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ABSTRACT

In classical signal processing spectral concentration is an important
problem that was first formulated and analyzed by Slepian. The so-
lution to this problem gives the optimal FIR filter that can confine
the largest amount of energy in a specific bandwidth for a given fil-
ter order. The solution is also known as the prolate sequence. This
study investigates the same problem for polynomial graph filters.
The problem is formulated in both graph-free and graph-dependent
fashions. The graph-free formulation assumes a continuous graph
spectrum, in which case it becomes the polynomial concentration
problem. This formulation has a universal approach that provides a
theoretical reference point. However, in reality graphs have discrete
spectrum. The graph-dependent formulation assumes that the eigen-
values of the graph are known and formulates the energy compaction
problem accordingly. When the eigenvalues of the graph have a uni-
form distribution, the graph-dependent formulation is shown to be
asymptotically equivalent to the graph-free formulation. However, in
reality eigenvalues of a graph tend to have different densities across
the spectrum. Thus, the optimal filter depends on the underlying
graph operator, and a filter cannot be universally optimal for every
graph.

Index Terms— Graph signal processing, polynomial filters,
concentrated polynomials, Hilbert matrix.

1. INTRODUCTION

Recent years have observed an increased interest in network struc-
tured data in which the underlying dependency structure is modeled
by a graph that allows irregular signal domains unlike in classical
signal processing [1,2]. In the area of graph signal processing, the
analysis of signals is based on the graph operator, whose eigenvec-
tors serve as the graph Fourier basis (GFB) and eigenvalues indicate
the frequency. With the use of GFB, sampling, reconstruction, mul-
tirate processing of graph signals and some uncertainty results have
been extended to the case of graphs in [3—13].

In the study of graph signals polynomial filters play an impor-
tant role. Their significance follows from their localization prop-
erty: when implemented on a graph, a polynomial filter of order
L requires a node to communicate only with its L-hop neighbors.
Moreover, polynomial graph filters are analogous to finite impulse
response (FIR) filters of classical signal processing. Elements of the
graph Fourier basis can be amplified or suppressed according to the
behavior of the filter. Thus, the design of such polynomials in the
context of graphs is an important problem.

The spectral concentration problem in classical signal process-
ing searches for the optimal FIR filter (of fixed order) that confines
the largest amount of energy into a specific bandwidth. The prob-
lem was first formulated and analyzed by Slepian in his seminal
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works [14, 15]. The solution to the problem is known as the pro-
late sequence, and it provides the optimal (in the least squares sense)
window for the filter design problem [16].

In this study, we consider the spectral concentration problem for
polynomial graph filters. Given a filter order L and a bandwidth
o, we consider the optimal selection of the coefficients such that
the energy confined in the band (of the graph) is maximized. This
problem is analogous to the classical spectral concentration problem
[14-16]. The difference lies in the definition of the spectrum: in the
classical case the spectrum is defined with respect to the unit circle,
whereas in the case of graphs the spectrum is an interval on the real
line. In spite of their conceptual similarity, the analysis in the graph
case differs from the classical one and requires additional attention.

For the energy compaction problem on graphs, we take two ap-
proaches. In the first one, we assume that the spectrum of the graph is
continuous. In this case the problem reduces to the polynomial con-
centration problem studied more generally by Slepian in [17]. We
re-visit the problem, compare it with the classical case and present
its asymptotic behavior in the case of narrow bandwidth. Although
the continuous approach provides a theoretical and graph-free ref-
erence point, it is not applicable to graphs directly as graphs have
discrete spectrum of finite size. In the second approach, we define
the problem with respect to the spectrum of the graph. Thus, the
optimal filter becomes specific to the underlying graph. We consider
different examples of graphs, and compare the behavior of the max-
imum energy compaction as well as the optimal filter.

We would like to note that the studies in [11-13] focus on the
concentration and localization properties of graph signals. In partic-
ular, [12,13] extend the classical time-frequency concentration prob-
lem to the case of graphs. Different from [11-13], this study focuses
on the energy concentration properties of polynomial graph filters.
Thus, results here do not involve vertex domain properties.

In Section 2 we provide a quick overview of the classical spec-
tral concentration problem. In Section 3 we define the energy com-
paction problem for the continuous case and study the behavior of
the solution. In Section 4 we consider the discrete graph-dependent
counter-part of the problem and investigate the effect of the spectrum
of the graph.

1.1. Notation & Preliminaries

We will assume that A € C*¥ is an operator on the graph with N
nodes. We consider A to be a local operator, that is, A; ; = 0 when
the nodes ¢ and j are not neighbors. We allow A; ; to be non-zero.
The operator A can be the adjacency matrix, the Laplacian, the nor-
malized Laplacian, and so on. Assuming that A is diagonalizable,
the eigenvalue decomposition of A will be denoted as:

A=V AV M)
where V' is a matrix consisting of eigenvectors of A, and A is the

diagonal matrix with the eigenvalues, which are assumed to be real
and ordered such that A1 < --- < An.
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2. THE ENERGY COMPACTION PROBLEM

Let H(e’*) denote the frequency response of a causal FIR filter of
order L that is defined as follows:
L
H() =Y he 7", )
k=0
where hi, € R denote the coefficients of the filter. The problem of
energy compaction (or, spectral concentration) searches for the filter

whose energy is maximized in the specified passband. This can be
described precisely with the following optimization problem:

 dw

#(0) = max J‘H(ej‘“)| s.t. J\H(ef“)F w_y 3
hk 0 0 m

where 0 < o < 1 denotes the (normalized) bandwidth of the pass-
band, and ¢ (o) denotes the maximum amount of energy that can be
confined in the band [0 o]. As described clearly in Chapter 3.2.2
of [16], when the coefficients of an FIR filter are represented as a

vector h = [ho --- hz]7, the problem in (3) can be reformulated
as the following Rayleigh quotient:
h = arg max h*Ph st |h|i=1, @

where the kernel matrix P € RE+D>* (241 s given as follows:

1<m,n< L+1,  (5)
where sinc(x) = sin(w z)/(7 x). Then, the optimal filter, h, and its
energy compaction, ¢(o’), can be found as the dominant eigenvector-
eigenvalue pair of the positive-definite and Toeplitz matrix P. The

solution, h, is also known as the prolate sequence. Many other prop-
erties of the eigenvectors and the eigenvalues of the matrix P were
studied by Slepian in [15].

(P)m,n = o sinc (cr (m —n) ),

3. GRAPH INDEPENDENT CONTINUOUS SPECTRUM

Given a graph operator A, a polynomial graph filter of order L (or
FIR graph filter) is defined as follows:
L
H(A) =" hy A", (6)
k=0
Since A and H(A) are simultaneously diagonalizable, the filter
scales a graph Fourier component corresponding to an eigenvalue
A with H(\). Thus, the frequency response of a polynomial filter
can be written as follows:
L
H) =) hy A, (7)
k=0
At the core of most practical applications lie low-pass filters, which
can be described conceptually as follows:

if\ <o,

8
ifA> o, ®

where 0 < 0 < 1, and o denotes the cut-off frequency of the filter.
Depending on the design criteria one can construct different filters
to achieve the behavior in (8). Motivated by the results in [14—16],
we consider here the energy compaction filter similar to the one in
(3). More specifically we consider the following problem, which
was first addressed in [17]:

1

J|H(>\)|2 d\=1. (9

(o) = max J‘|H()\)|2 d\ st
i,

0 0

It should be noted that we treat A € R (spectrum of the graph) as

a continuous parameter in (9), which is contrary to the fact that a

spectrum of a graph is discrete and has at most N eigenvalues (/V
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being the size of graph). More importantly, eigenvalues of a graph
are not spaced uniformly, they may be concentrated (or, clustered)
around some specific intervals. (See Figure 4 later.) Nevertheless,
the problem in (9) has two theoretical advantages: 1) The formula-
tion is graph-free. Therefore, it considers a unified approach to the
filter design problem. 2) It provides a theoretical reference point and
allows us to answer the following question: can we ignore the un-
derlying graph structure and design filters universally? As we shall
discuss in Secion 4, the answer is no: the graph spectrum matters.

In order to convert the problem (9) into matrix-vector equations
we first define the following vector variables:

AT =1 A M, RT =Tho hr]. (10

Since A € RY*! we have
H(\) = A* h, [HN|? = h* AX* b, (11)
Then, the objective function (as well as the constraint) in (9) can be

written as follows:

f|H(A)|2 dx = Jh* AN hdA=h* Qo) h, (12)
0 0

where the matrix Q(o) consists of the following terms:
o

B gmtn—1
(Q(a))m’n = JA’"*" Zdx = e (13)

Using (12), the problem irf (9) can be written as follows:
(o) = mex h*Q(c)h st h*Q(1)h=1. (14

Thus, the optimal energy compaction problem on graphs can
be formulated as a generalized Rayleigh quotient problem. Before
elaborating on the solution of (14), we first present the following
lemma whose proof is omitted due to the space limitations:

Lemma 1. Q(o) is a symmetric matrix with the Hankel structure.
Moreover, it satisfies the following ordering for 0 < o1 < o2 < 1

0<Q(01) < Q(o2) <oa2m . (15)

Since Q (o) does not have a null-space and is bounded, the prob-
lem in (14) is well-defined. Moreover, it can be converted into a
standard Rayleigh quotient problem. For this purpose, consider the
Cholesky decomposition of Q(1):

Q1) =cC C*, (16)

where we assume that C' is a lower triangular matrix with strictly
positive diagonal entries, hence C' is unique and invertible. Then,
the problem in (14) can be equivalently written as follows:

v¥*CT Qo) CTFw viu =1 (17)

Y (o) = max .

=[C7" Qo) C™* |- (18)
Furthermore, the optimal filter that achieves the maximum energy
compaction can be found as follows:

h=C*uv, (19)

where v is the dominant eigenvector of the symmetric matrix in (18).

It should be noted that the matrix Q(1) corresponds to a Hilbert
matrix of size L+1 [18], which has been used extensively in the
study of polynomial approximations. A Hilbert matrix has many
interesting properties and challenges, among which lies the condi-
tion number. A Hilbert matrix is positive definite for any size as
shown by Lemma 1. However, the condition number grows like
(1 4+ +/2)*™/y/n for the size n Hilbert matrix [19] making the ma-
trix so ill-conditioned that MATLAB fails to compute the Cholesky
decomposition in (16) for L = 13. Nevertheless, researchers have



obtained closed form expressions for the matrices that are related
to a Hilbert matrix. For example, the study in [20] shows that the
inverse of the Cholesky factor in (16) has the following entries:

1 _ man m+n-2\ [ m-1
(C ), =C1) 2m-1< o )(nl

which allows the direct computation of the matrix in (18). It is im-
portant to note that entries in C ™' grow exponentially with its size
L. Thus, direct computation of the matrix in (18) is still prone to the
numerical problems for large values of L.

It is well-known that (14) can be converted into the following
generalized eigenvalue problem with the use of Lagrange multiplier:

Qo) h =~ Q1) h, @D
whose dominant eigenvalue-eigenvector pair provides the maxi-
mum amount of energy compaction and the corresponding filter that
achieves it. Although the formulation in (21) is easier to implement
in numerical environments, it still suffers from numerical precision
even for moderate values of L.

>, m = n, (20)

3.1. The Optimal Filter and the Maximum Energy Compaction

Although closed form solution for the dominant eigenpair of (21) is
not available, a numerical solution is possible to obtain for small val-
ues of L. In Figure 1 we present the maximum energy compaction,
~(o), as a function of the bandwidth o for different values of L.
For a fixed order L, notice that v(o) is an increasing function of o,
that is, larger amount of energy can be confined in a larger band-
width. Moreover, for a fixed bandwidth o, the amount of energy
compaction increases as the filter order L gets larger. This shows a
trade-off between the locality of the graph filter and better (close to
the ideal) low-pass characteristics.
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Fig. 1. Dominant eigenvalue of (21) in (a) linear-scale (b) log-scale.

The optimal filters that achieve the maximum energy com-
paction are presented in Figure 2 in which the bandwidth is selected
as o = 0.2, and filters with different orders are considered. As seen
in Figure 2(b) the filters have zeros in the interval [0.2 1]. In fact,
numerical observations suggests that the optimal filter of order L
for the bandwidth o has exactly L zeros in the interval (o 1]. This
is an expected result since the problem in (9) minimizes the energy
confined in (o 1]. Thus, all the zeros are located in this interval.

3.2. Narrow Bandwidth Behavior

Although a closed form solution for the dominant eigenpair of (21)
does not exist, for small values of o, Figure 1(b) suggests that the
amount of energy compaction depends /inearly on the bandwidth.
The following theorem, whose proof is omitted due to space limita-
tions, shows that this is in fact the case:

Theorem 1. For small o, the maximum amount of energy concen-

tration of an order L filter is approximated as follows:

(o) ~ o (L+1)% (22)
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Fig. 2. The optimal filter responses for o = 0.2 and different values
of L. Filter responses in (a) linear-scale, (b) log-scale.
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Moreover, the coefficients of the optimal filter can be approximated
as:

(L+k+1)!

hi = (-1)" (L) K (k+1)!”

0<k<L. (23

The asymptotic behavior of the energy compaction of polyno-
mial filters resembles that of the classical FIR filters. Eq. (64) of [15]
approximated the solution of the energy compaction problem in (3)
as ¢(o) ~ o (L + 1) for small values of o. Although both ¢(o)
and (o) depend linearly on the bandwidth, ¢(o) depends on the
order linearly, whereas (o) has a quadratic dependence resulting in
(o) = ¢(o) in the case of narrow bandwidth. In fact, as observed
in Figure 3(a), v(o) = ¢(o) for all values of o. Thus, polynomial
filters (graph filters) can confine more energy.

Itis also interesting to see that the approximation of the optimum
filter given in (23) has integer valued coefficients with alternating
signs. In the case of L = 3, which is illustrated in Figure 3(b), these
coefficients can be found as follows:

ho = 4, he =60,  hs=—35. (24)

As Figure 3(b) shows, (23) approximates the optimal filter very well,
and the approximation gets better as o decreases.
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Fig. 3. (a) Comparison of the maximum energy compaction achieved
in classical and graph filters. (b) Magnitude response of the optimal
filter for L = 3 for different values of o. Response of the approxi-
mation (24) is also shown.

4. GRAPH DEPENDENT DISCRETE SPECTRUM

In the previous section analysis of the energy compaction is based on
the continuous spectrum. Although such an analysis is theoretically
important, its practical importance is limited since graphs have finite
number of eigenvalues. In this section, we take the eigenvalues of
the graph into account and formulate the discrete counterpart of the
problem in (9) as follows:

K N
1 2 1 2
K)=max — » |[H(\: st — H\)|" =1. (25)
() = max THIHOIE st 55 23 H )]

where K' < N determines the pass band “width” of the filter.



Following the formulation in Section 3, (25) can be reformulated
as the following generalized Rayleigh quotient problem:

h*S(K)h st hA*"S(N)h=1, (26)

max
h

where

K

1 -2

S(K =— AT 27

(S(K)) 0 = & Zl ; 27)

Then, the optimum filter and the maximum amount of energy com-

paction can be found as the dominant eigenpair of the following gen-
eralized eigenvalue problem:

S(K)h =p S(N) h. (28)

Although the problems in (14) and (26) have the same form, their
characteristics differ from each other in two respects. Firstly, K in
(26) is a discrete parameter as opposed to ¢ in (14) being a continu-
ous. Nevertheless, they can be conceptually related as o = K/N,
which denotes the fraction of eigenvalues in the baseband of the
graph spectrum. Secondly, and more importantly, the spectrum of
a graph has a finite number of possibly repeated eigenvalues. Thus,
the matrix S(N) in (26) may have a null-space unlike Q(1). More
precisely, we have the following lemma:

Lemma 2. Let N denote the number of distinct eigenvalues of the
graph operator. If L< N, then S(N) > 0; if otherwise, S(N) has
a null-space, hence positive semi-definite.

When the matrix S (V) has a null-space it can be shown that
the problem in (26) does not have a unique maximizer. Thus, the
optimal energy compaction filter is not unique. This means that the
order of the polynomial filter is larger than what is necessary, and a
lower order filter can obtain the same amount of energy compaction.
In most applications low orders are preferred in order to have filters
that are localized on the graph. So, the condition in Lemma 2 is al-
most always satisfied in practice yielding a positive definite S(IV).
Moreover, when the order of the filter satisfies L > N-1 any fre-
quency response can be realized with a polynomial [21]. Thus, the
maximum energy compaction becomes p () =1 for all values of K.

Since S(NN) depends on the eigenvalues of the underlying graph
operator, a closed form expression for it does not exist in general.
Nevertheless, it is possible to obtain closed forms in some specific
cases. For example, if the graph is an undirected cycle of size N and
its graph Laplacian is used as the operator, Lemma 2 of [22] reveals
that S(V) has the following closed form

(

as long as the order of the filter satisfies L < N /2.

It is also important to note that Q(o) and S(K) are asymptoti-
cally identical when the underlying eigenvalues are uniformly sepa-
rated. That is, if A; = i/N for 1 <4 < N, then

Jlim S(oN) = Q(o).

Thus, the problems in (14) and (26) are also asymptotically equiv-
alent when the eigenvalues are separated uniformly. However, the
spectrum of a graph is almost never distributed uniformly [23]. So,
the solution to the energy compaction problem in (26) depends heav-
ily on the underlying graph operator as we shall demonstrate next.

Figure 4 shows the histogram of the eigenvalues of the Laplacian
of different examples of graphs including Erdos-Renyi (ER), random
regular (RR) and the undirected cycle graph. We also consider the
case of uniform eigenvalue separation (which does not correspond to
a graph) as a reference. The size of the graphs is set to be N = 10%,
and the eigenvalues are scaled such that 0 < \; < 1 since the scaling
does not affect the generality of the results.

Figure 5 visualizes the numerical solution of (26) for the graphs
considered above for filter order L = 2. In Figure 5(a) we con-
sider the maximum amount of energy compaction with respect to

2m + 2n —4

(S(N))m”: m+n—2

)

29

(30)
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Fig. 4. Histogram of the eigenvalues of (a) the uniform case,
(b) Erdos-Renyi (ER) graph with p = 0.001, (c) ER graph with
p = 0.005, (d) undirected cycle graph, (e) random regular (RR)
graph with degree d = 3, and (f) RR graph with degree d = 4.

0

1

0

o = K/N. In Figure 5(b) we show the response of the optimum
filters for ¢ = 0.1. As seen clearly from the figures, both the max-
imum energy compaction and the optimal filter are affected by the
distribution of the eigenvalues. Among all considered examples, the
compaction filter for the ER graph with p = 0.005 has the most
“concentrated” spectrum, and Figure 5(a) shows that the optimum
filter for the ER graph can confine more energy in a band compared
to the other graphs. Similarly, Figure 5(b) shows that the zeros of the
optimum polynomial are located where the eigenvalues are denser.
On the other hand, the undirected cycle graph has the most “spread-
out” spectrum with two different peaks. Figure 5(a) shows that the
optimal filter on the undirected cycle graph has the least amount of
energy confinement. Correspondingly, zeros of the optimum poly-
nomial are also spread-out from each other in order to accommodate
the spread-out in the spectrum.
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Fig. 5. (a) Comparison of energy compaction on different graphs,
(b) the optimal filters on different graphs for o = 0.1.
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5. CONCLUDING REMARKS & FUTURE DIRECTIONS

In this study we investigated the spectral concentration problem for
polynomial graph filters and considered two approaches. In the first
one, we assumed that the graph spectrum is continuous, in which
case it reduced to the polynomial concentration problem studied
by Slepian. We re-visited the problem and compared its solution
with the classical spectral concentration problem. In the second ap-
proach, we took the discrete graph spectrum into consideration and
formulated the problem accordingly. We showed that the maximum
amount of energy compaction as well as the optimum filter depend
on the spectrum of the underlying graph.

In future we will rigorously analyze properties of the optimum
filter such as the behavior of the filter coefficients, and the distribu-
tion of the filter zeros. We will extend these results to band-pass
filters as well. We will also study the relationship between the struc-
ture of the graph and the corresponding optimum filters and maxi-
mum possible compaction.
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