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One of the many contributions of Prof. Fettweis was the inven-
tion of wave digital filters. These filters are obtained from classical 
RLC filters, in particular doubly terminated lossless two-ports, by 
using some transformations. Namely, the voltages and currents 
in the circuit elements are transformed into wave-variables and 
then a bilinear transformation is performed. If the wave transfor-
mation is performed appropriately it results in a realizable digital 
filter structure which furthermore enjoys a number of robustness 
properties such as low passband sensitivity, low roundoff noise, 
and freedom from limit cycle oscillations. Prof. Fettweis and his 
colleagues also showed that these properties are due to the in-
heritence of passivity properties from the continuous-time domain 
into the digital filter domain. Subsequent to this landmark work, 
a number of researchers worked on the problem of obtaining 
robust digital filter structures without starting from continuous-
time circuits. One of these is the structurally bounded or struc-
turally passive class of digital filters. These structures are based 

on inducing structural passivity directly into the implementation 
and are therefore simpler, both conceptually and from a practical 
viewpoint. They are also more general and lead to new structures 
which have no natural connection to electrical circuits. This paper 
gives an overview of some of these developments.

I. Introduction

Prof. Fettweis was a giant in many different areas of 
circuit theory, signal processing, physics and related 
mathematics. One of his contributions was the inven-

tion in 1971 of wave digital filters [18], [19]. These filters 
are obtained from classical RLC filters [35], in particu-
lar doubly terminated lossless two-ports, by using some 
transformations. Namely, the voltages Vi  and currents Ii  in 
the circuit elements are transformed into wave-variables us-
ing formulas of the form

	 A V R I B V R Ii i i i i i i i= + = - 	 (1)
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where Ai  and Bi  are called the “incident” and “reflected” 
wave variables, and R 0i2  are free parameters to be cho-
sen by the designer. In addition to RLC elements, trans-
formers and gyrators are also sometimes included. If the 
wave transformation is performed appropriately, then 
the bilinearly transformed version of the circuit results 
in a realizable digital filter structure (i.e., a structure 
without delay-free loops), which furthermore enjoys a 
number of robustness properties such as low passband 
sensitivity, low roundoff noise, and freedom from limit 
cycle oscillations [26]. Prof. Fettweis and his colleagues 
also showed that these properties are related to the pas-
sivity properties of the underlying continuous time elec-
trical circuit [20].

Subsequent to this landmark work, a number of 
researchers explored the possibility of obtaining ro-
bust digital filter structures without starting from 
continuous-time circuits. This includes the work of 
Bruton and Vaughan-Pope [10], Constantinides [13], 
Mitra and Sherwood [49], Deprettere and Dewilde [15], 
Rao and Kailath [59], and Vaidyanathan and Mitra [71], 
[74], [77]. Some (but not all) of these structures exhib-
ited low sensitivity and other robustness properties. 
These include the structurally bounded class of digital 
filters [71], [73], [77], and orthogonal digital filter struc-
tures [15], [59].

The structurally bounded or structurally passive 
class of digital filters [71] are based on inducing pas-
sivity directly into the structure and are therefore sim-
pler, both conceptually and implementation wise. They 
explain in a unified way the robustness properties of 
wave digital filters, wave lattice filters [21], orgthogonal 
digital filters [15], [59], and the Gray-Markel lattice struc-
tures [32]–[34]. The structurally bounded class is also 
more general and leads to new structures which have 
no natural connection to electrical circuits such as the 
cascaded FIR power complementary lattice [78], the 
FIRBR structure [74], and the single-input two-output 
IIR power complementary lattice [59].

This paper gives an overview of some of these de-
velopments. We first review the fundamental reason 
for the low sensitivity of doubly terminated lossless 
networks based on an argument advanced by Orchard 
in 1966 [55], [56]. After a brief review of wave digital 
filters we explain structural boundedness in detail. The 
approach of structural boundedness [71] is based on 
the premise that if boundedness can be directly real-
ized in the digital domain by constraining the structure, 

then there is no need to copy electrical circuits into the 
digital domain using painstaking and detailed formulas. 
We also discuss a number of robust digital filter struc-
tures derived using structural boundedness. It turns 
out that the two-port extraction method proposed by 
Mitra, Kamat, and Huey [50] long before the introduc-
tion of structural boundedness, can in fact be used to 
develop cascaded networks with structurally bounded 
properties. The beauty is that this procedure gives rise 
to wave filters, Gray-Markel lattices, and orthogonal 
digital filters as special cases [75]. But that is not all. 
Many new low sensitivity structures, not based on the 
two-port cascade, emerge from the theory of structural 
boundedness. Some of these are reviewed here as well, 
such as the parallel allpass structure [77], FIR power 
complementary lattices [78], and FIRBR structures [74].

II. Low Sensitivity and Structural Boundedness
When a digital filter is implemented with finite preci-
sion for the multiplier coefficients, the response ( )H e j~  
changes, and may fail to satisfy the original specifica-
tions. In fact the filter may even become unstable if the 
number of bits used for the multipliers is too small. Fig-
ure 1 shows the response of a fifth order digital elliptic 

Figure 1. The effect of coefficient quantization. The magni-
tude response ( )H ej~  of a 5th order elliptic lowpass filter is 
shown with 18 bit quantization (each multiplier is quantized to 
18 bits). The direct-form structure [52], [54] is used. The red 
plot shows the response of the quantized structure whereas 
the black plot is the unquantized response. The passband 
details are shown in the inset. While the stopband response 
is nearly perfect even after quantization, it is clear that the 
passband response after quantization deviates significantly 
from the ideal.
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filter implemented in direct-form [16], [52], [54]. The ideal 
response is shown in black and the response with mul-
tiplier coefficients quantized to 18 bits is shown in red. 
Notice that the passband response (shown separately 
in the inset) deviates considerably from the ideal, even 
with 18 bits of precision for each multiplier coefficient. 
For higher order filters which have sharp cutoff and 
very small passband ripples, this effect is even more 
severe. The good news is that if the direct-form struc-
ture is replaced with a properly chosen structure, then 
these effects of quantization can be reduced to a con-
siderable extent.

A. A Lesson Learned From Passive  
Electrical Filters
Historically, even before the advent of digital filters, it was 
well known that continuous time electrical filter circuits 
exhibited very low passband sensitivity (with respect to 
circuit element variations) if they are implemented as 
lossless (i.e., LC) circuits terminated at both ends appro-
priately with resistors. Such a doubly terminated lossless 
two-port is shown in Fig. 2(a). Define the filter transfer 

function as the voltage ratio ( ) ( )/ ( ) .H s Y s X s2=  With ele-
ment values appropriately chosen, this can be designed 
to be a lowpass filter with response as in Fig. 2(b). It is 
found that such a filter exhibits low passband sensitivity 
with respect to element variations.

An explanation for the low passband sensitivity was 
given by Orchard [55]: the two port is usually designed 
such that there is maximum transfer of power from the 
source ( )x t  to the load ( )ty  at the passband maxima. 
Thus, at a frequency k~ i=  in the passband (Fig. 2(b)), 
where the filter has maximum gain, there is maximum 
transfer of power. When a circuit element is perturbed, 
the transfer of power, hence the gain ( ) ,H j ki  can only 
get smaller as demonstrated in Fig. 2(c). Thus the pass-
band maxima exhibit low sensitivity with respect to ele-
ment values. If there is a number of such maxima in the 
passband then the entire passband response has low 
sensitivity. A more quantitative explanation was given 
later in [56]. Incidentally, the frequencies ki  are called 
reflection zeros because there is no power reflected 
back from the load resistance at these frequencies. 
Note that networks designed as above do not guarantee 
low stop band sensitivity.

The term low sensitivity can have multiple meanings. 
In this paper it is used to indicate the small sensitivity 
of the magnitude response in the passband. This is often 
quantified by the derivative of the passband magnitude 
response with respect to element values (as in the left 
hand side of Eq. (8)). The sensitivity of the phase re-
sponse, or that of the response in the stop band will not 
be the focus here.

B. Fettweis’s Vision
Fettweis recognized that this low sensitivity property of 
a doubly terminated lossless network can be inherited 
by a digital filter structure, if the structure is derived 
from the electrical network by an appropriate transfor-
mation. In his pioneering work in 1971, he achieved this 
[18], [19] by obtaining a digital equivalent for every cir-
cuit element (inductor, capacitor, resistor, open circuit, 
short circuit, voltage source, and so forth) by using the 
wave variable transformation (1) followed by the bilne-
ar transformation [54]. In this process the quantities 

,Ri  called the port resistances are chosen carefully so 
that, when the digital equivalents were interconnected, 
there were no delay-free loops. Fettweis developed the 
so-called series wave adaptor and parallel wave adaptor 
for the purpose of interconnecting digital equivalents of 
circuit elements [27].

To be specific, let us consider the case of an induc-
tor .L  When this is appropriately transformed, its digital 
equivalent is z 1- -  where z 1-  represents a unit delay. To 
see this recall that the inductor is characterized by the 

Figure 2. Fundamentals of low passband-sensitivity in LCR  
filters. (a) A lossless (LC) circuit, terminated at both ends 
with resistances. The resistances are such that maximum 
power is transferred from the source to the load at certain 
frequencies in the passband of the filter. (b) A typical lowpass 
filter response, realized as the ratio ( ) ( ) / ( )H s Y s X s2= . The 
passband maxima occur at the “reflection zeros” ,ki  where 
maximum power is transferred from the voltage source to the 
load resistance. (c) Variation of the response at kiX=  with 
respect to variation in a circuit element. The response can 
only decrease as the element value departs from nominal. 
This behavior was used by Orchard [55] to explain the low 
passband sensitivity of doubly terminated lossless two-ports.
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relation ( ) ( ) .V s sLI s=  With the wave variables defined 
as ( ) ( ) ( )A s V s RI s= +  and ( ) ( ) ( ),B s V s RI s= -  we have 

( ) ( / )/( / ) ( ),B s sL R sL R A s1 1= - +  With the free port-resis-
tance chosen as R L=  this reduces to

	 ( ) ( )B s s
s A s1

1=
+
- 	 (2)

If we now use the bilinear transform ( )/( ),s z z1 11 1= - +- -  
then /s s1 1- +^ ^h h reduces to z 1- -  so that the digital equiv-
alent of (2) becomes

	 ( ) ( ) .B z z A zd d
1=- - 	 (3)

Thus an inductor transforms into .z 1- -  Similarly a capac-
itor can be transformed into .z 1-  When the doubly termi-
nated lossless network of Fig. 2(a) is transformed using 
such digital equivalent building blocks, it results in the 
wave digital filter shown in Fig. 3. Notice the use of series 
and parallel adaptors for interconnecting the elements. 
The figure also shows the internal details of one of the 
adaptors. The main complexity and computational load of 
wave digital filters come from these adaptors.

As wave digital filters have been widely written about, 
we do not go into further details of the construction 
here. The interested reader will enjoy reading the origi-
nal articles [18], [19], [27], or the excellent presentation 
in Antoniou’s text book [3]. A short section on wave digi-
tal filters can also be found in Sec. XIII of [83] (chapter in 
an edited handbook), and will serve as an introduction 
for new readers.

As envisioned by Fettweis, wave digital filters indeed 
exhibited very low passband sensitivity. In addition, 
they also enjoyed freedom from parasitic oscillations or 
limit cycles, as shown in later papers by Fettweis and 
Meerkotter [26]. Wave digital filters were soon also ex-
tended to wave lattice filters [21], [30] and other varia-
tions. Wave filters for multirate applications have also 
been developed by Fettweis and Nossek [29]. A detailed 
overview article on wave filters, written by Fettweis him-
self, can be found in [23].

Wave digital filters have also been extended to the 
case of multiple dimensions [22], [28] but we shall not 
discuss those in our limited overview here. Many subtle 
aspects regarding passivity and stability of multidi-
mensional filters are discussed in papers by Basu and 
Fettweis [6], [24], [25]. For papers focussing on multidi-
mensional stability the reader is referred to [8], [9], [39], 
[67] and [60].

C. Wave Filters From Two-Port Viewpoint
Subsequent to the invention of wave digital filters, some 
researchers made efforts to simplify the procedure. In 
particular, considerable simplification could be ob-

tained if the wave adaptors can be avoided, or implicitly 
incorporated without having to worry about cumbersome 
rules for interconnecting them. Swamy and Thyagarajan 
[68] came up with an ingenious way to do this. Their wis-
dom was to regard each circuit element itself as a two-
port rather than a one-port as demonstrated in Fig. 4(a). 
Using this idea an LC  ladder network can then be trans-
formed directly into a “cascaded structure” of the form 
shown in Fig. 4(b). Here each rectangular box represents 
a 2 2#  digital transfer matrix, also known variously as the 
digital two-port or digital two-pair [49]. It represents the 
digital equivalent of electrical elements such as induc-
tors, capacitors, and even series or parallel LC  circuits. 
Notice that the cascade in Fig. 4 is not a traditional cas-
cade because the arrows are running in different direc-
tions, creating feedback loops. This sort of cascade is 
often called a chain-cascade. The reason for this name 
is that, in such a cascade, the so-called chain matrices 
(rather than transfer matrices) of the systems in cascade 
are multiplied. Please see Box 1 for details.

Each of these two-pairs in Fig. 4(b) is first-order (i.e., 
has one z 1-  element) if it represents an L  or a C  element, 
and is second-order if it represents a series or parallel 
LC  circuit. It was shown by Swamy and Thyagarajan that 

Figure 3. The wave digital filter obtained from the doubly ter-
minated LC  filter of Fig. 2. Details of a typical series adaptor 
used in wave digital filters are shown in the bottom. Parallel 
adaptors have a similar structure. For more details please 
see [18], [19], [27], or the text book [3], or Sec. XIII of [83].
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LC ladder networks and more generally LCR circuits can 
be transformed into such a cascade of two-pairs. Fur-
thermore, certain free parameters in the transformation 
can be selected such that delay free loops are avoided 

in the back to back interconnections. With this new type 
of wave digital filters we do not have to worry about the 
design of adaptors, as they are implicitly and automati-
cally included in the two-ports of Fig. 4(b).

A 2-input 2-output system has also been referred to as 

a two-port or a two-pair. With ( ) ( ) ( )n x n x nx T
1 2=6 @  and 

( ) ( ) ( )n y n y ny T
1 2=6 @  denoting the input and output, there 

are two popular ways to describe an LTI two port. The trans-
fer matrix and the chain matrix descriptions:
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Depending on the description chosen it is convenient to show 

the inputs and outputs either as in (a) or as in (c)  in the 

figure. The transfer matrix ( )zT  is convenient when two-

ports are connected in a so-called T-cascade as shown 

in part (b). In this case the transfer matrix of the cascade 

is the product ( ) ( ) ( ) .z z zT T T2 1=  The chain-matrix de-

scription is convenient when two-ports are connected in 

a so-called -P cascade as shown in part (d). This inter-

connection generates new feedback loops and the descrip-

tion of the cascaded system in terms of transfer matrices 

becomes cumbersome. But the chain-matrix description 

becomes extremely convenient: with ( )zkP  denoting the 

chain matrices of the systems, the chain matrix of the 

-P cascade is just the product ( ) ( ) ( ) .z z z1 2P P P=  The 

two descriptions are interrelated as follows: / ,T C A11 =

/ / , /,detT A T A T B A112 21 22P= = =-  and similarly, / ,A T1 21=   

/ , / , /det TB T T C T T D T22 21 11 21 21=- = =-  where the argument 

(z) has been omitted for simplicity.

Now consider part (e) in the figure where a two-port is 

“terminated” at one end by a transfer function ( ) .zG  In this 

case, the transfer function ( ) ( ) / ( )H z Y z X z1 1=  can be ex-

pressed either in terms of the transfer parameters ( )T zkm  

or chain parameters ( ), ( ), ( ), ( )A z B z C z D z  as follows:

( ) ( ) ( ) ( )
( ) ( ) ( )

,  

( ) ( ) ( ) ( )
( ) ( ) ( )

H z T z T z G z
T z T z G z

H z A z B z G z
C z D z G z

1 or equivalently11
22

12 21
= +

-

=
+

+

The chain matrix description has its origin in electrical circuit 

theory. LCR circuits in a ladder configuration can be conve-

niently expressed as a -P cascade of two-ports where each 

two-port represents a series or parallel branch in the ladder. 

The chain matrix is therefore inherited into wave digital filters 

as seen explicitly from the work of Swamy and Thyagarajan 

(1975). It has also been used in direct synthesis of digital lad-

der filter structures by Mitra, Kamat, and Huey (1977). Later 

on it was also used extensively by Vaidyanathan and Mitra 

(1984) for the synthesis of structurally passive digital filters.

Box 1: Two Types of Cascaded Systems
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III. Direct Digital Synthesis
In the early to middle seventies, many other research-
ers besides Fettweis got interested in synthesis of digi-
tal filter structures inspired by LC  network synthesis 
[10], [13], [49]. Many of these structures had qualitative 
similarities to LC  ladder networks, but they were not 
necessarily designed to inherit specific properties such 
as low sensitivity or passivity. In 1977, Mitra, Kamat and 
Huey [50] proposed a way to synthesize digital transfer 
functions directly in the z-domain by extracting digital 
two-pairs (as in Fig. 4) in such a way that there is a de-
gree reduction at each step in the extraction. (We will 
return to this in Fig. 7 again.) This procedure resulted in 
a number of new realizations for digital filters, but again, 
the two-pairs were not designed with any specific prop-
erties that would induce low sensitivity or passivity. 
However this basic idea of digital two-pair extraction, 
which realizes digital filters by successive order reduc-
tion, laid the foundation for future work which incorpo-
rated such robustness properties systematically into 
digital filter synthesis. More specifically, the approach 
introduced in [71] showed how to develop two-pair ex-
traction methods to obtain digital filter structures with 
low sensitivity and other passivity properties, with-
out recourse to continuous-time electrical circuits. This 
is based on a concept called structural passivity. This 
property is crucial to low sensitivity, and it can be in-
corporated directly into digital filter structures as ex-
plained next.

A. Structural Boundedness or Structural Passivity
Any digital filter structure is essentially an interconnec-
tion of delay elements, scalar multipliers, and two-input 
adders, as shown schematically in Fig. 5(a). Imagine now 
that we have a structure with the following special prop-
erty: no matter what the values of the multipliers mi  
are, the frequency response is always bounded by unity, 
that is, ( )H e 1j #~  for all .~  We say that such an imple-
mentation is structurally bounded, that is, the struc-
tural interconnection itself ensures that the frequency 
response never exceeds unity. The term structurally 
passive is also used for reasons described below.

In practice we constrain the multipliers mi  to belong 
to some reasonable range (such as, for example )m 1i 1  
as we shall indicate explicitly in the context of specific 
examples. In practice one also likes to make sure the 
transfer function remains stable. In order to be precise 
with these ideas, we introduce a number of important 
definitions here:

Definition 1. 
Bounded transfer functions. A digital filter transfer func-
tion ( )H z  is said to be bounded if it is stable (i.e., all 

poles are in )z 11  and ( )H e 1j #~  for all .~  Notice 
also the following definitions, properties, and remarks:

1)	 It can be shown that a stable rational transfer 
function ( )H z  is bounded if and only if

	 ( ) ( )y n nx
n n

2 2
#/ / � (4)

Figure 5. Structural boundedness and low passband sen-
sitivity. (a) Any digital filter structure is an interconnection of 
delay elements, multipliers, and adders. (b) A typical lowpass 
response, with peak frequencies ki  in the passband. (c) Vari-
ation of the response ( )H ej ki  with respect to a multiplier .mi  
In a structurally bounded (or passive) system, the quantity 

( )H ej ki  can only decrease as mi  deviates from its nominal 
value. This induces low passband sensitivity.
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where ( )y n  is the output of ( )H z  in response to 
( ) .x n  That is, the signal energy cannot be increased 

by the system; so a bounded system is also said to 
be passive.

2)	 A bounded transfer function with ( )H e 1j =~  for 
all ~  is called lossless and is nothing but a stable 
allpass filter. In this case Eq. (4) holds with equal-
ity for all inputs ( ) .x n

3)	 A bounded transfer function is said to be bounded 
real or BR if all the filter coefficients are real i.e., 
the impulse response ( )h n  is real. In this case 

( )H z  is real for real .z  A lossless function with 
real filter coefficients is called a lossless bounded 
real or LBR function. It is nothing but a stable all-
pass filter with real coefficients.

4)	An M K#  transfer matrix ( )zT  is said to be loss-
less if it is stable (i.e., all entries ( )T zkm  are stable), 
and furthermore ( )eT j~  is unitary for all frequencies:

	 ( ) ( )e eT T IH j j
K 6~=~ ~ 	 (5)

where the superscript H  denotes transpose con-
jugation. If the lossless matrix ( )zT  also has real 
coefficients, then we say it is a LBR  transfer ma-
trix. Note that we require M K$  for (5) to hold. 
For the special case where ,K 1=  ( )zT  becomes 
a column vector ( ) ( ) ( ) ( )z H z H z H zT M

T
0 1 1f= -6 @  

and (5) implies

	 ( )H e 1k
j

k

M

0

1 2
=~

=

-

/ 	 (6)

which is also referred to as the power complemen-
tary property.� G

Figure 6 demonstrates the meaning of the power com-
plementary property for the case where .M 2=  If the 
elements of ( )zT  are rational functions of ,z  then the 
property (5) implies

	 ( ) ( )z z zT T I 6=L � (7)

where ( ) ( / ) .*z z1T TH=L  The property (7) is called the 
paraunitary property. In short a rational lossless matrix is 
a stable and paraunitary matrix. The mathematical origin 
of this property can be traced back to scattering matrices 
in classical network theory in the context of lossless mul-
tiports [2], [7], [53]. Multidimensional extensions are also 
well-known, please see [5] and references therein.

B. Low Sensitivity Induced by Structural 
Boundedness
Now consider a digital lowpass filter with response as 
shown in Fig. 5(b). This is a bounded filter, with maximum 

Figure 6. Responses of fifth order power complementary el-
liptic digital filters. (a) Magnitude responses, and (b) magni-
tude squared responses. Notice in (b) that the shapes of the 
ripples of the two filters are exactly complementary so that 
they add up to unity everywhere.
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Figure 7. (a) The two-pair or two-port extraction step. Here 
the mth order transfer function ( )H zm  is implemented as a 
two-pair ( )zTm  terminated at one end with a transfer function 

( )H zm 1-  of smaller order .m 1-  (b) Repeated extraction of 
two-pairs results in the realization of a scalar transfer func-
tion as a cascade of two-pairs terminated in a multiplier .H0
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response of ( )H e 1j =~  at some frequencies ki  in the 
passband. Assume this filter is realized using a structur-
ally bounded implementation. In this implementation, 
the multipliers are such that ( )H e 1j =~  at .k~ i=  Now, 
if a particular multiplier mi  is disturbed from its ideal 
value mi0  (say due to quantization), then the response 

( )H e j ki  can only decrease from the maximum of unity. 
We therefore have the behavior shown in Fig. 5(c). This 
shows that

	
( )
m

H e
0

i

j

m m

k

i i0
2

2
=

i

=

� (8)

That is, the sensitivity with respect to mi  is zero at the  
maxima .k~ i=  Thus, the structure exhibits low pass-
band sensitivity with respect to multipliers, especial-
ly if there are a number of maxima ki  in the passband. 
Thus  the behavior of a structurally bounded system is 
similar to that of a doubly terminated lossless two-port 
with maximum power transfer at the maximal points (re-
flection zeros) of the passband. The main point howev-
er is that structural boundedness can be directly achieved 
in the z-domain without recourse to electrical filters as we 
explain next. Like doubly terminated lossless electrical 
circuits, structural passivity does not guarantee low stop 
band sensitivity.

C. A Synthesis That Achieves Structural 
Boundedness
The basic step in the structurally bounded realiza-
tion of a BR transfer function, as described in [71], is 
as follows: given an mth order BR function ( ),H zm  we 
“extract” an LBR two-pair ( )zTm  and a BR “remainder” 

( )H zm 1-  with smaller order ,m 1-  such that ( )H zm  
can be implemented as in Fig. 7(a). The conditions 
on ( )H zm  under which this is possible, as well as the 
details of the specific two-pairs ( )zTm  to be used are 
described in [71]. Since the remainder ( )H zm 1-  re-
mains BR, we can repeat this extraction process until 
the final remainder H0  is a constant BR function (i.e., 

) .H1 10# #-  Thus starting from an Nth order BR func-
tion ( ),H zN  we can obtain the chain-cascaded struc-
ture shown in Fig. 7(b). While it is not obvious, it can 
be shown that such a synthesis is always possible for 
classical transfer functions (elliptic, Cheybyshev, and 
Butterworth filters). Broadly speaking, two types of 
LBR two-pair building blocks are necessary for this: 
first-order and second-order building blocks. Each of 
these comes with some minor variations depending 
on the details of the transfer function to be synthe-
sized as elaborated in Tables 2, 3, and 4 of [71]. A typi-
cal first order LBR two-pair involved in the synthesis 
takes the form

	 ( )z
z z

z
z1

1 1
1

1
1

T 1 1

1

1v

v

v

v

v
=
+

-

+

+

-- -

-

-^ ^
^

h h
h= G	 (9)

where 0 11# v  so that the pole is inside the unit circle 
and furthermore v  is real. It is readily verified that 

( ) ( )z zT T I=L  so that ( )zT  is LBR. Figure 8(a) shows an 
implementation of the first order two-pair (9). The mul-
tipliers v  do not appear because they can be removed 
by a denormalization process which does not change 
the transfer functions ( ) .H zm  To be more specific, if a 
two-pair ( )zTm  has the general form

	
( )
( )

( )
( )

T z
T z

T z
T z

11

21

12

22
; E� (10)

then only the product ( ) ( )T z T z12 21  matters in determin-
ing the transfer functions ( ) .H zm  So replacing ( )T z12  
with ( )T z12a  and ( )T z21  with ( )/T z21 a  where a v=  or 

/1a v=  gets rid of .v  Fig. 8(a) is one such denormal-
ized structure.

A typical second order LBR two pair arising in the 
synthesis of BR functions is obtained simply by replac-
ing z 1-  in Eq. (9) with the allpass function

	 z
z
z

1
1

1

1

b

b

+

+-
-

-

� (11)

where .1 11 1b-  Please see Fig. 8(b). Some other minor 
variations of these first and second order LBR two-pairs 

Figure 8. (a) Example of a first order lossless two-port 
or two-pair developed in [71]. Notice similarity to series 
wave adaptor (Fig. 3), with third port terminated by a delay. 
(b) One way to obtain a second order lossless two-port, 
is to replace the delay element z 1-  with an allpass filter, 
as indicated.

+ +

+

+

+

A1

B1

B2

A2+

First Order Lossless
Two-Pair

For Second Order Two-Pair
Replace This Delay With
This Allpass

–1–σ

z –1

z –1 z –1

(a)

β
–1

(b)



22 	  IEEE circuits and systems magazine 		  first quarter 2019

are tabulated in [71] and are sufficient to realize a large 
class of BR transfer functions in the form of Fig. 7(b).

How does this cascade achieve structural bounded-
ness? If the multipliers iv  and ib  are restricted to their 
specific ranges in spite of quantization (i.e., 0 1i1# v  
and )1 1i1 1b-  then each two-port remains LBR. If the 
rightmost multiplier H0  is quantized such that the prop-
erty H1 10# #-  continues to be respected, then all the 
transfer functions ( )H zm  will remain BR in spite of mul-
tiplier quantization. Thus boundedness of ( )H zN  can be 
structurally enforced.

IV. Generality of the Structurally  
Passive Approach

The synthesis of a BR transfer function by extraction of 
LBR building blocks gives rise to a number of well known 
low sensitivity structures as special cases. In fact, no-
tice the similarity between the LBR two-pair shown in 
Fig. 8(a) and the wave adaptor shown Fig. 3. This simi-
larity is not coincidental. The direct digital synthesis 
described in Sec. 3.3 does give rise to the type of wave 
digital filters developed by Swamy and Thyagarajan 
(Sec. 2.3) as special cases; please see [71].

A. The Gray-Markel Allpass Lattice
Another special case is the well-known Gray and Markel 
lattice structure for allpass filters [32]. Please see Box 2 
for a review of allpass filters; these filters have many 
applications [61], including low sensitivity implementa-
tions [77] and frequency transformations [12].

The allpass lattice structure is shown in Fig. 9. 
In this structure the lattice coefficients km  satisfy 

,k 1m 1  and

	 k k1m m
2

= -t 	 (12)

It can be shown that the transfer function ( )H zN  is sta-
ble and allpass, that is, ( )H e 1N

j =~  for all .~  In fact any 
stable rational allpass filter can be implemented this 
way. The coefficients km  are real for real-coefficient all-
pass filters.

This structure was derived independently in 1973 with-
out reference to either the wave filter approach or struc-
tural passivity [48], [57], [90]. In fact, historically, the 
mathematics of the structure can be traced back to the 
mathematical works of Schur and Szegö in early 1900s 
[62], [63], [70] and the work of Levinson [44]. It was de-
veloped further in the signal processing literature in the 
1970s, in the context of linear prediction theory [4], [38], 
[43], [48], [57], [90]. Please also see the classic tutorial 
articles by Kailath [40] and Makhoul [45] in this context.

Now, since ( )H zN  is allpass, it is in particular a bound-
ed function, and it can be synthesized in the form of a 
chain-cascade by extracting lossless two-ports as de-
scribed in Sec. 3.3. There are many choices of lossless 
two ports that make this synthesis possible. One specific 
synthesis, described in Sec. 3.4.3 of [88], yields the spe-
cific structure of Fig. 9. More details can be found in [81]. 
Thus the Gray-Markel lattice can be regarded as a spe-
cial case of the lossless two-port extraction method. The 
transfer matrix of each lossless two-port in this example 
takes the form

	
k
k

k
k z

1
0

0
T

*

m
m

m

m

m
1=

-
-t

t
= ;G E	 (13)

The constant matrix above is the four-multiplier or nor-
malized building block [33] shown in Fig. 9(b). There are 
many denormalized versions of the lattice, as explained 
in detail in [88].

In addition to structural passivity, this implementa-
tion also involves an internal passivity which leads to 

Figure 9. (a) The Gray-and-Markel recursive lattice structure 
for allpass filters. (b) Two possible choices for the lattice sec-
tions. The transfer functions ( )H zk  are the same regardless 
of which of these sections is used. This lattice is also known 
as the linear-prediction lattice because it has its origin in the 
theory of linear prediction, and was extensively studied in the 
context of speech coding.
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Historically the mathematics of the lattice structure can be  
traced back to the mathematical works of Schur and Szego  

in the early 1900s, and the work of Levinson.
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Allpass filters are fundamental building blocks in sig-

nal processing. A digital filter ( )H z  is said to be allpass 

if ( )H e 1j =~  for all ,~  that is ( ) .H e e ( )j j=~ z ~  A rational 

allpass filter has the form

( ) ( )
( )H z

b b z b z b z
b b z b z b z

B z
z B z* * * ( ) *

N
N

N N
N N N

0 1
1

2
2

1
1

1
1

0

g
g

=
+ + + +

+ + + +
=- - -

-
- - - - - u

where ( ) ( / ) .B z B z1* *=u  This notation is equivalent to re-

placing the coefficients bk  by their complex conjugates, 

and replacing z  with / .z1  For a rational transfer function 

the allpass property can be rewritten as ( ) ( )H z H z 1=u  for 

all .z  Allpass filters are used in phase equalization, and 

in the implementation of certain filters. For example, as 

reviewed in this article, classical Butterworth, Chebyshev, 

and elliptic filters can be expressed as a sum of two allpass 
filters, leading to a structurally passive implementation 

with low passband sensitivity. Such structures also have 

very few multipliers compared to direct-form and other 

structures. The nonzero poles pk  and zeros zk  of a rational 

allpass filter have a reciprocal symmetry: / .p z1 *
k k=

In fact, for a causal stable rational allpass function of 

order ,1$  a curious symmetry with respect to the unit 

circle, called the modulus property holds:

( )  
 

H z
z
z
z

1
1
1

1
1
1

 for 
for 
for 

1
2

2
1

= =

*

This is at the heart of the derivation of lattice structures and 

stability test procedures based on allpass systems as elabo-

rated by Vaidyanathan and Mitra (1987). These symmetries 

with respect to the unit circle are summarized in the figure. 

Allpass filters are also very effective in the implementation 

of notch and antinotch filters. Many efficient structures 

exist for allpass filters such as the Gray and Markel lattice 

(1973), and the Mitra and Hirano class of structures (1974). 

A detailed review of allpass functions can be found in Re-

galia, Mitra, and Vaidyanathan (1988). An early application 

of allpass filters for frequency transformations was devel-

oped by Constantinides (1970). The allpass property can be 

generalized to MIMO systems as follows: an M N#  transfer 

matrix ( )zT  is allpass if it is unitary on the unit circle, that is,

( ) ( )e eT T IH j j
N=

~ ~

for all .~  This requires .M N$  For rational transfer matri-

ces this implies the paraunitary property: ( ) ( )z z IN=T TK  for 

all .z  Here ( ) ( / ) .z z1T *H=TK  If ( )ny  is the output of a stable 

paraunitary system in response to input ( ),nx  then

( ) ( ) ( ) ( )y y xn n n nxH

n

H

n
=/ /

That is, the output energy is equal to the input energy. So, 

stable paraunitary matrices and allpass filters are called 

lossless systems. Historically, lossless systems had a fun-

damental role in circuit and system theory as elaborated by 

Belevitch (1968) and by Anderson and Vongpanitlerd (1973). 

Paraunitary matrices arise in the cascaded synthesis of digi-

tal filters with structural passivity. For the special case where 

,N 1=  ( )zT  is a column vector with components ( ),H zk  and 

the allpass property becomes ( ) ,H e 1k
M

k
j

0
1 2

R =~
=
-  which is 

the power complementary property. There is a systematic 

way to factorize FIR paraunitary matrices in terms of planar 

rotations and delay elements. These are summarized in the 

review paper by Vaidyanathan and Doǧanata (1989). Parauni-

tary matrices also arise in the design of orthonormal digital 

filter banks. Please see Vaidyanathan (1993) for details.

Box 2: Allpass Functions
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many useful properties, including suppression of limit 
cycle oscillations [34], [76]. The importance of this in-
ternal passivity in suppression of limit cycles has also 
been established independently in the context of wave 
digital filters [20], [26]. Further generalizations as well 
as simplifications can be found in [76], [79].

B. Orthogonal Digital Filters and Rotation 
Operators
Before we discuss further examples it is useful to intro-
duce the planar rotation operator which turns out to be 
an important building block for many types of digital fil-
ter structures. Thus, consider the matrix

	
cos
sin

sin
cosm

m

m

m

m

i

i

i

i
H =

-
; E	 (14)

and the operation .y xmH=  It is readily shown that y  
is the clockwise rotated version of ,x  by the angle mi  
(page 290, [88]). This operator is therefore called the 
planar rotation operator, and is schematically denoted 
as shown in Fig. 10(a). It is also known as the Givens ro-
tation operator or the cordic processor [31], [37], [42]. 
As an example of how this operator arises, consider the 
allpass lattice structure with the four-multiplier or nor-
malized building block (Fig. 9). If the filter has real coef-

ficients, then km  are real and we can write coskm mi=  
and sink k1m m m

2 i= - =t  for some real mi  so that the 
computational blocks become

	
cos
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sin
cos

k
k

k
k

1
0

0
1

R m

m

m

m

m

m

m

m

m

i

i

i

i

H

-
=

- -t

t
= ; ;G E E

> 1 2 34444 4444 	 (15)

Here R  is just a reflection operator, as it merely revers-
es the sign of the y-component. Thus, the allpass filter 
can be implemented entirely in terms of planar rotations 
as the computational units.

Similarly it has been shown [75] that the first order 
LBR two-pair of Fig. 8(a) can be rearranged in terms of 
two planar rotations as shown in Fig. 10(b). In fact, any 
BR transfer function, synthesized in terms of the first 
and second order LBR two-pairs of Fig. 8 can be ex-
pressed in terms of planar rotations as the only compu-
tational units [75]. Digital filter structures which can be 
expressed entirely in terms of rotation operators were 
first noticed by Deprettere and Dewilde in the context 
of a family of structures called orthogonal filter struc-
tures [15], [58], which enjoy several robustness prop-
erties under quantization. It should also be mentioned 
here that paraunitary matrices can be neatly factorized 
into planar rotations (or other fundamental unitary blocks 
such as Householder matrices) and delay elements [17], 
[84]–[86], [88].

The preceding discussions show that the Gray-Markel 
lattice structures (Fig. 9) and the structurally passive 
cascaded structures (Fig. 7(b) with building blocks as 
in Fig. 8) can be expressed as orthogonal digital filter 
structures. Thus, wave filters, orgthogonal filters, and 
cascaded lattice structures are nicely unified by the 
structurally passive synthesis methods which use LBR 
building blocks.

We conclude by mentioning that the lossless two-
port extraction approach of Sec. 3.3 has also been ex-
tended to transfer functions with multiple inputs and 
multiple outputs (MIMO). Figure 11(a) shows an example 
of a single-input multi-output transfer matrix with trans-
fer function ( ) .zHN  Here the transfer matrices ( )zTm  are 
MIMO lossless transfer matrices, that is, they are stable 
and satisfy ( ) ( ) .z zT T Im m =L  It can be shown that if ( )zHN  
is SIMO lossless, it can be synthesized in this form by 
using the lossless multiport extraction approach [75]. A 
special case of this is the beautiful family of single-input 

Figure 10. (a) The planar rotation operator. This rotates 
the vector [ ]x xx T

1 2=  clockwise by an angle i  to produce 
[ ] .y yy T

1 2=  This is also known as the Givens rotation op-
erator [31], or the cordic processor [37], [42]. (b) Implementa-
tion of the first order LBR two-port of Fig. 8(a) using planar 
rotation operators.
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Thus, wave filters, orthogonal  filters, and cascaded lattice  
structures are nicely unified by the structurally passive  

synthesis methods which use LBR building blocks.
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two-output lattice structures developed first by Rao 
and Kailath in 1984 [59] shown in Fig. 11(b). In this struc-
ture the matrices Rk  are constant unitary matrices, and 
the transfer matrix ( ) ( )H z G zN N

T6 @  is lossless. That is, 
( )H zN  and ( )G zN  are stable and satisfy

	 ( ) ( ) ( ) ( )H z H z G z G z 1N N N N+ =u u 	 (16)

The above property implies the power complementary 
property ( ) ( ) .H e G e 1N

j
N

j2 2
+ =~ ~  Thus, given any BR 

transfer function ( )H zN  we can always find its power 
complementary partner ( ),G zN  and realize the pair as 
in Fig. 11(b). It can be shown in this specific case [75] 
that the 3 3#  unitary matrices Rk  can be implemented 
using two planar rotations each, as shown in Fig. 11(c). 
This is a structurally passive implementation of the BR 
function ( )H zN  in the sense that, regardless of the angu-
lar values of the rotations the transfer functions remain 
BR. In particular, the structure exhibits low passband 
sensitivity as explained in Sec. 3.2.

V. Further Examples of Structurally Passive 
Implementations

In this section we review a number of structurally pas-
sive implementations and demonstrate their low sensi-
tivity properties. These methods are quite simple and 
can be understood independently in the z-domain with-
out any background on circuit theory or electrical filters.

A. Parallel-Allpass Implementations
Consider Fig. 12 where ( )A z0  and ( )A z1  are stable ra-
tional allpass filters and ( )H z0  and ( )H z1  are obtained 
by adding and subtracting the outputs of the allpass fil-
ters as shown. It turns out that a large class of IIR digital 
filters, including Butterworth, Chebyshev, and elliptic 
filters, can be implemented in this way. This result is 
known in classical continuous-time filter theory and it 
is implicit in the design of wave lattice digital filters pio-
neered by Fettweis [21], [30]. However, the result is more 
general, and it can be proved quite easily and directly 
without reference to continuous-time circuit theory [77]. 
Thus, Theorem 3.6.1 in [88] establishes some sufficient 
conditions on ( )H z0  and ( )H z1  which allow their imple-
mentation as in Fig. 12(a). There are many special cases 
of filters which satisfy these sufficient conditions. For 
example if ( )H z0  is an odd order lowpass Butterworth, 
Chebyshev, or elliptic filter, it satisfies the conditions of 
the above theorem, and it can be expressed as

	 ( )
( ) ( )

H z
A z A z

20
0 1

=
+

	 (17)

where ( )A z0  and ( )A z1  are real-coefficient, stable, all-
pass filters. That is, they have the form [88]

	 ( )A z
a z a z

a a z z
1 , ,

, ,
k

k k n
n

k n k n
n

1
1

1
1

k
k

k k
k

g

g
=

+ + +

+ + +
- -

-
- -

	 (18)

(Please see Box 2 for a review of allpass filters.) There 
are systematic ways to identify the coefficients of the 

Figure 11. (a) The two-port extraction approach extended to 
single-input multi-output systems. (b) Example of a single-
input two-output lattice, generating an IIR allpass vector, that 
is, an IIR power complementary pair ( ) ( ) .H z G zN N

T6 @  (c) Imple-
mentation of each building block using two planar rotations. 
The example in (b), (c) was first developed by Rao and Kai-
lath in a pioneering work in the 1980s [59].
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Figure 12. (a) The parallel allpass structure to implement 
a power complementary pair of bounded real transfer func-
tions. (b) Example of filter responses.
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allpass filters starting from the coefficients of ( )H z0  
[77], [88]. With ( )A zk  identified, the filter

	 ( )
( ) ( )

H z
A z A z

21
0 1

=
-

	 (19)

turns out to be a highpass filter of the same kind (Butter-
worth, Chebyshev, or elliptic). From (17) and (19) it is easy 
to verify that the two filters are power complementary:

	 ( ) ( )H e H e 1j j
0

2
1

2
+ =~ ~ � (20)

This is demonstrated in Fig. 12(b) where the filters are 
fifth order elliptic filters. The implementation of Fig. 12 
is called the parallel-allpass implementation or sum-of-
allpass implementation.

A similar implementation is possible for even-order 
Butterworth, Chebyshev, and elliptic lowpass filters, but 

( )A z0  has complex coefficients ,a ,k i  and the coefficients 
of ( )A z1  are the conjugates of those of ( );A z0  see [80] 

for details. In this case ( )H z0  can be realized by taking 
the real part of the output of ( ),A z0  and ( )H z1  realized 
by taking the imaginary part. In short, a single com-
plex allpass filter can be used to implement the pair 

( ), ( ) .H z H z0 1

We now argue that Fig. 12(a) gives rise to a structur-
ally passive implementation. While there exist many 
structures for implementation of allpass filters [32], [51], 
[61], [69], the Gray-Markel lattice is especially attrac-
tive in this context. If ( )A zi  are implemented using the 
Gray-Markel allpass lattice of Fig. 9, then as long as the 
quantized multipliers km  continue to satisfy ,k 1m 1  the 
filters remain allpass as well as stable [81]. Thus, even 
when the multipliers are quantized ( )H z0  and ( )H z1  
continue to be a sum and difference of two stable allpass 
filters as in Eqs. (17), (19). Since ( )A e 1i

j =~  it is obvi-
ous that ( )H e 1k

j #~  which proves structural bounded-
ness of ( )H z0  and ( ) .H z1  As explained in Sec. 3.2 these 
structures therefore enjoy low passband sensitivity.

Figure 13. Responses of the direct-form structure and the parallel-allpass based structure under quantization. A fifth order IIR 
elliptic filter is simulated, and coefficients are quantized to 18 bits. The responses of quantized structures are shown in red, and 
responses of unquantized structures are in black. Notice that the parallel-allpass based system (structurally passive system) has 
very low passband sensitivity: the quantized response is indistinguishable from ideal.
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In addition to low sensitivity, the implementation 
Fig. 12 is also amazingly economic in terms of compu-
tational complexity. For example, assume ( )H z0  is an 
Nth order lowpass elliptic filter with odd .N  Then the 
allpass filters have orders n0  and n1  where .n n N0 1+ =  
Each allpass filter can be implemented using a lattice 
structure as in Fig. 9. Now, instead of using the two-
multiplier or four-multiplier lattice sections in Fig. 
9(b), it is always possible to use one-multiplier sec-
tions (see Fig. 3.4 -11 of [88]). If we do this then ( )A zk  
requires only nk  multipliers, so that the entire imple-
mentation of Fig. 12 requires only N  multipliers where 
N  is the order of each filter ( ) .H zk  In short, we get 
two Nth order filters ( )H z0  and ( )H z1  at the total cost 
of only N  multipliers! Indeed, this is one of the most 
efficient ways to implement Butterworth, Chebyshev 
and elliptic filters.

To demonstrate low sensitivity, consider a 5th order 
elliptic lowpass filter ( ) .H z0  In Fig. 13 we show the mag-
nitude response of ( )H z0  with the quantized direct-form 
structure [54], and the quantized parallel allpass structure 
of Fig. 12(a). The responses of quantized structures are 
shown in red, and responses of unquantized structures 
are in black. For both structures, the dB plot of the entire 
response is shown, and the details of the passband re-
gion is shown separately. We have used 18 bits per multi-
plier coefficient in both structures. While both structures 
perform satisfactorily in the stopband, the passband re-
sponse of the quantized direct-form deviates significantly 
from the ideal. In contrast, the quantized response of the 
structurally passive implementation (Fig. 12(a)) is nearly 
perfect in the passband as well, demonstrating very low 
passband sensitivity.

It is well known that if the Gray-Markel lattice struc-
ture is used to implement the allpass filters, then limit 
cycle oscillations can be suppressed [34], and further-
more, the roundoff noise gain is small [33]. Thus, the 
structurally passive implementation of Fig. 12(a) enjoys 
a number of robustness properties in addition to its 
computational economy. A special case of (17) where 

( )A z 10 =  is very useful for the design of notch and anti-
notch filters [89].

B. The FIR Power Complementary Lattice
Consider Fig. 14(a) which is a cascaded lattice structure. 
Unlike in the earlier cascaded structures (e.g., Figs. 7 
and 9), there are no feedback loops here. So, this is a 
nonrecursive or FIR lattice. The internal details of the 

lattice sections are shown in Fig. 14(b). In this figure we 
use the notations

	 ,cos sinc sm m m mi i= = 	 (21)

So the building blocks are planar rotations or denor-
malized versions of such rotations. This structure was 
introduced in [78] and has a number of interesting prop-
erties. First, the two transfer functions are ( )H z0  and 

( )H z1  are guaranteed to be power complementary that 
is, ( ) ( )H e H e 1j j

0
2

1
2

+ =~ ~  regardless of the choice of 
the angles .mi  (If denormalized lattice sections are used, 
then ( ) ( )H e H e cj j

0
2

1
2

+ =~ ~  for some constant ) .c 02  
Secondly, given any pair of power complementary FIR 
filters ( )H z0  and ( )H z1  (with real coefficients), they can 
always be implemented using this lattice structure, by 
choosing the planar rotation angles mi  appropriately. 
Now assume that we are given some FIR filter ( )H z0  with 
real coefficients and normalized such that ( ) ,H e 1j

0 #~  
i.e., we are given an FIR BR function ( ) .H z0  Then we can 
always find an FIR BR ( )H z1  such that ( ), ( )H z H z0 1" , is 
power complementary. For this we simply take ( )H z1  
to be any spectral factor of ( ) ( ) .H e H e1j j

1
2

0
2

-
T~ ~=  

Then we can implement the pair as in Fig. 14. This shows 
that we can obtain this cascaded lattice implementation 
for any FIR BR filter ( ) .H z0

Now, given such an implementation, if the angles mi  
in the rotations are perturbed, the power complemen-
tary property is not affected, and therefore the prop-
erty ( )H e 1j

0 #~  continues to hold. In this sense the 

Figure 14. (a) The lattice structure for an FIR power comple-
mentary pair ( ), ( )H z H z0 16 @  [78]. (b) Details of the building 
blocks. Each block is a planar rotation operator. It can also 
be replaced by a denormalized section with two multipliers 
as shown.

c0

Planar Rotation

+

+

Denormalized Rotation

+

+

or

–s0

–sm
–αm

αmcm

cm

sm

z –1 z –1 z –1

θ1 θ2 θN

θm

H0(z)

H1(z)

(a)

(b)

In short, we get two Nth order filters H0(z) and H1(z)  
at the total cost of only N multipliers!
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implementation is structurally passive and therefore en-
joys low passband sensitivity. In practice even the lat-
tice with the denormalized sections shown in Fig. 14(b) 
exhibits low passband sensitivity. To demonstrate this, 
we consider a 60th order linear phase lowpass equirip-
ple filter ( )H z0  designed using the McClellan-Parks algo-
rithm [54], and implement it using the lattice structure 
(using the algorithm presented in [78]. We use the de-
normalized (two-multiplier) lattice sections of Fig. 14(b) 
and quantize the lattice coefficients ma  to 8 bits. We 
compare the resulting frequency responses with those 
of the direct form structure with multipliers quantized 
to 8 bits as well. Fig. 15 shows the filter magnitude re-
sponses for these implementations. The responses of 
quantized structures are shown in red, and responses of 
unquantized structures are in black. For both structures, 
the dB plot of the entire response is shown, and the de-
tails of the passband region is shown separately. While 
both structures perform satisfactorily in the stopband, 
the passband response of the quantized direct-form de-

viates significantly from the ideal. In contrast, the quan-
tized response of the structurally passive implementa-
tion (Fig. 14(a)) is nearly perfect in the passband as well, 
demonstrating very low passband sensitivity.

The FIR lattice structure Fig. 14 is called the FIR power 
complementary lattice or the FIR structurally passive lat-
tice. Readers familiar with the FIR linear prediction lattice 
or LPC lattice might wonder what the difference is. The 
linear-prediction lattice also has an appearance similar to 
Fig. 14 with two-multiplier lattice sections, but the minus 
sign on the ma  is not there, and furthermore, .1m 1a  In 
terms of theoretical properties, this is a major difference. 
The FIR lattice structure of Fig. 14 can realize arbitrary BR 

( ) .H z0  But the LPC lattice cannot be used to realize ar-
bitrary FIR filters. It is typically used to realize prediction 
filters ( )H z0  with all zeros strictly inside the unit circle 
(minimum-phase filters). The filter ( )H z1  in an LPC lattice 
is not power complementary to ( ),H z0  but rather, it is the 
mirror image polynomial ( ) ( / ) .H z z H z1* *N

1 0= -  So, in the 
LPC lattice, ( )H z1  has all its zeros outside the unit circle.

Figure 15. Responses of the direct-form structure and the FIR structurally passive lattice [78] under quantization. A 60th order 
FIR filter ( )H z0  is simulated, and coefficients are quantized to 8 bits. The responses of quantized structures are shown in red, 
and responses of unquantized structures are in black. Notice the low passband sensitivity of the structurally passive FIR lattice.
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We conclude by mentioning some generalizations. 
If ( ), ( ), , ( )H z H z H zM0 1 1f -" , are causal real coefficient 
FIR filters with power complementary property, that is, 

( ) ,H e 1k
j

k

2
=~/  then there exists a cascaded lattice 

structure similar in principle to Fig. 14(a), and can be 
implemented with planar rotations as the only computa-
tional units. For details please see [78]. Such structures 
are useful in the implementation of power complementa-
ry filter banks. In fact, these power complementary FIR 
lattices have also inspired the theory of multirate filter 
banks with perfect reconstruction, leading to a whole 
generation of filter bank structures with orthogonality 
properties. Details can be found in [1], [41], [46], [47], 
[65], [82], [84]–[88]. Such filter banks retain the perfect-
reconstruction property in spite of coefficient quantiza-
tion, and this can be exploited in the design of the filter 
responses under quantized conditions [36]. In addition 
to their applications in signal compression and digital 
communications, orthonormal filter banks have a role 
in the construction of orthonormal wavelets [11], [14], 
[66], [88], [91].

C. The FIRBR Structure
We now present an example of a structurally passive FIR 
system called the FIRBR structure [74]. It is one of the 
simplest ways to achieve structural passivity – the only 
background required is a first course in digital signal pro-
cessing. The method only works for Type 1 linear phase 
FIR filters [54] with equiripple passbands. Such a filter 
has transfer function of the form ( ) ( )H z n zh n

n
N

0
= -

=
/  

and satisfies the following properties:
1)	 N  is even,
2)	 ( )h n  is real, and
3)	 ( )h n  is symmetric, that is ( ) ( ) .h n h N n= -

So the frequency response has the form

	 ( ) ( )H e e H e/j j N
R

j2=~ ~ ~- 	 (22)

where ( )H eR
j~  is called the zero-phase part. It is real, 

with ( )H e 0R
j $~  in the passband. Figure 16(a) shows a 

plot of the zero-phase part ( )H eR
j~  for a lowpass filter. 

The equiripple property ensures in particular that all 
the peaks in the passband are equal to unity.

We now show how to implement such a filter in a 
structurally passive manner. Define the companion filter

	 ( ) ( )G z z H z/N 2= -- 	 (23)

so that

	 ( ) ( ( ))G e e H e1/

( )

j j N
R

j

G e

2

R
j

= -~ ~ ~-

~
1 2 3444 444

	 (24)

Clearly this is a Type 1 linear phase highpass filter with 
zero-phase response ( )G eR

j~  as shown in the figure. 
Furthermore, its response satisfies ( )G e 0R

j $~  for all 
.~  In fact at the passband peak frequencies of ( )H z  

where ( )H e 1R
j =~  and its derivative is zero, we have 

( )G e 0R
j =~  and these are guaranteed to be double zeros 

of ( ) .G z  Therefore ( )G z  can be factorized into the form

	

( )G z

( ) cosG z z z G z1 2 k
k

M
1 2 2

1
2

1

~= - +- -

=1 2 34444444 4444444
^ ^h h% 	 (25)

where ( )G z1  represents all the double zeros on the 
unit circle and ( )G z2  represents all zeros which are not 
on the unit circle. So we can implement the original 
lowpass filter ( ) ( )H z z G z/N 2= --  using the structure 
shown in Fig. 16(b) where ( )G z  is implemented in the 
factored form (25).

Now consider the effect of quantization. ( )G z1  is im-
plemented in the factored form (25) where the multipli-
ers are

	 cosm 2k k~= 	 (26)

So if these multipliers are perturbed slightly, the zeros 
of ( )G z1  remain on the unit circle and they continue to 
be double zeros (as long as the quantized mk  satisfies 

) .m 2k #  So ( )G e 0R
j $~  which shows that ( ) .H e 1R

j #~  

Figure 16. (a) The relation between the responses of ( )H z  
and ( )zG  where ( )H z  is Type-1 linear phase FIR, and ( )G z =  

( ) .z H z/N 2--  Here ( )H eR
j~  and ( )G eR

j~  are the zero-phase 
responses of H(z) and ( )zG  as defined in Eqs. (22) and (24). 
(b) An implementation of ( ) .H z  If ( )zG  is implemented in the 
factored form (25), this implementation of ( )H z  is structurally 
passive. This is called the FIRBR implementation, and enjoys 
low passband sensitivity.
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In fact, these power complementary FIR lattices have also inspired the theory  
of multirate filter banks with perfect reconstruction, leading to a whole  

generation of filter bank structures with orthogonality properties.
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Thus the passband response of ( )H z  remains bounded 
by unity.1 Fig. 16(b) is therefore a structurally bounded 
implementation as long as ( )G z  is implemented in fac-
tored form (25). The structure therefore enjoys low 
passband sensitivity.

To demonstrate the low sensitivity, we consider a 
24th order linear phase lowpass equiripple filter ( )H z  
designed using the McClellan-Parks algorithm [54]. We 
implement this using Fig. 16(b), with ( )G z  implemented 
in factored form (25). We compare the resulting frequen-
cy response with those of the direct-form structure, with 
multipliers quantized to 7 bits in both structures. Fig. 17 
shows the filter magnitude responses for these imple-
mentations. The responses of quantized structures are 
shown in red, and responses of unquantized structures 
are in black. For both structures, the dB plot of the entire 
response is shown, and the details of the passband re-

gion is shown separately. While the structures have com-
parable performances in the stopband, the passband re-
sponse of the quantized direct-form deviates significantly 
from the ideal. In contrast, the quantized response of the 
structurally passive implementation (FIRBR structure of 
Fig. 16(b)) is nearly perfect in the passband as well, dem-
onstrating very low passband sensitivity.

VI. Concluding Remarks
The world of circuit theory has been home to many leg-
ends in the last hundred years who gave a rock solid 
foundation to the field. Prof. Fettweis was one such giant 
who was a legend even during his life time. His contri-
butions spanned a much wider area than we have dis-
cussed in this limited space. In this article we focussed 
only on digital filter structures with low passband sen-
sitivity. Even in the area of wave digital filters, low sensi-
tivity is only one of the many aspects addressed by Prof. 
Fettweis. His contributions to other aspects of robust-
ness such as freedom from limit cycles are addressed in 
other articles in this issue.

1Notice that G2(z) is itself a Type 1 linear phase filter, and has zeros in 
reciprocal conjugate pairs {zk, 1/z*k}. When the coefficients of G2(z) are 
quantized, these zeros continue to remain inside and outside the unit 
circle, with reciprocal conjugate symmetry.

Figure 17. Responses of the direct-form structure and the FIRBR structure [74] under quantization. A 24th order linear phase FIR fil-
ter ( )H z  is simulated, and coefficients are quantized to 7 bits. The responses of quantized structures are shown in red, and respons-
es of unquantized structures are in black. Notice the low passband sensitivity of the FIRBR structure, induced by structural passivity.
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[17] Z. Doǧanata, P. P. Vaidyanathan, and T. Q. Nguyen, “General syn-
thesis procedures for FIR lossless transfer matrices for perfect-recon-
struction multirate filter bank applications,” IEEE Trans. Acoust. Speech 
Signal Process. *(1975–1990), vol. 36, pp. 1561–1574, Oct. 1988.
[18] A. Fettweis, “Digital filter structures related to classical filter net-
works,” Arch. Elektr. Uebertrag., vol. 25, pp. 79–89, Feb. 1971.
[19] A. Fettweis, “Some principles of designing digital filters imitating 
classical filter structures,” IEEE Trans. Circuit Theory, vol. 18, pp. 314–
316, Mar. 1971.
[20] A. Fettweis, “Pseudo-passivity, sensitivity, and stability of wave 
digital filters,” IEEE Trans. Circuit Theory, vol. 19, pp. 668–673, Nov. 1972.
[21] A. Fettweis, “Wave digital lattice filters,” Int. J. Circuit Theory Appl., 
vol. 2, pp. 203–211, June 1974.
[22] A. Fettweis, “Suppression of parasitic oscillations in multidimen-
sional wave digital filters,” IEEE Trans. Circuits Syst., vol. 25, pp. 1060–
1066, Dec. 1978.
[23] A. Fettweis, “Wave digital filters: Theory and practice,” Proc. IEEE, 
vol. 74, pp. 270–328, Feb. 1986.
[24] A. Fettweis and S. Basu, “New results on stable multidimensional 
polynomials—Part I: Continuous case,” IEEE Trans. Circuits Syst., vol. 34, 
no. 10, pp. 1221–1232, Oct. 1987.
[25] A. Fettweis and S. Basu, “Multidimensional causality and passivity 
of linear and nonlinear systems arising from physics,” Multidim. Syst. 
Signal Process., vol. 22, pp. 5–25, 2011.
[26] A. Fettweis and K. Meerkotter, “Suppression of parasitic oscilla-
tions in wave digital filters,” IEEE Trans. Circuits Syst., vol. 22, pp. 239–
246, Mar. 1975.
[27] A. Fettweis and K. Meerkotter, “On adaptors for wave digital filters,” 
IEEE Trans. Acoust. Speech Signal Process. *(1975–1990), vol. 23, pp. 516–
525, Dec. 1975.
[28] A. Fettweis and G. Nitsche, “Numerical integration of partial differen-
tial equations by means of multidimensional wave digital filters,” in Proc. 
IEEE Int. Symp. Circuits and Systems, New Orleans, LA, USA, May 1990. 
[29] A. Fettweis and J. Nossek, “Sampling rate increase and decrease in 
wave digital filters,” IEEE Trans. Circuits Syst., vol. 29, pp. 797–806, Dec. 1982.
[30] L. Gaszi, “Explicit formulas for lattice wave digital filters,” IEEE 
Trans. Circuits Syst., vol. CAS-32, pp. 68–88, Jan. 1985.
[31] W. Givens, “Computation of plane unitary rotations transforming a 
general matrix to triangular form,” SIAM J. Appl. Math., vol. 6, pp. 26–50, 
1958.
[32] A. H. Gray Jr. and J. D. Markel, “Digital lattice and ladder filter synthe-
sis,” IEEE Trans. Audio Electroacoust. (until 1974), vol. AU-21, pp. 491–500, 
Dec. 1973.
[33] A. H. Gray Jr. and J. D. Markel, “A normalized digital filter structure,” 
IEEE Trans. Acoust. Speech Signal Process. *(1975–1990), vol. ASSP-23, 
pp. 268–277, June 1975.
[34] A. H. Gray Jr., “Passive cascaded lattice digital filters,” IEEE Trans. 
Circuits Syst., vol. CAS-27, pp. 337–344, May 1980.
[35] E. A. Guillemin, Synthesis of Passive Networks. New York: Wiley, 1957.
[36] B.-R. Horng, H. Samueli, and A. N. Willson Jr., “The design of two-
channel lattice-structure perfect-reconstruction filter banks using 



32 	  IEEE circuits and systems magazine 		  first quarter 2019

power-of-two coefficients,” IEEE Trans. Circuits Syst. I, vol. 40, no. 7, pp. 
497–499, July 1993.
[37] K. Hwang, Computer Arithmetic: Principles, Architecture, and Design. 
New York: Wiley, 1979.
[38] F. Itakura and S. Saito, “Digital filtering techniques for speech anal-
ysis and synthesis,” in Proc. 7th Int. Acoustics Congr., Budapest, 1971.
[39] E. I. Jury and P. Bauer, “On the stability of two-dimensional continu-
ous systems,” IEEE Trans. Circuits Syst., vol. 35, no. 12, pp. 1487–1500, 
Dec. 1988.
[40] T. Kailath, “A view of three decades of linear filtering theory,” IEEE 
Trans. Inf. Theory, vol. 20, pp. 146–181, Mar. 1974.
[41] R. D. Koilpillai and P. P. Vaidyanathan, “A spectral factorization ap-
proach to pseudo-QMF design,” IEEE Trans. Signal Process., vol. SP-41, 
pp. 82–92, Jan. 1993.
[42] S. Y. Kung, H. J. Whitehouse, and T. Kailath, VLSI and Modern Signal 
Processing. Englewood Cliffs, NJ: Prentice Hall, 1985.
[43] J. Le Roux and C. Gueguen, “A fixed point computation of partial 
correlation coefficients,” IEEE Trans. Acoust. Speech Signal Process. 
*(1975–1990), vol. ASSP-25, pp. 257–259, June 1977.
[44] N. Levinson, “The Wiener RMS error criterion in filter design and 
prediction,” J. Math. Phys., vol. 25, pp. 261–278, 1947.
[45] J. Makhoul, “Linear prediction: A tutorial review,” Proc. IEEE, vol. 
63, pp. 561–580, Apr. 1975.
[46] H. S. Malvar, “Lapped transforms for efficient transform/subband 
coding,” IEEE Trans. Acoust. Speech Signal Process. *(1975–1990), vol. ASSP-
38, pp. 969–978, June 1990a.
[47] H. S. Malvar, Signal Processing with Lapped Transforms. Norwood, 
MA: Artech House, 1992.
[48] J. D. Markel and A. H. Gray Jr., Linear Prediction of Speech. New 
York: Springer-Verlag, 1976.
[49] S. K. Mitra and R. J. Sherwood, “Digital ladder networks,” IEEE 
Trans. Audio Electroacoust. (until 1974), vol. 21, pp. 30–36, Feb. 1973.
[50] S. K. Mitra, P. S. Kamat, and D. C. Huey, “Cascaded lattice realization 
of digital filters,” Int. J. Circuit Theory Appl., vol. 5, pp. 3–11, Jan. 1977.
[51] S. K. Mitra and K. Hirano, “Digital allpass networks,” IEEE Trans. 
Circuits Syst., vol. CAS-21, pp. 688–700, Sept. 1974.
[52] S. K. Mitra, Digital Signal Processing: A Computer-Based Approach. 
New York: McGraw-Hill, 2011.
[53] R. W. Newcomb, Linear Multiport Synthesis. New York: McGraw-
Hill, 1966.
[54] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. 
Englewood Cliffs, NJ: Prentice Hall, 2010.
[55] H. J. Orchard, “Inductorless filters,” Electron. Lett., vol. 2, pp. 224–
225, June 1966.
[56] H. J. Orchard, “Low sensitivity in singly and doubly terminated fil-
ters,” IEEE Trans. Circuits Syst., vol. CAS-26, pp. 293–297, May 1979.
[57] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals. 
Englewood Cliffs, NJ: Prentice Hall, 1978. [CrossRef]
[58] C. V. K. Prabhakara Rao and P. Dewilde, “On lossless transfer func-
tions and orthogonal realizations,” IEEE Trans. Circuits Syst., vol. CAS-
34, pp. 677–678, June 1987.
[59] S. K. Rao and T. Kailath, “Orthogonal digital lattice filters for VLSI 
implementation,” IEEE Trans. Circuits Syst., vol. CAS-31, pp. 933–945, 
Nov. 1984.
[60] H. C. Reddy and P. K. Rajan, “A comprehensive study of two-vari-
able Hurwitz polynomials,” IEEE Trans. Educ., vol. 32, no. 3, pp. 198–209, 
Aug. 1989.
[61] P. A. Regalia, S. K. Mitra, and P. P. Vaidyanathan, “The digital allpass 
filter: A versatile signal processing building block,” Proc. IEEE, vol. 76, 
pp. 19–37, Jan. 1988.
[62] I. Schur, “Über Potenzreihen, die im Innern des Einheitskreises Be-
schrankt Sind,” J. fur die Reine und Angewandte Mathematik, vol. 147, 
pp. 205–232, 1917.
[63] I. Schur and G. Szegö, Über die Abschnitte Einer im “Einheitskreise 
Beschränkten Potenzreihe,” Sitzungsker. Berl. Akad., pp. 545–560, 1925.
[64] A. Sedlmeyer and A. Fettweis, “Digital filters with true ladder con-
figuration,” Int. J. Circuit Theory Appl., vol. 1, pp. 5–10, Mar. 1973.
[65] M. J. T. Smith and T. P. Barnwell III, “A procedure for designing ex-
act reconstruction filter banks for tree structured subband coders,” in 
Proc. IEEE Int. Conf. Acoustics Speech and Signal Processing, San Diego, 
CA, Mar. 1984, pp. 27.1.1–27.1.4.
[66] G. Strang and T. Nguyen, Wavelets and Filter Banks. Cambridge, MA: 
Wellesley-Cambridge, 1996.

[67] M. N. S. Swamy, L. M. Roytman, and E. I. Plotkin, “On stability prop-
erties of three and higher dimensional linear shift-invariant digital fil-
ters,” IEEE Trans. Circuits Syst., vol. 32, no. 9, pp. 888–892, Sept. 1985.
[68] M. N. S. Swamy and K. S. Thyagarajan, “A new type of wave digital 
filters,” J. Franklin Inst., vol. 300, pp. 41–58, July 1975.
[69] J. Szczupak, S. K. Mitra, and J. Fadavi-Ardekani, “A computer-based 
method of realization of structurally LBR digital allpass networks,” 
IEEE Trans. Circuits Syst., vol. CAS-35, pp. 755–760, June 1988.
[70] G. Szegö, Orthogonal Polynomials. Providence, RI: American Math-
ematical Society, 1939.
[71] P. P. Vaidyanathan and S. K. Mitra, “Low passband sensitivity digi-
tal filters: A generalized viewpoint and synthesis procedures,” Proc. 
IEEE, vol. 72, pp. 404–423, Apr. 1984.
[72] P. P. Vaidyanathan, “The doubly terminated lossless digital two-
pair in digital filtering,” IEEE Trans. Circuits Syst., vol. 32, pp. 197–200, 
Feb. 1985.
[73] P. P. Vaidyanathan and S. K. Mitra, “Passivity properties of low-
sensitivity digital filter structures,” IEEE Trans. Circuits Syst., vol. 32, pp. 
217–224, Mar. 1985.
[74] P. P. Vaidyanathan and S. K. Mitra, “Very low sensitivity FIR filter 
implementation using structural passivity concept,” IEEE Trans. Circuits 
Syst., vol. CAS-32, pp. 360–364, Apr. 1985.
[75] P. P. Vaidyanathan, “A unified approach to orthogonal digital filters 
and wave digital filters, based on LBR two-pair extraction,” IEEE. Trans. 
Circuits Syst., vol. CAS-32, pp. 673–686, July 1985.
[76] P. P. Vaidyanathan, “The discrete-time bounded-real lemma in digi-
tal filtering,” IEEE. Trans. Circuits Syst., vol. CAS-32, pp. 918–924, Sept. 
1985.
[77] P. P. Vaidyanathan, S. K. Mitra, and Y. Neuvo, “A new approach to the 
realization of low sensitivity IIR digital filters,” IEEE Trans. Acoust. Speech 
Signal Process. *(1975–1990), vol. ASSP-34, pp. 350–361, Apr. 1986.
[78] P. P. Vaidyanathan, “Passive cascaded lattice structures for low sen-
sitivity FIR filter design, with applications to filter banks,” IEEE Trans. 
Circuits Syst., vol. CAS-33, pp. 1045–1064, Nov. 1986.
[79] P. P. Vaidyanathan and V. C. Liu, “An improved sufficient condition 
for absence of limit cycles in digital filters,” IEEE Trans. Circuits Syst., 
vol. 34, pp. 319–322, Mar. 1987.
[80] P. P. Vaidyanathan, P. A. Regalia, and S. K. Mitra, “Design of doubly 
complementary IIR digital filters using a single complex allpass filter, 
with multirate applications,” IEEE Trans. Circuits Syst., vol. CAS-34, pp. 
378–389, Apr. 1987.
[81] P. P. Vaidyanathan and S. K. Mitra, “A unified structural interpreta-
tion of some well-known stability-test procedures for linear systems,” 
Proc. IEEE, vol. 75, pp. 478–497, Apr. 1987.
[82] P. P. Vaidyanathan, “Theory and design of M-channel maximally 
decimated quadrature mirror filters with arbitrary M, having perfect re-
construction property,” IEEE Trans. Acoust. Speech Signal Process. *(1975–
1990), vol. ASSP-35, pp. 476–492, Apr. 1987.
[83] P. P. Vaidyanathan, “Low-noise and low-sensitivity digital filters,” 
in Handbook of Digital Signal Processing, D. F. Elliott, Ed. San Francisco, 
CA: Academic, 1987.
[84] P. P. Vaidyanathan and P.-Q. Hoang, “Lattice structures for optimal 
design and robust implementation of two-channel perfect reconstruc-
tion QMF banks,” IEEE Trans. Acoust. Speech Signal Process. *(1975–
1990), vol. ASSP-36, pp. 81–94, Jan. 1988.
[85] P. P. Vaidyanathan, T. Q. Nguyen, Z. Doǧanata, and T. Saramäki, “Im-
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