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Abstract—Sparse arrays have received considerable attention
due to their capability of resolving O(N2) uncorrelated sources
with N physical sensors, unlike the uniform linear array (ULA)
which identifies at most N − 1 sources. This is because sparse
arrays have an O(N2)-long ULA segment in the difference
coarray, defined as the set of differences between sensor locations.
Among the existing array configurations, minimum redundancy
arrays (MRA) have the largest ULA segment in the difference
coarray with no holes. However, in practice, ULA is robust, in
the sense of coarray invariance to sensor failure, but MRA is
not. This paper proposes a novel array geometry, named as the
robust MRA (RMRA), that maximizes the size of the hole-free
difference coarray subject to the same level of robustness as ULA.
The RMRA can be found by solving an integer program, which
is computationally expensive. Even so, it will be shown that the
RMRA still owns O(N2) elements in the hole-free difference
coarray. In particular, for sufficiently large N , the aperture for
RMRA, which is approximately half of the size of the difference
coarray, is bounded between 0.0625N2 and 0.2174N2.1

Index Terms—Sparse arrays, minimum redundancy arrays,
difference coarray, robustness, fragility.

I. INTRODUCTION

Sparse arrays are capable of resolving O(N2) uncorrelated
source directions, using N physical sensors, in contrast to
the uniform linear array (ULA), which identifies at most
N − 1 sources [1]. This O(N2) property is because the
difference coarray, defined as the set of differences between
sensor locations, possesses a central ULA segment of size
O(N2). These sparse arrays include minimum redundancy
arrays (MRA) [2], nested arrays [3], and coprime arrays [4],
to name a few [5]. For a fixed number of sensors, MRA
has the largest hole-free difference coarray among the above-
mentioned arrays. Due to this property, MRA typically has the
best estimation performance.

The robustness of arrays to sensor failure is also a significant
and practical issue in array processing, since sensor failures
typically lead to degradation of the array performance [6], [7].
It was empirically known that the difference coarray of the
MRA is susceptible to sensor failures [8]. In particular, any
faulty sensor in the MRA shrinks its difference coarray [8],
which affects the applicability of array processing algorithms,
such as the spatial smoothing MUSIC [3]. This observation
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of Technology, the Ministry of Education, Taiwan, R.O.C, under Yushan
Young Scholar Program (Grant No. NTU-107V0902), and National Taiwan
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was explained quantitatively in [8] by using the concept of
fragility of arrays. It was also demonstrated that the ULA is
one of the most robust array geometries.

This paper proposes a new array geometry, named as the
robust minimum redundancy array (RMRA), that is robust to
sensor failures (as robust as ULA) while at the same time
enjoying a large central ULA segment in the difference coarray
(similar to MRA). The RMRA is defined as the solution to
the integer program (P1) given in Section III. Even though
solving (P1) is computationally expensive, it will be shown
that the feasible region of (P1) is not empty, the solutions are
not unique, and the aperture of a N -sensor RMRA is bounded
between 0.0625N2 and 0.2174N2. These bounds indicate that
the size of the difference coarray of the RMRA is O(N2),
which is as good as the MRA. These new results will also be
proved rigorously in this paper.

This paper is organized as follows. Section II reviews the
MRA and the robustness of the difference coarray to sensor
failures. Section III presents the RMRA and characterizes the
size of the difference coarray of RMRA (Theorem 1). This
theorem is proved rigorously in Section IV. Numerical exam-
ples are presented in Section V while Section VI concludes
this paper.

II. PRELIMINARIES

Assume that the sensors in an array are located at nλ/2,
where λ is the wavelength of the incoming monochromatic
sources and n belongs to an integer-valued set S. For uncorre-
lated source amplitudes and noise, the estimation of direction-
of-arrival (DOA) of the sources, based on the sensor array S,
can be converted into the estimation of DOA on the difference
coarray [3], [4]. The difference coarray of S is defined as

D � {n1 − n2 : n1, n2 ∈ S}. (1)

In some DOA estimators such as spatial smoothing MU-
SIC [3], the estimation performance depends on the central
ULA segment of the difference coarray, which is defined as
U � {0,±1, . . . ,±m}. Here m is the largest integer such that
{0,±1, . . . ,±m} ⊆ D.

Another quantity associated with the difference coarray is
the weight function w(m), defined as the number of sensor
pairs with separation m. That is,

w(m) �
∣∣{(n1, n2) ∈ S

2 : n1 − n2 = m
}∣∣ , (2)

where m ∈ D.
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The redundancy R of an array measures the size of the
central ULA segment U with respect to the the number of
sensors [2]:

R �
(|S|
2

)
(|U| − 1)/2

. (3)

For a fixed number of sensors, the smaller R is, the larger
the central ULA segment is, so more uncorrelated sources are
resolvable [2]–[4]. Based on this concept, the MRA with N
sensors is defined as2

(P0) : SMRA � argmin
S

R subject to (4)

|S| = N, D = U. (5)

Here the constraint D = U denotes that the difference coar-
ray consists of consecutive integers. Namely, the difference
coarray is hole-free, which is crucial for the applicability of
DOA estimators such as spatial smoothing MUSIC [3], [4].
Note that in (P0), minimizing the redundancy is equivalent
to maximizing the size of the difference coarray due to the
constraints in (5).

If SMRA is a solution to (P0), then its translated version
{n + n0 : n ∈ SMRA} and its reversed version {−n : n ∈
SMRA} are both solutions to (P0). Such ambiguity arises
because the number of sensors |S| and the difference coarray
are invariant under these operations. In this paper, unless
specified, the leftmost element in an array is at the location
0 and for simplicity, the reversed version of an array will not
be considered.

A notable property of MRA is the O(N2) property. For
sufficiently large N , the size of the difference coarray of MRA
satisfies 0.5974N2 ≤ |DMRA| ≤ 0.8217N2, or equivalently
|DMRA| = O(N2) [2], [9]. This O(N2) property makes it
possible to resolve more source directions than sensors using
MRA [2], [10].

Next we will review the essentialness property [8]. This
property characterizes the influence of faulty sensors on the
difference coarray. It is defined as follows:

Definition 1. Assume that n ∈ S. Then the sensor at n is
essential with respect to S if the removal of n from S changes
the difference coarray. Namely, D �= D, where D and D are
the difference coarrays of S � S\{n} and S, respectively.

We say that n ∈ S is inessential if n is not essential. An
array S is maximally economic if all sensors in S are essential
[11]. Based on Definition 1, the fragility F is defined as [8]:

F � The number of essential sensors in S

The number of sensors in S
. (6)

The fragility F can be used to quantify the robustness of the
difference coarray to sensor failures [8]. As F increases, any
sensor failure tends to modify the difference coarray, so we
say that the array is not robust. In particular, for any array
with N ≥ 4, their fragility satisfies 2/N ≤ F ≤ 1. The
minimum fragility F = 2/N is achieved for ULA while the
fragility F = 1 corresponds to maximally economic sparse
arrays [12], such as MRA [2], MHA [13], [14], and nested
arrays [3].

2In [2], this array is called the restricted MRA.
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Fig. 1. The array geometries and the nonnegative parts of the difference
coarrays for (a) ULA and (b) MRA. These arrays have 10 physical sensors.

Example 1. Fig. 1 shows the array geometries of ULA and
MRA. These arrays have 10 physical sensors. The essential
sensors and the inessential sensors are depicted by red dia-
monds and green squares, respectively. The nonnegative part
of the difference coarray is illustrated in blue circles. First,
both arrays have hole-free difference coarrays and the largest
element in the difference coarray is 9 for ULA and 36 for
MRA. This is since |D| = O(N) for ULA while |D| = O(N2)
for MRA. Second, the fragility F is 2/10 for ULA and 1 for
MRA, implying that MRA is much less robust than ULA, in
the sense of coarray invariance to sensor failure.

III. MRA OPTIMIZED FOR ROBUSTNESS

As defined in Section II, the MRA has the largest hole-free
difference coarray among all arrays with N sensors. However,
the MRA with N sensors is not robust (F = 1) [8]. This
attribute hinders the applicability of MRAs in the presence of
sensor failures. On the contrary, the ULA is one of the most
robust arrays, since it has minimum fragility 2/N . However,
the difference coarray of ULA has only O(N) elements (in
particular, |D| = 2N − 1). This property prevents ULA from
identifying more sources than sensors [1] (assuming we use
autocorrelation based methods).

Presented with these issues, in this part, we will propose
a new array geometry that strikes a balance between the
redundancy R (or equivalently the size of the central ULA
segment of the difference coarray), and the fragility F , as
defined in (6). This array is named as the robust minimum
redundancy arrays (RMRA), formally defined as

(P1) : SRMRA � argmin
S

R subject to (7)

|S| = N, D = U, (8)

F =
2

N
, N ≥ 4. (9)

The physical meaning of the problem (P1) is as follows. Eqs.
(7) and (8) show that the redundancy is minimized subject to
the hole-free difference coarray. The new array SRMRA is as
robust as ULA (F = 2/N ), as in (9). Furthermore, in (P1),
minimizing the redundancy is equivalent to maximizing the
size of the difference coarray.

The constraint N ≥ 4 is to guarantee a nonempty feasible
region of (P1). For any arrays with N = 1 or 3, it can be
shown that F = 1 �= 2/N [12]. For N ≥ 4, the ULA (SULA =
{0, 1, . . . , N − 1}) satisfies |SULA| = N , DULA = UULA, and
F = 2/N , so the feasible region of (P1) is not empty.

The integer program (P1) requires a combinatorial search
over the feasible region. This task becomes computationally
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TABLE I
ARRAY CONFIGURATIONS OF RMRA

N Array Configuration

4 0 3
#1:#1: Essential Inessential

5 0 4
#1:

6
#1:
#2:

0 2 4 6

7
#1:
#2:

0 2 5 9

8
#1:
#2:

0 3 5 8 12

9 #1:
0 4 9 15

10
#1:
#2:

0 2 6 11 15 19

difficult as N increases. To the best of our knowledge, closed-
form expressions for SRMRA are not available. Even so, it is
still manageable to enumerate RMRA for small N . The results
are summarized in the following example.

Example 2. Table I tabulates some of the solutions to (P1)
for a given N , where the essential sensors and the inessential
sensors are marked by red diamonds and green squares,
respectively. The leftmost element in the array is shifted to
the location 0 and the reversed version of these solutions are
omitted. For N being 4 or 5, RMRA are the same as ULA.
Among those in Table I, the solutions to (P1) are not unique,
such as those for N = 6, 7, 8, 10.

Next we will compare MRA with RMRA. For instance,
the MRA with N = 10, as depicted in Fig. 1(b), own the
aperture A = 36 and F = 1. On the other hand, the RMRA
with N = 10, as in Table I, has a smaller aperture A = 19
and minimum fragility F = 2/10. That is, in this example,
the RMRA approximately halves the aperture to decrease the
fragility, compared with the MRA.

Based on this empirical observation, next we will show that
the RMRA also owns the O(N2) property, i.e., |DRMRA| =
O(N2). Before presenting this result, we first define a quantity
r for the relation between the number of sensors N and the
aperture A. It is defined as

r � N2

A
. (10)

For any array with sufficiently large N , the redundancy can
be approximated by R ≈ r/2. Then, the following theorem
states the lower and the upper bounds of r for the RMRA,
where the details of the proof will be elaborated in Section
IV.

Theorem 1. Let SRMRA be a solution to (P1) with N ≥ 4
physical sensors. The aperture of SRMRA is denoted by
ARMRA. Define the ratio rRMRA � N2/ARMRA. Then

4 +
4
√
2

3π
≤ rRMRA < 16. (11)

Theorem 1 makes it possible to show the O(N2) property
of RMRA. First (11) can be rearranged as 0.0625N2 <
ARMRA ≤ 0.2174N2. Then the size of the hole-free difference
coarray is |DRMRA| = 2ARMRA + 1 = O(N2).

Finally we will compare the aperture of MRA [2] with that
of RMRA. Due to [2] and Theorem 1, for sufficiently large
N , the apertures of these arrays satisfy

0.2987N2 ≤ AMRA ≤ 0.4108N2, (12)
0.0625N2 < ARMRA ≤ 0.2174N2. (13)

Eqs. (12) and (13) indicate that ARMRA/AMRA ≤ 0.7278.
That is, for sufficiently large N , ARMRA is at most 72.78%
of AMRA. In particular, if N = 10, then ARMRA/AMRA =
19/36 ≈ 52.8% < 72.78%, due to Fig. 1 and Table I.

IV. PROOF OF THEOREM 1

A. The Main Proof

This section aims to derive the relation in (11). Before
presenting the details, we will invoke Lemma 1 to relate
the constraint F = 2/N to another constraint on the weight
function w(m).

Lemma 1. Let S be a sensor array with N physical sensors.
Let A � max(S)−min(S) be the aperture of S. Assume that
N ≥ 4. If F = 2/N , then w(m) ≥ 2 for all m ∈ D\{±A}.

Proof: Assume that there exists m̂ ∈ D\{±A} such that
w(m̂) < 2. Since m̂ ∈ D, we have w(m̂) = 1, implying
that there exists a unique sensor pair (n1, n2) ∈ S

2 such that
1) n1 − n2 = m̂ and 2) n1 and n2 are both essential [11,
Lemma 1]. Next let us match the essential sensors n1 and n2

with min(S) and max(S), which are known to be essential
for any arrays [12]. If {n1, n2} = {min(S),max(S)}, then
|m̂| = |n1 − n2| = |min(S) − min(S)| = A, which
contradicts with the assumption that m̂ ∈ D\{±A}. If
{n1, n2} �= {min(S),max(S)}, then there are at least three
essential sensors in S, so F ≥ 3/N . This statement disagrees
with the assumption that F = 2/N .

Next let us move on to the main results. In what follows,
the lower bound and the upper bound in (11) will be derived
separately.

The lower bound in (11): Let S be a sensor array belonging
to the feasible region of (P1), i.e. satisfying the constraints (8)
and (9). The beampattern of the array S is defined as

B(ω; S) =
∑
n∈S

ejωn, (14)

where j =
√−1 is the imaginary unit and the parameter ω is

real-valued. Based on (14), we have

|B(ω; S)|2 =
∑

n1,n2∈S

ejω(n1−n2) =
∑
m∈D

w(m)ejωm, (15)

where D = {0,±1,±2, . . . ,±A}. Due to Lemma 1 and the
property that w(±A) = 1 and w(±(A − 1)) = 2, we can
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divide Eq. (15) into three terms T1(ω), T2(ω), and T3(ω) as
follows

|B(ω; S)|2 =
A∑

m=−A

w(m)ejωm =
A∑

m=−A

ejωm

︸ ︷︷ ︸
T1(ω)

+

A−1∑
m=−(A−1)

ejωm

︸ ︷︷ ︸
T2(ω)

+

A−2∑
m=−(A−2)

(w(m)− 2)ejωm

︸ ︷︷ ︸
T3(ω)

. (16)

The term T1(ω) + T2(ω) can be simplified as

T1(ω) + T2(ω) =
sin((A+ 1/2)ω) + sin((A− 1/2)ω)

sin(ω/2)

=
2 sin(Aω) cos(ω/2)

sin(ω/2)
. (17)

Next let us consider the term T3(ω). Since the weight function
w(m) is real-valued and evenly-symmetric, the term T3(ω) is
real-valued for any real ω. Applying the triangular inequality
and the constraint that w(m) ≥ 2 to T3(ω) yields

T3(ω) ≤ |T3(ω)| ≤
A−2∑

m=−(A−2)

|(w(m)− 2)ejωm|

=

⎛
⎝ A−2∑

m=−(A−2)

w(m)

⎞
⎠− 2(2(A− 2) + 1)

= (N2 − 6)− (4A− 6) = N2 − 4A, (18)

where we use the fact that
∑

m∈D
w(m) = N2 for any array

with N sensors [3]. Substituting (17) and (18) into the property
that |B(ω; S)|2 ≥ 0 leads to

N2

A
≥ 4− 2 sin(Aω) cos(ω/2)

A sin(ω/2)
. (19)

Note that (19) holds for any real ω. Substituting ω = 3π/(2A)
into (19) gives

N2

A
≥ 4 +

2 cos 3π
4A

A sin 3π
4A

. (20)

Since N ≥ 4, we have A ≥ 3 and 0 ≤ 3π
4A ≤ π

4 . Thus, the
sine and the cosine terms in (20) satisfy

0 ≤ sin
3π

4A
≤ 3π

4A
,

1√
2
≤ cos

3π

4A
≤ 1. (21)

Finally, combining (20) and (21) shows that N2/A ≥ 4 +
4
√
2/(3π). Since RMRA belongs to the feasible region of

(P1), we have N2/ARMRA ≥ 4 + 4
√
2/(3π).

The upper bound of (11): It suffices to find a solution S

in the feasible region of (P1), namely, a solution that satisfies
(8) and (9), that gives N2/A < 16, where A is the aperture
of S. Based on N , we have the following cases:

1) 4 ≤ N ≤ 14: In this case, S is chosen as the ULA with
N sensors: {0, 1, . . . , N − 1}, which satisfies F = 2/N and
N2/A = N2/(N − 1) ≤ 196/13 < 16.

2) N ≥ 15 and N is even: We consider the symmetric
nested array with N sensors [11], defined as

Definition 2. Assume that N is a positive even number. The
symmetric nested array with N sensors is defined as the union
of two arrays S1 and S2, i.e., Ssym � S1 ∪ S2, where

S1 � {1, 2, . . . , N1,

(N1 + 1), 2(N1 + 1), . . . , N2(N1 + 1)}, (22)

S2 � {N2(N1 + 1) + 1− n : n ∈ S1}. (23)

Here the parameters N1 and N2 are given by

N1 = 
(N + 2)/4� , N2 = �(N + 2)/4
 . (24)

The ceiling and the floor functions are denoted by �·
 and 
·�,
respectively.

The array S1 is the nested array with parameters N1 and
N2 [3] while the array S2 is the reversed version of S1. Note
that the definition of the symmetric nested array from (22) to
(24) is applicable for any positive even N .

Properties of the symmetric nested array are listed below:

Lemma 2. Let Ssym denote a symmetric nested array with a
positive even N . Let S1 and S2 be given by (22) and (23),
respectively. Then we have
1) S1 ∩ S2 = {1, N2(N1 + 1)}.
2) Let Dsym be the difference coarray of Ssym. Then Dsym =

{0,±1, . . . ,±(N2(N1 + 1)− 1)}.
3) The fragility F for Ssym is 2/N .

Proof: The proof of Lemma 2 is sketched below. The first
item follows from (22) and (23) directly.

For the second item, let D1 and D2 be the difference
coarray of S1 and S2, respectively. We have D1 = D2 =
{0,±1, . . . ,±(N2(N1 + 1) − 1)} [3]. Since 1) S1, S2, and
Ssym share the same aperture and 2) D1 = D2 are both hole-
free, we have Dsym = D1 = D2.

The third item is due to the following chain of arguments. If
N = 2, then it is obviously true [8]. Next we consider N ≥ 4.
Let n ∈ Ssym\{1, N2(N1 + 1)}. By definition, n belongs to
either S1 or S2. If n ∈ S1, then removing n from Ssym does not
change the difference coarray. This is because the difference
coarray of Ssym\{n} is a superset of D2 = Dsym. Thus n is
inessential with respect to Ssym. Similar arguments apply to
the case when n ∈ S2, which completes the proof.

Lemma 2 shows that the symmetric nested array is a feasible
solution to (P1). Now let us move on to the ratio N2/A for
the symmetric nested array. Since 
x� > x − 1 and �x
 ≥ x
for any real x, the aperture of Ssym satisfies

Asym = N2(N1 + 1)− 1 >
1

16
(N + 6)(N − 2). (25)

For N ≥ 15 and N is even, it can be shown that N2/Asym <
16/((1 + 6/N)(1− 2/N)) ≤ 16, which proves this case.

3) N ≥ 15 and N is odd: In this case, the symmetric
nested array with N ′ � N − 1 sensors is considered, which
is denoted by S

′
sym. Definition 2 gives N ′

1 = 
(N + 1)/4�,
N ′

2 = �(N + 1)/4
, and the aperture

A′
sym = N ′

2(N
′
1 + 1)− 1 >

1

16
(N + 5)(N − 3). (26)
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Fig. 2. The dependence of the ratio r = N2/A on the number of sensors N
for (a) the ULA, (b) the RMRA, and (c) the MRA. Here LMRA = 2.434,
UMRA = 3.348, LRMRA = 4 + 4

√
2/(3π) ≈ 4.6., and URMRA = 16.

Since N ≥ 15, we have A′
sym > N ′. That is, there exists at

least one empty space in S
′
sym. Therefore we can construct

another array S by adding a new sensor to S
′
sym. Namely,

S � S
′
sym ∪ {n}, where min(S′sym) < n < max(S′sym) and

n /∈ S
′
sym. We can show that |S| = N , the difference coarray

of S is hole-free, and the fragility of S is 2/N , implying S

resides in the feasible region of (P1). Based on these results
and (26), we obtain N2/A′

sym < 16/((1+5/N)(1−3/N)) ≤
16. Since RMRA has the largest hole-free difference coarray
in the feasible region of (P1), we have ARMRA ≥ A′

sym so
N2/ARMRA < 16.

B. Remarks on the Proof
The lower bound 4+4

√
2/(3π) ≈ 4.6002 in (11) holds for

any feasible solution to (P1). This bound can be tightened to
be 4.6436 if the parameter ω is set to be 4.3514/A in (19).

The proof technique of (14) and (15) is inspired by [9],
[15], [16]. The novelty of this paper in deriving the lower
bound is as follows. First, we presented Lemma 1 to convert
the constraint on the fragility (9) into the constraints on the
weight function. Second, these constraints were utilized in (16)
to (18), leading to our new result.

In the presented proof, the upper bound of rRMRA =
N2/ARMRA, is obtained by analyzing the quantity r of the
symmetric nested arrays. However this upper bound of rRMRA

is empirically found to be loose, as we will demonstrated later
in Fig. 2. It remains a future research direction to tighten the
upper bound of rRMRA.

V. NUMERICAL EXAMPLES

In this section, we consider three array configurations: the
ULA, the RMRA, as proposed in (P1), and the MRA, as in
(P0). Fig. 2 plots the dependence of the ratio r = N2/A on the
number of sensors N among these array configurations. The
notations rULA, rRMRA, and rMRA denotes the ratio for ULA,
RMRA, and MRA, respectively. The lower and upper bounds
for MRA are given by LMRA = 2.434 and UMRA = 3.348,
respectively [9]. Furthermore, the lower and upper bounds for
RMRA are LRMRA = 4 + 4

√
2/(3π) and URMRA = 16, as

in Theorem 1. It is verified through Fig. 2 that the bounds
for rMRA and rRMRA are valid. Empirically, rRMRA becomes

close to LRMRA as N increases. By contrast, rULA grows
linearly for sufficiently large N , as observed in Fig. 2. These
results confirm the property that the MRA and the RMRA own
O(N2) elements in the hole-free difference coarrays while the
ULA only has O(N) elements in its difference coarray.

VI. CONCLUDING REMARKS

This paper proposed a novel array configuration, called the
robust minimum redundancy array (RMRA), that maximizes
the hole-free difference coarray, subject to the highest level
of robustness to sensor failures. This concept was cast as an
integer program, which is computationally expensive to solve
in general. Using Theorem 1, it was proved that the size of
the difference coarray for the RMRA with N sensors achieves
O(N2), which is as good as that of MRAs. This property was
also verified through numerical examples for the number of
sensors up to 10.

Future directions can be towards finding suboptimal so-
lutions with low computational complexity in the feasible
region of (P1), while at the same time preserving the O(N2)
property. These suboptimal solutions may also lead to a
tighter upper bound of rRMRA than that in Theorem 1. These
solutions would be very appealing to applications where it is
desirable to have large difference coarray and high level of
robustness.
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