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Abstract R |

One of the many contributions of Prof. Fettweis was the inven-
tion of wave digital filters. These filters are obtained from classical
RLC filters, in particular doubly terminated lossless two-ports, by
using some transformations. Namely, the voltages and currents
in the circuit elements are transformed into wave-variables and
then a bilinear transformation is performed. If the wave transfor-
mation is performed appropriately it results in a realizable digital
filter structure which furthermore enjoys a number of robustness
properties such as low passband sensitivity, low roundoff noise,
and freedom from limit cycle oscillations. Prof. Fettweis and his
colleagues also showed that these properties are due to the in-
heritence of passivity properties from the continuous-time domain
into the digital filter domain. Subsequent to this landmark work,
a number of researchers worked on the problem of obtaining
robust digital filter structures without starting from continuous-
time circuits. One of these is the structurally bounded or struc-
turally passive class of digital filters. These structures are based
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on inducing structural passivity directly into the implementation
and are therefore simpler, both conceptually and from a practical
viewpoint. They are also more general and lead to new structures
which have no natural connection to electrical circuits. This paper
gives an overview of some of these developments.

I. Introduction

rof. Fettweis was a giant in many different areas of

circuit theory, signal processing, physics and related

mathematics. One of his contributions was the inven-
tion in 1971 of wave digital filters [18], [19]. These filters
are obtained from classical RLC filters [35], in particu-
lar doubly terminated lossless two-ports, by using some
transformations. Namely, the voltages V; and currents /; in
the circuit elements are transformed into wave-variables us-
ing formulas of the form

Ai=Vi+Ril; Bi=Vi—Ril; M

FIRST QUARTER 2019




where A; and B, are called the “incident” and “reflected”
wave variables, and R; > 0 are free parameters to be cho-
sen by the designer. In addition to RLC elements, trans-
formers and gyrators are also sometimes included. If the
wave transformation is performed appropriately, then
the bilinearly transformed version of the circuit results
in a realizable digital filter structure (i.e., a structure
without delay-free loops), which furthermore enjoys a
number of robustness properties such as low passband
sensitivity, low roundoff noise, and freedom from limit
cycle oscillations [26]. Prof. Fettweis and his colleagues
also showed that these properties are related to the pas-
sivity properties of the underlying continuous time elec-
trical circuit [20].

Subsequent to this landmark work, a number of
researchers explored the possibility of obtaining ro-
bust digital filter structures without starting from
continuous-time circuits. This includes the work of
Bruton and Vaughan-Pope [10], Constantinides [13],
Mitra and Sherwood [49], Deprettere and Dewilde [15],
Rao and Kailath [59], and Vaidyanathan and Mitra [71],
[74], [77]. Some (but not all) of these structures exhib-
ited low sensitivity and other robustness properties.
These include the structurally bounded class of digital
filters [71], [73], [77], and orthogonal digital filter struc-
tures [15], [59].

The structurally bounded or structurally passive
class of digital filters [71] are based on inducing pas-
sivity directly into the structure and are therefore sim-
pler, both conceptually and implementation wise. They
explain in a unified way the robustness properties of
wave digital filters, wave lattice filters [21], orgthogonal
digital filters [15], [59], and the Gray-Markel lattice struc-
tures [32]-[34]. The structurally bounded class is also
more general and leads to new structures which have
no natural connection to electrical circuits such as the
cascaded FIR power complementary lattice [78], the
FIRBR structure [74], and the single-input two-output
IR power complementary lattice [59].

This paper gives an overview of some of these de-
velopments. We first review the fundamental reason
for the low sensitivity of doubly terminated lossless
networks based on an argument advanced by Orchard
in 1966 [55], [56]. After a brief review of wave digital
filters we explain structural boundedness in detail. The
approach of structural boundedness [71] is based on
the premise that if boundedness can be directly real-
ized in the digital domain by constraining the structure,

then there is no need to copy electrical circuits into the
digital domain using painstaking and detailed formulas.
We also discuss a number of robust digital filter struc-
tures derived using structural boundedness. It turns
out that the two-port extraction method proposed by
Mitra, Kamat, and Huey [50] long before the introduc-
tion of structural boundedness, can in fact be used to
develop cascaded networks with structurally bounded
properties. The beauty is that this procedure gives rise
to wave filters, Gray-Markel lattices, and orthogonal
digital filters as special cases [75]. But that is not all.
Many new low sensitivity structures, not based on the
two-port cascade, emerge from the theory of structural
boundedness. Some of these are reviewed here as well,
such as the parallel allpass structure [77], FIR power
complementary lattices [78], and FIRBR structures [74].

Il. Low Sensitivity and Structural Boundedness
When a digital filter is implemented with finite preci-
sion for the multiplier coefficients, the response H(e’®)
changes, and may fail to satisfy the original specifica-
tions. In fact the filter may even become unstable if the
number of bits used for the multipliers is too small. Fig-
ure 1 shows the response of a fifth order digital elliptic
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Figure 1. The effect of coefficient quantization. The magni-
tude response |H(e™®)| of a 5th order elliptic lowpass filter is
shown with 18 bit quantization (each multiplier is quantized to
18 bits). The direct-form structure [52], [54] is used. The red
plot shows the response of the quantized structure whereas
the black plot is the unquantized response. The passband
details are shown in the inset. While the stopband response
is nearly perfect even after quantization, it is clear that the
passband response after quantization deviates significantly
from the ideal.
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filter implemented in direct-form [16], [52], [54]. The ideal
response is shown in black and the response with mul-
tiplier coefficients quantized to 18 bits is shown in red.
Notice that the passband response (shown separately
in the inset) deviates considerably from the ideal, even
with 18 bits of precision for each multiplier coefficient.
For higher order filters which have sharp cutoff and
very small passband ripples, this effect is even more
severe. The good news is that if the direct-form struc-
ture is replaced with a properly chosen structure, then
these effects of quantization can be reduced to a con-
siderable extent.

A. A Lesson Learned From Passive

Electrical Filters

Historically, even before the advent of digital filters, it was
well known that continuous time electrical filter circuits
exhibited very low passband sensitivity (with respect to
circuit element variations) if they are implemented as
lossless (i.e., LC) circuits terminated at both ends appro-
priately with resistors. Such a doubly terminated lossless
two-port is shown in Fig. 2(a). Define the filter transfer
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Figure 2. Fundamentals of low passband-sensitivity in LCR
filters. (a) A lossless (LC) circuit, terminated at both ends
with resistances. The resistances are such that maximum
power is transferred from the source to the load at certain
frequencies in the passband of the filter. (b) A typical lowpass
filter response, realized as the ratio H(s) =2Y(s)/X(s). The
passband maxima occur at the “reflection zeros” 6«, where
maximum power is transferred from the voltage source to the
load resistance. (c) Variation of the response at Q =6, with
respect to variation in a circuit element. The response can
only decrease as the element value departs from nominal.
This behavior was used by Orchard [55] to explain the low
passband sensitivity of doubly terminated lossless two-ports.
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function as the voltage ratio H(s) =2Y(s) /X (s). With ele-
ment values appropriately chosen, this can be designed
to be a lowpass filter with response as in Fig. 2(b). It is
found that such a filter exhibits low passband sensitivity
with respect to element variations.

An explanation for the low passband sensitivity was
given by Orchard [55]: the two port is usually designed
such that there is maximum transfer of power from the
source x(f) to the load y(f) at the passband maxima.
Thus, at a frequency w =6 in the passband (Fig. 2(b)),
where the filter has maximum gain, there is maximum
transfer of power. When a circuit element is perturbed,
the transfer of power, hence the gain | H(j6x)|, can only
get smaller as demonstrated in Fig. 2(c). Thus the pass-
band maxima exhibit low sensitivity with respect to ele-
ment values. If there is a number of such maxima in the
passband then the entire passband response has low
sensitivity. A more quantitative explanation was given
later in [56]. Incidentally, the frequencies 6 are called
reflection zeros because there is no power reflected
back from the load resistance at these frequencies.
Note that networks designed as above do not guarantee
low stop band sensitivity.

The term low sensitivity can have multiple meanings.
In this paper it is used to indicate the small sensitivity
of the magnitude response in the passband. This is often
quantified by the derivative of the passband magnitude
response with respect to element values (as in the left
hand side of Eq. (8)). The sensitivity of the phase re-
sponse, or that of the response in the stop band will not
be the focus here.

B. Fettweis’s Vision

Fettweis recognized that this low sensitivity property of
a doubly terminated lossless network can be inherited
by a digital filter structure, if the structure is derived
from the electrical network by an appropriate transfor-
mation. In his pioneering work in 1971, he achieved this
[18], [19] by obtaining a digital equivalent for every cir-
cuit element (inductor, capacitor, resistor, open circuit,
short circuit, voltage source, and so forth) by using the
wave variable transformation (1) followed by the bilne-
ar transformation [54]. In this process the quantities
R;, called the port resistances are chosen carefully so
that, when the digital equivalents were interconnected,
there were no delay-free loops. Fettweis developed the
so-called series wave adaptor and parallel wave adaptor
for the purpose of interconnecting digital equivalents of
circuit elements [27].

To be specific, let us consider the case of an induc-
tor L. When this is appropriately transformed, its digital
equivalent is —z ! ! represents a unit delay. To
see this recall that the inductor is characterized by the

where z~
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relation V(s) =sLI(s). With the wave variables defined
as A(s)=V(s) +RI(s) and B(s) =V(s) — RI(s), we have
B(s)=(sL/R —1)/(sL/R +1)A(s), With the free port-resis-
tance chosen as R =L this reduces to

B()=S1A) @

If we now use the bilinear transform s=(1-z"/(1+z™"),
then (s —1)/(s +1) reduces to —z " so that the digital equiv-
alent of (2) becomes

Bi(2) =-z"'A4(2). 3)

Thus an inductor transforms into —z'. Similarly a capac-
itor can be transformed into z™'. When the doubly termi-
nated lossless network of Fig. 2(a) is transformed using
such digital equivalent building blocks, it results in the
wave digital filter shown in Fig. 3. Notice the use of series
and parallel adaptors for interconnecting the elements.
The figure also shows the internal details of one of the
adaptors. The main complexity and computational load of
wave digital filters come from these adaptors.

As wave digital filters have been widely written about,
we do not go into further details of the construction
here. The interested reader will enjoy reading the origi-
nal articles [18], [19], [27], or the excellent presentation
in Antoniou’s text book [3]. A short section on wave digi-
tal filters can also be found in Sec. XIII of [83] (chapter in
an edited handbook), and will serve as an introduction
for new readers.

As envisioned by Fettweis, wave digital filters indeed
exhibited very low passband sensitivity. In addition,
they also enjoyed freedom from parasitic oscillations or
limit cycles, as shown in later papers by Fettweis and
Meerkotter [26]. Wave digital filters were soon also ex-
tended to wave lattice filters [21], [30] and other varia-
tions. Wave filters for multirate applications have also
been developed by Fettweis and Nossek [29]. A detailed
overview article on wave filters, written by Fettweis him-
self, can be found in [23].

Wave digital filters have also been extended to the
case of multiple dimensions [22], [28] but we shall not
discuss those in our limited overview here. Many subtle
aspects regarding passivity and stability of multidi-
mensional filters are discussed in papers by Basu and
Fettweis [6], [24], [25]. For papers focussing on multidi-
mensional stability the reader is referred to [8], [9], [39],
[67] and [60].

C. Wave Filters From Two-Port Viewpoint

Subsequent to the invention of wave digital filters, some
researchers made efforts to simplify the procedure. In
particular, considerable simplification could be ob-
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tained if the wave adaptors can be avoided, or implicitly
incorporated without having to worry about cumbersome
rules for interconnecting them. Swamy and Thyagarajan
[68] came up with an ingenious way to do this. Their wis-
dom was to regard each circuit element itself as a two-
port rather than a one-port as demonstrated in Fig. 4(a).
Using this idea an LC ladder network can then be trans-
formed directly into a “cascaded structure” of the form
shown in Fig. 4(b). Here each rectangular box represents
a 2 X 2 digital transfer matrix, also known variously as the
digital two-port or digital two-pair [49]. It represents the
digital equivalent of electrical elements such as induc-
tors, capacitors, and even series or parallel LC circuits.
Notice that the cascade in Fig. 4 is not a traditional cas-
cade because the arrows are running in different direc-
tions, creating feedback loops. This sort of cascade is
often called a chain-cascade. The reason for this name
is that, in such a cascade, the so-called chain matrices
(rather than transfer matrices) of the systems in cascade
are multiplied. Please see Box 1 for details.

Each of these two-pairs in Fig. 4(b) is first-order (i.e.,
has one z! element) if it represents an L or a C element,
and is second-order if it represents a series or parallel
LC circuit. It was shown by Swamy and Thyagarajan that

Parallel Adaptor

X(n) o——» | | »> ——a | | —>——oy(n)
O—< } < e le—o0
4 vy Series Adaptor 4 vy
Z el
(@)
4 5 )
A, > l_\1 BE
A1 Bz
— > _
—] +|__<_ = . -0 Y A2
B, T f A, <D <
Y y
As By By N

Series Adaptor

\_

> I;{—>1_' N /
b)

Figure 3. The wave digital filter obtained from the doubly ter-
minated LC filter of Fig. 2. Details of a typical series adaptor
used in wave digital filters are shown in the bottom. Parallel
adaptors have a similar structure. For more details please
see [18], [19], [27], or the text book [3], or Sec. XIII of [83].

(
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LC ladder networks and more generally LCR circuits can
be transformed into such a cascade of two-pairs. Fur-
thermore, certain free parameters in the transformation
can be selected such that delay free loops are avoided

Box 1: Two Types of Cascaded Systems

in the back to back interconnections. With this new type
of wave digital filters we do not have to worry about the
design of adaptors, as they are implicitly and automati-
cally included in the two-ports of Fig. 4(b).

A 2-input 2-output system has also been referred to as
a two-port or a two-pair. With x(n) =[xi(n) x2(n)]" and
v(n)=[y1(n) y»(n)]" denoting the input and output, there
are two popular ways to describe an LTI two port. The frans-
fer matrix and the chain matrix descriptions:

’%(z)]_ T1(2) Te(2)|[Xi(2)
Ya(2)| " | Tzt (2) To2(2) || X2 (2)|
transfer matrix T(z)

X1(z)]_ A(2) B(z)] Ys(2)
Yi(2)| | C(2) D(2)||Xe(2)

—_—
chain matrix IT(z)

Depending on the description chosen it is convenient to show
the inputs and outputs either as in (a) or as in (c) in the
figure. The transfer matrix T(z) is convenient when two-
ports are connected in a so-called 7-cascade as shown
in part (b). In this case the transfer matrix of the cascade
is the product T(z) =Tz2(2)Ti(2). The chain-matrix de-
scription is convenient when two-ports are connected in
a so-called IT-cascade as shown in part (d). This inter-
connection generates new feedback loops and the descrip-
tion of the cascaded system in terms of transfer matrices
becomes cumbersome. But the chain-matrix description
becomes extremely convenient: with IIx(z) denoting the
chain matrices of the systems, the chain matrix of the

I1-cascade is just the product IT(z) =1I1(z)T2(z). The
two descriptions are interrelated as follows: Ty1 =C/A,
T2 =detII/A, o1 =1/A, T» = —B/Aand similarly, A =1/Ta,
B = —Tx/T1,C =T11/To1, D = —det T/ T>1 where the argument
(2) has been omitted for simplicity.

Now consider part (e) in the figure where a two-port is
“terminated” at one end by a transfer function G(z). In this
case, the transfer function H(z) = Y1(2)/Xi(z) can be ex-
pressed either in terms of the transfer parameters Tin(2)
or chain parameters A(z), B(z), C(z), D(z) as follows:

T12(2) Tx1(2) G(2)
1-T»(2)G(2) °

_C(29)+D(2)G(2)
HO) =22 ¥B@) 62

H(z) =Ti1(2) + or equivalently

The chain matrix description has its origin in electrical circuit
theory. LCR circuits in a ladder configuration can be conve-
niently expressed as a IT-cascade of two-ports where each
two-port represents a series or parallel branch in the ladder.
The chain matrix is therefore inherited into wave digital filters
as seen explicitly from the work of Swamy and Thyagarajan
(1975). It has also been used in direct synthesis of digital lad-
der filter structures by Mitra, Kamat, and Huey (1977). Later
on it was also used extensively by Vaidyanathan and Mitra
(1984) for the synthesis of structurally passive digital filters.

X4(n) y1(n) x4(n) y1(n) z4(n)
S— >
T(2) Ti(2) T,(2)
> - > =
Xo(N) Ya(n) Xo(n) Ya(n) Z5(n)
T-Cascade
(a) (b)
x4(n) ya(n) x4(n) ya(n) ya(n) x4(n) ya(n)
(z)
I(z) I14(2) T,(2)
P —— <+ a <+— T(Z)
y4(n) xo(n) y1(n) Xo(n) x3(n) y1(n) Xo(n)
[1-Cascade H(z) Terminated Two-Port
(c) (d) (e)
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Ill. Direct Digital Synthesis

In the early to middle seventies, many other research-
ers besides Fettweis got interested in synthesis of digi-
tal filter structures inspired by LC network synthesis
[10], [13], [49]. Many of these structures had qualitative
similarities to LC ladder networks, but they were not
necessarily designed to inherit specific properties such
as low sensitivity or passivity. In 1977, Mitra, Kamat and
Huey [50] proposed a way to synthesize digital transfer
functions directly in the z-domain by extracting digital
two-pairs (as in Fig. 4) in such a way that there is a de-
gree reduction at each step in the extraction. (We will
return to this in Fig. 7 again.) This procedure resulted in
anumber of new realizations for digital filters, but again,
the two-pairs were not designed with any specific prop-
erties that would induce low sensitivity or passivity.
However this basic idea of digital two-pair extraction,
which realizes digital filters by successive order reduc-
tion, laid the foundation for future work which incorpo-
rated such robustness properties systematically into
digital filter synthesis. More specifically, the approach
introduced in [71] showed how to develop two-pair ex-
traction methods to obtain digital filter structures with
low sensitivity and other passivity properties, with-
out recourse to continuous-time electrical circuits. This
is based on a concept called structural passivity. This
property is crucial to low sensitivity, and it can be in-
corporated directly into digital filter structures as ex-
plained next.

A. Structural Boundedness or Structural Passivity
Any digital filter structure is essentially an interconnec-
tion of delay elements, scalar multipliers, and two-input
adders, as shown schematically in Fig. 5(a). Imagine now
that we have a structure with the following special prop-
erty: no matter what the values of the multipliers m;
are, the frequency response is always bounded by unity,
that is, | H(e’®) \ <1 for all w. We say that such an imple-
mentation is structurally bounded, that is, the struc-
tural interconnection itself ensures that the frequency
response never exceeds unity. The term structurally
passive is also used for reasons described below.

In practice we constrain the multipliers m; to belong
to some reasonable range (such as, for example | m;|<1)
as we shall indicate explicitly in the context of specific
examples. In practice one also likes to make sure the
transfer function remains stable. In order to be precise
with these ideas, we introduce a number of important
definitions here:

Definition 1.
Bounded transfer functions. A digital filter transfer func-
tion H(z) is said to be bounded if it is stable (i.e., all
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poles are in |z| < 1) and ’H(e’”)| <1 for all w. Notice

also the following definitions, properties, and remarks:

1) It can be shown that a stable rational transfer
function H(z) is bounded if and only if

Yyl =Y]xml[ @

Lty (1)

+ +

vy(t) I vo(t)

Capacitor Viewed

ay(n) —» — by(n)

by(n) +— le— a,(n)

Wave Digital Two-Port

as Two-Port (Transfer Matrix)
(@)
x(n)
| —» >
H(z) — }
<+ — — <
y(n)

Cascaded Digital Two-Ports
(b)

Figure 4. The wave digital filter synthesis method of Swamy
and Thyagarajan [68]. (a) Each electrical element is regarded
as a two-port as demonstrated, rather than as a one port. (b)
The entire electrical circuit is transformed into a digital chain-
cascaded network of 2Xx2 digital transfer matrices (two-
ports). This avoids the need for explicit use of wave adaptors.

x(n) —» Ly y(n)

Digital Filter Structure
(@)

1 Zero Slope
- |
o o = m;
ol
Ok T Nominal Value
\_ (b) (c) )

Figure 5. Structural boundedness and low passband sen-
sitivity. (a) Any digital filter structure is an interconnection of
delay elements, multipliers, and adders. (b) A typical lowpass
response, with peak frequencies 6y in the passband. (c) Vari-
ation of the response |H(e’9k)| with respect to a multiplier m;.
In a structurally bounded (or passive) system, the quantity
|H(e’9*)| can only decrease as m; deviates from its nominal
value. This induces low passband sensitivity.
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Figure 6. Responses of fifth order power complementary el-
liptic digital filters. (a) Magnitude responses, and (b) magni-
tude squared responses. Notice in (b) that the shapes of the
ripples of the two filters are exactly complementary so that
they add up to unity everywhere.

—
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Figure 7. (a) The two-pair or two-port extraction step. Here
the mth order transfer function Hn(z) is implemented as a
two-pair Tm(z) terminated at one end with a transfer function
Hm-1(z) of smaller order m —1. (b) Repeated extraction of
two-pairs results in the realization of a scalar transfer func-
tion as a cascade of two-pairs terminated in a multiplier Ho.
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where y(n) is the output of H(z) in response to
x(n). That is, the signal energy cannot be increased
by the system; so a bounded system is also said to
be passive.

2) A bounded transfer function with | H(e’)| =1 for
all w is called lossless and is nothing but a stable
allpass filter. In this case Eq. (4) holds with equal-
ity for all inputs x(n).

3) A bounded transfer function is said to be bounded
real or BR if all the filter coefficients are real i.e.,
the impulse response h(n) is real. In this case
H(z) is real for real z. A lossless function with
real filter coefficients is called a lossless bounded
real or LBR function. It is nothing but a stable all-
pass filter with real coefficients.

4) An M X K transfer matrix T(z) is said to be loss-
less if it is stable (i.e., all entries Tk (2) are stable),
and furthermore T(e’”) is unitary for all frequencies:

TH(®)T(e®) =Ix Vo 5)

where the superscript H denotes transpose con-
jugation. If the lossless matrix T(z) also has real
coefficients, then we say it is a LBR transfer ma-
trix. Note that we require M > K for (5) to hold.
For the special case where K =1, T(z) becomes
a column vector T(2) =[Ho(2) H:1(2)... Hu-1(2)]"
and (5) implies

glm(efw) =1 ®)

which is also referred to as the power complemen-

tary property. ¢
Figure 6 demonstrates the meaning of the power com-
plementary property for the case where M =2. If the
elements of T(z) are rational functions of z, then the
property (5) implies

T@TE) =1 vz )

where T(2) =T?(1/z*). The property (7) is called the
paraunitary property. In short a rational lossless matrix is
a stable and paraunitary matrix. The mathematical origin
of this property can be traced back to scattering matrices
in classical network theory in the context of lossless mul-
tiports [2], [7], [53]. Multidimensional extensions are also
well-known, please see [5] and references therein.

B. Low Sensitivity Induced by Structural
Boundedness

Now consider a digital lowpass filter with response as
shown in Fig. 5(b). This is a bounded filter, with maximum
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response of \H(e"") | =1 at some frequencies 6 in the
passband. Assume this filter is realized using a structur-
ally bounded implementation. In this implementation,
the multipliers are such that \H(e’“’) | =1 at @ =6,. Now,
if a particular multiplier m; is disturbed from its ideal
value m;, (say due to quantization), then the response
|H (e"”‘)| can only decrease from the maximum of unity.
We therefore have the behavior shown in Fig. 5(c). This
shows that

A H(E™|

am; =0 ®

mi=mig

That is, the sensitivity with respect to m; is zero at the
maxima @ =0,. Thus, the structure exhibits low pass-
band sensitivity with respect to multipliers, especial-
ly if there are a number of maxima 6 in the passband.
Thus the behavior of a structurally bounded system is
similar to that of a doubly terminated lossless two-port
with maximum power transfer at the maximal points (re-
flection zeros) of the passband. The main point howev-
er is that structural boundedness can be directly achieved
in the z-domain without recourse to electrical filters as we
explain next. Like doubly terminated lossless electrical
circuits, structural passivity does not guarantee low stop
band sensitivity.

C. A Synthesis That Achieves Structural
Boundedness

The basic step in the structurally bounded realiza-
tion of a BR transfer function, as described in [71], is
as follows: given an mth order BR function Hn(2), we
“extract” an LBR two-pair T, (z) and a BR “remainder”
Hmn-1(2) with smaller order m —1, such that Hn(2)
can be implemented as in Fig. 7(a). The conditions
on H,(2) under which this is possible, as well as the
details of the specific two-pairs Tn(z) to be used are
described in [71]. Since the remainder Hn,-1(2) re-
mains BR, we can repeat this extraction process until
the final remainder Hp is a constant BR function (i.e.,
—1=<Ho<1). Thus starting from an Nth order BR func-
tion Hy(z), we can obtain the chain-cascaded struc-
ture shown in Fig. 7(b). While it is not obvious, it can
be shown that such a synthesis is always possible for
classical transfer functions (elliptic, Cheybyshev, and
Butterworth filters). Broadly speaking, two types of
LBR two-pair building blocks are necessary for this:
first-order and second-order building blocks. Each of
these comes with some minor variations depending
on the details of the transfer function to be synthe-
sized as elaborated in Tables 2, 3, and 4 of [71]. A typi-
cal first order LBR two-pair involved in the synthesis
takes the form
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First Order Lossless
Two-Pair

— .
For Second Order Two-Pair (a)

Replace This Delay With
This Allpass

(b)

Figure 8. (a) Example of a first order lossless two-port
or two-pair developed in [71]. Notice similarity to series
wave adaptor (Fig. 3), with third port terminated by a delay.
(b) One way to obtain a second order lossless two-port,
is to replace the delay element z™' with an allpass filter,
as indicated.

-0 Jo(1+z™)
T(Z)zﬁ Jo(l+z™) (o-1)z" ®)
where 0 < o <1 so that the pole is inside the unit circle
and furthermore Yo is real. It is readily verified that
T(2)T(2) =I so that T(z) is LBR. Figure 8(a) shows an
implementation of the first order two-pair (9). The mul-
tipliers Jo donot appear because they can be removed
by a denormalization process which does not change
the transfer functions H,(z). To be more specific, if a
two-pair T (2) has the general form

Tu(@) Ti2(2)

To(2) Tu(2) (10)

then only the product 7T12(2) 721 (2) matters in determin-
ing the transfer functions Hn(z). So replacing Ti2(2)
with aTi2(2) and Tx (2) with T»(2)/a where a =40 or
a=1//o gets rid of /o . Fig. 8(a) is one such denormal-
ized structure.

A typical second order LBR two pair arising in the
synthesis of BR functions is obtained simply by replac-
ing z! in Eq. (9) with the allpass function

_ +z7!
B

1+Bz" ab

where —1< B <1. Please see Fig. 8(b). Some other minor
variations of these first and second order LBR two-pairs

IEEE CIRCUITS AND SYSTEMS MAGAZINE

21



22

Historically the mathematics of the lattice structure can be
traced back to the mathematical works of Schur and Szego
in the early 1900s, and the work of Levinson.

are tabulated in [71] and are sufficient to realize a large
class of BR transfer functions in the form of Fig. 7(b).

How does this cascade achieve structural bounded-
ness? If the multipliers o; and B; are restricted to their
specific ranges in spite of quantization (i.e., 0<0,;<1
and —1< B;<1) then each two-port remains LBR. If the
rightmost multiplier Hy is quantized such that the prop-
erty —1=< Hy <1 continues to be respected, then all the
transfer functions H,(z) will remain BR in spite of mul-
tiplier quantization. Thus boundedness of Hy(z) can be
structurally enforced.

IV. Generality of the Structurally
Passive Approach

The synthesis of a BR transfer function by extraction of
LBR building blocks gives rise to a number of well known
low sensitivity structures as special cases. In fact, no-
tice the similarity between the LBR two-pair shown in
Fig. 8(a) and the wave adaptor shown Fig. 3. This simi-
larity is not coincidental. The direct digital synthesis
described in Sec. 3.3 does give rise to the type of wave
digital filters developed by Swamy and Thyagarajan
(Sec. 2.3) as special cases; please see [71].

Two-Multiplier
Lattice Section

Four-Multiplier or
Normalized
Lattice Section

(b)

Figure 9. (a) The Gray-and-Markel recursive lattice structure
for allpass filters. (b) Two possible choices for the lattice sec-
tions. The transfer functions Hx(z) are the same regardless
of which of these sections is used. This lattice is also known
as the linear-prediction lattice because it has its origin in the
theory of linear prediction, and was extensively studied in the
context of speech coding.
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A. The Gray-Markel Allpass Lattice
Another special case is the well-known Gray and Markel
lattice structure for allpass filters [32]. Please see Box 2
for a review of allpass filters; these filters have many
applications [61], including low sensitivity implementa-
tions [77] and frequency transformations [12].

The allpass lattice structure is shown in Fig. 9.
In this structure the lattice coefficients k, satisfy
|km|<1, and

ko =y 1=|kn|

It can be shown that the transfer function Hy(2) is sta-
ble and allpass, that is, | Hy(e’*) | =1 for all w. In fact any
stable rational allpass filter can be implemented this
way. The coefficients k., are real for real-coefficient all-
pass filters.

This structure was derived independently in 1973 with-
out reference to either the wave filter approach or struc-
tural passivity [48], [57], [90]. In fact, historically, the
mathematics of the structure can be traced back to the
mathematical works of Schur and Szeg6 in early 1900s
[62], [63], [70] and the work of Levinson [44]. It was de-
veloped further in the signal processing literature in the
1970s, in the context of linear prediction theory [4], [38],
[43], [48], [57], [90]. Please also see the classic tutorial
articles by Kailath [40] and Makhoul [45] in this context.

Now, since Hy(2) is allpass, it is in particular a bound-
ed function, and it can be synthesized in the form of a
chain-cascade by extracting lossless two-ports as de-
scribed in Sec. 3.3. There are many choices of lossless
two ports that make this synthesis possible. One specific
synthesis, described in Sec. 3.4.3 of [88], yields the spe-
cific structure of Fig. 9. More details can be found in [81].
Thus the Gray-Markel lattice can be regarded as a spe-
cial case of the lossless two-port extraction method. The
transfer matrix of each lossless two-port in this example
takes the form

(12)

10
0 z!

km R

T =k —km

a3

The constant matrix above is the four-multiplier or nor-
malized building block [33] shown in Fig. 9(b). There are
many denormalized versions of the lattice, as explained
in detail in [88].

In addition to structural passivity, this implementa-
tion also involves an internal passivity which leads to
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Box 2: Allpass Functions

Allpass filters are fundamental building blocks in sig-
nal processing. A digital filter H(z) is said to be allpass
if | H(e”®)| =1 for all @, thatis H(e®) =e®@ . A rational
allpass filter has the form

H(z) = by +by—1z' +--- +biz7W=1 4 oz B Z_NB(Z)

bo+b1z7" +bez 2+ +buz" B(2)

where B(z)=B"(1/). This notation is equivalent to re-
placing the coefficients bx by their complex conjugates,
and replacing z with 1/z. For a rational transfer function
the allpass property can be rewritten as A(z) H(z) =1 for
all z Allpass filters are used in phase equalization, and
in the implementation of certain filters. For example, as
reviewed in this article, classical Butterworth, Chebyshev,
and elliptic filters can be expressed as a sum of two allpass
filters, leading to a structurally passive implementation
with low passband sensitivity. Such structures also have
very few multipliers compared to direct-form and other
structures. The nonzero poles px and zeros zx of a rational
allpass filter have a reciprocal symmetry: px =1/z.

In fact, for a causal stable rational allpass function of
order >1, a curious symmetry with respect to the unit
circle, called the modulus property holds:

<1 for|z|>1
[H(z)[{>1 for|z|<1
=1 for|z|=1

This is at the heart of the derivation of lattice structures and
stability test procedures based on allpass systems as elabo-
rated by Vaidyanathan and Mitra (1987). These symmetries
with respect to the unit circle are summarized in the figure.
Allpass filters are also very effective in the implementation

of notch and antinotch filters. Many efficient structures
exist for allpass filters such as the Gray and Markel lattice
(1973), and the Mitra and Hirano class of structures (1974).
A detailed review of allpass functions can be found in Re-
galia, Mitra, and Vaidyanathan (1988). An early application
of allpass filters for frequency transformations was devel-
oped by Constantinides (1970). The allpass property can be
generalized to MIMO systems as follows: an M x N transfer
matrix T(z) is allpass if it is unitary on the unit circle, that is,

TH(e™)T(e™) =1y

for all . This requires M = N. For rational transfer matri-
ces this implies the paraunitary property: T(z)T(z) =lu for
all z Here T(2) =T"(1/2). If y(n) is the output of a stable

paraunitary system in response to input x(n), then
2y )y (n) =2 x"(mx(n)
n n

That is, the output energy is equal to the input energy. So,
stable paraunitary matrices and allpass filters are called
lossless systems. Historically, lossless systems had a fun-
damental role in circuit and system theory as elaborated by
Belevitch (1968) and by Anderson and Vongpanitlerd (1973).
Paraunitary matrices arise in the cascaded synthesis of digi-
tal filters with structural passivity. For the special case where
N =1, T(z) is a column vector with components Hk(z), and
the allpass property becomes -4 | He(e") F =1, which is
the power complementary property. There is a systematic
way to factorize FIR paraunitary matrices in terms of planar
rotations and delay elements. These are summarized in the
review paper by Vaidyanathan and Doganata (1989). Parauni-
tary matrices also arise in the design of orthonormal digital
filter banks. Please see Vaidyanathan (1993) for details.

z-Plane fo) |H(Z)|<1

v

Symmetries wrt
Unit Circle

4 Frequency
Response
Magnitude

v

t t
- T

FIRST QUARTER 2019

IEEE CIRCUITS AND SYSTEMS MAGAZINE



Thus, wave filters, orthogonal filters, and cascaded lattice
structures are nicely unified by the structurally passive
synthesis methods which use LBR building blocks.

many useful properties, including suppression of limit
cycle oscillations [34], [76]. The importance of this in-
ternal passivity in suppression of limit cycles has also
been established independently in the context of wave
digital filters [20], [26]. Further generalizations as well
as simplifications can be found in [76], [79].

B. Orthogonal Digital Filters and Rotation
Operators

Before we discuss further examples it is useful to intro-
duce the planar rotation operator which turns out to be
an important building block for many types of digital fil-
ter structures. Thus, consider the matrix

_[cosOm sinOn

On=| .
" —sinO, cosOn

(14)

and the operation y =0,x. It is readily shown that y
is the clockwise rotated version of x, by the angle 6,
(page 290, [88]). This operator is therefore called the
planar rotation operator, and is schematically denoted
as shown in Fig. 10(a). It is also known as the Givens ro-
tation operator or the cordic processor [31], [37], [42].
As an example of how this operator arises, consider the
allpass lattice structure with the four-multiplier or nor-
malized building block (Fig. 9). If the filter has real coef-

X1 —> > Vo

»)

Y1+ «— Xo
Planar _
Rotation c=cosH, s=sinb
(a)
Ajl—>
-1
> > z! >B,
3 D \
B1 < < !
<« A

(b)

Figure 10. (a) The planar rotation operator. This rotates
the vector x =[x; Xx»]” clockwise by an angle 6 to produce
y=[y: yol". This is also known as the Givens rotation op-
erator [31], or the cordic processor [37], [42]. (b) Implementa-
tion of the first order LBR two-port of Fig. 8(a) using planar
rotation operators.

IEEE CIRCUITS AND SYSTEMS MAGAZINE

ficients, then k. are real and we can write k, =cos6n,
and kn =+1—k% =sin6, for some real 6, so that the
computational blocks become

kB Rm _[1 OHCOSG," sin@m,
km —km| [0 —1ll—sin6n cos6nm
R

On

as

Here R is just a reflection operator, as it merely revers-
es the sign of the y-component. Thus, the allpass filter
can be implemented entirely in terms of planar rotations
as the computational units.

Similarly it has been shown [75] that the first order
LBR two-pair of Fig. 8(a) can be rearranged in terms of
two planar rotations as shown in Fig. 10(b). In fact, any
BR transfer function, synthesized in terms of the first
and second order LBR two-pairs of Fig. 8 can be ex-
pressed in terms of planar rotations as the only compu-
tational units [75]. Digital filter structures which can be
expressed entirely in terms of rotation operators were
first noticed by Deprettere and Dewilde in the context
of a family of structures called orthogonal filter struc-
tures [15], [58], which enjoy several robustness prop-
erties under quantization. It should also be mentioned
here that paraunitary matrices can be neatly factorized
into planar rotations (or other fundamental unitary blocks
such as Householder matrices) and delay elements [17],
[84]-[86], [88].

The preceding discussions show that the Gray-Markel
lattice structures (Fig. 9) and the structurally passive
cascaded structures (Fig. 7(b) with building blocks as
in Fig. 8) can be expressed as orthogonal digital filter
structures. Thus, wave filters, orgthogonal filters, and
cascaded lattice structures are nicely unified by the
structurally passive synthesis methods which use LBR
building blocks.

We conclude by mentioning that the lossless two-
port extraction approach of Sec. 3.3 has also been ex-
tended to transfer functions with multiple inputs and
multiple outputs (MIMO). Figure 11(a) shows an example
of a single-input multi-output transfer matrix with trans-
fer function Hy(2). Here the transfer matrices T (2) are
MIMO lossless transfer matrices, that is, they are stable
and satisfy Tm(2) T (2) =1 It can be shown that if Hy (2)
is SIMO lossless, it can be synthesized in this form by
using the lossless multiport extraction approach [75]. A
special case of this is the beautiful family of single-input
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two-output lattice structures developed first by Rao
and Kailath in 1984 [59] shown in Fig. 11(b). In this struc-
ture the matrices Ry are constant unitary matrices, and
the transfer matrix [Hy(2) Gy (2)]" is lossless. That is,
Hy(2) and Gn(2) are stable and satisfy

Hy(2)Hn(2) +Ghv (@) Gy (2) =1 (16)
The above property implies the power complementary
property | Hy(e’) \2 +| Gr(e™) \2 =1. Thus, given any BR
transfer function Hy(z2) we can always find its power
complementary partner Gy(z), and realize the pair as
in Fig. 11(b). It can be shown in this specific case [75]
that the 3 X 3 unitary matrices Rx can be implemented
using two planar rotations each, as shown in Fig. 11(c).
This is a structurally passive implementation of the BR
function Hy(2) in the sense that, regardless of the angu-
lar values of the rotations the transfer functions remain
BR. In particular, the structure exhibits low passband
sensitivity as explained in Sec. 3.2.

V. Further Examples of Structurally Passive
Implementations
In this section we review a number of structurally pas-
sive implementations and demonstrate their low sensi-
tivity properties. These methods are quite simple and
can be understood independently in the z-domain with-
out any background on circuit theory or electrical filters.

A. Parallel-Allpass Implementations

Consider Fig. 12 where A¢(2) and A1(2) are stable ra-
tional allpass filters and Ho(z) and Hi(z) are obtained
by adding and subtracting the outputs of the allpass fil-
ters as shown. It turns out that a large class of IIR digital
filters, including Butterworth, Chebyshev, and elliptic
filters, can be implemented in this way. This result is
known in classical continuous-time filter theory and it
is implicit in the design of wave lattice digital filters pio-
neered by Fettweis [21], [30]. However, the result is more
general, and it can be proved quite easily and directly
without reference to continuous-time circuit theory [77].
Thus, Theorem 3.6.1 in [88] establishes some sufficient
conditions on Ho(z) and H:(z) which allow their imple-
mentation as in Fig. 12(a). There are many special cases
of filters which satisfy these sufficient conditions. For
example if Hyo(z) is an odd order lowpass Butterworth,
Chebyshev, or elliptic filter, it satisfies the conditions of
the above theorem, and it can be expressed as

Ho(z) =

Ao(@) +A1(2)
Of an

where Ao(z) and A:(2) are real-coefficient, stable, all-
pass filters. That is, they have the form [88]
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Ar(2) = 18)

(Please see Box 2 for a review of allpass filters.) There
are systematic ways to identify the coefficients of the

] -+ >  —
> [Tn(2) > [Taa(2)] o T1(Z)}Ho
<+—] < [ |
Hn(2) Hn-1(2) H,(2)
(@)
o -
Hn(2) Ry Ry
] < — <
<« | < l« <]
Gn(2)

»)

it
} v
I

5

le—
le—

Figure 11. (a) The two-port extraction approach extended to
single-input multi-output systems. (b) Example of a single-
input two-output lattice, generating an IIR allpass vector, that
is, an IIR power complementary pair [Hn(z) Gn(z)]". (c) Imple-
mentation of each building block using two planar rotations.
The example in (b), (c) was first developed by Rao and Kai-
lath in a pioneering work in the 1980s [59].

0.5
> Ao(2) Hy(2)
A 4
> Ai(2) Hy(2)
—1
(a)
0
H,
—-20
@ Ho
=
S —40
(7]
Q
o
m -60
©
-80
-100 : - :
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Figure 12. (a) The parallel allpass structure to implement
a power complementary pair of bounded real transfer func-

tions. (b) Example of filter responses.
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allpass filters starting from the coefficients of Ho(z)
[77], [88]. With Ak(2) identified, the filter

_A@-AIR)
_Of (19

Hi(2)
turns out to be a highpass filter of the same kind (Butter-
worth, Chebyshev, or elliptic). From (17) and (19) it is easy
to verify that the two filters are power complementary:

|Ho(e™) [} +| Hi(e™) [ =1 (20)
This is demonstrated in Fig. 12(b) where the filters are
fifth order elliptic filters. The implementation of Fig. 12
is called the parallel-allpass implementation or sum-of-
allpass implementation.

A similar implementation is possible for even-order
Butterworth, Chebyshev, and elliptic lowpass filters, but
Ao(z) has complex coefficients ax;, and the coefficients
of A1(2) are the conjugates of those of A((2); see [80]

for details. In this case Hy(z) can be realized by taking
the real part of the output of A¢(2), and Hi(2) realized
by taking the imaginary part. In short, a single com-
plex allpass filter can be used to implement the pair
Ho(2), Hi1(2).

We now argue that Fig. 12(a) gives rise to a structur-
ally passive implementation. While there exist many
structures for implementation of allpass filters [32], [51],
[61], [69], the Gray-Markel lattice is especially attrac-
tive in this context. If A;(2) are implemented using the
Gray-Markel allpass lattice of Fig. 9, then as long as the
quantized multipliers k,, continue to satisfy | Rm | <1, the
filters remain allpass as well as stable [81]. Thus, even
when the multipliers are quantized Ho(z) and Hi(2)
continue to be a sum and difference of two stable allpass
filters as in Egs. (17), (19). Since | A;(e’*)| =1 it is obvi-
ous that \Hk (e™) | <1 which proves structural bounded-
ness of Ho(z) and Hi(z). As explained in Sec. 3.2 these
structures therefore enjoy low passband sensitivity.

0 Direct-Form |

dB Response

0.2 0.4 0.6 0.8 1
olr

0 Allpass Based |

dB Response

—100 . . .
0 0.2 0.4 0.6 0.8 1
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Figure 13. Responses of the direct-form structure and the parallel-allpass based structure under quantization. A fifth order IIR
elliptic filter is simulated, and coefficients are quantized to 18 bits. The responses of quantized structures are shown in red, and
responses of unquantized structures are in black. Notice that the parallel-allpass based system (structurally passive system) has
very low passband sensitivity: the quantized response is indistinguishable from ideal.
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In short, we get two Nth order filters Hy(z) and H,(z)
at the total cost of only N multipliers!

In addition to low sensitivity, the implementation
Fig. 12 is also amazingly economic in terms of compu-
tational complexity. For example, assume Ho(z) is an
Nth order lowpass elliptic filter with odd N. Then the
allpass filters have orders no and n; where no +n; =N.
Each allpass filter can be implemented using a lattice
structure as in Fig. 9. Now, instead of using the two-
multiplier or four-multiplier lattice sections in Fig.
9(b), it is always possible to use one-multiplier sec-
tions (see Fig. 3.4-11 of [88]). If we do this then Ax(z)
requires only nr multipliers, so that the entire imple-
mentation of Fig. 12 requires only N multipliers where
N is the order of each filter Hx(z). In short, we get
two Nth order filters Hyo(z) and Hi\(2) at the total cost
of only N multipliers! Indeed, this is one of the most
efficient ways to implement Butterworth, Chebyshev
and elliptic filters.

To demonstrate low sensitivity, consider a 5th order
elliptic lowpass filter Ho(z). In Fig. 13 we show the mag-
nitude response of Hy(z) with the quantized direct-form
structure [54], and the quantized parallel allpass structure
of Fig. 12(@). The responses of quantized structures are
shown in red, and responses of unquantized structures
are in black. For both structures, the dB plot of the entire
response is shown, and the details of the passband re-
gion is shown separately. We have used 18 bits per multi-
plier coefficient in both structures. While both structures
perform satisfactorily in the stopband, the passband re-
sponse of the quantized direct-form deviates significantly
from the ideal. In contrast, the quantized response of the
structurally passive implementation (Fig. 12(a)) is nearly
perfect in the passband as well, demonstrating very low
passband sensitivity.

It is well known that if the Gray-Markel lattice struc-
ture is used to implement the allpass filters, then limit
cycle oscillations can be suppressed [34], and further-
more, the roundoff noise gain is small [33]. Thus, the
structurally passive implementation of Fig. 12(a) enjoys
a number of robustness properties in addition to its
computational economy. A special case of (17) where
Ao(2) =1is very useful for the design of notch and anti-
notch filters [89].

B. The FIR Power Complementary Lattice

Consider Fig. 14(a) which is a cascaded lattice structure.
Unlike in the earlier cascaded structures (e.g., Figs. 7
and 9), there are no feedback loops here. So, this is a
nonrecursive or FIR lattice. The internal details of the
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lattice sections are shown in Fig. 14(b). In this figure we
use the notations

2D

So the building blocks are planar rotations or denor-
malized versions of such rotations. This structure was
introduced in [78] and has a number of interesting prop-
erties. First, the two transfer functions are Hy(z) and
Hi(z) are guaranteed to be power complementary that
is, | Ho(e’) [ +| Hi(e") [ =1 regardless of the choice of
the angles 0,,. (If denormalized lattice sections are used,
then | Ho(e’) [* +| H (e’*) [} = ¢ for some constant ¢ > 0).
Secondly, given any pair of power complementary FIR
filters Ho(z) and Hi1(z) (with real coefficients), they can
always be implemented using this lattice structure, by
choosing the planar rotation angles 6,, appropriately.
Now assume that we are given some FIR filter Hy(z) with
real coefficients and normalized such that | Ho(e™)| <1,
i.e., we are given an FIR BR function Hy(z). Then we can
always find an FIR BR Hi1(2) such that {Ho(2), Hi(2)} is
power complementary. For this we simply take Hi(z)
to be any spectral factor of \Hl (e \2 = —|Ho(ef”) |2.
Then we can implement the pair as in Fig. 14. This shows
that we can obtain this cascaded lattice implementation
for any FIR BR filter Ho(2).

Now, given such an implementation, if the angles 6,
in the rotations are perturbed, the power complemen-
tary property is not affected, and therefore the prop-
erty ’Ho(ef‘")|51 continues to hold. In this sense the

Cm =CO0SOm, Sm=s8in6;

Denormalized Rotation

Planar Rotation

(b)

Figure 14. (a) The lattice structure for an FIR power comple-
mentary pair [Ho(z), H1(z)] [78]. (b) Details of the building
blocks. Each block is a planar rotation operator. It can also
be replaced by a denormalized section with two multipliers
as shown.
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implementation is structurally passive and therefore en-
joys low passband sensitivity. In practice even the lat-
tice with the denormalized sections shown in Fig. 14(b)
exhibits low passband sensitivity. To demonstrate this,
we consider a 60th order linear phase lowpass equirip-
ple filter Ho(z) designed using the McClellan-Parks algo-
rithm [54], and implement it using the lattice structure
(using the algorithm presented in [78]. We use the de-
normalized (two-multiplier) lattice sections of Fig. 14(b)
and quantize the lattice coefficients an to 8 bits. We
compare the resulting frequency responses with those
of the direct form structure with multipliers quantized
to 8 bits as well. Fig. 15 shows the filter magnitude re-
sponses for these implementations. The responses of
quantized structures are shown in red, and responses of
unquantized structures are in black. For both structures,
the dB plot of the entire response is shown, and the de-
tails of the passband region is shown separately. While
both structures perform satisfactorily in the stopband,
the passband response of the quantized direct-form de-

viates significantly from the ideal. In contrast, the quan-
tized response of the structurally passive implementa-
tion (Fig. 14(a)) is nearly perfect in the passband as well,
demonstrating very low passband sensitivity.

The FIR lattice structure Fig. 14 is called the FIR power
complementary lattice or the FIR structurally passive lat-
tice. Readers familiar with the FIR linear prediction lattice
or LPC lattice might wonder what the difference is. The
linear-prediction lattice also has an appearance similar to
Fig. 14 with two-multiplier lattice sections, but the minus
sign on the a is not there, and furthermore, |ax|<1. In
terms of theoretical properties, this is a major difference.
The FIR lattice structure of Fig. 14 can realize arbitrary BR
Hy(2). But the LPC lattice cannot be used to realize ar-
bitrary FIR filters. It is typically used to realize prediction
filters Ho(z) with all zeros strictly inside the unit circle
(minimum-phase filters). The filter H1(z) in an LPC lattice
is not power complementary to Hy(z), but rather, it is the
mirror image polynomial Hi(z) =z "Hy(1/z"). So, in the
LPC lattice, H1(z) has all its zeros outside the unit circle.

0 Direct-Form

dB Response
I
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0 0.2
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()

Figure 15. Responses of the direct-form structure and the FIR structurally passive lattice [78] under quantization. A 60th order
FIR filter Ho(z) is simulated, and coefficients are quantized to 8 bits. The responses of quantized structures are shown in red,
and responses of unquantized structures are in black. Notice the low passband sensitivity of the structurally passive FIR lattice.
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In fact, these power complementary FIR lattices have also inspired the theory
of multirate filter banks with perfect reconstruction, leading to a whole
generation of filter bank structures with orthogonality properties.

We conclude by mentioning some generalizations.
If {Ho(2),Hi(2),...,Hu-1(2)} are causal real coefficient
FIR filters with power complementary property, that is,
>, He(e™) =1, then there exists a cascaded lattice
structure similar in principle to Fig. 14(a), and can be
implemented with planar rotations as the only computa-
tional units. For details please see [78]. Such structures
are useful in the implementation of power complementa-
ry filter banks. In fact, these power complementary FIR
lattices have also inspired the theory of multirate filter
banks with perfect reconstruction, leading to a whole
generation of filter bank structures with orthogonality
properties. Details can be found in [1], [41], [46], [47],
[65], [82], [84]-[88]. Such filter banks retain the perfect-
reconstruction property in spite of coefficient quantiza-
tion, and this can be exploited in the design of the filter
responses under quantized conditions [36]. In addition
to their applications in signal compression and digital
communications, orthonormal filter banks have a role
in the construction of orthonormal wavelets [11], [14],
[66], [88], [91].

C. The FIRBR Structure
We now present an example of a structurally passive FIR
system called the FIRBR structure [74]. It is one of the
simplest ways to achieve structural passivity — the only
background required is a first course in digital signal pro-
cessing. The method only works for Type 1 linear phase
FIR filters [54] with equiripple passbands. Such a filter
has transfer function of the form H(z) =Zln\':0h(n)z’”
and satisfies the following properties:

1) N iseven,

2) h(n) is real, and

3) h(n) is symmetric, that is h(n) =h(N —n).

So the frequency response has the form

H(e™) =e [ (e!™) (22)

where Hg(e’™) is called the zero-phase part. It is real,
with Hg(e’*)>0 in the passband. Figure 16(a) shows a
plot of the zero-phase part Hr(e/*) for a lowpass filter.
The equiripple property ensures in particular that all
the peaks in the passband are equal to unity.

We now show how to implement such a filter in a
structurally passive manner. Define the companion filter

GE@)=z"-HE) 23)
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so that

G(e™)=e ™V (1 - Hr(e™)
NMLL AP
Gr(e™®)

(24)

Clearly this is a Type 1 linear phase highpass filter with
zero-phase response Gr(e’®) as shown in the figure.
Furthermore, its response satisfies Gr(e’*)>0 for all
. In fact at the passband peak frequencies of H(z)
where Hr(e’) =1 and its derivative is zero, we have
Gr(e’) =0 and these are guaranteed to be double zeros
of G(2). Therefore G(z) can be factorized into the form

G(2)= IMI (1-2z"coswr + 22V G2(2)

k=1

(25)

Gi1(2)

where Gi1(2) represents all the double zeros on the
unit circle and G2(2) represents all zeros which are not
on the unit circle. So we can implement the original
lowpass filter H(z) =z —G(2) using the structure
shown in Fig. 16(b) where G(2) is implemented in the
factored form (25).

Now consider the effect of quantization. G1(z) is im-
plemented in the factored form (25) where the multipli-
ers are

mr =2coswk

(26)

So if these multipliers are perturbed slightly, the zeros
of G1(z) remain on the unit circle and they continue to
be double zeros (as long as the quantized m; satisfies
|mk|<2). So Gr(e®)=0 which shows that Hg(e’*)<1.

Gple™)

ol VAV P N

Figure 16. (a) The relation between the responses of H(z)
and G(z) where H(z) is Type-1 linear phase FIR, and G(z) =
z M2 —H(z). Here Hr(e/®) and Gr(e’®) are the zero-phase
responses of H(z) and G(z) as defined in Egs. (22) and (24).
(b) An implementation of H(z). If G(z) is implemented in the
factored form (25), this implementation of H(z) is structurally
passive. This is called the FIRBR implementation, and enjoys
low passband sensitivity.
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Thus the passband response of H(z) remains bounded
by unity.! Fig. 16(b) is therefore a structurally bounded
implementation as long as G(z) is implemented in fac-
tored form (25). The structure therefore enjoys low
passband sensitivity.

To demonstrate the low sensitivity, we consider a
24th order linear phase lowpass equiripple filter H(z)
designed using the McClellan-Parks algorithm [54]. We
implement this using Fig. 16(b), with G(z) implemented
in factored form (25). We compare the resulting frequen-
cy response with those of the direct-form structure, with
multipliers quantized to 7 bits in both structures. Fig. 17
shows the filter magnitude responses for these imple-
mentations. The responses of quantized structures are
shown in red, and responses of unquantized structures
are in black. For both structures, the dB plot of the entire
response is shown, and the details of the passband re-

Notice that G,(2) is itself a Type 1 linear phase filter, and has zeros in
reciprocal conjugate pairs {z;, 1/z}}. When the coefficients of G,(z) are
quantized, these zeros continue to remain inside and outside the unit
circle, with reciprocal conjugate symmetry.
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gion is shown separately. While the structures have com-
parable performances in the stopband, the passband re-
sponse of the quantized direct-form deviates significantly
from the ideal. In contrast, the quantized response of the
structurally passive implementation (FIRBR structure of
Fig. 16(b)) is nearly perfect in the passband as well, dem-
onstrating very low passband sensitivity.

VI. Concluding Remarks

The world of circuit theory has been home to many leg-
ends in the last hundred years who gave a rock solid
foundation to the field. Prof. Fettweis was one such giant
who was a legend even during his life time. His contri-
butions spanned a much wider area than we have dis-
cussed in this limited space. In this article we focussed
only on digital filter structures with low passband sen-
sitivity. Even in the area of wave digital filters, low sensi-
tivity is only one of the many aspects addressed by Prof.
Fettweis. His contributions to other aspects of robust-
ness such as freedom from limit cycles are addressed in
other articles in this issue.
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