Asynchronous Nonlinear Updates on Graphs

Oguzhan Teke and P. P. Vaidyanathan
Department of Electrical Engineering
California Institute of Technology
oteke @caltech.edu, ppvnath@systems.caltech.edu

Abstract—The notion of graph shift, introduced recently in
graph signal processing, extends many classical signal processing
techniques to graphs. Its practical importance follows from its
localization: a single graph shift requires nodes to communicate
only with their neighbors. However, communications should
happen simultaneously, which requires a synchronization over
the graph. In order to overcome this restriction, recent studies
consider a random asynchronous variant of the graph shift,
which is also suitable for autonomous networks. A graph signal
under this randomized scheme is shown to converge (under mild
conditions) to an eigenvector of the eigenvalue 1 of the operator
even if the operator has other eigenvalues with magnitudes larger
than unity. If the eigenvalue 1 does not exist, the operator
can be easily normalized in theory. However, in practice, the
normalization requires one to know the (dominant) eigenvalues,
which may not be possible to obtain in large autonomous
networks. To eliminate this limitation, this study considers the
use of a nonlinearity in the updates making the scheme similar
in spirit to the Hopfield neural network model. Our simulation
results show that a graph signal still approaches the eigenvector of
the dominant eigenvalue although the convergence is not exact.
Nevertheless, approximation is sufficient to accomplish certain
tasks including autonomous clustering.

Index Terms—Autonomous networks, nonlinear filters, ran-
domized iterations, autonomous clustering.

[. INTRODUCTION

In recent information era the data in general is defined with
respect to an irregular domain, in which case the irregularity of
the domain is represented with a graph. Such data models are
very broad and can be found in a variety of different contexts
such as social, economic, and biological networks, among
others [1], [2]. The recent advancements in [3]-[6] studied
the networked data (or, signals defined over graphs) from the
signal processing point of view, in which the analysis is based
on the “graph operator” whose eigenvectors serve as the graph
Fourier basis (GFB). With the help of GFB, a number of topics
such as sampling and reconstruction, multirate filter banks, and
uncertainty principles have been extended to the case of graphs
[7] (and references therein).

In this study we will consider signals over a network of
independent agents in which there is no centralized control
mechanism. Agents receive information from their neighbors
at random time instances repeatedly and independently from
each other. Then, they update their own value as a linear
combination of the received data, which is assumed to be
described precisely by the graph operator. The notion of the
graph shift, introduced in [6], is not directly applicable to
the autonomous network model considered here since a graph
shift requires all the agents to communicate at the same
time instance. Such a synchronization between the agents is

This work was supported in parts by the ONR grants N00014-17-1-2732
and N00014-18-1-2390, the NSF grant CCF-1712633, and the Electrical
Engineering Carver Mead Research Seed Fund of the California Institute of
Technology.

978-1-5386-9218-9/18/$31.00 ©2018 IEEE

998

not possible in an autonomous setting. In order to overcome
this limitation we consider randomized asynchronous updates,
which are similar to the well-known power iteration (or, the
graph shift) except that only a random subset of indices are
updated in each iteration.

Studies [8], [9] showed that the signal under such random
asynchronous model converges to an eigenvector of the graph
operator corresponding to eigenvalue 1 in the mean-squared
sense. When the operator does not have the eigenvalue 1,
the study in [9] considered the use of polynomials, where
the polynomial is designed in such a way that it maps an
arbitrary eigenvalue to 1. Despite its flexibility, main limitation
of the use of polynomials is that the design of the polynomial
requires to know the eigenvalues of the graph operator, which
is not feasible in an autonomous network considered here.

In this study, we will consider a second order polynomial
(which is shown to be sufficient for the convergence) that
can be constructed using inexact values of the eigenvalues.
However, such a construction causes the signal to diverge. In
order to compensate for this, we introduce a saturation into the
update model, under which the signal converges to a point that
is approximately equivalent to the eigenvector (of the desired
eigenvalue). The approximation is observed to be sufficient to
accomplish certain tasks including autonomous clustering.

In the following, we first present the assumptions made
for the graph operator. Then, Sections II and III provide an
overview of the results presented in [9]. In particular, Section II
presents the randomized asynchronous state recursions and
shows its convergence behavior (Theorem 1 and Corollary 1).
Section III describes the use of polynomial filters in order to
obtain a convergence to an arbitrary eigenvector and shows the
sufficiency of second order polynomials (Theorem 2). Main
contributions of this study are presented in Sections IV and V.
In Section IV we introduce a non-linearity into the randomized
asynchronous update scheme, which allows us to design poly-
nomial filters using inexact values of the eigenvalues of the
graph. In Section V we implement the non-linear update model
to obtain the spectral clustering of the underlying network.

A. Preliminaries and Assumptions

We will assume that A € CV*Y is an operator on the
graph with N nodes. We consider A to be a local operator,
that is, A; ; = 0 when the nodes 7 and j are not neighbors.
In particular, A;; denotes the weight of the edge from the
4t node to the i*" node. We always assume that A is a
normal matrix (equivalently, a unitary-diagonalizable matrix),
ie., AA™ = A* A, where A* denotes the transpose conjugate
of A. We note that Hermitian matrices are necessarily normal,
but not vice-versa.

II. ASYNCHRONOUS POWER ITERATION
Given a matrix of interest A and an initial signal x, the
conventional power iteration has the following form:
so that xp = A" T, (1)

where the updates here are considered without normalizing
the signal at each iteration. Normalization is avoided here

Ty = AT,

Asilomar 2018



intentionally to preserve the local nature of the updates as
will be elaborated next.

In the context of graph signal processing, the matrix A
is assumed to be a local graph operator (shift matrix) and
the signal A x is referred to as the shifted version of & on
the graph [6]. From this perspective xj; in (1) is the graph
shifted version of xj_;. Since A is assumed to be a local
operator a single shift can be implemented on the graph as a
data exchange between the neighboring nodes. That is,

(o), = >, Aiy (@h-1), Vi. 2)
JEN (i)

where N, (i) denotes the incoming neighbors of the node i.
Notice that a norm of the signal depends on values of all of
the nodes in the graph. Therefore, a norm cannot be known
locally in the graph setting, which is why we have avoided
normalization in (1).

Although a “graph shift” can be performed locally, the
model in (1) forces all the nodes to send and receive data
at the same time. Therefore, the graph shift does not have an
autonomous implementation since it requires a centralized tim-
ing mechanism (synchronization) over the underlying graph.

In this study we will consider a variation of the power
iteration, in which not all but a subset of indices, denoted
by 7k, are updated simultaneously and the remaining ones
stay unchanged. More precisely, given an update set 7, we
consider the following asynchronous (coordinate-wise) power

iteration: ( )
A Lk-1),5 i€ 77€7
= v 3
(ﬂfk)Z {(ﬂ’f'kl)ﬂ i¢ Th, 3)

where x; , is the vector before update, and x is the vector
after the update. In words, this update computes the multipli-
cation A xj_1, but it only updates the values of the elements
indexed by the set 7, and keeps the remaining elements the
same.

In this section A will be treated as a generic matrix
without considering specific relations to graphs. When the
model in (3) is implemented on a graph (i.e., A is a graph
operator), only the nodes in the update set 7; need to be
synchronized. If the update set is selected as T, = {1,--- , N}
in every iteration, the asynchronous update in (3) reduces to
the classical synchronous update (graph shift) in (1). On the
other extreme, if a single node is updated, | 7| =1, then no
synchronization is required at all and the nodes are allowed
to behave autonomously.

We will assume that the size of the subsets has a pre-
determined fixed value, that is, |7x| = t. However, the content
of Ty is assumed to be selected uniformly random among all

possible (];’ ) subsets of size ¢ at every iteration of (3). This
assumption ensures that there is no bias toward any node(s)
in the network. More generally, the size of 7j need not be the
same at every iteration. The case of updating different number

of nodes in different iterations is considered in [9].
We will see later in Section II-A that the following definition

is very useful in our quantitative analysis:

N —t
5T N_1 )
It can be seen that §7 = 0 if and only if all the nodes are
updated in each iteration (synchronous power iteration), and
o0r =1 if and only if exactly one node is updated in each
iteration. As a result of this, 57 will be referred to as the
amount of asynchronicity of iterations in the rest of the paper.

and 0<or<1. (€]

A. Convergence in Mean-Squared Sense

We would like to first note that the fixed points of the update
scheme in (3) correspond to the eigenspace of eigenvalue 1

(unit eigenvalue) of the matrix A. As discussed in [9], if the
random signal x; ever converges to a non-zero point « through
iterations, then x should lie in the Eenspace of the unit
eigenvalue. Thus, it is necessary for to have eigenvalue
1 in order to establish a convergence to a non-zero point.
For this reason, we will assume that A has a unit eigenvalue
with multiplicity M > 1. Without loss of generality we will
order the eigenvalues of A such that \; # 1 for1 <¢ < N-M.
Notice that non-unit eigenvalues are allowed to be complex.

Then, the eigenvalue decomposition of A can be written as:
A=[U V,]diag ([A\1 --- Anar 1 --- 1))[U V] (5
where V1 € CV*M is an orthonormal basis for the eigenspace
of the unit eigenvalue, and U € CN*(N"M) js such that
U* V1 = 0. We now define the following quantity:

p=|U* diagUU*)U]|,, (6)

which will play a crucial role in the analysis of convergence.
Notice that p does not depend on the particular selection of
the basis matrix U. Just the column space of U determines
its values. Furthermore, one can verify that the parameter p
satisfies the following inequality:

0<p<l. (7

For an arbitrary xj, let r; denote the residual from the
projection of x; onto the column space of V';. That is,

r=xp — V, V] xp. (3)

Then, the convergence of xj to an eigenvector of the unit
eigenvalue is equivalent to the convergence of 7, to zero. The
following theorem, whose proof is presented in [9], provides
bounds for rj as follows:

Theorem 1. The expected squared {5-norm of the residual at
the k" iteration is bounded as follows:

El|rrl3] < ¥* |rol3, )

where

U = max

Hr 2 2
14+— |°—1 - Nn—17].1
1<i<SN-M * N (|/\7’| +or (p= DA~ 1] ) (19)

As an immediate consequence of Theorem 1, the following
corollary presents a sufficiency condition under which the ran-
domized asynchronous iterations are guaranteed to converge in
the mean-squared sense.

Corollary 1. Assume that all non-unit eigenvalues of A satisfy
the following condition:

1

‘)\ - ‘ < where

a=dr(p—1). (11)

a+1’
Then, )
Jim B[ 3] = 0. (12)

Proof: From (10) it is clear that ¥ < 1 if and only if
N2 —1+ald—1]% <0, (13)

for all non-unit eigenvalues A. The inequality in (13) can be
equivalently written as in (11). Since it implies that ¥ < 1,
Theorem 1 guarantees the convergence of E[||r|3] to zero as
the number of updates, %, goes to infinity. |

The condition given by (11) describes an open disk on the
complex plane centered at a/(o 4 1) with radius 1/(cx 4 1).
This region is visualized in Figure 1. Due to the inequities
in (4) and (7), the parameter v always satisfies —1 < a < 0.

999



Thus, one can easily verify the following:

(14)

which shows that the region defined by (11) is never smaller
than the unit disk (See Figure 1). In fact, the convergence
region is the smallest (and corresponds to the open unit disk)
when a = 0, and the region gets larger as « gets smaller. Thus,
the convergence region can be maximized by minimizing the
value of « as we shall explain next.

Im@)

"""" ~ Convergence region,

7 | random asynchronous.
/ A
7 \

/ : ‘:\
1 v 3 Re())
+ X
Y‘ a—1 _1\{
‘\a +1 < L-?1
\ 4
\ ,I
\, .
. }~ | Convergence region,
NS - synchronous.

Fig. 1. The convergence region given in (11) for the eigenvalues such that
random asynchronous updates are guaranteed to converge.

Given the matrix A, the eigenspace parameter p has a
fixed value (depending on A) satisfying p — 1 < 0 due to (7).
Therefore, one can minimize the value of o by maximizing the
value of d7. Thus, we conclude that the convergence region
of the eigenvalues gets larger as the updates become more
asynchronous, and the region is the smallest (and becomes the
unit disk) when the updates are synchronous. This conclusion
shows also that randomized asynchronous updates are guaran-
teed to converge whenever the synchronous updates converge,
which is formally presented as follows:

Corollary 2. If the synchronous updates on A converge, then

1 2
Jim B[ ]3] =0, (15)

for random updates on A with any amount of asynchronicity.

Proof: If the synchronous updates converge, then all non-
unit eigenvalues of A satisfy |\| < 1. Hence, they also satisfy
(11) for any value of «. Therefore, Corollary 1 ensures the
convergence of the updates irrespective of the value of 0. B

It is important to note that the convergence characteristics
of the randomized asynchronous E{)dates depend not only on
the eigenvalues of the operator A, but depend also on the
eigenspace properties of the operator, which is quantified by
p defined in (6). As a result, asynchronous updates may have
different convergence behavior on similar matrices (matrices
having the same eigenvalues). We refer the interested readers
to [9] for further discussion on the effect of the eigenspace
geometry.

III. USE OF POLYNOMIAL FILTERS

The previous section discussed that the operator A is
required to have eigenvalue 1 in order for the random asyn-
chronous updates to converge to a non-zero point since the
fixed points of the update scheme in (3) correspond to the
eigenspace of A of the unit eigenvalue. Under the assumption
that A has the unit eigenvalue, Corollary 1 provided a condi-
tion under which random asynchronous updates are guaranteed
to converge to an eigenvector of eigenvalue 1 in the mean-
squared sense.

In a typical application, however, the operator A is unlikely
to have the eigenvalue 1 exactly. Moreover, even if A has the

unit eigenvalue, it may be of interest to find the eigenvectors
corresponding to non-unit eigenvalues. In order to address
these points, we consider the randomized asynchronous up-
dates running on a polynomial of the given operator. More
precisely, we consider the following model:

z _ (h(A).’Bkl)I, ie77€,
(), {(wlc»l)i7 i ¢ Tk,

where h(A) is an L*" order polynomial of A as follows:

(16)

L
h(A) =) h, A™. (17)
n=0

Polynomials of a graph operator are useful to consider
because of the following two reasons. Firstly, A and h(A
have the same eigenvectors. For an arbitrary eigenpair (v;, \;
of A, when the polynomial is selected to satisfy the following:

h(Xj) =1 Ih(A)| <1 YA #X;,  (18)

then v is an eigenvector of h(A) with eigenvalue 1. Further-
more, Corollary 2 ensures that the signal o, in (16) converges
to v; in the mean-squared sense. Secondly, polynomials are lo-
calized operators on graphs. That is, computation of (h(A) x);
requires the node ¢ to retrieve information only from its L-hop
neighbors. If the polynomial is of low order (L has a small
value), then h(A) x can be computed locally, which is crucial
to the autonomous model we consider in this study.

In the following sections we will assume that eigenvalues
of A are real valued, which is the case for undirected graphs,
and assume that h,, € R. As discussed in [9], some of the
following results do not extend to the complex case.

Although it is favorable to use low order filters to satisfy
the condition in (18), the order L cannot be arbitrarily small.
For example, the case of L =1 is not sufficient to ensure
the condition for an arbitrary eigenvalue );. Nevertheless,
the locality of the updates needs only to be compromised
marginally, as the following theorem shows that L = 2 is in
fact sufficient to satisty (18).

and

Theorem 2. Assume that the operator A has real eigenvalues
Ai € R. For a given target eigenvalue \;, the condition in (18)
is satisfied by the following second order polynomial:

h(X) =1—2¢ (A= );)%/s7, (19)
for any € in 0 < € < 1 and s; satisfying the following:
Sj = 1235%\[ |)\z - )\7‘ (20)

Proof: Tt is clear that h(\;) = 1. In the following we
will show that —1 < h()\;) < 1 for all A; # A;. For the upper
bound note that (\; — \;)? > 0 for all \; # ;. Therefore,

L—h(X) =2€ (X —Aj)?/s7 >0, (21)

which proves that h();) <1 for all A; # A;. For the lower
bound notice that we have s% > (A; — A;)? for all \; by the
condition in (20). Therefore we have

h(A)=1-2¢€ (N —X)*/s7=21—2e>—1,  (22)

for all \;. |

One should note that € in (19) can be selected arbitrarily
and tuned in order to increase the eigenvalue gap. In general,
the polynomial constructed according to (19) is not expected
to be optimal in terms of the rate of convergence. In fact, one
can consider the problem of finding the optimal filter of an
arbitrary order L, which is addressed in [9].

1000



Although the polynomial in (19) ensures the convergence
of the signal in (16) to an arbitrary eigenvector of A, the
construction of the polynomial itself requires further attention.
Notice that the coefficients of (19) depend on the eigenvalue
of the target eigenvector \;, and the parameter s;. Assuming
that \; is known, the parameter s; can be selected using only
bound73 on the spectrum of the operator. More precisely, let
Awpp and Ajow be arbitrary upper and lower bounds on the
spectrum of A, respectively. That is,

)\low < )\(A) < /\upp- (23)
Then, the following selection of s; satisfies (20):
Sj = max{/\upp — /\j, )\j — )\low}~ (24)

It should be noted that there is no unique way of selecting a
value for s;. On the contrary, the construction in (19) requires
the exact value of A;. In general, it is difficult to obtain the
eigenvalues of the underlymg graph in an autonomous setting.
Thus, the polynomial required to ensure the convergence to an
arbitrary eigenvector may not be constructed. In the following
section, we will discuss how we can deal with inexact values
of A\; by introducing a non-linearity in the update scheme.

IV. USE OF NONLINEARITY

In this section, we will focus on the construction of a second
order polynomlal when the target eigenvalue \; is not known
exactly. In this regard, we first assume that we are given an
interval [a b] to which only the eigenvalue \; belongs. More
precisely, we assume the following:

)\j-l <a< )\]‘ < b < )\j+17 (25)

where we consider only the distinct eigenvalues indexed in
ascending order, and assume that eigenvalues are real. Then,
we consider the following polynomial:

(A—a)(\A—b)
b, @ — Now} + (b—a)/2)

for some ¢ in 0 < ¢ < 1. It should be noted that when the target
eigenvalue \; is known exactly, we can take a = b = A;, in
which case tﬂe polynomial in (26) reduces to the one in (19)
with s; selected as in (24). In the case of a # b, one can
observe that the polynomial in (26) maps the eigenvalues of
the operator A as follows:

h()\7) > 1 and |h()\l)‘ <1l Vv )\1 #* )\j, (27)

which shows that h(A) does not have a unit eigenvalue, thus
the asynchronous updates running on h(A) do not converge. In
fact, the signal would diverge due to the dominant eigenvalue,
h(A;), being strictly larger than 1. (See Figure 1). In order to
prevent the signal from diverging, we consider the following
saturated update model:

h(\)=1—2¢ 5 (26)

( max{Aypp —

h(A) xp.1). i
(o). - {f(( (Wawa),). €T g
(wk-l)ia ? ¢ 77m
where f(-) is the “saturation nonlinearity” defined as follows:
f(z) = sign(z) - min{|z|, 1}, (29)

which is visualized in Figure 2.

Notice that the boundedness of the function f(-) ensures that
the signal xj, in (28) does not diverge. In fact, it is numerically
observed that randomized asynchronous updates in (28) indeed
converge to the fixed point of the model. That is, @), converges
to Z, where Z satisfies the following equation:

f(h(A)Z) =z, (30)

E o}

-1

5 4 3 -2 -1 0 1 2 3 4 5

xT
Fig. 2. Visualization of the saturation nonlinearity defined in (29).

where f(-) is assumed to operate element-wise on a vector.

The key observation regarding the solution of (30) is the
following: when the interval [a b] in (25) is small, then Z is
a good approximation of the target eigenvector v;. That is,

€2y

for some scale factor v € R. In fact, when the target eigenvalue
is known exactly, i.e., a = b = \;, then the approximation
in (31) becomes equality. Therefore, we conclude that the
asynchronous saturated update scheme in (28) allows us to
find an arbitrary eigenvector approximately when the corre-
sponding eigenvalue is not known exactly. Furthermore, as
we have a better approximation of the eigenvalue, we get a
better approximation of the corresponding eigenvector. The
following section will make use of this observation to obtain
an autonomous clustering of a network.

T =7y,

V. AN APPLICATION: AUTONOMOUS CLUSTERING

In this section we will consider the problem of autonomous
clustering. In this regard, we will use the well-known spectral
clustering [10] together with the asynchronous polynomial
filtering studied in Sections III and IV.

Given a network, the second smallest eigenvalue of its
graph Laplacian, Ao, is known as the algebraic connectivity
of the graph [11]. Roughly speaking graphs with larger A,
tend to be more “connected” than the others. Furthermore,
the corresponding eigenvector vo, also known as the Fiedler
vector, can be utilized to cluster the graph into two partitions.
The signal  computed as

(32)

indicates the corresponding cluster of the nodes. Similar spec-
tral ideas are used in [12] to obtain approximate graph coloring
and in [13] to identify the hidden M-Block cyclic structure
from noisy measurements under random permutations.

As a test example, we will use the graph visualized in Fig-
ure 3(a) in this section, some of whose Laplacian eigenvalues
are numerically computed as follows:

A2 = 0.5814, A3 = 3.2544, A1oo = 30.3753, (33)

and A\; = 0 follows from the basic properties of the Laplacian
matrix. Furthermore, the graph in Figure 3(a) has the largest
degree dpmax = 29.

The result of the spectral clustering of Figure 3(a) based
on (32) is visualized in Figure 3(b) where the clusters are
represented with different colors, and we will refer this set
of labels as the correct labels. In the following we will
consider second order polynomial filters designed in such a
way that A, is the target eigenvalue so that the asynchronous
iterations converge to the eigenvector vy of the Laplacian.
More precisely, we consider the following four filters:

1) The optimal second order filter considered in [9].

2) The filter in (19) by selecting s, as in (24) using Ag, and

setting )\low =0, Aupp = A100-

3) The filter in (19) by selectlng So as in (24) using \g, and

setting /\low =0, Aupp = 2 dmax-

4) The filter in (26) and setting a = 0.3, b = 1.5, Aoy =0

- 2 max

@ = sign(vy),

1001



o0 o® 00 o®
... ..'.... ® .. .:.'.. .. @
oo 0% oo %
e e Jg o Oy ®
o wipls °T  dalfpls
o.:... o.‘: : o.:zo.‘: 4
¥ ! ... V { ...

(a) (b)
Fig. 3. (a) A graph on N = 100 nodes with 2 clusters. The graph has
undirected edges with binary weights. (b) The result of the spectral clustering
based on (32) with colors representing the clusters.

Notice that parameters a,b in filter #4 satisfy the assumption
in (25). In general, there is no unique way to select these
parameters. However, as the interval [a b] becomes smaller,
the saturated updates in (28) provide a better approximation
of the eigenvector vs.

When these filters are simulated on the graph, we use the
update model (16) for the first three filters, but we use the
saturated model (28) for filter #4. In the simulations all the
nodes are initialized randomly, and the Laplacian is used as
the graph operator. We use 07 = 1, i.e., one node is randomly
chosen and updated at every iteration. The label of a node
is the sign of its most recent value as in (32). The average
fraction of incorrect labels versus number of iterations is
presented in Figure 4 for the four filters mentioned above.

o
o
H
H

CULL Ty . s
e, = Filter #1
* == Filter #2
Filter #3 |
===« Filter #4

o
»

o
w
:

<
o

o
"
T

O L L L L

10° 10" 10* 10° 10*
k

Fig. 4. Results of the autonomous clustering experiment, which are obtained

by averaging over 10% independent experiments.

Average Fraction of Incorrect Labels

Figure 4 shows that the number of incorrect labels go down
to zero as iterations progress, which is proven to be the case
for filters #1 - #3 by Corollary 1 due to the construction of
the filters in Section III. For filter #4, the saturated model
does not converge to vy exactly as explained in Section IV.
Nevertheless, the approximation in (31) is good enough so that
the sign pattern of the fixed point of the updates, defined in
(30), matches the correct labels.

The figure also illustrates the trade-off between the amount
of spectral information used and the rate of convergence. As
discussed in [9], computation of the optimal filter requires to
know all the eigenvalues of the graph operator. Filters #1, #2,
and #3 use lesser and lesser amounts of spectral information.
As a result, they yield lower and lower rates of convergence.
Interestingly, filter #4 converges faster than filter #3 although

it uses the least amount of spectral information. This is an
interesting consequence of the fact that the filter in (26) results
in a larger spectral gap than the one in (19) for the amount of
spectral information used.

VI. CONCLUDING REMARKS & FUTURE WORK

In this paper, we considered an autonomous network model
in which all the agents receive data from their neighbors
repeatedly and asynchronously and update their values accord-
ingly. Convergence of signals on such networks was analyzed
using a randomized asynchronous variant of the synchronous
power iteration, which performs the regular power iteration
(or, the graph shift) but only a random subset of the indices
are updated. It is shown that the signal under this model
converges to an eigenvector of the eigenvalue 1 even in the
case of operator having other eigenvalues with magnitudes
larger than one. In the case of the operator not having the
eigenvalue 1, the use of polynomial filters was considered.
It is shown that second order polynomials are sufficient to
achieve convergence to an arbitrary eigenvector. Since the
design of such polynomials requires to know the spectrum of
the graph, we considered an alternative construction that uses
only bounds on the eigenvalues. Since random asynchronous
iterations diverge on this polynomial, we considered the use of
saturation in the update model, for which the iterations were
observed to converge to a point that is approximately equiva-
lent to the desired eigenvector. As an application, we combined
the randomized asynchronous updates with polynomial graph
filtering to compute the Fiedler vector of a network in order
to achieve autonomous clustering. Simulations verified that
asynchronous updates indeed cluster the network successfully
even for the saturated nonlinear update model.

In future work we plan to investigate the convergence
properties of the nonlinear update model more rigorously. We
also plan to consider different type of nonlinearities and their
effect on the convergence behavior.

REFERENCES

[1] M. E.J. Newman, Networks: An Introduction. Oxford Uni. Press, 2010.
[2] M. Jackson, Social and Economic Networks. Princeton Uni. Press, 2008.
[3] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,”
IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83-98, May 2013.

A. Sandryhaila and J. M. F. Moura, “Big data analysis with signal
processing on graphs: Representation and processing of massive data
sets with irregular structure,” IEEE Signal Process. Mag., vol. 31, no. 5,
pp. 80-90, Sept. 2014.

[S] ——, “Discrete signal processing on graphs: Frequency analysis,” IEEE
Trans. Signal Process., vol. 62, no. 12, pp. 3042-3054, June 2014.
“Discrete signal processing on graphs,” IEEE Trans. Signal

Process., vol. 61, no. 7, pp. 1644-1656, April 2013.
[7]1 A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Van-
dergheynst, “Graph signal processing: Overview, challenges, and ap-
plications,” Proceedings of the IEEE, vol. 106, no. 5, pp. 808-828, May
2018.
O. Teke and P. P. Vaidyanathan, “The asynchronous power iteration:
A graph signal perspective,” in Proc. Int. Conf. Acoust. Speech, Signal
Process. (ICASSP), Apr. 2018, pp. 4059-4063.
, “Random node-asynchronous updates on graphs,” Submitted to
IEEE Trans. Signal Process., 2018.
[10] A.Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in NIPS 14, 2002, pp. 849-856.
[11] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak mathemat-
ical journal, vol. 23, no. 2, pp. 298-305, 1973.
[12] B. Aspvall and J. R. Gilbert, “Graph coloring using eigenvalue decom-
position,” SIAM Journal on Algebraic Discrete Methods, vol. 5, no. 4,
pp. 526-538, 1984.
O. Teke and P. P. Vaidyanathan, “Extending classical multirate signal
processing theory to graphs,” in Proc. SPIE, Wavelets and Sparsity XVII,
vol. 10394, Aug 2017.

[4

=

(8

—

[91

[13]

1002



