6, = 0,i # j}. For salt removal, indices were selected randomly and
1289 uniformally from the sets {i € S(N) : 6, = +1} and {j € S(N) : 6, = —1}. As indices were chosen
1290 with equal probability within each set of possible candidates, the ratio of selection probabilities for
1291 molecule indices for forward and reverse protocols are given by
- P(i, j|Ageete)  (Nyg+ + D(Ng- + 1)
1295 and
1296 P, j|Adelete) _ Nyar No- (54)
1297 PG, jlAinser)  (Ny,0 + D(WVy,0 +2)
1298 Following the choice of protocol and pair of molecules that would be transmuted, NCMC was
1299 used to enhance the efficiency of the insertion or deletion attempt. This implementation of NCMC
1300 consists of a fixed series of perturbation and propagation kernels over a fixed alchemical path. For
1301 both insertion and deletion moves, the alchemical path is a linear interpolation the nonbonded
1302 parameters of the water model and the ions. This particular alchemical path ensured that charge
1303 neutrality was maintained throughout the NCMC procedure.
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1304 The alchemical path is broken up into T segments that are uniformally spaced with respect to
1305 the nonbonded parameters. At state ¢, the configuration of the system will be denoted as x, and the
1306 values of the nonbonded parameters for molecules i and j will be denoted as A”. A single NCMC step
1307 corresponds to the application of the perturbation kernel followed by a the propagation kernel. When
1308 in state ¢, the perturbation kernel updates the nonbonded parameters (x,, A7) — (x,,xli{rl), and the
1309 propagation kernel updates the configuration (x,, A’,,) = (x,;,, 4,,,). Each propagation kernel consists
1310 of K steps of Langevin dynamics using the parameters described in Simulation Details. A propagation
1311 kernel is also applied to the system before the first perturbation kernel to ensure the time symmetry
1312 of the protocol. The instantaneous change in the potential energy that results from the application
1313 of the perturbation kernel is recorded for each NCMC step and summed to produce the total work
1314 performed on the system by the protocol:

1315

1316 T

1317 Wi/(XT,A) = Z U(x,, 1;11 -U(x, i;j), (55)
1318 =l

1319 where the nonequilibrium trajectory X, = (x,, x,, .... x;). The difference between the protocol work
1320 and applied chemical potential Ay, along with the move proposal probabilities, determines whether a
1321 move is accepted or rejected. For the insertion of salt Au(Ajnser) = 24,0 — Hnacrr @Nd for the deletion
1322 of salt Apu(Agerete) = 2Hnact — Hi,0- Attempts are accepted with the following probability

1323 N

. A0t 0= i {1 S e 58 (= WG 0+ 3800) .
1326 To preserve pathwise detailed balance, velocities were reversed upon acceptance. If a move is
1327 accepted, 6, and 6, are updated to reflect the new molecule identities.

1328 Pseudo-code for the NCMC osmostat with molecular dynamics

1329 This section contains the pseudo-code of the production osmostat simulations.

1330

1331 Begin algorithm

1332 Choose a macroscopic salt concentration é.

1333 Infer the chemical potential Ay by inverting equation 19.

1334 Initialize position and velocity (x,, v,), state vector 6,, and maximum number of iterations M.

1335 forie {1,2,..,M} do

1336 Sample conformations

1337 Perform 4 ps of Langevin integration with a fixed amount of salt:

1338 (x7,07) « Integrate((x,._l, v;_1), 4 ps).

1339 Sample salt concentration

1340 Randomly select whether to add or remove salt as well as which molecules will be transmuted.
1341 Define the trial state vector as 6*.

1342 Define initial and final nonbonded parameters: (¢, Cinitiats €initial) @NA (rinat> Crinats Efinal)-

1343 procedure NCMC((Giniiar» Tinitiat> Emitia)Ginitiat> Tinitiats Eimiia)r 57> U5)r 6%)

1344 Initialize variables, including protocol work w:

1345 W0 <0

1346 (4°,0°,€°) < (Ginitiat> Cinitiat> €initiar)

1347 (x%,09) « Integrate((x;‘, v7),20 fs)

1348 fork e {1,2,..,1000} do

1349 Linear interpolation of the nonbonded parameters:

1350 f*=k/1000

1351 for all atoms in the molecule do
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1352 ¢ < (1= Oiniia + [ Gtina

1353 ot « (1= fO0nia + [ Orina

1354 e« (1 = fOeimiar + [ €ina

1355 end for

1356 Update the protocol work:

1357 Wk « wk1 4 U(xf,‘" s q*, 0%, e*) — U(xf‘l;qk",ak‘l,ek“)
1358 Propagate the system:

1359 (xk, %) < Integrate((x*~!, v5="),20 fs)

1360 end for

1361 Accept or reject using acceptance criterion A(W*, Ay, 0%)
1362 if Accept move then

1363 Keep final positions and state vector but reverse velocities:
1364 (x;,0,) < (xF,—vF)

1365 0, < 07

1366 else

1367 Return positions, velocities and the state vector to after equilibrium sampling:
1368 (x;,0;) < (x7,07)

1369 0, < 0,_,

1370 end if

1371 end procedure

1372 end for

1373 End algorithm
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1374 Appendix 4

1375 Validation: Ideal Mixing with the osmostat

1376 In the Results section, Figure 4 top left indicates that the chemical potential has been properly
1377 calibrated, and Figure 6 shows that the osmostat produces samples that are concordant with physical-
1378 chemical intuition. In this section, we apply our osmostat to sample ideal mixing to provide further
1379 validation of the SaltSwap code base. Ideal mixing can be simulated with our osmostat by ensuring
1380 that salt insertion and deletion accrue no protocol work. This is implemented by using the same
1381 forcefield parameters for Na* and Cl~ as the water model. As our osmostat also gives the ions the
1382 same mass as water, the “ions" sampled over in this section are identical to water except for their
1383 labeling.

1384 To validate the sampling of the osmostat, we require an analytical relationship between the
1385 chemical potential Ax and the numbers of salt Ny, and water molecules Ny ,. The chemical
1386 potential used in our osmostat is the difference between the chemical potential of water multiplied
1387 by two and Na* and Cl~:

1388

1389 Ap = zﬂﬁzo ~ HNat — Her-- (57)
13%0 In order to relate Au to Ny, and Ny o, we will first consider a solution of water and ions in the
1391 (N, p, T) ensemble with fixed particle identities, and then relate the result to the (Au, N, p, T) ensemble.
1392 For this fixed identity solution, let N = Ny o + Ny,+ + N¢- and Ny, = Ng-. Inthe (N, p,T) ensemble,
1393 the chemical potential for a species s can be expressed as

1394

1395 U(N,p,T) = p? = kT In(x;y,(N, p, T)), (58)

1396 . . . Q . 5
where y° is the chemical potential of s in some reference state, x, is the mole fraction of s, and

v.(N,p,T) is the activity coefficient of s. In general, the chemical potential is also dependent on the
composition of the system. When Na* and CI- have the same forcefield parameters and mass as
water (i.e they are physically identical), the reference state and activity coefficients must be the same.
So using equation 58 and 57 we have

1397

1398

1399

1400

1401

1402 Apu(N,p,T) = 2kT In(xy,0) — kT In(xy,e) — KT In(xcp-)-

1403 = 2kT In(xy,q) — 2T In(xy,c))

1404 Nuy0

1405 =it ( Nnaci ) (59)

1400 where the second line follows from the fact that there are equal numbers of Na* and CI~ ions. In the

semigrand canonical (Au, N, p,T) ensemble that is sampled by our osmostat, the chemical potential
Auis a controlled by the user. As this conjugate to the number of salt pairs, equation 59 will apply to
the averages (Ny,c)aunpr @Nd (Niy,0)a,npre SO that we have

1407

1408

1409

1410

1411 <NNaCl>A;4,N,p,T _ e_%ﬂA”. (60)
1412 <NH20>A;4,N,p,T

1413 To test whether our osmostat correctly samples the average salt to water ratio given in equation 60,
1414 ideal mixing simulations were performed using SaltSwap on a small box of TIP3P water containing five
1415 hundred molecules for a range of chemical potentials. Ten thousand insertion and deletion attempts
1416 were made for salt pairs that had the same forcefield parameters as water. Only one perturbation
1417 step was used for the ideal NCMC insertion and deletion and the configuration of the system was
1418 not propagated during attempts. Figure 1 shows that there is excellent agreement between the
1419 relationship predicted by equation 60 and the simulation data.

41 of 44


http://dx.doi.org/10.1101/226001
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint first posted online Nov. 29, 2017; doi: http://dx.doi.org/10.1101/226001. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

Preprint ahead of submission — ivlarch 18, 2018

)

T —— Analytical

< 1.6 Y

= ¢ Observed

2

1.4

2

—

D 1.2

©

S

S 1.0

=

i

o 0.8+

S}

c

© 0.6

-+

(@]

o

W 0.4 1 , : : : ;

-1.0 -0.5 0.0 0.5 1.0 1.5
Chemical potential Au/kT (no units)

1420
1421 Appendix 4 Figure 1. Validating the osmostat by comparing the observed average salt-water fractions to
1422 analytical values for ideal mixing. The relationship between the chemical potential and fraction of average
1423 number of salt pairs to water molecules is known exactly for ideal mixing, and is given by equation 60. Ideal
1424 mixing was implemented for the osmostat by giving the ions the same forcefield parameters as water. For each
1425 simulation at a chemical potential, the equilibration time and statistical inefficiency for the average number
1426 of salt pairs (Ny,ci)aunpr @nd water molecules (Ny, o) a,npr Was determined using the timeseries module of
1427 pymbar’>. The automatically determined equilibration times ranged from 361 and 723 insertion or deletion
1428 attempts. Effectively independent samples were extracted using the statistical inefficiency, and the means and
1430 95% confidence intervals were estimated using bootstrap analysis.
1431 It was also verified that the protocol work was effectively zero for the ideal NCMC transformations.
1432 While the protocol work should be exactly zero, the numerical imprecision of our implementation
1433 meant this could not always be achieved. The average protocol work for the transformations shown
1434 in Figure 1 (which were performed on a CPU Intel Core i7 with one perturbation step) was 1 x 10~7 kT
1435 with a maximum absolute value of 8 x 107 kT. The NCMC protocol used throughout this study has
1436 one thousand perturbation steps and ten propagation steps per perturbation. With this protocol,
1437 the average protocol work was estimated using one thousand attempts on a GTX1080 GPU to be
1438 2 x 1078 kT with a maximum absolute value of 5 x 10~ kT.
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Appendix 5 Figure 1. A Comparison of the salt insertion free energies as estimated by SAMS and BAR. The individual
SAMS estimates from ten repeats of the relative free energy A f(Nyac) to insert an Na* and Cl~ and remove two water
molecules in boxes of TIP3P (left) and TIP4P-Ew (right) for each SAMS simulations. Each color represents an estimate of
Af(Nynac) from each repeat. The relative free energy as calculated by BAR using all the SAMS simulation data is shown
for reference (dotted black line). Five of the SAMS repeats were started with the maximum of 20 salt pairs in the system,
and the other five started with none. The significant variation between the individual SAMS repeats is due to the rapid
accumulation of the biasing potential in the initial stages of the algorithm. This biased the sampling away from the initial
states of the simulations and prevented the uniform sampling over the salt numbers.
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Appendix 5 Figure 2. The statistical uncertainty of the predicted macroscopic concentration as a function of
the chemical potential for different standard errors of the free energies f(Ny,c) in a box of 887 TIP3P water
molecules. Using the data from the SAMS calibration simulations, Gaussian noise, with a mean of zero, was added to each
estimated free energy f(Ny,c)) N € {0, 1,...,20}, for a fixed values of (V)y . Three thousand noisy sample of f(Ny,c))
N € {0,1,...,20}, equation 19 were used to predict the macroscopic concentration for a range of chemical potentials. This
figure shows the 95% confidence range of the resultant ensemble of concentrations for different standard deviations
of the Gaussian noise about the free energies. One needs to evaluate the free energies f(Ny,¢) to within 4 kcal/mol to
achieve an error in the concentration that is no larger than roughly 80 mM. The tapering of the statistical error in the
concentration at lower values of the chemical potential is due to maximum number of salt pairs used in the calibration
(20), which limits that maximum concentration that can be predicted.
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Appendix 5 Figure 3. The relative efficiency of salt insertions/deletions in TIP3P water for different numbers of
NCMC propagation steps between each perturbation step. Due to the manner in which the nonbonded parameters
are updated in the SaltSwap code, it is faster—for a fixed protocol time-length—to perform multiple propagation steps
for each perturbation (i.e. update of the nonbonded parameters) during an NCMC insertion/deletion attempt. More
propagation steps limit the amount of communication between the CPU and GPU. However, for a fixed total protocol
time-length, fewer perturbations increases the thermodynamic length each perturbation must traverse, which decreases
the mean acceptance rate of the attempts. Thus, there is a (code-dependent) trade-off in the sampling efficiency between
the number of perturbations and propagations steps. This figure shows the efficiency, defined by equation 25, for different
numbers of propagation steps at different protocol time-lengths relative to the efficiency of instantaneous insertions and
deletions. Ten propagation steps per perturbation step achieve the highest efficiencies, and so were used in all production
osmostat simulations.
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