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Abstract—This paper addresses a fundamental question in the
context of multi-dimensional periodicity. Namely, to distinguish
between two N -dimensional periodic patterns, what is the least
number of (possibly non-contiguous) samples that need to be
observed? This question was only recently addressed for one-
dimensional signals. This paper generalizes those results to N -
dimensional signals. It will be shown that the optimal sampling
pattern takes the form of sparse and uniformly separated
bunches. Apart from new theoretical insights, this paper’s re-
sults may provide the foundation for fast N -dimensional period
recognition algorithms that use minimal number of samples1.

Keywords—Multidimensional periodicity, period estimation,
sparse sampling, non-uniform sampling.

I. INTRODUCTION

Periodicity in multi-dimensions is a beautiful phenomenon.
While most DSP applications of periodicity involve one di-
mensional signals, such as in speech, ECG, EEG, machine
vibrations, DNA microsatellites, protein repeats, etc., there
are applications in art [3], [5], crystallography [4], [8], tex-
ture analysis, image denoising [7] etc. that involve multi-
dimensional periodic signals. In terms of practical techniques
for estimating periodicity, there is today a rich variety of al-
gorithms available in the literature. However, one fundamental
aspect of this field has received surprisingly little mathematical
attention in the past. Namely, is there a precise bound on the
minimum number of samples required to identify the period
unambiguously? In this paper, we investigate this question for
periodic sequences, which have integer valued periods (shortest
repeat length) in 1 dimension (1D) or integer valued matrix
periods in higher dimensions (although the sequence itself
could be real or complex valued).

The earliest results related to minimum datalength can be
dated back to Carathéodary and Fejér [1]. They derived bounds
on the minimum contiguous datalength needed to estimate the
frequencies in a 1-dimensional (1D) sum of sinusoids. If we
express 1D periodic signals as sums of sinusoids using Fourier
series, these results tell us that the number of samples must
be at-least twice the largest expected period. Carathéodary and
Fejér’s results were extended to N -dimensional signals in [9].
However, notice that periodic signals are not just arbitrary
sums of sinusoids. There is a nice harmonic relationship
between the frequencies of a periodic signal, which is not
taken into account when using Carathéodary’s results. So
these classical bounds can only yield sufficiency results for
periodicity.

In a recent work [12], the following result was proved
for 1D signals: To identify the true period from a set of

1This work was supported in parts by the ONR grants N00014-17-1-
2732 and N00014-18-1-2390, the NSF grant CCF-1712633, and an Amazon
post doctoral fellowship facilitated through the Information Science and
Technology (IST) initiative at Caltech.

possible integer periods {P1, P2, . . . , PK} using L consecutive
samples, it is both necessary and sufficient that:

L ≥ Lmin = max
Pi,Pj

Pi + Pj − (Pi, Pj) (1)

This result was also generalized to mixtures of 1D signals in
[12]. But what if we are free to choose our samples in a non-
contiguous fashion? Can we estimate the period using fewer
samples than (1)? If so, what is the optimal way to choose
those samples so that we have the smallest number of samples?

This question is quite difficult to answer in general. As a
first result in this regard, [13] showed that, given a 1D periodic
signal x(n) whose period P lies in the set P = {P1, P2}, where
P1 < P2, the following number of samples is necessary and
sufficient to identify P :

Mmin =

{
P2 if P1 divides P2

P1 otherwise (2)

Although the scope of this result is limited to resolving
between two periods, its proof was still quite involved [13].
Mmin in (2) can be significantly smaller than Lmin in (1).
For example, suppose we were to distinguish between periods
8 and 50. While Lmin is 56 samples, Mmin is only 8 samples.
Directly applying Caratheodary’s bounds [1] for complex
exponentials in this case tells us that 2 × 50 = 100 samples
are sufficient to estimate the correct period, which is far more
than Mmin.

In this paper, we will generalize the above non-contiguous
samples result to N -dimensional signals. The proof in N -D
is even more involved than 1D, and gives rise to interesting
bunched sampling patterns in N -dimensions as shown in
Fig. 4. The statement of our main result for N -D is as follows:

Theorem 1. Let x(n), n ∈ ZN be an N -dimensional periodic
signal whose period P is one of the two integer matrices in
the set P = {P1,P2}, where |det(P1)| ≤ |det(P2)|. Then, the
following number of samples is both necessary and sufficient
to identify P:

Nmin =

{|det(P2)| if P1 is a left divisor of P2

|det(P1)| otherwise. (3)

♦

The notation used in Theorem 1 will be discussed shortly.
Before doing so, we note that necessity in Theorem 1 implies
that there exist signals with periods P1 and P2 for which
there is absolutely no way of identifying the true period if the
number of samples is smaller than Nmin in (3). The sufficiency
part is shown using a new period estimation method that can
provably estimate the period using Nmin number of samples.
A new non-uniform bunched sampling pattern emerges as the
minimal set of samples needed to identify the true N -D period.
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Fig. 1. Part (a) - A two dimensional periodic signal according to the definition
in (4), whose period is represented by the matrix in (5). The grid of dots is the
set Z2. The numbers shown indicate the value of the signal at those integer
points. The parallelogram shown is the FPD. Part (b) - A convenient way to
show the shape of the periodicity for such periodic signals. Note that the FPD,
when tiled along its edges, generates the whole signal.

Paper Outline: Important concepts summarizing multi-
dimensional periodicity on a discrete grid are discussed in
Sec. II. Sec. III presents a proof-by-construction for the suffi-
ciency aspect of Theorem 1. The necessity aspect of Theorem 1
is proved in Sec. IV.

Notations: Vectors and matrices are indicated using bold lower
case and bold upper case fonts respectively (e.g., vector n,
matrix A). The determinant of a matrix A is denoted as
det(A). Sets are indicated using blackboard font (e.g., set of
all integers is Z).

II. PERIODICITY IN N -DIMENSIONS: OVERVIEW

Periodicity on a multi-dimensional discrete grid can be
defined in the following way [2], [11], [14]. A signal x(n),
n ∈ ZN is said to be periodic if there exists a non-singular
integer matrix P ∈ ZN×N such that:

x(n+Pr) = x(n) ∀ n, r ∈ ZN (4)

Such a P is called a repetition matrix of x(n). The paral-
lelepiped whose edges are represented by the column vectors
of P is known as a repetition region, since this parallelepiped
when tiled periodically along the directions represented by the
columns of P, generates x(n). Such a parallelepiped is called
the Fundamental Parallelepiped of P, denoted as FPD(P).
The number of integer vectors inside FPD(P) equals |det(P)|.
If P is a repetition matrix with a determinant that has the
smallest absolute value among all possible repetition matrices
for x(n), then such a P is known as a period of x(n). Fig. 1(a)
shows an example of a two dimensional periodic signal with
the following period:

P =

[
2 0
1 2

]
(5)

For simplicity, we will indicate periodic signals such as the
one in Fig. 1(a) by plots similar to Fig. 1(b). (The horizontal
direction in Fig. 1(a) and (b) represents the first coordinate.)

It is worth noting that unlike in 1D, the period of an N -
D periodic signal is not unique. For any P in (4), PU also
satisfies (4) for any integer matrix U.

x(n+PUr) = x(n) ∀ n, r ∈ ZN (6)

In particular, if U is a unimodular2 integer matrix, then
|det(P)| = |det(PU|), so that if P is a period, so is PU.

2A unimodular matrix is a matrix with determinant ±1. So its inverse will
also be an integer matrix.

We will refer to such periods as “equivalent periods of P” in
this paper3.

Before we proceed further, it is important to define the
following notions of divisibility among integer matrices [14]:

1) D is a left divisor of P if P = DK for some integer
matrix K. D being a left divisor of P is denoted as
D|P. If D is not a left divisor of P, we denote it as
D � P

2) D is a left common divisor (LCD) of P1 and P2
if P1 = DK1 and P2 = DK2 for some integer
matrices K1 and K2.

3) G is a greatest left common divisor (GLCD) of P1
and P2 if, for every LCD D of P1 and P2, G = DK
for some integer matrix K. We will denote GLCD of
P1 and P2 as (P1,P2).

We will now proceed to proving Theorem 1.

III. SUFFICIENCY PROOF

Let G = (P1,P2). We will address the sufficiency proof of
Theorem 1 in three cases: (A) when P1|P2; (B) when P1 � P2,
but G = IN×N (Identity matrix), i.e, P1 and P2 are coprime;
(C) and more generally when P1 � P2, but G is not necessarily
the identity matrix.

A. Sufficiency when P1|P2

The fact that |det(P2)| samples are sufficient is relatively
easy to derive in this case. We first note that when P1|P2,
there exist equivalent periods of P1 and P2, P′

1 = P1U
and P′

2 = P2U
′ for unimodular matrices U,U′, such that

P′
2 = P′

1Λ for some integer diagonal matrix Λ.

To see this, let P2 = P1R for some integer matrix R. We
can write R as R = UΛV using its Smith-form decomposi-
tion [10], where U and V are unimodular matrices and Λ is
a diagonal integer matrix. So we can write:

P2 = P1R = P1UΛV (7)

which leads to
P2V

−1 = P1UΛ (8)

So P′
2 = P2V

−1 and P′
1 = P1U are the equivalent periods

of P2 and P1 respectively such that P′
2 = P′

1Λ.

Notice that since Λ is integer valued and diagonal, by
periodically tiling the parallelepiped FPD(P′

1), we can obtain
the parallelepiped FPD(P′

2). So to check if the period of x(n)
is P1 or P2, all we need to do is check if the values of x(n)
on the tiles of FPD(P′

1) inside FPD(P′
2) are identical to each

other (in which case the period of x(n) is P1). Alternatively, if
there is at least one tile of FPD(P′

1) that is different from the
rest, the period of x(n) will be P2. The samples in FPD(P′

2)
are sufficient to check this, which are |det(P2)| in number.

B. Sufficiency when P1 and P2 are coprime

We will first prove the following result:

Theorem 2. Suppose the period of x(n) is either P1 or P2,
P1 � P2, and (P1,P2) = I. Consider a downsampled signal
y(n) = x(P2n). Then, y(n) will be a constant valued signal
if and only if the period of x(n) is P2. ♦

3One may wonder if defining the period in N -D as a parallelepiped is
general enough to capture all possible periodicities in N -D. We refer the
interested reader to [11] for an interesting analysis in this regard.
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Fig. 2. Finding the period of x(n) when P1 � P2, and (P1,P2) = G.
|det(G)| is denoted as g. See Sec. III-C for details.

Proof: Case (I): When the period of x(n) is P2,

y(n) = x(P2n) = x(P2n+ 0) = x(0) (9)

The second equality follows from (4). Hence, y(n) has a
constant value across all n.

Case (II): When the period of x(n) is P1, downsampling by
a coprime P2 is in fact a lossless operation. For this, we will
show that for every n ∈ ZN , there exists an n′ ∈ ZN such
that x(n) = y(n′).

Since (P1,P2) = IN×N , Bezout’s identity [14] tells us
that there exist matrices A,B such that:

P1A+P2B = I (10)

multiplying both sides by n, we have:

P1(An) +P2(Bn) = n (11)

Let us now denote Bn as n′. So we have:

x(n) = x(P1(An) +P2n
′) = x(P2n

′) = y(n′) (12)

That is, downsampling by P2 is a lossless operation, and only
periodically rearranges the samples of x(n). In this subsection,
we assumed that P1 � P2, which in particular means that
P1 �= I. Hence, when x(n) has period P1, in particular it
cannot be a constant signal, and so y(n) cannot be a constant
signal either. This completes the proof of the theorem.

In the proof of Theorem 2, how many samples do we
need to check if y(n) is a constant? The answer is, at most
|det(P1)|, as it suffices to check the value of y on the
following set:

{Bn : n ∈ FPD(P1)} (13)

This is so, since if the period of x(n) is P1, then x(n) cannot
be a constant on FPD(P1). And hence y cannot be a constant
on the above set because of (12) where n′ = Bn. The size
of the above set is atmost |det(P1)|, which completes the
sufficiency proof of Theorem 1 for the case of P1 and P2
being coprime.

C. When P1 � P2 and (P1,P2) = G

We propose a generalization of the single downsampling
operation of Sec. III-B to the structure shown in Fig. 2. There
are |det(G)| downsamplers, and each channel shifts the input
by a vector ki in FPD(G) before downsampling by P2. That
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Fig. 3. Re-drawing Fig. 2 for analysis. See Sec. III-C for details.

is, yi(n) = x(P2n+ ki) for each channel i. The following
theorem can now be proved:

Theorem 3. Suppose the period of x(n) is either P1 or P2,
P1 � P2, and (P1,P2) = G. Then, for every channel i, yi(n)
in Fig. 2 is a constant ∀n if and only if the period of x(n) is
P2. If x(n)’s period is P1, at least one of the yi(n)’s will not
be a constant signal.

Proof: Case (I): When the period of x(n) is P2, all shifted
versions of x(n) will also have period P2. Hence, similar to
(9) in Theorem 2, each yi(n) is a constant signal.

Case (II): When the period of x(n) is P1, it is useful to look
at an equivalent representation of Fig. 2 as shown in Fig. 3.
We will first show that at least one of the ui(n)’s is not a
constant.

To see this, let us assume the contrary. That is,

ui(n) = x(Gn+ ki) = λi ∀n (14)

for each channel i. Now, given any n ∈ ZN , there exist unique
n′ ∈ ZN and kj ∈ FPD(G) such that:

n = Gn′ + kj (15)

This follows from a generalization of the division theorem of
integers to N−D (see Sec. 12.4.2 in [14]). Combining (14)
and (15), we can write:

x(n) = x(Gn′ + kj) = λj (16)

and for any r ∈ ZN :

x(n+Gr) = x(G(n′ + r) + kj) = λj (17)

Hence, we have:

x(n+Gr) = x(n) (18)

Since n and r were arbitrarily chosen, the above equation holds
∀n, r ∈ ZN . And so G is also a repetition matrix of xP1(n).
However, note that:

P1 = GR1, P2 = GR2 (19)

for some integer matrices R1,R2 since G = (P1,P2). So in
particular, |det(G)| ≤ |det(P1)|. But since P1 is the period
of the input here, it becomes necessary that |det(R1)| = 1.
That is:

PU = G (20)

����



where U is the (integer valued) inverse of the unimodular R1.
Substituting (20) in (19) shows that:

P2 = GR2 = P1(UR2) (21)

That is, P1|P2, which is contrary to our main assumption in
this subsection. Hence, (14) cannot be true for all channels i
simultaneously.

In the following two paragraphs, we will show that if ui(n)
is not a constant signal, then the corresponding yi(n) is also
not a constant signal. To see this, let us assume that the period
of ui(n) is D. We will first show that D|G−1P1. Note that:

ui(n+G−1P1r) = x(Gn+P1r+ ki) = x(Gn+ ki) = ui(n)

Hence, G−1P1 is a repetition matrix of ui. So its pe-
riod D must necessarily be a left divisor of G−1P1, i.e,
G−1P1 = DH for some integer matrix H (see Theorem 6
in the Appendix).

Now, using the extension of Euclid’s theorem to N -D (see
Lemma 13.5.1 in [14]), we have:

P1A+P2B = G (22)

for some integer matrices A and B. We can re-write this as:

G−1P1A+G−1P2B = I (23)

Substituting G−1P1 = DH, we have:

D(HA) +G−1P2B = I (24)

Using Bezout’s identity [14], we can conclude that D and
G−1P2 must be coprime. In other words, the period of ui is
coprime to the dowsampling index G−1P2 in Fig. 3. Using
Theorem 2, we can then conclude that yi cannot be a constant
signal. This completes the proof of the current theorem.

The above result shows that the period of x(n) can be
estimated by checking if the outputs yi are constant signals.
Using the same arguments as in Sec. III-B (Eq. 13), we need
at most |det(D)| ≤ |det(G−1P1)| samples of yi for checking
if each yi is a constant signal. These are given by the points:

{Bn : n ∈ FPD(G−1P1)} (25)

Since there are |det(G)| channels, we need at most |det(P1)|
samples in total. The corresponding samples of x(n) that are
required to be checked occur in an interesting bunched pattern
as shown in Fig. 4. Please see Fig. 4 for more details. This
completes the sufficiency proof of Theorem 1.

IV. NECESSITY PROOF

Motivated by the approach for the one dimensional setting
in [13], we will first show that |det(P1)| samples are necessary
to find the period from the set {P1,P2}, irrespective of
whether P1|P2 or P1 � P2. Later, we will show that when
P1|P2, |det(P2)| samples are necessary.

Theorem 4. Given any set of L < |det(P1)| integer vectors
NT = {n1,n2, . . . ,nL} ⊂ ZN , and |det(P1)| ≤ |det(P2)|,
there exist periodic signals xP1(n) and xP2(n) with periods
P1 and P2 respectively such that

xP1(n) = xP2(n) ∀ n ∈ NT (26)

♦
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Fig. 4. A pictorial illustration of Theorem 3 in two dimensions: (Top)
Let the parallelograms corresponding to the potential periods P1 and P2
in Theorem 3 be as shown on the top part of the figure. While we consider
discrete time periodic signals in this work, for convenience, we have omitted
the 2-D integer grid shown in Fig 1 in these figures. The origin of the 2-D
plane is shown for reference for each parallelogram. Let the parallelogram
corresponding to G also be as shown. (Bottom) The 2-D integer points inside
the dark gray regions in the image on the bottom are the locations of the
samples that are used in the proof of Theorem 3. Each gray region has shape
same as FPD(G). There are det(P1)/det(G) such gray regions, spaced apart
on a grid generated by the columns of P2. This sampling pattern provably
yields the absolute minimum number of samples required for estimating the
period.

Proof: For every n ∈ ZN , there exist unique n′ ∈ ZN

and k ∈ FPD(P1) such that:

n = P1n
′ + k (27)

(See Sec. 12.4.2 in [14].) Notice that the value of any signal
with period P1 will be equal on both n and k. Now, let us
map each ni ∈ NT to its corresponding point ki in FPD(P1)
according to (27). Let us denote the set of such ki as KP1 ,
i.e,

KP1 = {k ∈ FPD(P1) : ∃n ∈ NT s.t. n = P1n
′ + k}

Since L < |det(P1)|, there exists at least one integer vector
in FPD(P1) that does not belong to the set KP1 . Let m be
such a point. We will now define a period P1 signal xP1(n)
by specifying its values on FPD(P1) as follows:

xP1(n) =

{
0 if n = m
1 otherwise (28)

The values of xP1(n) at other points in space are generated
by periodically tiling its values on FPD(P1). Notice that
xP1(n) = 1 ∀ n ∈ NT . In the same way, we can construct a
period P2 signal xP2(n) that satisfies xP2(n) = 1 ∀ n ∈ NT .
Clearly, for these xP1(n) and xP2(n), (26) is satisfied.

Theorem 4 shows that given any such set of L < |det(P1)|
integer vectors, there exist signals with periods P1,P2, whose
true period cannot be identified. We will now argue that when
P1|P2, one needs at least |det(P2)| samples to estimate the
period.
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Theorem 5. Let P1|P2. Given any set of L < |det(P2)|
integer vectors NT = {n1,n2, . . . ,nL} ⊂ ZN , and any period
P1 signal xP1(n), there exists a period P2 signal xP2(n)
such that:

xP1(n) = xP2(n) ∀ n ∈ NT (29)

♦

Proof: We will essentially construct an xP2(n) satisfying
the conditions of the theorem. Let us first specify the values
of xP2(n) on FPD(P2). To do so, we first define the set KP2

in a similar fashion as in the proof of Theorem 4 as follows:

KP2 = {k ∈ FPD(P2) : ∃n ∈ NT s.t. n = P2n
′ + k}

Since L < |det(P2)|, there exists at least one integer vec-
tor m ∈ FPD(P2) that does not belong to KP2 . Let u
and v be real numbers such that u > maxn xP1(n) and
v < minn xP1(n). We can now define xP2(n) by specifying
its values on FPD(P2) as follows:

xP2(n) =

⎧⎨
⎩
xP1(n) if n ∈ KP2

u n = m
v otherwise

(30)

It is easy to see that xP2(n), when generated by periodically
tiling the above values along the edges of FPD(P2), is a period
P2 signal (u occurs only once every tile of FPD(P2)).

It remains to be shown that xP2(n) = xP1(n) for all points
in NT . Let n ∈ NT . We can decompose n as:

n = P2n
′ + k (31)

for some k ∈ KP2 . From (30), we have:

xP2(k) = xP1(k) (32)

Substituting (31), we get:

xP2(n−P2n
′) = xP1(n−P2n

′) (33)

The left hand side is just xP2(n) since xP2 has period P2.
Substituting P2 = P1R into the right hand side, since P1|P2,
the right hand side reduces to xP1(n). Hence, we have:

xP2(n) = xP1(n) ∀n ∈ NT (34)

This completes the proof.

Theorem 5 shows that when P1|P2, given any set of
L < |det(P2)| integer vectors, there exist signals with periods
P1,P2, whose true period cannot be identified. So |det(P2)|
samples are necessary in this case. This concludes the proof
of Theorem 1.

V. CONCLUDING REMARKS

Precise bounds on the least number of possibly non-
contiguous samples required to distinguish between two multi-
dimensional periodic patters were derived in this paper. Al-
though the scope Theorem 1 is restricted to resolving between
two periodic patterns, it could pave the way for a generalization
to larger sets of periods. This is motivated by the fact that the
1-D result in Eq. (1) for contiguous samples was also derived
in [12] starting from distinguishing between pairs of periods.
Such a generalization of Theorem 1 will be a part of our future
research efforts. It would also be interesting to see if the sparse
and minimal sampling patterns resulting from Theorem 1 can
lead to fast algorithms for period estimation in N -dimesnions.
This will also be a promising direction to pursue in the future.
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APPENDIX

Theorem 6. Let P be a period of x(n). For any repetition
matrix Q of x(n), P must be a left divisor of Q. ♦

Proof: Let G = (P,Q). Using the N -D extension of
Euclid’s theorem (see Lemma 13.5.1 in [14]), there exist
matrices A and B such that:

PA+QB = G (35)

Since Q is a repetition matrix of x, so will QB be,

x(n+QBr) = x(n) ∀ n, r ∈ ZN (36)

we can substitute (35) into (36) to get:

x(n+Gr−PAr) = x(n) ∀ n, r ∈ ZN (37)

But since P is a period, PA will also be a repetition matrix
so that (38) is equivalent to:

x(n+Gr) = x(n) ∀ n, r ∈ ZN (38)

i.e., G is also a repetition matrix. Using arguments identical
to Eq. (19) to Eq. (21), with P1,P2 replaced by P,Q
respectively, we can then prove that P is a left divisor of Q.
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