
NODE-ASYNCHRONOUS IMPLEMENTATION OF RATIONAL FILTERS ON GRAPHS

Oguzhan Teke and P. P. Vaidyanathan

Department of Electrical Engineering, MC 136-93,
California Institute of Technology, Pasadena, CA 91125, USA

E-mail: oteke@caltech.edu, ppvnath@systems.caltech.edu

ABSTRACT
This paper considers a node-asynchronous implementation of ratio-
nal (“IIR”) filters on graphs, in which the nodes are assumed to wake
up randomly and independently from each other, and communicate
only with their immediate neighbors. The underlying graph is al-
lowed to be directed, possibly with a non-diagonalizable adjacency
matrix. Since the nodes are allowed to act independently, the pro-
posed implementation is practical for very large or autonomous net-
works where synchronization is difficult to achieve. Furthermore,
the proposed algorithm is 1-hop localized on the graph irrespective
of the order of the filter. The method is shown to converge in the
mean-squared sense under a boundedness assumption on the filter as
well as the graph operator. The result follows from the convergence
of a more general randomized asynchronous state recursion, which is
also presented in this paper. The algorithm is simulated on a random
geometric graph, which numerically verifies the convergence.

Index Terms— Graph signal processing, node-asynchronous it-
erations, rational graph filters, distributed processing.

1. INTRODUCTION

In the present information era, observed data is often no longer rep-
resented as time series. In such cases, one useful model is to use a
network structure in which the underlying graph is assumed to repre-
sent the dependency between the data points. This broad model has
found applications in many different contexts such as social, eco-
nomic, and biological networks, among others [1, 2].

The recent area of graph signal processing [3–6] extends clas-
sical signal processing techniques to such network modeled data,
in which the analysis is based on the “graph operator,” whose eigen-
vectors serve as the graph Fourier basis (GFB). With the use of GFB,
sampling, reconstruction, multirate processing of graph signals and
some uncertainty results have been extended to the case of graphs
in [7–17].

One important aspect of graph signal processing is the use of
polynomial graph filters, which can be considered as an extension of
finite impulse response (FIR) filters to the case of graphs [5–7]. It is
well-known that a polynomial graph filter of order L is localized on
the graph, that is, nodes are required to communicate only with its
L-hop neighbors in order to implement the filter. For this reason it
is very natural to think of polynomial graph filtering as a way of dis-
tributed signal processing, in which the low-order polynomials are
favored to keep the communications localized. The papers [18–23]
(and references therein) made explicit connections between polyno-
mial graph filters and distributed computation, and studied various
problems including smoothing, regularization, and consensus.

This work was supported in parts by the ONR grants N00014-17-1-2732
and N00014-18-1-2390, the NSF grant CCF-1712633, and the Electrical En-
gineering Carver Mead Research Seed Fund of the California Institute of
Technology.

Filters with infinite impulse responses (IIR) form another im-
portant class of filters in classical signal processing, and they provide
better approximations for a given filter specification. When extended
to the case of graphs, an IIR filter of order L can be implemented via
state recursions running on a polynomial of order L that preserves
the locality of the communications. The studies in [24–27] analyzed
the convergence behavior of such filters and showed successful ap-
plications on graph signals with distributed processing.

Although both FIR (polynomial) and IIR (rational rather than
a polynomial) filters can be implemented in a distributed fashion,
aforementioned implementations implicitly assume synchronization
between the nodes. That is, all the nodes should send and receive
data at the same time instance, or nodes should wait until all the
communications are terminated before proceeding to the next itera-
tion. Synchronization becomes an important limitation when the size
of the network,N , is large, or the network has autonomous behavior,
in which case there is no centralized control over the network.

In this study, we will consider an asynchronous implementation
of rational graph filtering that eliminates the need for synchroniza-
tion. In the proposed algorithm, a node is assumed to wake up at a
random time instance independent of the remaining nodes, perform
the necessary computations, and broadcast back to its neighbors. By
carefully designing the computation scheme, the proposed algorithm
is shown to converge to the desired filter output in the mean-squared
sense, where the filter is assumed to be a rational function with de-
nominator having order L N (in practice L ! N). In addition,
the algorithm proposed here requires data exchange between only the
neighboring nodes irrespective of the order of the filter L. Thus, the
algorithm is truly distributed since it requires only the neighboring
nodes to communicate with each other without any synchronization.

In the following, we first provide an overview of the nota-
tion. In Section 2, we define a randomized asynchronous state
recursion with nonzero input and present its convergence behavior
(Theorem 1). In Section 3, we consider rational filters on graphs
and propose a scheme that implements the given rational filter in
a node-asynchronous fashion (Algorithm 1), and present its con-
vergence (Theorem 2). In Section 4, we experimentally verify the
convergence of the proposed algorithm.

1.1. Preliminaries and Notation

We will assume that A P CN�N is an operator on the graph with
N nodes. We consider A to be a local operator, that is, Ai,j � 0
when the nodes i and j are not neighbors. In particular, Ai,j denotes
the weight of the edge from node j to node i. The graph is allowed
to be directed possibly with a non-diagonalizable adjacency matrix.
We will use Ninpiq and Noutpiq to denote the incoming and outgoing
neighbors of the node i. More precisely we have:

Ninpiq � tj | Ai,j � 0u, Noutpiq � tj | Aj,i � 0u. (1)

7530978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

We will use Pr�s and Er�s to denote the probability and expecta-
tion, respectively. For a vector x we will use }x}2 to denote its `2-
norm. For a matrix X we will use trpXq to denote its trace, }X}2
to denote its spectral norm (the largest singular value), σminpXq to
denote its smallest singular value, ρpXq to denote its spectral radius
(the largest eigenvalue in absolute sense). We will use T to denote a
subset of t1, � � � , Nu, and its size is denoted as t � |T |.

2. ASYNCHRONOUS STATE RECURSIONS

Given a matrix of interest A and an input signal u, we will consider
the following type of recursion on a state vector xk:

xk+1 � A xk � u, (2)

where x0 is the initial state vector, and A here is assumed to be
an arbitrary matrix. Later in Section 3, A will be considered as a
graph operator, and the model in (2) will represent communications
between the nodes (instead of a simple graph shift as in graph signal
processing [3–6]). In this setting, u will be a signal defined on the
graph, where the nodes will be the “domain” analogous to time. The
index k will denote the round of communication, so the input signal
u does not have any dependency on the iteration index k.

The fixed point of (2), denoted as x�, can be found by solving
the following equation:

x� � A x� � u, so that x� � pI�Aq�1 u, (3)

which assumes that A does not have eigenvalue 1 so that I�A is
invertible. In this sense, results here differ from those in [28–30] that
consider the case u � 0 and assume that 1 is an eigenvalue of A.

In order to analyze the convergence behavior of the state recur-
sions in (2), we first define the residual vector as follows:

rk � xk � x�. (4)

Then, under the state recursions in (2), the residual defined in (4) can
be shown to evolve as follows:

rk+1 � A rk. (5)

Thus, one can argue that the condition ρpAq 1 (where ρpAq is
the spectral radius) is both necessary and sufficient for the residual
rk to convergence to zero, which also implies that the state vector
xk converges to x�.

In this study we will consider a randomized asynchronous vari-
ation of the state recursion in (2), in which only a random subset of
indices are updated simultaneously and the remaining ones stay un-
changed. More precisely, we consider the following update model:

pxk+1qi �

#
pA xkqi � ui � pwkqi, i P Tk,

pxkqi, i R Tk,
(6)

where ui denotes the ith index of the input signal, and wk denotes
noise with the following statistics:

Erwks � 0, Erwk wH
s s � δpk � sq Γ, (7)

where δp�q denotes the discrete Dirac delta function. We note that
the noise is assumed to be uncorrelated between two different itera-
tions, but Γ is allowed to be non diagonal. The update set Tk is also
selected randomly and independently in every iteration of the model
in (6). Similar to the setting in [28–30], we consider the case where
both the content and the size of Tk are random. We assume that the
size of Tk has a constant mean denoted as follows:

µT � Er |Tk| s. (8)

We note that 1 ¤ µT ¤ N holds true since Tk is always a non-empty
subset of the set t1, � � � , Nu. Moreover, µT � 1 implies that only
one index is updated per iteration, and µT � N implies that all the
indices are updated in every iteration. Thus, noise-free model with
µT � N is equivalent to the synchronous case of (2). We also as-
sume that the probability of Tk being equal to a specific set T is
determined entirely by the size of the set T . More precisely,

Pr Tk � T s � P
�
|Tk| � t

� �N
t

��1

, where t � |T |, (9)

which ensures that there is no bias toward any index in (6).

2.1. Convergence in the Mean-Squared Sense

Asynchronous fixed point iterations are well studied problems in the
literature [31, 32]. The earliest analysis can be traced back to the
study in [33]. These studies provided fundamental conditions under
which the asynchronous iterations are guaranteed to converge for a
given index sequence. Thus, the studies in [31–33] do not consider a
probabilistic framework. More recently, studies in [34, 35] (and ref-
erences therein) studied the randomized variations of asynchronous
iterations. However, the model considered here in (6) is different
since it includes the possibility of updating different number of in-
dices in each iteration, and the possibility of noise. Thus, the model
in (6) requires a separate convergence analysis. In fact, the condi-
tions for convergence are different from those in [28–30].

It is important to note that the state vector xk in (6) is a random
variable due to the random selection of the update sets and the ran-
dom noise. For a given state transition matrix A and an input signal
u, the following theorem, whose proof is omitted due to space lim-
itations, proves that the random vector xk converges to x� in (3) in
the mean squared sense as k goes to infinity:

Theorem 1. If }A}2 1, the limit of the mean squared error in the
asynchronous model in (6) is bounded as follows:

trpΓq

1� σ2
minpAq

¤ lim
kÑ8

E
���xk � x�

��2
2

�
¤

trpΓq

1� }A}22
. (10)

When the updates are noise-free (Γ � 0) it is clear from Theo-
rem 1 that the vector xk converges to x� in the mean squared sense
independent of the value of µT . That is, the convergence is guaran-
teed irrespective of the number of indices that are updated concur-
rently. However, it should be clear that the rate of convergence does
depend on µT , which will be elaborated in a later study.

If the noise is present in the system Theorem 1 reveals an error
floor: no matter how many iterations are used, the expected residual
error is always bounded away from zero. Thus, xk does not con-
verge to x� exactly, which is expected due to the presence of noise.
It should be clear that the system in (6) amplifies the noise in gen-
eral. To see this, note that the assumption }A}2 1 in Theorem 1
implies that 0 ¤ σminpAq 1. Thus, the lower bound in (10) is al-
ways larger than trpΓq � Er}wk}

2
2s, which shows that the residual

error is always larger than the noise itself. As σminpAq approaches
unity, the noise amplification becomes more severe, and even a very
small amount of noise results in a very large error term.

It is also important to note that the condition }A}2 1 in Theo-
rem 1 is only sufficient to ensure the convergence, but not necessary
in general. In this regard, consider the following matrix:

A � α

������
0 � � � 0

1 0
...

0
. . .

. . .
0 1 0

������ , (11)

7531

where α P C is an arbitrary complex number. One can verify that
ρpAq � 0, σminpAq � 0, but }A}2 � |α|. When |α| ¥ 1, Theo-
rem 1 is inconclusive regarding the convergence of the asynchronous
updates on the matrix. However, for the asynchronous model run-
ning on (11), one can argue that xi converges to the following:

xi �
i̧

j�1

αi�j uj , for 1 ¤ i ¤ N, (12)

which is, in fact, equivalent to x� in (3). In this particular example
the spectral norm of A can be made arbitrarily large, yet the asyn-
chronous iterations still converge to x�, which provides a counter-
example against the necessity of the condition }A}2 1.

Although Theorem 1 presents only a sufficiency condition for
the convergence, its importance follows from the fact that it does not
require the diagonalizability of the matrix A. When A is considered
as a graph operator in the next section, this property will be very
important to claim the convergence on an arbitrary directed graph
as long as A is scaled properly.

3. ASYNCHRONOUS RATIONAL FILTERS ON GRAPHS

In this section we will focus on the following rational graph filter:

ru � ppγA q
�
qpγA q

��1
u, (13)

where γ P C is a parameter to scale the given graph operator A, and
the polynomials pp�q and qp�q are assumed to be given as follows:

ppxq �
L�1̧

n�0

pn x
n, qpxq � 1�

Ļ

n�1

qn x
n, (14)

where pn P C and qn P C. It should be noticed that (13) reduces
to the polynomial (FIR) filtering in the case of q1 � � � � � qL � 0.
Thus, any polynomial filter can be studied in this framework as well.

On a graph of size N , a graph operator has (at most) N eigen-
values. Due to the finite size of the spectrum, in the case of a diag-
onalizable operator, an arbitrary IIR graph filter can be represented
as an FIR filter of order at most N -1 [3]. In fact, the overall ratio-
nal filtering in (13) can be equivalently written as an FIR filtering of
order at most N -1. Thus, one way to implement (13) is to compute
N -1 graph shifts and take an appropriate linear combination. How-
ever this approach carries two drawbacks: 1) FIR representation of
(13) has N -1 taps (in general) irrespective of the order of the filters.
If the underlying graph is large, the equivalent FIR implementation
requires too many graph shifts compared to the order of the actual
filters. 2) As discussed in [28], a graph shift forces all nodes to com-
municate at the same time, which requires a synchronization among
the network. In a large network synchronization introduces delays,
or it may not be even possible in the case of autonomous networks.
In order to overcome these limitations, we present Algorithm 1 that
implements the rational filter in (13) in a node-asynchronous manner.
In the algorithm, the filter polynomials enter through the following
matrices:

Q�

������
-q1 1 0 0

-q2 0
. . . 0

...
...

. . . 1
-qL 0 � � � 0

������, p �

�����
p0
p1
...

pL-1

�����, e1 �

�����
1
0
...
0

�����P CL. (15)

Algorithm 1 consists of three stages: initialization, passive and
active stages. In the initialization, a node initializes its state vector of
size L with zeros (not to be confused with the global state vector xk

in (2) of sizeN). Then, the node gets into the passive stage, in which
the node receives and stores the state vectors sent by its neighbors.

Algorithm 1 Node-Asynchronous Rational Filtering
procedure INITIALIZATION(i)

Initialize the state vector si � rsi,1 � � � si,Ls P C1�L as zero.
procedure ACTIVE STAGE(i)

si Ð γ
°

jPNinpiq
Ai,j sj Q� ui eH

1 .
yi Ð si p.
Broadcast si to all j P Noutpiq.

procedure PASSIVE STAGE(i)
if sj is received from the node j P Ninpiq then

Store the most recent value of sj .

The node stores only the most recent data. Thus, the node i requires
a buffer of size L � |Ninpiq|. A node gets into the active stage at a
random time instance independent of the other nodes, in which the
node updates its own state vector using its input signal ui and the
state vectors of its neighbors that are already available in the buffer.
Then, the node updates its output signal, broadcasts its state vector
to its neighbors, and finally gets back into the passive stage.

There are four remarks regarding the algorithm: 1) The random
update model in (9) implies that all nodes have the same probabil-
ity of going into the active stage. Thus, all nodes behave similarly.
2) Since the graph is allowed to be directed, a node may receive a
state vector from the node j in the passive stage, but may not send
its vector back to the node j in the active stage. 3) Although Q is a
square matrix of size L, a multiplication with it requires only L op-
erations due to its structure. 4) The following theorem, whose proof
is presented only as a sketch due to space limitations, proves that
Algorithm 1 indeed converges to the output signal in (13).

Theorem 2. Assume that the polynomials in (14) and the scale pa-
rameter γ are selected in such a way that the following is satisfied:

|γ| }Q}-1
2 }A}-1

2 . (16)

Then, the signal y in Algorithm 1 converges to ru in (13) in the mean
squared sense, i.e. Er}yk � ru}22s Ñ 0. In particular, yi of the node
i converges to rui.

Proof Sketch: Each node has a state vector of length L, and there are
N nodes in total. We cascade the state vectors of all the nodes into a
single vector of size LN , and construct an equivalent asynchronous
recursion similar to the model in (6) running on the constructed vec-
tor of size LN . Assuming (16), we apply Theorem 1 and prove that
the equivalent model converges, hence Algorithm 1 converges. �

4. EXPERIMENTAL RESULTS

In this section we will simulate the asynchronous rational filtering
described in Algorithm 1 on the graph visualized in Figure 1. This
is a random geometric graph on N � 150 nodes, in which nodes are
distributed over the region r0 1s � r0 1s uniformly at random. Two
nodes are connected to each other if the distance between them is
less than 0.15, and the graph is undirected. The graph operator, the
matrix A, is selected as the Laplacian matrix whose eigenvalues can
be sorted as follows:

0 � λ1 λ2 ¤ � � � ¤ λN � }A}2 � 16.8891, (17)

where the spectral norm of A is computed numerically.
We consider the following smoothing problem: assume that we

are given the graph signal u that has only 30 non-zero entries, which
is visualized in Figure 1(a). It is clear that the signal u is not smooth
on the graph. In order to obtain a smoothed version of u, which will
be denoted by ru, we will apply a low-pass filter to the signal u.

7532

(a) (b)

Fig. 1. Visualization of the signals on the graph. Colors black and
pink represent positive and negative values, respectively. Intensity
of a color represents the magnitude. (a) The graph signal u that has
non-zero values on 30 nodes. (b) The output signal ru in (19).

In order to find the filter that approximates the desired low-pass
response the best, one can pose an optimization problem over 2L�1
parameters (pi’s, qi’s, and γ) under the constraint in (16) for a fixed
order L. Due to Theorem 2, the node-asynchronous algorithm run-
ning on the designed filter would be guaranteed to converge. How-
ever, in this study we will not consider the design phase. As a proof
of concept we will consider a very simple rational low-pass filter
constructed with the following polynomials of order L � 2:

ppxq � 1� x, qpxq � 1� x2, γ � 0.059. (18)

Then, the overall rational filter in (13) can be written as follows:

hpλq �
1� γ λ

1� γ2 λ2
, so that ru � hpAqu. (19)

Graph frequency response of the filter in (19) is visualized in
Figure 2(a), which shows that the filter has low-pass characteristics
on the graph. Given the graph operator A, which is the graph Lapla-
cian in this case, one can compute the filter matrix hpAq, then obtain
the output signal ru via direct matrix multiplication as in (19).

When compared with u, the signal ru has a lower amount of
projection on the eigenvectors with larger eigenvalues. Magnitudes
of these projections are presented in Figure 2(b). Since ru mainly
contains low frequency components (eigenvectors with small eigen-
values [6]), ru is smoother on the graph as visualized in Figure 1(b).

0 2 4 6 8 10 12 14 16 18

λi

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h
(λ

i
)

(a)

0 2 4 6 8 10 12 14 16 18

λi

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

G
ra

p
h
 F

o
u
ri
e
r

C
o
e
ff
ic

e
n
ts

|vH
i
u|

|vH
i
ũ|

(b)
Fig. 2. (a) Response of the rational filter hpλq in (19). (b) Magnitude
of the graph Fourier transforms of u and ru, where pλi,viq denotes
an eigenpair of A.

In the following, we will implement the same filter in (19) using
the node-asynchronous scheme described in Algorithm 1. We con-
struct the following matrix and vectors according to (15) and (18):

Q �

�
0 1
-1 0

�
, p �

�
1
-1

�
, e1 �

�
1
0

�
, (20)

which define the way variables are updated in the algorithm. We note
that }Q}2 � 1, and the condition in (16) is satisfied for the selected

value of γ in (18), that is, |γ| }Q}-1
2 }A}-1

2 . Thus, Theorem 2
guarantees that the signal y in Algorithm 1 converges to ru in (19) in
the mean-squared sense.

In the first implementation of Algorithm 1 we consider the case
of µT � 1, i.e., only one randomly selected node is updated per it-
eration. In order to verify the convergence numerically, we simu-
lated 105 independent runs of Algorithm 1 and computed the mean
squared error by averaging over the independent runs. Figure 3(a)
presents the mean squared error together with the error in 100 dif-
ferent realizations. Although Algorithm 1 is initialized deterministi-
cally, the signal yk, hence the error norm, are random variables due
to random selection of the nodes. More importantly, the error norm
does not decrease monotonically with the iterations as seen in Fig-
ure 3(a). Nevertheless, the expectation of the error norm decreases
monotonically, which verifies that the error itself converges to zero.

(a) (b)

Fig. 3. (a) Squared residual norm in 100 different realizations of
Algorithm 1 together with the mean squared error. (b) Mean-squared
error when more than one node are updated simultaneously.

In the second implementation of the algorithm we consider the
case of µT ¥ 1, that is, randomly selected µT nodes are updated
simultaneously where µT takes values from 1 to 5. Notice that
the case of µT � 1 corresponds to the node-asynchronous behavior.
Figure 3(b) presents the mean squared error for each case obtained
by averaging over 105 independent runs. As seen in the figure, con-
vergence is achieved no matter how many nodes are updated concur-
rently. This is an expected consequence of the fact that Theorem 1,
hence Theorem 2, asserts the convergence irrespective of the value
of µT . Figure 3(b) shows also that lesser number of iterations are
needed to reach the same error level when larger number of nodes
are updated per iteration. However, the required total number of up-
dates to reach a specific error level stays similar in each case.

5. CONCLUDING REMARKS & FUTURE DIRECTIONS

In this study we proposed a node-asynchronous algorithm that im-
plements a rational filter on the graph of interest. The graph was al-
lowed to be directed, possibly with a non-diagonalizable adjacency
matrix. In the proposed algorithm, nodes were assumed to wake
up randomly and independently from each other, then communicate
with their immediate neighbors. Under a boundedness condition de-
pending on the filter and the graph operator, the proposed algorithm
was shown to converge to the output of the given filter. The result
followed from the convergence of a more general model of random-
ized asynchronous state recursions, which was also discussed in this
study. The algorithm was simulated on a random geometric graph,
and its convergence was validated numerically as well.

In future we will analyze the convergence of the proposed al-
gorithm in the case of imperfect communications. We will consider
the scenario where nodes have different rate of updates. We will
also consider the filter design problem, in which the filter hpλq is
expected to approximate a desired response while satisfying the con-
ditions for convergence of the proposed algorithm.

7533

6. REFERENCES

[1] M. E. J. Newman, Networks: An Introduction. Oxford Uni.
Press, 2010.

[2] M. Jackson, Social and Economic Networks. Princeton Uni.
Press, 2008.

[3] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing
on graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp.
1644–1656, April 2013.

[4] ——, “Discrete signal processing on graphs: Frequency anal-
ysis,” IEEE Trans. Signal Process., vol. 62, no. 12, pp. 3042–
3054, June 2014.

[5] ——, “Big data analysis with signal processing on graphs:
Representation and processing of massive data sets with irreg-
ular structure,” IEEE Signal Process. Mag., vol. 31, no. 5, pp.
80–90, Sept. 2014.

[6] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on
graphs: Extending high-dimensional data analysis to networks
and other irregular domains,” IEEE Signal Process. Mag.,
vol. 30, no. 3, pp. 83–98, May 2013.

[7] O. Teke and P. P. Vaidyanathan, “Extending classical multi-
rate signal processing theory to graphs – Part I: Fundamentals,”
IEEE Trans. Signal Process., vol. 65, no. 2, pp. 409–422, Jan.
2017.

[8] ——, “Extending classical multirate signal processing theory
to graphs – Part II: M-Channel filter banks,” IEEE Trans. Sig-
nal Process., vol. 65, no. 2, pp. 423–437, Jan. 2017.

[9] S. Narang and A. Ortega, “Perfect reconstruction two-channel
wavelet filter banks for graph structured data,” IEEE Trans.
Signal Process., vol. 60, no. 6, pp. 2786–2799, June 2012.

[10] ——, “Compact support biorthogonal wavelet filterbanks for
arbitrary undirected graphs,” IEEE Trans. Signal Process.,
vol. 61, no. 19, pp. 4673–4685, Oct. 2013.

[11] A. Anis, A. Gadde, and A. Ortega, “Towards a sampling theo-
rem for signals on arbitrary graphs,” in Proc. Int. Conf. Acoust.
Speech, Signal Process. (ICASSP), May 2014, pp. 3864–3868.

[12] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set se-
lection for bandlimited graph signals using graph spectral prox-
ies,” IEEE Trans. Signal Process., vol. 64, no. 14, pp. 3775–
3789, July 2016.

[13] A. Gadde and A. Ortega, “A probabilistic interpretation of
sampling theory of graph signals,” in Proc. Int. Conf. Acoust.
Speech, Signal Process. (ICASSP), April 2015, pp. 3257–3261.

[14] X. Wang, P. Liu, and Y. Gu, “Local-set-based graph signal re-
construction,” IEEE Trans. Signal Process., vol. 63, no. 9, pp.
2432–2444, May 2015.

[15] A. Agaskar and Y. M. Lu, “A spectral graph uncertainty princi-
ple,” IEEE Trans. on Inf. Theory, vol. 59, no. 7, pp. 4338–4356,
July 2013.

[16] M. Tsitsvero, S. Barbarossa, and P. D. Lorenzo, “Signals on
graphs: Uncertainty principle and sampling,” IEEE Trans. Sig-
nal Process., vol. 64, no. 18, pp. 4845–4860, Sept. 2016.

[17] O. Teke and P. P. Vaidyanathan, “Uncertainty principles and
sparse eigenvectors of graphs,” IEEE Trans. Signal Process.,
vol. 65, no. 20, pp. 5406–5420, Oct. 2017.

[18] D. I. Shuman, P. Vandergheynst, and P. Frossard, “Chebyshev
polynomial approximation for distributed signal processing,”
in International Conference on Distributed Computing in Sen-
sor Systems and Workshops, June 2011, pp. 1–8.

[19] D. I. Shuman, P. Vandergheynst, D. Kressner, and P. Frossard,
“Distributed signal processing via chebyshev polynomial ap-
proximation,” IEEE Trans. on Sig. and Inf. Process. Net.,
vol. 4, no. 4, pp. 736–751, Dec. 2018.

[20] S. Safavi and U. A. Khan, “Revisiting finite-time distributed
algorithms via successive nulling of eigenvalues,” IEEE Sig.
Process. Letters, vol. 22, no. 1, pp. 54–57, Jan. 2015.

[21] A. Sandryhaila, S. Kar, and J. M. F. Moura, “Finite-time dis-
tributed consensus through graph filters,” in Proc. Int. Conf.
Acoust. Speech, Signal Process. (ICASSP), May 2014, pp.
1080–1084.

[22] S. Segarra, A. G. Marques, and A. Ribeiro, “Distributed im-
plementation of linear network operators using graph filters,”
in Allerton Conference on Communication, Control, and Com-
puting, Sept. 2015, pp. 1406–1413.

[23] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-
filter design and applications to distributed linear network op-
erators,” IEEE Trans. Signal Process., vol. 65, no. 15, pp.
4117–4131, Aug. 2017.

[24] X. Shi, H. Feng, M. Zhai, T. Yang, and B. Hu, “Infinite impulse
response graph filters in wireless sensor networks,” IEEE Sig.
Process. Letters, vol. 22, no. 8, pp. 1113–1117, Aug. 2015.

[25] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregres-
sive moving average graph filtering,” IEEE Trans. on Sig. Pro-
cess., vol. 65, no. 2, pp. 274–288, Jan. 2017.

[26] ——, “Filtering random graph processes over random time-
varying graphs,” IEEE Trans. Signal Process., vol. 65, no. 16,
pp. 4406–4421, Aug. 2017.

[27] A. Loukas, A. Simonetto, and G. Leus, “Distributed autore-
gressive moving average graph filters,” IEEE Sig. Process. Let-
ters, vol. 22, no. 11, pp. 1931–1935, Nov. 2015.

[28] O. Teke and P. P. Vaidyanathan, “Random node-asynchronous
updates on graphs,” Submitted to IEEE Trans. Signal Process.,
2018.

[29] ——, “The asynchronous power iteration: A graph signal per-
spective,” in Proc. Int. Conf. Acoust. Speech, Signal Process.
(ICASSP), Apr. 2018, pp. 4059–4063.

[30] ——, “Asynchronous nonlinear updates on graphs,” in Asilo-
mar Conf. on Signals, Systems and Computers, Nov. 2018.

[31] G. M. Baudet, “Asynchronous iterative methods for multipro-
cessors,” J. ACM, vol. 25, no. 2, pp. 226–244, Apr. 1978.

[32] D. P. Bertsekas, “Distributed asynchronous computation of
fixed points,” Mathematical Programming, vol. 27, no. 1, pp.
107–120, Sep. 1983.

[33] D. Chazan and W. Miranker, “Chaotic relaxation,” Linear Al-
gebra and its Applications, vol. 2, pp. 199–222, Apr. 1969.

[34] H. Avron, A. Druinsky, and A. Gupta, “Revisiting asyn-
chronous linear solvers: Provable convergence rate through
randomization,” J. ACM, vol. 62, no. 6, pp. 51:1–51:27, Dec.
2015.

[35] Z. Peng, Y. Xu, M. Yan, and W. Yin, “Arock: An algorith-
mic framework for asynchronous parallel coordinate updates,”
SIAM Journal on Scientific Computing, vol. 38, no. 5, pp.
A2851–A2879, 2016.

7534

