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We experimentally investigate the effects of parametric instabilities on the short-time heating process of
periodically driven bosons in 2D optical lattices with a continuous transverse (tube) degree of freedom. We
analyze three types of periodic drives: (i) linear along the x-lattice direction only, (ii) linear along the lattice
diagonal, and (iii) circular in the lattice plane. In all cases, we demonstrate that the Bose-Einstein
condensate (BEC) decay is dominated by the emergence of unstable Bogoliubov modes, rather than
scattering in higher Floquet bands, in agreement with recent theoretical predictions. The observed BEC
depletion rates are much higher when shaking along both the x and y directions, as opposed to only x or
only y. We also report an explosion of the decay rates at large drive amplitudes and suggest a
phenomenological description beyond the Bogoliubov theory. In this strongly coupled regime, circular
drives heat faster than diagonal drives, which illustrates the nontrivial dependence of the heating on the

choice of drive.
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I. INTRODUCTION

An area of increasing interest in ultracold atoms
concerns the engineering of novel states of matter using
highly controllable optical lattices [1]. In this context, a
promising approach relies on applying time-periodic
modulation to the system, in view of designing an
effective time-independent Hamiltonian featuring the
desired properties [2—4]. This Floquet engineering has
emerged as a promising and conceptually straightforward
way to expand the quantum simulation toolbox, enabling
appealing features such as suppressed [5,6] or laser-
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assisted [7] tunneling in optical lattices, enhanced mag-
netic correlations [8], state-dependent lattices [9], and
subwavelength optical lattices [10], as well as synthetic
dimensions [11,12], synthetic gauge fields [13,14], and
topological band structures [15].

Despite these promising applications, progress in
Floquet engineering for interacting systems has been
hindered by heating due to uncontrolled energy absorption.
This heating, which stems from a rich interplay between the
periodic drive and interparticle interactions, is a particularly
challenging problem in interacting systems, where it is
known to occur due to the proliferation of resonances
between many-body Floquet states, not captured by the
inverse-frequency expansion [4,16]. This problem con-
strains the applicability of Floquet engineering to regimes
where heating is slower than the engineered dynamics
[9,17-21]. A deeper understanding of the under-
lying processes is essential to determine stable regions
of the (large) parameter space, where the system is
amenable to Floquet engineering. Additionally, interac-
tion-mediated heating is itself an interesting nontrivial

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.9.011047&domain=pdf&date_stamp=2019-03-13
https://doi.org/10.1103/PhysRevX.9.011047
https://doi.org/10.1103/PhysRevX.9.011047
https://doi.org/10.1103/PhysRevX.9.011047
https://doi.org/10.1103/PhysRevX.9.011047
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

T. BOULIER et al.

PHYS. REV. X 9, 011047 (2019)

quantum many-body process. Energy absorption and
entanglement production in periodically driven systems
have recently been the focus of theoretical studies [16,22—
29] and experimental investigations [5,9,20,21]. It was
predicted that, whenever the drive frequency is larger than
all single-particle energy scales of the problem, heating
succumbs to a stable long-lived prethermal steady state,
before it can occur at exponentially long times [25,30-35].
However, it is unclear whether this physics is accessible in
interacting bosonic experiments.

A perturbative approach to understanding drive-induced
heating is to analyze the underlying two-body scattering
processes using Fermi’s golden rule (FGR) [21,23,36-38].
In the weakly interacting limit, interactions provide a small
coupling between noninteracting Floquet states. However,
Floquet states cannot be treated as noninteracting when
the Floquet-modified excitation spectrum is itself unsta-
ble [22,24-26]. These instabilities indicate that heating can
occur on a shorter timescale than expected from the
scattering theory alone.

For Bose-Einstein condensates (BECs) in optical latti-
ces, increased decay rates arise due to the emergence of
unstable collective modes. The resulting parametric heat-
ing can be described using a Floquet-Bogoliubov—de
Gennes (FBdAG) approach [24], and the short-time dynam-
ics is dominated by an exponential growth of the unstable
excited modes in the BEC. The depletion time of the
condensate fraction provides an experimental window to
observe this and related effects. Qualitatively different
behavior is expected between scattering and parametric
instability rates, most notably, different power laws as a
function of the interaction strength, tunneling rate, and
drive amplitude.

We experimentally explore these predictions in a 2D
lattice subject to 1D and 2D periodic drives, by measuring
the decay of the BEC condensed fraction. We provide
strong experimental evidence that parametric instabilities
dominate the short-time dynamics over FGR-type scatter-
ing processes, which are responsible for long-time thermal-
ization [21]. Our experiment reveals effects beyond
Floquet-Bogoliubov predictions and points out limitations
in the applicability of the FBAG theory.

The experiments are performed on a BEC of 3Rb
atoms loaded into a square 2D optical lattice [39,40]
with principal axes along x and y, formed by two pairs
of counterpropagating laser beams with a wavelength of
A = 814 nm. The total atom number is N ~ 107 (£20%
systematic uncertainty). Two piezoactuated mirrors [41]
sinusoidally translate the lattice along x and y with
any desired amplitude, relative phase, and angular frequency:
r(z) = {Axsin (wt), Ay sin (ot + ¢)}. We consider the
effect of three drive trajectories on the decay rate: translation
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FIG. 1. Schematic of the lattice driving. (Top) Lattice trans-
lation is performed along the x direction (green), along the
diagonal (blue), and in circles (red). The normalized drive
amplitude projected along the x axis, K, is used to characterize
the drive strength for all trajectories. (Bottom) Example of a
periodic drive for circular driving.

along x only (Ay = 0), diagonal translation along x and
vy (Ay = Ax and ¢ = 0), and circular translation (Ay = Ax
and ¢ = x/2). Therefore, the driving is 1D (x only) or 2D
(diagonal or circular), in a 2D system (2D array of tubes), as
shown in Fig. 1. We express the amplitude Ax in terms of the
drive-induced maximum effective energy offset between
neighboring lattice sites in the comoving frame, K, =
AE/hw, where AE = mw?alAx, a is the lattice spacing,
and m is the 3’Rb mass. The physical displacement is
Ax = hKy/awm. The lattice depth V| is held constant
during shaking and is measured in units of lattice recoil
energy Ex = h?/mA?. The lattice tunneling energy #J and
the interaction strength g are controlled via V. The value of
J(Vy) and g(V) are calculated from the band structure, peak
atom density, and scattering length (see Appendix B). This
calculation results in the following periodically driven Bose-
Hubbard Hamiltonian:
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where &l(;) (z) is the annihilation (creation) operator at lattice

site (i, j) and transverse position z and x = 0 for x-only and
k =1 for 2D drives. The interaction U is defined such as
U/VY,; [.{a](2)a; ;(z)) = g with V the volume of the
system.

In order to avoid micromotion effects during a drive
period [10], the experiments are performed at integer
multiples of the period T =27z/w (see Appendix A).
The drive amplitude is ramped up smoothly [10,42,43]
in a fixed time (minimum 2 ms) corresponding to an integer
number of periods (Fig. 1). The shaking is then held at a
constant amplitude for a time 7. Finally, the amplitude is
ramped down to zero in a few periods. We check the effect
of adiabaticity of this procedure (or lack thereof) for the
three drive trajectories and describe it in the Appendix A.
Once the lattice is at rest, we turn it off in 300 us to
determine the atomic distribution. We use absorption
imaging after the time of flight to measure the condensate
fraction as a function of 7.

For most conditions, the condensate decay agrees with
an exponential decay [N(7) = N(0)e <], whose rate I
we extract from a least-square fit (see Appendix C). We
measure ['; for the three drives at different values of w, K,
and V. FBdG predicts an undamped parametric instability,
characterized by exponential growth of unstable modes,
1.e., accelerated condensate loss. This behavior is incon-
sistent with the measured exponential decay of the BEC.
Hence, the undamped FBdG regime does not last long
compared to the typical BEC lifetime for our parameters,
and interactions between the excited unstable modes and
the BEC play a significant role in the observed heating
process. Nonetheless, as we discuss below, the magnitude
and scaling of I'; are well captured by a FBdG description.

Since the Floquet-renormalized hopping is Jp =
JTo(Ky) [T, (Ky) is the vth order Bessel function],
Jeir <0 for Ky > 2.4 and the lowest Floquet band is
inverted [5]; the BEC then becomes dynamically unstable
at ¢ = (0,0) [44], but a stable equilibrium occurs at the
band edge, and a sudden change in the stability point can
trigger a dynamical transition [45] between the two
equilibrium configurations. In the band-inverted regime,
the stable quasimomenta are q = (£x,0) for a 1D drive
along x and q = (+z, £x) for a 2D drive along x and y,
where the components of the crystal momentum q are
measured in units of the inverse lattice spacing a~'. FBAG
assumes an initial macroscopic occupation of these modes
[24]. Unless stated otherwise, for data taken at K, > 2.4,

we first accelerate the BEC to the appropriate stable point
while simultaneously turning on the Floquet drive (see
Appendix B).

II. RESULTS

A. Lattice depth scans: I'.;(V,)

A major difference between FGR and the FBdG theory is
the scaling of the decay rate with the hopping J and
interaction strength g. Whereas FGR predicts I'y¢ o (gJ),
the parametric instability rate is expected to be linear
Ty x gJ) [24]. Figure 2 shows the condensed fraction
decay rate I'.; measured at different V; (between 7.3E and
17.0ER) and w, plotted as a function of ¢gJ/w, for the 2D-
diagonal drive and 1D x-only drive. The solid lines show the
FBdG theory, and the dashed lines are linear fits to the data.
For the x-only drive, the magnitude and slope extracted from
the data are well described by the FBAG theory, and while
some deviations appear for the 2D drive, both results are
clearly inconsistent with a quadratic dependence.

B. Amplitude scans: I'¢(Kj)

Figure 3 shows the decay rate as a function of the drive
amplitude K, at lattice depth V, = 11E; (which gives
J =2xx50Hz, g=27xx700Hz, and a gap AE,/h =
21 kHz to the next vibrational level) and a drive frequency

I I
O® x-onlydrive
150 H— 1D FBAG theory
O® Diagonal Shake
— 2D FBdG theory

100 —

Rate T /2m (s)

50 -1

Jg/(2nw) (Hz)

FIG. 2. T(Jg/®): Measured decay rates for Ky = 2.1, @ =
27 x 4 kHz (filled circles), and @ = 2z x 2.5 kHz (empty circles)
and various lattice depths, compared to the FBAG theory. The
horizontal axis is Jg/(2 X ), since the FBAG theory predicts the
mode growth rate to be linear in J, g, and 1/w, as derived in the
Appendix E. The dashed lines are linear fits to the data.
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FIG. 3. T(K,): Comparison between circular (red), diagonal
(blue), and x-only (green) drives for V,=11E; and
w = 2r X 2.5 kHz. The rates are in units of J = 2z x 50 Hz,
shown full scale (top) and enlarged (bottom). The Floquet—
Bogoliubov—de Gennes theory [24] (see Appendix E) I'y,, is
shown for each drive as solid lines, and the 1D FGR-based
scattering theory is shown as the green dashed line (enlarged
only). Filled circles indicate data taken at ¢ = (0, 0), while open
circles indicate data taken at q = [z, z(0)] (see the text) to keep
the BEC in the stable region of the band (illustrated with the
bottom plot cartoon). A dramatic increase in the rate occurs at
K§ 2 2.4 for the circular and diagonal drives, highlighted by the
light red region.

@ = 2x x 2.5 kHz. The same data are shown on a full
range (top) and enlarged (bottom).

Consider first the x-only drive. The instability growth
rate predicted from the FBdG theory [16] T ,n =
8JT»(Ky)g/w, which we detail in the Appendix E, agrees
with the measured decay rates (Fig. 3). The appearance of
the Bessel function 7, (K|)) in the expression for the rate can
be traced back to the parametric resonance condition,
requiring the excitation spectrum to match the drive fre-
quency; cf. the Appendix. In contrast, the FGR scattering
approach prediction is too low by a factor of about 30, and

the predicted scaling, « | 7,(K)|? to leading order, does not
describe the data as well. The agreement with the FBdG
theory, despite evidence for effects beyond simple undamped
parametric instability, is consistent over a range of parameter
space in K, w, and V. As expected, the decay dramatically
increases when J < 0 (Ko > 2.4) for q = (0,0), while it
is partially stabilized when accelerating the BEC to
q = (7,0). We note that significant heating occurs during
the drive turn-on and acceleration phase for the q = (r, 0)
data, resulting in partial BEC losses.

For the two 2D drives (circular and diagonal), we
observe decay rates that follow roughly the same functional
form as the 1D drive but about 3x larger. Additionally, the
sudden increase in the decay rate I';; for the 2D drives
consistently occurs at a critical amplitude K§ below 2.4. At
11ER, K§ ~ 2.15 (Fig. 3). Above K§, both 2D rates increase
dramatically beyond any prediction, and the circular rate
increases faster than the diagonal rate. This drive depend-
ence and drastic rate increase for Kfj < Ky < 2.4 suggest
effects beyond the FBAG theory, distinct from the simple
parametric instability, and are discussed at the end of this
paper. For K, = 2.4, the rates are essentially unmeasurable
since ['i; > w. As with the 1D drive, accelerating the BEC
to q = (z, z) partially stabilizes the decay, just enough to
be measurable.

C. Frequency scans: I'¢(@)

The FBAG theory predicts distinct behavior at low and
high drive frequencies. In the low-frequency regime, the
momenta of the maximally unstable mode q,,, evolve as
one increases the drive frequency, until it saturates at the
Bogoliubov band edge at q,um = {(7,0)}, {(x,0), (0,7)},
and {(z,7)} for the x-only, circular, and diagonal drive,
respectively. The periodic drive results in interference
which depends on the relative phase of the two components
of the drive, leading to different most unstable modes for
the three shaking geometries. The saturation frequency

w, = Eo%(Qumum) marks the onset of the high-frequency
regime [24]. Note that, unlike in 1D lattices [24], the energy
of the maximally unstable mode can be lower than the full
effective bandwidth (see Appendices B and E). The rate is
predicted to increase quasilinearly for w < w,, while
Cpum < @™ for @ > o, [21,24], resulting in a cusp in
the rate at w,. A detailed derivation of the expressions for
the most unstable modes and the instability rates are given
in the Appendix.

Figure 4 shows the experimental values for I'.(w)
compared with the FBAG theory. Since there is no observed
rate explosion for the x-only drive, we use the cusp in
I'Y;(w) to calibrate our experimental value for g, which
agrees to within 20% with an estimate calculated from the
lattice parameters (see Appendix B). Using this value of g,
the prediction for the diagonal drive o3 matches the
experiment. While the FBAG theory predicts the same w,
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FIG. 4. Decay rates versus drive frequency. [';¢(w) for the three
drive trajectories at Ko = 1.25 and V = 11ER. The Floquet—
Bogoliubov—de Gennes theory I'y,m(@) is shown for each
trajectory as dashed lines. The theoretical cusp positions are
marked as vertical black dashed lines. The value we use for g is
fitted to the x-only drive cusp and is close to the expected value
(see Appendices B and E). A rate explosion occurs at low
frequencies when K, > K§(w) (cf. Fig. 3), represented as the
light red zone.

for circular and x-only drives, the measured cusp for the
circular drive lies between the cusps of the two linear
drives.

The observed behavior qualitatively fits the FBdAG
theory, with rates generally higher than predicted for
o ~ .. For the x-only drive, the measured rates are slightly
above the prediction below 2z x 1.5 kHz, and the agree-
ment is excellent above 27 x 1.5 kHz, as observed with
I'+(Kp) at 2z x 2.5 kHz (Fig. 3). The 2D rates show a
larger discrepancy at low frequencies and a decent quanti-
tative agreement for @ 2 2z x 2 kHz. This result is related
to the rate explosion appearing for K, > K§. As we discuss
below, the observed value of K§ increases with the
frequency. This increase implies a similar rate explosion
should happen when decreasing @ at fixed K,. This
explosion is especially visible with the diagonal drive
(Fig. 4): For w < 2z x 1 kHz, the data abruptly depart
from the prediction. This increased rate at low frequencies
for 2D drives is likely responsible for the discrepancy
between the experiment and theory. The presence of the
cusps in the rate explosion region is still expected, since, for
o low enough, some modes are energetically inaccessible,
and the limit T'i;(@ — 0) — 0 must be fulfilled.

D. Rate explosion

Beyond a critical amplitude K{, we observe a sudden
increase of the 2D-driven decay rate (Fig. 3). The
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FIG. 5. K{(w): Critical drive amplitude measured for various

frequencies w at Vy = 11Eg. For K, > K (light red region), the
decay rate for both 2D drive trajectories increases dramatically,
and we observe Kj — 2.4 at large w. A simple relation captures
this feature (red line).

dependence of K{ on the frequency for circular driving
at V) = 11E is shown in Fig. 5. We observe that Kf — 2.4
as w — oo, suggesting that the giant heating arises from a
finite-frequency effect. Because the effect appears for both
diagonal and circular drives, whereas a perturbative argu-
ment using the inverse-frequency expansion shows that
there are finite 1/w corrections only for the circular drive,
we surmise that the effect is likely nonperturbative.
Assuming the anomalously strong heating results from
an interplay of correlated physics beyond the Bogoliubov
regime and recalling that resonance effects beyond the
infinite-frequency approximation lead to a 1 /w dependence
in the instability rates [2—4], we make the following scaling
argument. Viewing the system as an effective Bose-
Hubbard model, the strongly correlated regime is reached
for g/J. = 1. On the other hand, we note that corrections
to the infinite-frequency Floquet Hamiltonian scale as J /.
We make the phenomenological observation that the
dimensionless ratio (g/J.s)(J/w) should be relevant to
a combination of beyond-mean-field and finite-frequency
effects. When J. is low in all lattice directions,
(9/Jeir)(J/w) is large, and, therefore, these effects should
be large. The simple scaling relation g/w 7o (Ky) = 1 gives
Ki(w) = J;5'(9/w) and is shown as the red line in Fig. 5
with the experimental data. The agreement is surprisingly
good for such a simple argument. The quantum many-body
nature of the rate explosion calls for more extensive study,
that promises new insights into periodically driven strongly
correlated quantum lattice systems.

We presented a detailed investigation of heating for
interacting bosons in a periodically driven 2D lattice. The
observed decay rates are substantially larger than expected
from a scattering theory based on Fermi’s golden rule [21]
and scale as expected for interaction-driven parametric
instabilities [24]. The observed exponential decay of the
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condensed fraction suggests that interactions between
these excited modes and the BEC, not captured by the
FBdG theory, play an important role in the dynamics.
Nonetheless, the linear scaling of the condensate loss rate
with ¢J/w is indicative of direct, interaction-induced
instabilities. Importantly, these instabilities arise from
collective modes and involve coherent processes, unlike
scattering in a purely FGR approach. In addition, for 2D
driving, there exist regions where the heating is even larger
than predicted by FBAG, which is not explained by current
theories. Altogether, our observations provide important
insight into a major heating mechanism in bosonic systems
subject to a position-modulation drive, a valuable knowl-
edge for future many-body Floquet engineering schemes.
We note that complementary signatures of parametric
instabilities have been recently investigated with bosonic
atoms in periodically driven 1D optical lattices [46].
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APPENDIX A: THERMALIZATION
OF EXCITED ATOMS

The condensate fraction can decay either by direct
Floquet-driven loss or by heating due to relaxation of
energetic excitations. The latter mechanism occurs over a
thermalization timescale and can be probed by observing
relaxation of out-of-equilibrium states in an undriven, static
lattice. Special attention to the drive turn-off is required to
avoid unwanted excitation due to micromotion during a
drive period. Abruptly turning off the drive induces a kick

I I ) I I I
0.6 e ©® S S o o, o . o
[ J
S 05 i. o ¢ n
'43 [ J
..g 04 o ° —
3 oo o o
v 0.3 o o [ J —
[ J
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0.1~ ® End phase = 112, abruptstop| ]
® End phase =0, smooth stop
0.0 & | 1 1 1 ] ]
0 1 2 3 4 5  6x10°

Hold time t, 4(s)

FIG. 6. Thermalization of the nonequilibrium population. The
lattice is shaken for a few periods and then held static at #,,,4 = O.
There exists at f,,,g =0 a nonequilibrium population that
thermalizes with the BEC in a few milliseconds, resulting in a
clear decrease of the condensed fraction. The amplitude of this
effect depends on the initial size of the nonequilibrium popula-
tion. It is maximum if atoms are kicked to higher bands by an
abrupt stop of the drive (blue). If no such population is created by
the stopping of the drive, for example, by choosing an end phase
that minimizes the kick (red) or by rapidly ramping down the
drive amplitude (green), no condensed fraction decay is observed.

large enough to create a significant out-of-equilibrium
population by interband excitation.

To determine the relaxation timescale and test for this
additional condensate loss mechanism, we measure the
evolution of the condensed fraction when holding the
atomic cloud in a static lattice, immediately after an abrupt
stop of the drive. While the condensed fraction is initially
unchanged, upon letting the static system evolve for a time
tholds WE oObserve a subsequent decrease of the condensed
fraction as excited atoms thermalize with the rest of the
sample. Figure 6 shows an example of thermalization for a
diagonal drive at ® = 27 x 2 kHz. When there is sufficient
initial excitation (blue data in Fig. 6), we observe a
characteristic thermalization time of the order of 2 ms that
does not depend on the initial nonequilibrium population.

We observe that the condensed fraction increases
slightly with the hold time in the cases where minimal
atom excitation occurs (red and green data in Fig. 6). We
attribute this increase to rethermalization along the tube
axis: Entropy added in the degree of freedom (d.o.f.)
associated with the lattice direction can be redistributed
along the z (tube) axis, which is visible as a slightly
decreased temperature in the x-y plane.

The amplitude of the condensed fraction decrease is
indicative of the energy of the initial nonequilibrium
population. We can measure this amplitude by comparing
the condensed fraction at #;,,y = 0 and #,, = 6 ms, a time
sufficient for the thermalization to have occurred. Figure 7
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FIG.7. Amplitude of the thermalization process. The difference
between the condensed fraction at ¢ = f.,q (fhoq = 0) and at t =
tena + 6 ms (fhoq = 6 ms), as a function of the end drive phase,
for a 2z x 2 kHz diagonal (2D) drive. For an abrupt stop (blue), a
large population can be transferred out of the BEC for some end
phases, which results in a large thermalization event and a clear
drop of the condensed fraction. The effect is minimal when
stopping the drive such that ¢(7) is a smooth function. If, however,
the drive is stopped by ramping down the amplitude (green), no
condensed fraction decay can be observed at any phase.

shows the remaining condensate fraction after f,,,g = 6 ms
as a function of the phase at which the drive is stopped, for
an abrupt stop (blue) and for a smooth but rapid (1 period)
turn-off (green). When the stop is abrupt, the fraction of
atoms excited depends on the end phase: Abruptly immo-
bilizing the lattice can induce an effective force which
depends on the lattice velocity immediately prior to
immobilization. Therefore, the excited fraction is maxi-
mized when ¢(7) is maximally discontinuous (stop phases
of 0[z] rad) and minimized when smooth (stop phases of
(7/2)[x] rad). In all our decay rate data where we smoothly
turn off the drive (in at least one period), no turn-off-
induced heating is observed.

Abruptly stopping the drive is not the only potential
source of nonequilibrium population. The unstable
Bogoliubov modes studied in the main text could them-
selves produce a population that thermalizes and that could
potentially modify the measured decay rates. This pos-
sibility can be tested with the same stop-and-hold meas-
urement, if turn-off-induced populations are avoided. As
visible in Fig. 7, this possibility is realized for stop phases
of (z/2)[x] rad or when smoothly turning off the drive. For
our data, avoiding a turn-off-induced population when
stopping the drive results in no visible decay, which is
shown as the green data in Fig. 6. The result is identical
for the whole region of parameter space studied here.
We deduce that the energy carried by the nonequilibrium
population created by the unstable modes is not enough to
significantly impact the measured rates.

APPENDIX B: EXPERIMENTAL
CONSIDERATIONS

Accelerating the BEC to the band edge.—In order to
accelerate our BEC from q = (0,0) to a desired
q = (g,-q,), we apply a constant force F = q for a fixed
time in the lattice plane. The force is generated with a
constant magnetic gradient, acting on the BEC in the
|F =1,mp = —1) ground state. Bias coils in the three
spatial directions control the gradient direction.

The BEC becomes unstable for quasimomenta about
halfway to the band edge, which is the well-known static
instability [44]. On the other hand, as mentioned in the
main text, ramping up the drive amplitude beyond K, =
2.4 reverses the band smoothly as J.; becomes negative:
q~ (0,0) becomes unstable, and the band edges (or
corners, depending on the drive trajectory) become stable.
In order keep the BEC in a stable region (in an effectively
static dynamical stability sense) at any given time, we
synchronize the BEC acceleration with the ramping on of
the drive, such that the BEC crosses the static instability
point g = 0.6z/a when K, = 2.4.

We accelerate the BEC to q = (7, z) for the two 2D
drives (diagonal and circle) and to q = (7, 0) for the x-only
1D drive, since these become stable whenever K, > 2.4,

Calibration of translation amplitude.—The piezoactu-
ated mirrors are each roughly calibrated offline using an
interferometric technique [41]. The final calibration is
performed on the atoms by measuring the tunneling-
dependent magnetization decay rate of 2D staggered spin
magnetization [49] as a function of drive strength K. The
drive strength at which the tunneling rate J.; vanishes is
determined by the condition K, = 2.4.

Calibration of tight-binding parameters.—The lattice
depth is calibrated via Raman-Nath diffraction. In the tight-
binding limit, the tunneling rate is derived through the
modeled 1D dispersion as

E(q = r/a) ~ E(g=0)
4

The on-site interaction g is calibrated from the x-only
drive cusp (see Fig. 4). The point at which the rates go from

J

. (B1)

. . . dlag . .
increasing to decreasing, w, ¢, is given by

wp = /Ao (4 e + 29).

Knowing J, the experimental value of w}. offers a calibration
for g. For Vy = 11Eg, J = 50 Hz and the measured value of
o} = 444 Hz gives g = 700 Hz. As an additional check, this
value of g is then used to predict the diagonal drive cusp,

w2 = | /8] (8] + 29) = 655 Hz. The observed value
of approximately 650 Hz is in good agreement with this
prediction.

The interaction strength ¢ depends upon the atom
number, the dipole trap, and the lattice parameters. To
confirm that the experimental calibration matches these

(B2)
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known experimental parameters, we also estimate g
through tight binding and Thomas-Fermi assumptions: In
the lattice plane, the wave function y(x) is taken to be well
approximated by a Mathieu function, while we use a
Thomas-Fermi profile in the tube direction. The interaction

energy g o /f_“[{/22|y/(r)|4d2r is then calculated from the

known experimental parameters, including the density
profile due to the dipole trap (frequencies {w,,®, @} =
{11,45,120} Hz). For V, = 11E, we find g = 850 Hz,
similar to the calibrated value of 700 Hz. Note that the
systematic 20% uncertainty in the atom number can easily
explain the small offset between the estimation and
calibration.

Bandwidths.—It is important to note that @, is, in
general, different from the effective bandwidth B. For a
2D (diagonal or circular) drive in our 2D lattice,

B® = \/8]|To(Ko)| x [8/To(Ko)| +29]  (B3)

and, with a 1D drive in the 2D lattice,

B = \/AJ[|To(Ko)| + 1] x {4J[1To(Ko)[ + 1] + 2},
(B4)

which is, in general, different from .., as observed in the
main text: Only in the case of the diagonal drive do we find
that the maximally unstable mode had the maximum
ground band energy, and therefore ., = B.

Background rates.—All theoretical plots take into
account the background decay rate, predominantly due
to lattice photon scattering. We experimentally determine
this rate by setting K, = 0 and measuring the resulting rate
with the same procedure as in the main text. This constant
rate yy ~ 1 s~! for V, = 11Ey is then added to the FBAG
formula for comparison with the experimental data. Since
multiphoton resonances to higher bands [50] could com-
plicate the interpretation of the measured decay rates, we
perform heating measurements up to drive frequencies of
@ =2z x21 kHz to identify excited band resonances.
Population transfer to higher bands is directly visible on
the band-mapping images. The lowest frequency at which
resonant higher band excitation is observed is @ = 27 x
6.25 kHz for V= 11Eg, and we therefore limit our
heating measurements to below 2z x 4 kHz to avoid these
effects.

Heating in the absence of a Floquet drive.—To rule out
heating mechanisms that do not depend on the drive but are
instead related to the change in J, it would be useful to
compare the heating observed at a given K, to the heating
observed in a static lattice with a depth chosen to have an
equivalent J = J (for Jos > 0). Here, such a direct
comparison is experimentally challenging under the same
conditions as the Floquet experiment, due to the change in
the trap confinement when increasing the lattice depth. In
addition to a potential change in gravitational sag (which

we minimize by aligning the optical lattice beams directly
on the dipole-trapped BEC), the change in trap frequency
when changing the lattice depth can excite breathing
motion along the nonlattice tube direction, as well as cause
a redistribution of atoms within the trap transverse to the
lattice direction. These trap-changing effects do not occur
for the Floquet modification of the tunneling. To avoid this
motion or redistribution, one needs to increase the lattice
adiabatically, i.e., on a slower timescale than the Floquet
drive is turned on. Nonetheless, we do a type of comparison
to the data in Fig. 2 by turning on the lattice slowly (over
200 ms) to a final lattice depth to obtain a given static J
and observe the condensate fraction. As an example, we
increase the lattice depth to 18.2Ep, which changes
the tunneling from J = 2z x 50 Hz at 11ER to J = 27 X
12 Hz at 18.2ER, corresponding in the Floquet case to
Ky = 2. The fact that there is still condensate remaining
after the 200 ms turn-on is already an indication that the
condensate decay rate in the unshaken lattice is slow.
Measuring the condensate decay rate at this depth gives
I'/27 = 2 s~!, which is slower than the equivalent Floquet
rate by a factor of 9 and slower than all the data at K, = 2.1
shown in Fig. 2 by at least a factor of 7.

APPENDIX C: EXTRACTING
THE DECAY RATES

Rate extraction.—Our data consist of a series of mea-
sured condensed fractions after various driving times. A
time series typically presents an exponential-looking decay.
An example for such a decay is given in Fig. 8. Since we

# of drive periods

0 80 160 240 320
0.7 I I T H
0.6 @ Experiment |
c 0 e
S o Exponential fit
S 051® [/2m=31.6 0.8 Hz |
£
0.4
o
S
2 0.3
S
2 02
o
© o1t
0.0 &£
0 20 40 60 80x10°
Shake time (s)
FIG. 8. Typical decay plot. Each data point (blue dots) is an

experimental realization, where the condensed fraction is mea-
sured after a variable shake time (all else kept constant). The
resulting decay curve is then fitted with an exponential function
(red thick line). This particular example uses K, =2,
®/2x = 4 kHz, and V; = 11E. Each experimental rate in the
manuscript is extracted from such a fit, and its error bar is given
by 41 standard deviation.
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focus on the early time decay rate, greater weight is given to
earlier data points. We fit to an exponential with no offset
(two fit parameters): f () = Ae~"’, where A is the 1 = 0
condensed fraction (typically, A > 0.5). The rates presented
in this manuscript are the extracted fit parameter I';;, and
the uncertainties correspond to +1 standard deviation.

A small fraction of the experimental data does not show
an exponential decay. In such cases, the condensed fraction
versus time looks linear, which is indicative of an accel-
eration relative to an exponential decay. Whenever fitting
to an exponential is impossible, we take the slope, focusing
on early times where the condensed fraction is more than
half that of + = 0. In any case, the measured decay rate
under all conditions corresponds to the decay rate at
initial times.

For these rates to be directly compared to the BdG
prediction, additional considerations must be taken. First,
let us consider a maximally unstable Bogoliubov mode
with an amplitude predicted to grow as e'™n’. An experi-
ment will actually detect a rate 2I',,,,,, as it measures an
amplitude squared (typically, the number of atoms in the
unstable mode). Second, since the experiment measures
how many atoms leave the BEC (to populate the modes) per
unit of time, it is sensitive to the number of simultaneous
maximally unstable modes, as each is a decay channel. If
two modes are equally and maximally unstable, as is
possible in 2D, then an additional factor of 2 is needed
in the theory to compare to the experiment. This multiple-
modes factor is 1 for the x-only drive and 2 for the circle
and diagonal drives. All these extra factors are added to the
theory plots throughout this paper: In total, the x-only drive
theory is 2x and the circle and diagonal drives are 4 x larger
than the bare BdG rates predicted in Ref. [24]. These points
are expanded in the derivation of the FBdG rate I',,,,, later
in this Appendix.

Rate explosion: Circular versus diagonal.—We observe
that the circular decay rate increases faster than the
diagonal rate for K, 2 K{. For example, Fig. 9 shows
an enlarged version of Fig. 3, where V= 11E; and
w = 2 x 2.5 kHz, to make this observation clearer. The
rates go from being approximately equal below K§ to

réie > 2% when tunneling is suppressed. Since breaking
time-reversal symmetry is necessary for many proposed
schemes, this observation may be of interest to the Floquet
engineering community.

Difficulties associated with dynamical rates.—In the
main text, we compare the decay rates measured in the
experiment to the instability rates predicted by the FBdG
theory. Here, we elaborate on some intrinsic difficulties in
the procedure which may affect the extracted values.

As explained in Ref. [24], for drive frequencies below
the effective drive-renormalized Floquet-Bogoliubov band-
width, there exists an entire manifold of resonant modes.
While all of them contribute to expectation values of
observables at very short times, only the maximally

—@— Circle,q=(0,0) ! ! !

25 - —@— Diagonal, q=(0,0)

Vo=11Ez, 0=2.5kHz |

Rate (units of J)

oH ] ] ] ] an

2.0 2.1 2.2 2.3 2.4 2.5
Ko

FIG. 9. Decay rates in the critical region. Enlarged plot of the
data shown in Fig. 3, focusing on the region between K and
K, = 2.5. The difference between the circular and the diagonal
drive is clearly visible, with the circular drive rate as much as
twice that of the diagonal drive rate.

unstable mode (,,, dominates the long-time BdG dynam-
ics, and the rate associated with q,,, sets the parametric
instability rate. Thus, at any finite time, the FBAG dynamics
is in a crossover between these two regimes, which shrinks
exponentially with time. Yet the time width of this cross-
over also depends on the drive frequency: The higher the
frequency, the smaller the instability rate, and the longer it
takes for the exponential behavior to become visible.

When extracting the rates from data, effects due to this
crossover become relevant. To test this, we perform exact
numerical simulations of the BAG equations of motion and
compute the dynamics of the excited fraction of atoms
ng(t) over a finite number of driving cycles, which
increases suitably with the drive frequency. We then extract
the instability rates using least-square fitting as the slope of
log ny(t) over the last eight driving cycles, to maximally
eliminate transient effects. A comparison between the
numerically extracted rates and the analytic theory pre-
diction is shown in Fig. 10 for the three types of drives.
Note that the agreement becomes worse at larger m, since
this decreases the rate and pushes the exponential regime to
later times. This disagreement is a source of error, which is
certainly relevant for the experimental determination of
the rates.

Additionally, in the experiment there are strong beyond
Bogoliubov effects, not captured by the FBAG theory.
Because of the nonlinearity of the Gross-Pitaevskii equa-
tion which leads to saturation of the condensate depletion,
the exponential BdG regime mentioned above crosses over
into a third, scattering-dominated regime. In this regime,
the population transferred coherently to the maximally
unstable modes by the parametric resonance starts decaying
into the surrounding finite-momentum modes at high
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FIG. 10. Rate comparison: FBAG theory versus BdG simulation. Comparison between the dynamically extracted instability rates from
solving the exact BAG equations of motion for a finite number of drive cycles (blue stars) and the FBAG prediction (red dashed line). The
three plots correspond to x-only (left), 2D circular (middle), and 2D diagonal (right) drives. The numerical simulations include a tube
transverse d.o.f. The parameters are g/J = 12, K, = 1.25, and a momentum grid of 80 x 80 x 101 modes in the x, y, and z direction,

respectively.

energy, leading to uncontrolled irreversible heating [25].
This result suggests that the instability rates can change in
time and additionally obfuscates the comparison of the
experiment with the FBdG theory.

APPENDIX D: HEATING DYNAMICS
OF THE TRUNCATED
WIGNER APPROXIMATION

While the FBAG theory is valid in the short-time regime
of the dynamics, it has some serious deficiencies. Perhaps
the most notable of these, when it comes to out-of-
equilibrium dynamics, is the lack of particle-number
conservation: The condensate is assumed to be an infinite
reservoir which supplies particles to indefinitely increase
the occupation of pairs of modes with finite and opposite

where a,(t) models the bosonic system at time ¢ and position
r = (x,y, z). The kinetic energy reflects the lattice d.o.f. in

momenta. In equilibrium, this description works well and
captures the physics in the superfluid phase. Away from
equilibrium, however, condensate depletion processes such
as the parametric instabilities studied in this work lead to
the significant depletion of the BEC, and the mean-field
Bogoliubov description ultimately breaks down under
typical observation times.

Particle conservation is obeyed in the truncated Wigner
approximation (TWA), which also includes nonlinear
interactions modeling collisions between Bogoliubov qua-
siparticles [51,52], and is capable of describing thermal-
ization at later stages, due to the continuous pumping of
energy into the system.

The starting point for the TWA is the Gross-Pitaevskii
equation which, in the comoving real-space frame, reads
(h=1)

. 02
latar(t) = _‘][ar+aex (t) — Uy_qe, (t)] - J[ar+aey(t) - ar—aey(t)] - ﬁarO)
+ wKor - [sin(wr)ey + k4 sin(wr + ¢)eyla, (1) + Ula, (1) a,(1). (D1)
|
1 —iq-r; * % iqr;
T TV(,;”W 40 grtge 9T, (D2)

the (x, y) plane and the continuous transverse mode along the
z axis. The periodic drive is in the (x, y) plane with frequency
 and amplitude K. x; = O for the x-only drive, and x; = 1
for both 2D drives. ¢ is the relative drive phase between x and
y (¢ = 0 for a diagonal drive and ¢ = —(x/2) for a circular
drive). Finally, the on-site interaction strength is denoted by
U (such that U/VY, ; [ dz|a,[* = g).

Since at time ¢t = 0 the system forms a BEC of N, atoms
in a volume V, assuming a macroscopic occupation ny =

v/Ny/V in the uniform (q = 0) condensate, the field a, can
be decomposed as

where 14 and vy are the Bogoliubov modes which solve the
time-independent BAG equations at # = 0 [24]. Here, y is a
complex-valued Gaussian random variable (associated with
the quantum annihilator 74 of Bogoliubov modes) with the
mean and variance set by the corresponding quantum
expectation values in the Bogoliubov ground state [S1].
Hence, in the TWA, one draws multiple random real-
izations of y4, each of which corresponds to a different
initial state. One then evolves every member of this
ensemble according to Eq. (D1), computes the observable
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Rate comparison: TWA versus BdG. Left: Numerical simulation of the excitations growth using TWA (solid lines) and FBdG

(dashed lines). The TWA curves change the curvature beyond the regime of validity of BdG. Right: Excitation (i.e., condensate
depletion) growth rate against effective interaction strength g for the FBAG theory (black), BdG short-time evolution (blue), TWA short-
time evolution (red), and TWA long-time evolution (green). The parameters are K, = 2.1, w/J = 20.0, and ny = 50.0. We use a system
of 80 x 80 x 101 momentum modes in the (x, y, z) direction, respectively. The TWA data are averaged over 50 independent realizations,
and the error bars (shaded area) are computed using a bootstrapping approach.

of interest, and takes the ensemble average (-) in the end.
For instance, one can compute the total number of excited
atoms as

) =5 lag (0P (3)

q#0

which, due to particle number conservation, also reflects
the dynamics of the condensate depletion.

In general, we expect that the condensate depletion curve
shows two types of behavior: At short times, the FBAG
theory applies and n.(7) ~ exp(2I um?) grows exponen-
tially in time. Hence, the condensate depletion curve
lag—o(1)|* = V[ng — ne ()] is concave. At long times, non-
linear interaction effects in the Gross-Pitaevskii equation
become important, leading to saturation, and the curvature of
condensate depletion changes sign. Therefore, in the long-
time regime, the curve is concave. The opposite behavior is
true for the evolution of the excitations n, (7). The curvature
of the experimental data (cf. Fig. 8) suggests that the system
enters well into the long-time regime. Yet, the measured
decay rates appear consistent with the short-time Bogoliubov
theory (main text).

To shed light on this intriguing observation, we perform
TWA simulations on a periodically driven homogeneous
system in (2 + 1) dimensions and extract the short-time and
long-time rates from the numerical data. We use a com-
parison with the BdG simulations, to separate the short-
time regime (where agreement between BdG equations of
motion and TWA is expected) from the longer-time regime
(Fig. 11, left). For the sake of comparison with experi-
ments, we fit the long-time TWA growth to an exponential,

even though we find that it follows a more complicated
functional form.

Figure 11 (right) shows a scan of the TWA rates over the
effective interaction parameter g. We find that both the
short-time and long-time rates are of similar strength. More
importantly, they do not show a quadratic scaling in g, as
predicted by Fermi’s golden rule. This behavior is con-
sistent with the experimental observations. Note the mis-
match between the FBAG theory (black) and the short-time
BdG simulations (blue), which arises since the most
unstable mode does not yet dominate the dynamics
at such short times (see Fig. 10 and the corresponding
discussion). Indeed, we find an excellent agreement
between BAG numerics and the FBAG theory if we extract
the rates from the long-time regime. The short-time BdG
rates agree qualitatively with the short-time TWA rates, as
expected from the agreement seen in Fig. 11 (left). The
rates are extracted from a least-square fit over the last five
consecutive driving cycles of the short-time region of
agreement between BAG and TWA. Since the rates are
dynamical, i.e., change depending on the time window used
to extract them, the curves in Fig. 11 (right) are not smooth.

We also do frequency and amplitude scans of the long-
time TWA rates to look for signatures of the Bessel function
J>(Ky) and the cusp at the critical frequency w,, as
expected from the FBdG theory and found experimentally.
Unfortunately, we do not see clear signatures of such
behaviors in our TWA simulations. Thus, we cannot
conclude that the TWA captures the long-time thermal-
ization dynamics of driven bosonic cold atom systems
accurately. More interestingly, the rate explosion (see the
main text) is also beyond the TWA dynamics, suggesting
that quantum effects, such as loss of coherence, are
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important for describing this phenomenon. Another pos-
sible reason for the disagreement is the single-band
approximation, as its validity for the Floquet system has
not been fully understood so far.

APPENDIX E: MOST UNSTABLE MODES FOR
LINEAR, DIAGONAL, AND CIRCULAR
LATTICE DRIVES WITHIN FBDG THEORY

In this Appendix, we briefly revisit the derivation for the
most unstable mode within the FBAG theory [26] and
extend the results to diagonal and circular drives. The take-
home message is that the critical saturation frequency o,
which defines the position of the cusp in the instability rate
curves, coincides for the linear and circular drives; for the
diagonal drive, the value is twice as large on the square
lattice. It is straightforward to extend the analysis below to
other lattice geometries.

The starting point is the BdG equations of motion
(EOM) for the mode functions ug(z) and v4(¢) in the
rotating frame:

()= (" an-a) () e

where &(q, t) > 0 denotes the time-dependent free lattice
dispersion relation (shifted by the chemical potential so that
it is non-negative).

where

gq(1)cosh?(8y) + g_q(2)sinh?(6,)

Wq(t): ( 0

ha(t) = 3 1q(6) + 9- (0]

By the definition of gq(7), the diagonal matrix W () has
a vanishing period average and, hence, does not contribute
to the parametric resonance to leading order. At the same
time, the off-diagonal term in Eq. (E2) will be dominant,
whenever hg(¢) interferes with the phase term 2E (@)1
constructively. This latter condition gives the resonant
frequencies. In a sense, hy(f) can be thought of as an
effective periodic drive, the amplitude of which,
multiplied by the prefactor sinh26, = g/ EX%(q), deter-
mines properties of the resonance, such as the maximally
unstable mode.

Eo®(q)1 + W, (t) + sinh(26,) (

To analyze the effects of parametric instabilities, we
first isolate the time-average term and write &(q,7) =
er(q) + g(q, 1), which will separate the right-hand side
of the BAG EOM into an effective time-averaged term and a
time-periodic perturbation. Following Ref. [24], we now
apply a phase rotation, followed by a static Bogoliubov
transformation with respect to e.¢(q):

(uq> (cosh(eq) sinh(eq)> ( e~ 2EGE (@)1t 0) <a;>
vy) \sinh(6,) cosh(d,) 0 1/ \0,)’

where cosh(26,) =
9/ Eqi () with

leei(q) + 9]/ Eo®(q) and sinh(26,) =

B
Egf(q) = VVeerr(q)[eere (q) + 2]

the time-averaged Bogoliubov dispersion. The Bogoliubov
transformation diagonalizes the effective static time-
average term, while the phase rotation makes it easier to
identify the parametric resonant terms (see Appendix C in
Ref. [24] and Supplemental Material in Ref. [25] for an
application to the paradigmatic parametric oscillator). The
BdG EOM now read

0 hy(t)e 2B @\ /il
Bog ~/ ’ (E2)
—hq(l) 2:Eeff¢(q) 0 Uq
0
—g_q(t)cosh?(8,) — gq(t)sinh?(6,) )’

(E3)

Let us now analyze the function £(¢) for the three types
of drives we study in the main text.
Linear drive.—Using the Jacobi-Anger identity, we have

emn(r) =4J {sm% sin <q7 — Ky sin wt> + sin? Cjzy}

hir (1) = 4J |:COS(K0 sin wt)sin? l]2x + sin %] — &er(q)

= 8Jsin? % Z T (Ky) cos(2lwt).
[
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The fact that the system is driven only along the x direction is
reflected in the momentum dependence of A,(#). Applying
the rotating wave approximation to the time-periodic off-
diagonal term in Eq. (E2), we conclude that the dominant

resonant harmonicis / = 1, which gives @ = E-g¢(q). Using

the relation sinh 20, = g/ Eer?g( ) = g/, the momentum-

dependent 1nstab111ty rate reads [24]

w

Siin(q) = 4J T (K)sin? <612x> g, (E4)

Clearly, there are many resonant modes which satisfy the

condition @ = eff +%(Qres)- This condition is visualized as a
plane, parallel to the (g,.q,) plane, cutting through the
dispersion relation: The resulting set of modes defines the
solutions to the resonant condition.

However, out of all resonant modes, not all have the
same instability rate, because sy;,(q) is a function of q. We
are interested in the long-time BAG dynamics, which is
dominated by the most unstable mode:

y=maxs(q).  Qmum = argmaxgs(q).  (E5)

Since sy;,(q) is @ monotonic function of only ¢,, the most
unstable modes are those resonant modes which have the
largest g, component. Gradually increasing the drive
frequency w, one reaches a critical saturation frequency
w, = Exg¥(x,0) at the edge of the Brillouin zone. Using
the same analysis as in Ref. [24] and keeping in mind the
existence of a continuous d.o.f. in the z (tubes) direction,
one can show that, for @ > !, we have ¢!, = (x,0) and

Yin = 4JT>(Ko)g/w, while for @ <o, we find
q]r;}‘um—Zarcsin\/[\/gz+w2—g/4Jjo (Ko)](£1,0), and

the rate is independent of the hopping and given

by 7in = (V§* + @ = 9)[T2(Ko)/ To(Ko)(g/@).
Because ¢!, is located at the side edge of the 2D

Brillouin zone, the saturation frequency for linear drive !

equals half the effective 2D Bogoliubov bandwidth.
Diagonal drive.—Similarly, we find

g% (1) = 4J {sm ) sin (% — Ky sin wt)
+ sin? % sin <q?) — K sin wt) } ,

g (1) = 4J cos(K sin wt) [sm2 x

2 4y
5 + sin 7} — &e1(q)

=8J <sm2 ‘sz + sin? qy) Z T2(Ky) cos(2lwt).

(E6)

It follows that

x q
Sdiag(A) = 4J<Slnzq2 + sin? ‘)jz(Ko) g

As expected, the expression is symmetric with respect
to exchanging ¢, and g¢,. The critical saturation

frequency o is achieved when the maximally

unstable mode reaches the Brillouin zone boundary
(g, g™y = (7, 7). For w > w? "%, the maximally unsta-
ble mode gl = (7, z) and Ydiag = 84 72(Kp)g/w. Notice
that yg4ias = 271in in this regime, due to the presence of
the second shaken direction which enhances the instabi-

diag diag

lity rate. In the other regime, ® < w. -, we find qmum =

2 arcsin \/[\/gz+w2—g/8JJO(KO)] x (£1,£1)  and
Yaae = (VG + @* — 9)[T2(Ko)/To(Ko)](g9/w). Here,

7d1ag = Ylin- dia
Because qmu

is located at the corner of the 2D Brillouin

zone, the saturation frequency for diagonal drive wX“

equals the full effective 2D Bogoliubov bandwidth.
Circular drive—We find

g(clirc( ) 47 s1n—s1n q— — KO sin wt
2 2
+ sin %sm (612‘ + K sin wt)] ,
hairc(t) — 4] |:Sin2 %COS(KO sin C()t)

294y
+ sin® ?cos (Kycosmt)| — eq(q

—8J<sm 24y>i

It follows that

1(Kp) cos(2lmt).

(E7)

- 2 4x 29y
sin? =% —sin? =2
2 2

Scirc(q) =4J jZ(KO)%

Note the change in the signature compared to the diagonal
drive. Therefore, unlike the diagonal drive, and rather
similar to the linear drive, the critical saturation frequ-
ency @S is achieved when the maximally unstable
mode reaches the side edge of the Brillouin zone
(g™, g™) = {(#,0). (0,7)}. For o > @&™, the maxi-
mally unstable modes are ¢S, = {(z,0),(0,7)} and
Yeire = 4J~72(K0)g/w- Notice that Ydiag = 2Ycire  and
Yeire = Y1in 1N this regime, due to the circular form of the

we find qSic =

2arcsin\/ V@ +a’—g/4] To(Ky)|x{(£1,0),(0,£1)} and

drive. In the other regime, o < w®'™,
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Vcire = (\/ gz + a)z - g)[jZ(KO)/jO(KO)](g/w) Here,
YVdiag = Ycire = Vlin-

Because g, is again located at the side edge of the 2D
Brillouin zone, the saturation frequency for circular drive
o™ equals half the effective 2D Bogoliubov bandwidth
(similar to a linear drive).

The above analysis is performed for a pure 2D lattice
system. However, adding the transverse tube dimension is
straightforward and does not change these conclusions
[24]; cf. Fig. 10 for a numerical simulation in the presence
of a tubelike transverse direction.

Finally, note that the instability rate y derived above
corresponds to the growth rate of the bosonic operators
bg(t) and b§ (1), which are not observable. Observables,
consisting of bilinears of the bosonic operators, will thus
display a parametric instability rate

qum = 27/ (Eg)

for each maximally unstable mode.

Furthermore, an atom number variation per unit time (an
experimental rate) depends on how many such modes
are present simultaneously. For the linear drive, there
exists a single maximally unstable mode (r,0), while
there exist two equally unstable modes for the diagonal
drive [{(z,7),(-m,7)}] and for the circular drive
[{(#,0), (0, z) }]. Therefore, we expect an additional factor
of 2 in ', for the two 2D drives. In total,

Fl’:{:lm = 27/]in’ (E9)
Fﬁﬁ%n = 47diag, (E10)

[Mum = #eirc- (El 1)

As a final remark, we note that, while a choice of small
K, explores the 2D quasiparabolic dispersion found at
small BEC momenta, the above derivation shows that the
problem still cannot be treated as rotationally symmetric:
The resonant modes are determined by the drive frequency
through the resonance condition. Therefore, even for small
drive amplitude K, resonant Bogoliubov modes can be in
the middle of the dispersion, where rotational symmetry is
lost. Hence, the distinctions between 1D and 2D drives are
expected, and observed, to hold even in the small K, limit.
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