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ABSTRACT

Personalized live video streaming is an increasingly popular tech-
nology that allows a broadcaster to share videos in real time with
worldwide viewers. Compared to video-on-demand (VOD) stream-
ing, experimenting with personalized live video streaming is harder
due to its intrinsic live nature, the need for worldwide viewers,
and a more complex data collection pipeline. In this paper, we
make several contributions to both experimenting with and under-
standing today’s commercial live video streaming services. First,
we develop LIME (LIve video MEasurement platform), a generic
and holistic system allowing researchers to conduct crowd-sourced
measurements on both commercial and experimental live stream-
ing platforms. Second, we use LIME to perform, to the best of our
knowledge, a first study of personalized 360° live video streaming
on two commercial platforms, YouTube and Facebook. During a
7-day study, we have collected a dataset from 548 paid Amazon Me-
chanical Turk viewers from 35 countries who have watched more
than 4,000 minutes of 360° live videos. Using this unique dataset,
we characterize 360° live video streaming performance in the wild.
Third, we conduct controlled experiments through LIME to shed
light on how to make 360° live streaming (more) adaptive in the
presence of challenging network conditions.
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1 INTRODUCTION

The past few years have witnessed exciting technological advances:
high-speed LTE access has become a norm, mobile devices are
unprecedentedly powerful, VR/AR has eventually stepped out of
the lab, etc. Because of these advances, innovative applications such
as live streaming of 360° personalized videos are now a reality.

Assume Jessie is attending a wedding ceremony of her best friend.
She brings an omnidirectional camera attached to her smartphone
and performs live panoramic streaming at the ceremony; the video
is streamed to Jessie’s Facebook timeline where her friends can
watch the 360° view of the event in real time. Some viewers can also
enjoy a fully immersive experience by using commodity VR head-
sets. Compared to regular live streaming, 360° live video streaming
is more challenging due to its panoramic nature. It requires much
higher bandwidth to provide the same perceived quality as regu-
lar video streaming. In addition, 360° video streaming has more
stringent Quality of Experience (QoE) requirements to prevent VR
motion sickness, and it incurs higher workload across all entities:
broadcasters, streaming infrastructure, and viewers.

This paper provides insights from today’s commercial live video
streaming services. The overall goals are two-fold. First, due to
a lack of measurement tools, we develop a measurement system
called LIME (LIve video MEasurement platform), which allows re-
searchers to conduct crowd-sourced measurements on commercial
or experimental live streaming platforms. Second, we present, to
the best of our knowledge, a first study of 360° personalized live
video streaming on commercial platforms. We select YouTube and
Facebook as the target platforms given their popularity.

We begin with developing LIME, a measurement system for live
video streaming (§3). LIME automates the operations of one or mul-
tiple broadcasters so that they can stream pre-recorded videos —
which enables repeatable experiments — via both commercial (Face-
book, YouTube, Periscope, etc.) and experimental live streaming ser-
vices. LIME allows recruiting crowd-sourced viewers via Amazon
Mechanical Turk (AMT) [1], today’s most popular crowd-sourcing
platform. The crowd-sourced viewers are instructed to install a
Chrome extension and watch live video feeds through the plat-
form under test. The extension collects key performance statistics
while the viewers watch the live videos streamed from broadcasters
under LIME’s control. Note that LIME itself is a generic measure-
ment system that can work with both 360° and non-360° live video
broadcasting on a wide range of streaming platforms.

We leverage LIME to collect crowd-sourced measurement data
from commercial live 360° video streaming services (§4). Specifically,
we deploy LIME and use AMT to recruit 548 viewers from 35 coun-
tries. Our crowd-sourced viewers watched more than 4,000 minutes
of 360° live videos on YouTube and Facebook, providing a unique



MMSys’19, June 18-June 21, 2019, Amherst, MA, USA

viewer-side dataset. We then conduct a comprehensive measure-
ment study using this dataset. We make several key observations re-
garding live 360° video streaming on today’s commercial platforms
(§5). (1) Overall, the quality is not high, with 34% (35%) of YouTube
(Facebook) sessions having an average panoramic quality no higher
than 720p. Because only around 15% of a panoramic scene is typi-
cally viewed, this translates to a much lower user-perceived quality
comprised between 240p and 360p. (2) Both streaming platforms
are afflicted by long stalls, with 47% (52%) of YouTube (Facebook)
sessions stalling for at least 5 seconds per minute. Surprisingly, we
find such stalls are usually not attributed to the network; instead
they are likely caused by the client-side computation/rendering
overhead. (3) We develop a novel methodology for measuring the
broadcaster-to-viewer (B2V) latency, which we find to be non-trivial
for both YouTube (median 37.1 seconds) and Facebook (median 18.7
seconds); low-throughput sessions may have B2V latency of up to
5 minutes.

To complement the crowd-sourced study, we further leverage
LIME to conduct controlled experiments over YouTube and Face-
book to shed light on bringing adaptiveness to both the viewers and
the broadcaster (§6). On the viewer side, we consider performing
viewport-adaptive streaming where the server only streams content
in the (predicted) viewport of a viewer. We find that performing
viewport-adaptive streaming effectively reduces the video encoding
bitrate by 75% to 80%. However, surprisingly, doing so does not
necessarily improve the video quality on Facebook and YouTube
due to several practical issues such as cautious rate adaptation de-
sign and a limited number of quality levels. On the broadcaster
side, we use live videos and real-world cellular uplink traces to
demonstrate the potential of adaptive upload, a unique optimization
for personalized live 360° video streaming where the broadcaster
adaptively shrinks the view being uploaded from a full panorama
to smaller regions when the uplink bandwidth is insufficient. This
approach has potentials of significantly reducing the stall duration
(up to 99.9% reduction in our experimented scenario) and the B2V
latency (up to 38% reduction).

To summarize, we make the following contributions:

e The LIME System (§3). We develop LIME, a generic, holis-
tic, and crowd-sourced measurement system for live videos.
LIME can be used in conjunction with the majority of today’s
commercial live video streaming platforms.

e Crowd-sourced Measurement (§4, §5). Leveraging LIME,
we collect data from 548 users in 35 countries, and use this
dataset to examine 360° live video streaming performance in
the wild.

e Controlled Experiments (§6). We quantify the impact of
viewport adaptiveness on 360° live video streaming. We iden-
tify inefficiencies of commercial platforms that diminish the
benefits of viewport adaptiveness.

Overall, our measurement study via LIME reveals the perfor-
mance of today’s popular platforms for personalized live 360° video
streaming. Our findings also suggest various improvements on their
performance and resource utilization.
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2 RELATED WORK

To the best of our knowledge, few previous work, if any, have
measured or analyzed 360° live video streaming. However, there
is a large corpus of work in three related areas: personalized live
streaming, 360° video streaming, and crowd-sourced VR experiments.

Personalized Living Streaming broadcasts users themselves
and their surroundings using their (mobile) devices; viewers all
over the world can watch the live feed in real time. In 2016, two
papers [38, 43] simultaneously studied Periscope and Meerkat, back
then the most popular platforms for personalized streaming on An-
droid and iOS mobile devices. Although different in their method-
ologies, these two papers have a similar goal: shed some light on the
architecture (e.g., protocols and settings), the scale (e.g., the number
of broadcasters), and the performance (e.g., video quality and stalls)
of both streaming platforms. Our paper shares a similar goal but
in the context of 360° live video streaming offered by two different
platforms, YouTube and Facebook. Accordingly, our methodology
largely departs from the approaches proposed in [38, 43], as well
as our observations. When possible, we compare our findings with
theirs. Another recent paper [42] studied the content and human
factors for Periscope and Meerkat.

Twitch is another popular platform for personalized live stream-
ing, with its primary focus on gaming broadcasting. Twitch differs
from Periscope and Meerkat since its broadcasters are mostly not
mobile. Pires et al. [33] were the first to look into Twitch (and
YouTube Live) back in 2015. Using a three-month dataset, they
showed the importance of Twitch with traffic peaks at more than
1 Tbps and millions of uploaded videos. Also in 2015, Zhang et
al. [50] preliminarily investigated Twitch’s infrastructure using
both crawled data and captured traffic of local broadcasters/viewers.
More recently, Deng et al. [17] expanded the latter study by explor-
ing Twitch’s infrastructure via a network of free proxies located
worldwide. They identified a geo-distributed infrastructure with
fine-grained server allocations, i.e., resources are dynamically al-
located to live streaming events based on their (growing) popu-
larity. There are also some earlier measurements on other live
streaming platforms such as live Internet TV and P2P live stream-
ing [21, 24, 26, 39, 40]. Our study largely departs from them since we
focus on different content (360° live videos) and platforms (YouTube
and Facebook).

360° Video Streaming has become a hot research topic recently.
Researchers have investigated multiple aspects including projec-
tion/encoding methods [6, 10, 25, 31, 52], energy consumption [23],
viewport-adaptive streaming [12, 13, 15, 16, 20, 32, 35, 36, 45-47],
cross-layer interaction [41, 48], and user experience [14], etc. Most
of the above studies focused on non-live 360° videos and none of
them investigated commercial 360° video streaming platforms as
we have done using crowd-sourcing.

In 2017, Afzal et al. [11] studied the characteristics of (non-live)
360° videos uploaded to YouTube by simply searching for such
videos using keywords like “360”. By analyzing a dataset of 4570
videos, they found that compared to regular videos, 360° videos
tend to be shorter, having higher resolutions, and more static (less
motion). Our work complements this effort since we focus on the
streaming performance rather than the 360° video characteristics.
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Figure 1: The system architecture of LIME.

Furthermore, we investigate live streaming and expand our analysis
to Facebook as well.

360° live video streaming is a natural evolution of personalized
live video streaming as fueled by the prevalence of 360° cameras.
Support for 360° videos was recently added to Periscope, YouTube,
and Facebook, to name a few. In 2017, a positioning workshop paper
conducted a preliminary investigation of live 360° videos [27]. Our
study goes beyond [27] by making several contributions: developing
a holistic measurement system for live videos, conducting crowd-
sourced measurements for live 360° videos, and quantifying the
benefits of several key optimizations.

Crowd-sourced VR Experiments. A recent study leveraged
Amazon Mechanical Turk (AMT) to recruit participants who were
equipped with VR headsets to conduct behavioral experiments for
VR [28]. In our study, we also recruited voluntary participants on
AMT though we targeted regular desktop users and 360° videos
instead of VR. Nevertheless, we have leveraged several key insights
of [28] to facilitate our crowd-sourced experiments.

3 LIME DESIGN AND IMPLEMENTATION

Live video streaming is a popular technology that allows a broad-
caster to share a video (s)he is recording in real time with viewers
all around the world. Measuring and experimenting with live video
streaming is challenging due to several reasons. First, the time
constraint of live videos makes it hard to build reproducible experi-
ments. Second, by nature the system requires live viewers. However,
access to viewers is not trivial; measuring video statistics from live
viewers scattered all around the world can be challenging. Third,
there exist other challenges from a system’s perspective, such as
logging key performance statistics in a lightweight manner on
unmodified browsers and accurately measuring the broadcaster-to-
viewer delay.

In this section, we describe LIME (LIve video MEasurement plat-
form), a measurement platform for live video streaming. Our (am-
bitious) goal is to build a generic platform that enables measuring

existing live video streaming systems (e.g., Facebook or YouTube)
from worldwide viewers using real video feeds, as well as testing
new streaming algorithms and/or infrastructures. In this paper, we
use LIME to answer two research questions. First, what are the
key performance characteristics of live 360° video streaming ser-
vices on YouTube and Facebook (§5)? Second, what is the impact
of novel streaming techniques on these commercial platforms (§6)?
In addition, we can leverage LIME in many other contexts to facili-
tate the multimedia research and to gain insights from large-scale,
production-grade live video streaming systems. Several example
studies that could be enabled by LIME but are beyond the scope
of this paper include: quantitatively comparing 360° and non-360°
live videos, measuring users’ engagement levels for different types
of 360° live content, and reverse-engineering the rate adaptation
algorithms of commercial live streaming platforms.

3.1 Overview

Figure 1 shows LIME’s key components: the broadcaster, streaming
servers, a set of viewers (either crowd-sourced viewers or controlled
players), the data collection server, and the clock server. The broad-
caster is a Linux machine instrumented with Open Broadcaster
Software (OBS) Studio [7] to broadcast pre-recorded videos to the
target streaming servers, either commercial or controlled by the
“experimenter” ie., a researcher using LIME for her own studies.
Such a “replay” approach ensures repeatable experiments. The vast
majority, if not all, of popular live streaming services (e.g., YouTube,
Facebook, Periscope, and Twitch) currently support OBS and can
be thus tested via LIME. The experimenter can use either a regu-
lar camera to shoot non-360° videos, or a panoramic camera (e.g.,
Insta360 [4]) to capture 360° videos. The camera can be either sta-
tionary or mobile, depending on the content to capture and the
experimental setting. Also, both Facebook and YouTube (and possi-
bly other platforms) allow to perform a live broadcast publicly by
setting the channel to “public”, so the viewers can directly watch
the feed through a simple URL without having to log into their
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Item ‘ API/Obj ‘ Interval
Video Quality Change HTML Player Event Triggered
Rebuffering Events HTML Player Event Triggered

HTTP Req/Res Headers | chrome.debugger | Event Triggered
User Interactions HTML Window Event Triggered
Video Screenshots chrome. tabs Every 2 Seconds

Table 1: Data items collected by LIME.

accounts. This alleviates the privacy concern as the broadcaster has
no way to know the identities of the crowd-sourced viewers.

The viewers consist of both crowd-sourced Internet viewers and
in-lab players. To allow recruiting viewers in a short period of
time, we integrate LIME with Amazon Mechanical Turk [1], a pop-
ular crowd-sourcing platform. The experimenter can thus select a
number of target viewers (with specific locations/demographics if
needed), how many videos they should watch, and their compensa-
tion. In-lab players consist of Chrome’s instances equipped with
LIME’s Chrome extension (described next) which are automated
via Selenium.!

LIME collects viewing statistics using a Google Chrome exten-
sion (1,000 lines of JavaScript). We choose a browser extension
because it is lightweight, secure, and easy to install. Running in the
background on the viewer side, the extension collects the following
data summarized in Table 1: (1) the video playback quality (e.g.,
720p), (2) stall (i.e., rebuffering) events, (3) HTTP request/response
headers, (4) user interactions such as dragging the mouse to change
the viewport, and (5) periodically captured (every 2 seconds) screen-
shots of the visible portion of the video.

LIME captures these data items from either Chrome extension
APIs (chrome. debugger and chrome. tabs) or HTML DOM objects
(HTML Player and HTML Window), as listed in Table 1. After the
video playback finishes, the data is automatically uploaded to the
LIME data collection server over HTTPS for further offline analysis.
We verified that the extension incurs negligible runtime overhead.
We also engineered the extension to be robust to various scenarios
such as switching to a different tab while the video is playing.
Note that our Chrome extension is a versatile measurement tool. It
works for any video platform (both live/non-live and 360°/non-360°)
realized by the HTML Video DOM [3], a popular HTML-based
video solution.

Finally, Figure 1 shows that LIME further includes two servers
under the experimenter’s control: a data collection server and a
clock server. The data collection server is the end-point where users’
viewing statistics collected by the Chrome extension are uploaded
to. The clock server provides synchronized clock readings to both
the broadcaster and the viewers, in order to enable accurate mea-
surement of the broadcaster-to-viewer latency. More details will be
provided in §3.2.

3.2 Measuring the Broadcaster-to-Viewer (B2V)
Latency

B2V latency is an important QoE metric for live streaming. We
define it as the latency from when a frame leaves the broadcaster to
when the frame is consumed by a viewer. A long B2V latency causes

!https://www.seleniumhq.org/
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lags that are undesirable for real-time live events such as sports.
One possible methodology of measuring B2V latency is as follows.
The broadcaster watermarks every frame f with a timestamp tg(f)
denoting the time when the frame is generated. When the same
frame f is being played, the viewer obtains the current timestamp
ty (f) from the clock server (Figure 1). Meanwhile, ¢g(f) can be
extracted from the frame (we use Tesseract OCR [8] to perform
text recognition on screenshots). The B2V latency for f is therefore
ty (f) — tg(f). Note that tg(f) is obtained from the same clock
server as ty(f). Also note that the originally obtained tg(f) and
ty(f) need to be calibrated by subtracting the one-way latency to
the clock server (estimated as half of the measured RTT)?.

The above scheme works for non-360° live videos. However, we
face two practical challenges when applying it to 360° live videos.
The first challenge relates to projection used in 360° videos. The
OBS software can apply the watermark to only unprojected raw
frames that contain the panoramic 360° views. During a playback, a
viewer’s browser will apply the corresponding projection algorithm
(e.g., Equirectangular [2] for our videos used in §4.2) to display
the visible portion. After projection, the timestamp watermark
may be distorted, making OCR difficult. To address this, we embed
the watermark at a special spot (latitude = 0° and longitude = 0°)
to minimize the distortion for equirectangular projection. Similar
spots can be identified for other projection schemes.

The second challenge is that the Chrome Extension API allows
our data collector to capture only the visible portion of a panoramic
frame that may not contain the watermark. A possible solution is to
embed multiple watermarks that cover all possible viewing areas,
but doing so will affect viewers’ viewing experiences and make
OCR challenging again due to distortions incurred by projection.
Instead, we introduce a helper player, a special client controlled by
us, which always “looks” at a fixed direction (i.e., latitude = 0° and
longitude = 0°) whose FoV contains the watermark. During a live
broadcast session, the helper player continuously extracts tg(f)
from the received frames and sends tg(f) to the data collection
server. Note that for each frame, its tg(f) only needs to be extracted
once regardless of the number of viewers, so we need only one
helper player per broadcaster. When an actual viewer receives f,
it does not need to perform watermark extraction; it only needs
to record its own ty(f) and send it to the data collection server,
which can now compute the B2V latency for frame f watched
by this particular viewer as ty(f) — tg(f). Note that for both the
helper player and actual viewers, their communication with the
data collection server can be performed offline if we do not need
to know the B2V latency in real time (§4.2). In this case, the helper
player or a viewer will upload all frames’ tg(f) (ty(f)) values to
the data collection server in a single batch. In fact, in this scenario,
even the OCR analysis can be performed offline to make the system
more flexible.

3.3 Limitations

We discuss several limitations for our current LIME system.

21t is possible to use other off-the-shelf clock synchronization protocols to provide
more accurate timestamps. Our B2V measurement technique can work with any clock
synchronization protocol.
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Broadcasters are an important component of commercial live
video streaming. Monitoring their behaviors, e.g., when, what, and
how frequently they broadcast, can be useful to improve the per-
formance of a live streaming service. LIME allows an experimenter
to setup multiple concurrent broadcasters, but it does not allow
to monitor existing broadcasters “in the wild”. A possible way to
measure the broadcasters in the wild is to utilize platform-specific
APIs. For example, some existing studies [38, 43] utilize Periscope’s
APIs to crawl its broadcasters. However, no similar APIs exist for
YouTube and Facebook.

Our current LIME system captures important data items as listed
in Table 1. Despite this, several other types of data such as net-
work traffic and lower-layer (e.g., TCP) events, which can enable
cross-layer analysis, are not collected by LIME at this moment.
The reason is that collecting them requires heavy instrumentation
and may incur privacy concerns. While this is not an issue for
experimenter-controlled in-lab players, it is a concern in presence
of crowd-sourced viewers.

Last but not least, LIME can be further extended in several
ways such as collecting users’ subjective ratings of the viewing
experiences, as well as calculating other objective quality met-
rics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similar-
ity Index (SSIM) [44], and Video Multimethod Assessment Fusion
(VMATF) [51]. We will leave them as future work.

4 COLLECTING CROWD-SOURCED DATA
FOR LIVE 360° STREAMING

This section describes how we leverage LIME to collect crowd-
sourced measurement data from commercial live 360° video stream-
ing services. We start with the background on 360° video streaming,
and then dig into LIME’s specific setup for this measurement cam-

paign.

4.1 Background

360° videos differ from regular videos in that a viewer can freely
change her viewing direction during a streaming session. As of
today, popular streaming platforms supporting 360° videos, e.g.,
YouTube, Facebook, and Periscope, take a monolithic approach by
transmitting the entire panoramic scene. The client-side player
then applies projection algorithms such as Equirectangular [2] or
CubeMap [10] to display only the visible portion of each frame to a
viewer. As a result, in monolithic 360° video streaming, the viewer
consumes only a fraction of the actual downloaded content.

A live 360° video streaming system typically consists of three
components: a broadcaster, the streaming server, and multiple
viewers. The broadcaster uses an omnidirectional camera to shoot
panoramic videos and uploads them to the streaming server, which
then re-encodes them using multiple quality levels, e.g., 144p to
1440p for YouTube and 720p/1080p for Facebook, in real time. The
viewers fetch from the streaming server video chunks at the quality
chosen by a rate adaptation algorithm running on their devices.

For this study, we target commercial 360° live streaming systems.
We select two platforms, YouTube (YT) and Facebook (FB), due
to their popularity and a lack of previous studies differently, for
example, from Periscope [38, 43]. Prior to the study, we perform
experiments with full control on both viewer(s) and broadcaster to
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understand how the two platforms work. More specifically, we use
various tools such as Chrome developer tools, tcpdump, and mitm-
proxy [5] (for decrypting HTTPS traffic). The experiments were
conducted in May 2018. We find that YT and FB use Adobe’s RTMP
(Real-Time Messaging Protocol [10]) for live video upload. They
use RTMP differently though. YT employs RTMP over TCP directly
on port 1935, while FB tunnels RTMP traffic inside HTTP/HTTPS.
For both YT and FB, the broadcaster performs no rate adaptation,
i.e., avideo is uploaded at the quality determined by the broadcaster
regardless of network conditions. On the download path (server to
viewers), they both employ polling-based DASH-style rate adapta-
tion. Specifically, a viewer periodically polls — every 5 seconds for
YT and every 1 second for FB - for a Media Presentation Description
(MPD) file, which contains meta data such as the URLs and quality
levels for chunks that have been recently generated (re-encoded)
by the server. The viewer then selects an appropriate quality level
for each newly generated chunk (if any) and fetches it over HTTPS.
We find the chunk duration equals to the polling interval: 5s for YT
and 1s for FB. Overall, the above scheme is different from Periscope
live streaming that uses a combination of RTMP and HLS (HTTP
Live Streaming) protocols on the download path, as reported by a
previous study [43].

4.2 Data Collection Using LIME

We now detail the data collection procedure. Using a panoramic
camera (Insta360 [4]) attached to a smartphone, we shoot three
10-minute long 360° videos: (1) a city street view shot by mounting
the camera on a car, (2) an on-campus walk shot by hand-holding
the camera, and (3) a bicycle racing game shot with a stationarily
placed camera. We believe that these videos represent typical live
360° video content. In the following, we refer to them as Street,
Campus, and Racing, respectively.

We use LIME’s broadcaster to stream, overall, the three videos
(Street, Campus, and Racing) per platform (YT and FB), for a total of
6 live feeds. To guarantee the absence of bandwidth bottleneck on
the upload path, we periodically use testmy.net [9] to measure the
upload bandwidth between LIME’s broadcaster and YT/FB servers.
We find that the upload path always has more than sufficient band-
width (>50 Mbps).

We invite Internet users to participate in our IRB-approved study
by installing LIME’s Chrome extension and watching live videos.
Viewers can watch multiple live videos, but they are restricted
to one video at a time and each video at most once. During the
live video streaming, a viewer can freely change the viewport by
interacting with the player (e.g., dragging the mouse or swiping
on the touchscreen). We ask the viewer not to change the default
auto quality option in the player so that we can study YouTube
and Facebook’s built-in rate adaptation mechanism. Viewers are
also required to watch a video for at least 4 minutes, after which
they can end their task. Only at this time, the extension uploads
the collected data to our server, without impacting the live video
streaming experience.

During a 7-day study in May 2018, we kept our (replayed) live
video feeds alive, and used Amazon Mechanical Turk (AMT) to
recruit 548 paid viewers from 35 countries, with USA and India
contributing 78% of the viewers, as shown in Figure 2. If a viewer
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Figure 2: Geographical distribution of paid AMT users.

—YT |
0.8 ||— -FB l'
}
L 06 h
] /
Ooat
4
02} '
I
|

0 — — L L
144p 240p 360p 480p 720p 1080p 1440p
Quality Level

Figure 3: Average streaming quality across all sessions.

follows the previous instructions, she/he is compensated with $0.8.
Overall, we collected 22 GB data corresponding to more than 4,000
minutes of video viewing. Many paid viewers watched our feeds
for more than 4 minutes. To prevent bias toward viewers with long
viewing time, our analysis focuses on only the first 4 minutes per
viewer. During the study, no personally identifiable information
(PII) was collected.

5 UNDERSTANDING COMMERCIAL LIVE 360°
VIDEO STREAMING IN THE WILD

We now characterize the data collected in §4.2 to reveal the
landscape of the performance of today’s popular live 360° video
streaming services.

5.1 Basic Viewer-side QoE Metrics

It is known that three key factors affect the QoE of regular video
streaming (both live and on-demand): video quality, stall duration,
and quality changes [18, 22, 29, 49]. These metrics are also important
to panoramic live video streaming so we quantitatively measure
them using the AMT dataset. We find that our three videos yield
very similar distributions on all metrics. Thus, we present their
aggregated results henceforth.

o Video Quality. Figure 3 plots the Cumulative Distribution Func-
tion (CDF) of the average video quality for YT and FB across all
viewing sessions. Recall that each viewing session is a 4-minute 360°
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Figure 5: Distributions of per-session number of stalls.

live video content streamed to one paid AMT viewer. As shown in
this figure, a key difference between YT and FB is that the average
quality for most FB viewers is either 720p or 1080p, which are the
only two quality levels provided by FB; in contrast, YT supports 7
quality levels ranging from 144p to 1440p, providing more flexibility
as we will discuss shortly. Overall, the live 360° videos’ quality is
not high, with 34% (35%) of YT (FB) sessions having an average
quality no higher than 720p. It is important to note that the above
qualities refer to the qualities of panoramic frames. Since a viewer
perceives only a small portion of the panoramic scene (about 15%
as measured in §6.1), the actual perceived quality is much lower,
e.g., 15% of the 720p resolution is between 240p and 360p.

o Stall. Figure 4 plots the CDFs of the stall duration per session.
About 36% (39%) of YT (FB) sessions experience less than 5 seconds
stalls. However, many users experience very long stalls: 47% (52%)
of YT (FB) sessions stall for at least 20 seconds (i.e., 5 seconds
per minute). FB is afflicted by longer stalls than YT, despite their
viewing sessions characterized by similar throughput distributions.
Given this, we are leaning towards attributing YT’s shorter stall
duration to its wider range of quality levels, which allow YT players
to flexibly select (lower) streaming bitrates.

We also investigate how stalls are distributed within a session.
We find that the vast majority of stall events, which are separated
using an inter-stall time of at least 1 second, are fairly short: for YT
(FB), the median of their durations are 0.7 (1.0) second. Note that



LIME: Understanding Commercial 360° Live Video Streaming Services

1 R
d
0.8
L 06
=) J
©Co.4
0.2 —T
- -FB
0
0 6 12 18 24 30 36

Absolute Quality Level Changes

Figure 6: Distributions of per-session quality level changes.

changing the threshold of inter-stall time to 0.5s or 1.5s yields simi-
lar results. Meanwhile, the number of stall events is large. Figure 5
plots the CDFs of the number of stall events per session, with the
median measured to be 18 (17) for YT (FB), respectively. Compared
to fewer long stall events, having more short stall events may bring
even worse QoE (e.g., motion sickness in VR) [19, 30, 34]. In fact,
users who experience long or frequent stalls as exhibited in the tails
in Figure 4 and Figure 5 will likely abandon watching the videos.
Such abandonment behaviors are not captured by our current study
where users are required to watch a live video for at least 4 minutes
in order to get paid. This is a limitation of our study. We plan to
study 360° video viewers’ abandonment behaviors in our future
work.

Since the stall duration shown in Figure 4 appears to be much
higher than those measured by a previous study on Periscope [38],
we attempt to find out the reason. Recall from §4.1 that live video
streaming consists of four phases: upload, server-side re-encoding,
download, and client-side rendering/playback. For upload, we en-
sure high bandwidth between our broadcaster and the streaming
servers. For download, surprisingly, we observe very little correla-
tion between the per-session stall duration and its network through-
put or throughput variation (Pearson correlation coefficient < 0.1).
In fact, many viewers have very high network throughput but still
experience high stalls (recall that YouTube can reduce its quality
to as low as 144p). For example, one-third of the top 30% YT ses-
sions in terms of the stall duration are characterized by an average
throughput ranked in the top 30% of the sessions.

The above observation makes us believe that for live 360° video
streaming, the performance bottleneck is caused by either the server
processing (real-time video re-encoding and possibly projection
transformation) or client-side computation/rendering. In particular,
we are able to verify that the client-side overhead can cause frequent
stalls: when testing on a 2013 MacBook Pro, we observe the CPU
utilization of 360° live streaming can reach up to 80%, about 60%
higher than non-360° live streaming. When the CPU is saturated,
the live streaming can oftentimes stall.

e Quality Changes. Figure 6 plots the CDFs of the total number
of quality level changes per session. When a quality level change
occurs, it is counted as AL = |Lpefore — Lafter| Where Lpefore and
Lafter are the quality levels before and after the change, respectively.

MMSys’19, June 18-June 21, 2019, Amherst, MA, USA

Quality

DEGB IE USCAIN VENG
Country

Figure 7: Distributions of average quality levels across view-
ers in different countries for YT (DE: Germany, GB: United
Kingdom, IE: Ireland, US: United States, CA: Canada, IN: In-
dia, VE: Venezuela, NG: Nigeria).

Possible levels are {0,1,...,6} for YT and {4,5} for FB3. We then sum
up all AL to get the total quality level changes per session. For most
sessions, we did not observe significant quality changes: the median
of ) AL is only 2 and 1 for YT and FB, respectively. Nevertheless,
we do find about 6% (10%) for YT (FB) of sessions with ), AL > 10,
attributed to the highly variable bandwidth as confirmed from our
measured network throughput.

e Performance vs. Geographical Location. We observe that
viewers’ perceived performance (and hence the QoE) oftentimes
differs statistically depending on the location. Figure 7 plots the
average quality levels across viewers in major countries appear-
ing in our dataset for YT. The per-country average quality level
ranges from 1.61 (between 240p and 360p) to 5.44 (between 1080p
and 1440p). As somewhat expected, viewers in developed countries
experience higher qualities in general, likely due to their better
network and data center infrastructures, compared to viewers in
developing countries. We observe similar trends for stall duration.

5.2 Broadcaster-to-viewer (B2V) Latency

We apply the method introduced in §3.2 to measure the B2V latency
for the AMT viewers, with the results shown in Figure 8. We make
three observations. First, most sessions have consistent B2V laten-
cies, around 18.7 seconds for FB and 37.1 seconds for YT (median
values). Overall, the observed B2V latency is much higher compared
to previous measurement on Periscope [43], which uses push-based
RTMP on a subset of users to provide an ultra-low B2V latency
(less than 2 seconds). Second, both platforms exhibit long tails of
up to 4.8 minutes for FB and 5.1 minutes for YT. Such high latency
inevitably affects viewers’ experience. Although it is difficult to
reverse engineer the precise algorithm, we find that throughput
appears to be a factor that affects the B2V latency. For example, YT
exhibits a negative correlation (Pearson correlation coefficient of
-0.4) between the B2V latency and throughput. Third, we also notice
that FB exhibits lower B2V latency than YT. This can be explained
by several potential reasons. One is that compared to YT, FB has

3We use the following quality mappings throughout this paper: 0=144p, 1=240p, 2=360p,
3=480p, 4=720p, 5=1080p, 6=1440p.
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Figure 8: B2V latency of samples across all sessions. In each
session, B2V latency is measured every 2 seconds.

a shorter chunk duration (1 vs 5 seconds) that leads to a lower
chunking delay [43]. FB also has a lower polling delay allowing the
viewer to update the chunk list more quickly. In addition, recall that
a FB server only re-encodes the input video into 2 quality levels
while a YT server needs to process 7 quality levels up to 1440p.
Such a higher re-encoding overhead may also contribute additional
latency.

5.3 User Interaction

A key feature of 360° videos is that viewers can freely change their
viewing direction. Since our AMT viewers are Internet users, they
typically interact with the player by mouse drags or screen swipes,
which are captured by LIME’s Chrome extension, as opposed to
wearing a VR headset. Figure 9 shows the number of captured
mouse drags or screen swipes across all sessions. We find that most
of our viewers did change their viewports frequently: 46% (YT)
and 51% (FB) users incur at least 20 interaction events during a 4-
minute session. Note that since both YT and FB employ monolithic
streaming (§4.1), the viewport changes do not affect the bandwidth
usage or rate adaptation decisions.

6 CONTROLLED EXPERIMENTS

In this section, we complement our crowd-sourced study with con-
trolled experiments to shed light on bringing adaptiveness to both
the viewers (§6.1) and the broadcaster (§6.2). These are the key fea-
tures missing from today’s 360° live video streaming systems. We
note that the underlying concept of viewport-adaptiveness is not
new [13, 16, 20, 27, 35, 36, 46]. Nevertheless, our contribution here
is to quantitatively study its benefits using commercial systems,
realistic live 360° video content, and real users’ viewing trajectory
traces. In addition, we also identify several inefficiencies in produc-
tion 360° live video streaming systems that diminish the benefits of
viewport adaptiveness. We conduct all controlled experiments over
LIME by replacing crowd-sourced viewers with in-lab players.

6.1 Viewport Adaptive Streaming to Viewers

Our measurements in §5 indicate that viewers of live 360° videos
oftentimes experience degraded QoE. One reason for this is the
monolithic streaming paradigm of YT and FB (§4.1). We thus want
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Figure 9: Distribution of mouse drags per user during a 4-
minute live video.

to understand the potential of viewport-adaptive streaming, a hot
research topic where the server streams only content in the (pre-
dicted) viewport of a viewer [13, 35]. Developing a full-fledged
viewport-adaptive 360° live video streaming system is beyond the
scope of this paper. Here we are interested in the following “what-if”
scenario: how much QoE improvement can be achieved by deliver-
ing only visible portions of panoramic scenes? This is an “optimal”
scenario that leads to the lower bound of the content distribution
overhead.

Lacking control on the commercial streaming servers, we resort
to creating a “viewport-only” (VO) version of a 360° video, and com-
pare its live streaming — in terms of various metrics measured in §5
- with its panoramic counterpart. This approach is transparent to
the streaming infrastructure as the VO version can still be watched
in an unmodified player of YouTube/Facebook. A challenge here
is to ensure apple-to-apple comparisons between the two video
versions. The detailed steps we take are as follows.

First, we conduct another IRB-approved user study involving 12
people* from whom we collect viewing directions when watching
two live videos (Campus and Street, see §4.2). Since the Chrome
extension of LIME cannot capture a user’s viewing direction, we
developed a separate data collector that runs on Android smart-
phones, allowing the viewers to more easily and naturally adjust
their viewport by simply moving the phone. The viewing trajectory
is captured by motion sensors. Given a 360° video and a viewer’s
viewport trajectory, we identify each frame’s visible portion based
on the projection algorithm. Next, we re-encode the original video
frame-by-frame into two versions with identical encoding configu-
ration and projection scheme (equirectangular): one without any
modification (panoramic), and the other with viewer’s invisible
portion removed (VO). Finally, a controlled player of LIME (a Linux
laptop running Chrome) “watches” these two versions as live feeds
through YouTube and Facebook under the same network condition.

We now describe our findings. We begin with understanding
how user diversity affects the VO videos. We find that across all
users, despite their different viewing trajectories, the fractions of
consumed portions are very similar: 15.0%+0.5% of all pixels in raw
panoramic frames for Campus and 15.1%+0.3% for Street. This is

4Students and faculty from a university as well as employees in a large U.S. corporation.
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Table 2: Compare panoramic (P) and viewport-only (VO) ver-
sions of the Campus video, in terms of average quality level
(Q) and stall (S, in seconds). Each test is a 20-minute run. Qj, is
the stall-free highest achievable quality level manually mea-
sured by us.

Platform/ 8Mbps 4Mbps 2Mbps
Version Q| Op| S Q|0 | S Q| Op| S
YT (P) 50 5 | <1][40| 4 [<1([30] 3 | <1
YT(VO) |48 | 6 | <1 40| 5 | <130 4 |<1
FB (P) 491 5 | <1 (40| 4 | <1| 40| 4 29
FB(VO) |50 5 | <1 49| 5 | <1|l40]| 4 |<1

because for most of the time, users keep their viewing direction
leveled (e.g., |latitude| <15°) and change their sight horizontally [13],
i.e., only adjusting the longitude which does not cause the viewport
size to change in equirectangular projection. Consequently, the
broadcaster-side encoded bitrates of VO videos are only 21.9%+1.7%
and 25.4%+1.2% of their corresponding panoramic versions for
Campus and Street, respectively. The ratios are similar for those
re-encoded by YT/FB.

We next perform, under controlled settings using LIME, live
broadcasting of both versions of the Campus video for a user whose
VO video has a size closest to the median size computed among all
VO videos. Note that other users/video yield similar results. Since
we study the viewer side, the download bandwidth is throttled to
{8, 4, 2 Mbps} to emulate different network conditions, while we
ensure high upload bandwidth (>50Mbps) at the broadcaster.

We show the results in Table 2. As we reduce the download
bandwidth, the rate adaptation algorithm effectively reduces the
average quality level (Q) while maintaining overall low stalls (<1
second). Only for FB (P), i.e., the panoramic version, we observe long
stalls (29 seconds with 2 Mbps throttling). This is attributed to FB’s
limited quality levels (720p and 1080p) as streaming the panoramic
Campus video at the minimum FB quality (720p) requires more (on
average, 2.2Mbps) than the throttled bandwidth. These stalls are
eliminated when streaming the VO version since it only consumes
~1.2Mbps of bandwidth on average.

Meanwhile, Qj, in Table 2 denotes the stall-free highest achiev-
able quality level measured manually without using the automatic
rate adaptation. Ideally we want Q to be equal to Qp. For YT, we
make an interesting observation that switching to the VO version
provides room for quality improvement, which, however, was not
actually observed: Qp(VO) > Qp(P), but Q(VO) ~ Q(P). As a VO
video has a much lower encoded bitrate (but the same resolution)
compared to its panoramic counterpart, it appears that YT mainly
uses the video’s resolution for rate adaptation (e.g., by assuming
fixed mappings from the resolution to a video’s encoded bitrate),
without considering the actual encoded bitrate, leading to a lower-
than-desired quality for VO videos.

Regarding FB, Table 2 indicates that the VO version only helps
at one bandwidth: 4Mbps. For other bandwidth settings, since Qp,
does not even change between the two versions, it is not possible to
switch to a higher quality without stalls. This happens because FB
limits the video quality to only two levels: 720p and 1080p, which
incur inflexibility for bitrate selection.
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Table 3: Upload region vs. encoded bitrate, stall (S, in sec-
onds), and B2V latency (L, in seconds). Averaged over four
4-minute runs on YouTube, for the Campus video.

Upload Encoded | Walking | Driving
Region | Rate(Kbps) | S | L | S | L
360° x180° 8297 199 | 55 | 170 | 42
180° x180° 4823 154 | 53 | 135 | 39
140° x135° 3667 92 | 35| 34 | 29
100° X90° 1997 30 | 34| 03 | 28

Overall, our findings suggest that even realizing a simple
viewport-adaptive streaming scheme with perfect knowledge
of the user’s viewport trajectory is not trivial. Issues such as cau-
tious/inefficient rate adaptation and a limited number of quality
levels may diminish the benefits of viewport-adaptiveness. Thus,
more research is needed in this direction.

6.2 Adaptive Upload from Broadcaster

On the broadcaster side, ensuring a good upload quality is critical
because any disruption on an upload will affect all viewers. Recall
from §4.1 that neither YT nor FB performs rate adaptation for live
360° video upload. Here instead of investigating traditional rate
adaptation in the quality dimension, we consider doing that in
the spatial dimension — a unique opportunity for 360° live video
upload: when the broadcaster-side network condition degrades, the
broadcaster adaptively shrinks the view being uploaded from full
panorama (360° X180°) to smaller regions such as 180° X150°. This is
feasible because for many live events such as sports, performance,
and ceremony, viewers’ “hotspot” areas are oftentimes narrower
than the full panorama. Therefore reducing the upload region can
considerably reduce the bandwidth utilization while maintaining
a good or even better quality of the hotspot area, assuming the
hotspot is correctly identified.

We next demonstrate the potential benefits of the above approach
when applied to commercial live video streaming infrastructures.
We pick the Campus video and re-encode it into four versions with
the same quality (CRF=27) but different upload regions: 360° x180°
(full panorama), 180° x180°, 140° x135°, and 100° X90° (regular FoV),
assuming the hotspot center is (lat=0°, lon=0°). As shown in Table 3,
shrinking the upload region significantly reduces the video size by
42% to 76%. The other two videos show similar results.

We then replay these video versions as live YouTube feeds on
LIME while throttling the broadcaster-side bandwidth to emulate a
mobile broadcaster experiencing fluctuating bandwidth. We pick
two cellular uplink bandwidth traces [37] captured from a cellular
carrier when the mobile phone is (1) held by a walking pedestrian
and (2) mounted on a moving vehicle. Since the original traces’
uplink bandwidth is a bit low, we uniformly scale it up by ~1.5X to
make the average bandwidth around 4Mbps. Both traces’ bandwidth
is highly fluctuating, with the standard deviation being 2.1Mbps
(walking) and 1.9Mbps (driving). We use Linux tc to replay both
bandwidth traces at the broadcaster (no throttling on the viewer
side), and measure stalls and B2V latency for a controlled player
using LIME. As shown in Table 3, shrinking the upload region
effectively reduces both the stalls and latency for YouTube. For the
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walking (driving) uplink bandwidth profile, the stall duration is
reduced by up to 85% (99.9%) and the B2V latency by up to 38%
(33%), compared to uploading the panoramic scene.

7 CONCLUDING REMARKS

This paper presents LIME, a generic and flexible measurement sys-
tem for both commercial and experimental live video streaming
platforms. Using LIME, we investigate two popular 360° live video
streaming platforms, YouTube and Facebook, through a crowd-
sourced measurement study involving 548 paid viewers. We also
perform controlled experiments — by replacing crowd-sourced view-
ers with in-lab players - to quantify the potential benefits brought
by viewport adaptiveness to commercial live video streaming ser-
vices.

We learn two high-level lessons from the above efforts. First,
LIME is a powerful tool for quickly performing large scale and
repeatable live video streaming experiments. Second, even at its
current form of performing monolithic streaming, commercial 360°
live video streaming systems are fairly complex, and their per-
formance depends on a wide range of factors across all entities
(broadcaster, servers, viewers, and the underlying network). Ignor-
ing any factor such as client-side processing overhead may lead to
severely degraded QoE.
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