Demo: Tile-Based Viewport-Adaptive Panoramic
Video Streaming on Smartphones

Feng Qian'* Bo Han?

'Indiana University

ABSTRACT

Flare is a practical system for streaming 360° videos on smart-
phones. It takes a viewport-adaptive approach, which fetches
only portions of a panoramic scene that cover what a viewer
is about to perceive. Flare consists of a novel framework for
the end-to-end streaming pipeline, introduces innovative
streaming algorithms, and brings numerous system-level
optimizations. In our demo, we will show that Flare substan-
tially outperforms traditional viewport-agnostic streaming
algorithms in terms of the video quality. We will also invite
the audience to use Flare to watch attractive 360° videos.

ACM Reference Format:

Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. 2018.
Demo: Tile-Based Viewport-Adaptive Panoramic Video Stream-
ing on Smartphones. In The 24th Annual International Conference
on Mobile Computing and Networking (MobiCom ’18), October 29-
November 2, 2018, New Delhi, India. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3241539.3267715

1 INTRODUCTION

360° videos, also known as panoramic or spherical videos,
are playing an important role in today’s virtual reality (VR)
ecosystem. 360° videos are recorded by omnidirectional cam-
eras that are capable of capturing the whole panoramic scene.
The panoramic scenes are then projected onto 2-dimensional
frames using projection algorithms such as Equirectangular
and Cube Map. During video playback, the player reversely
projects each frame onto a 3-dimensional virtual sphere, with
the viewer being in its center. Meanwhile, the viewer wear-
ing a VR-headset can freely change her viewing direction,

* Current affiliation: University of Minnesota — Twin Cities.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

MobiCom 18, October 29-November 2, 2018, New Delhi, India

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5903-0/18/10.
https://doi.org/10.1145/3241539.3267715

Qingyang Xiao’

Vijay Gopalakrishnan®

2AT&T Labs — Research

which, together with the headset’s Field of View (FoV), deter-
mines the area (called viewport) visible to and thus rendered
for the viewer.

360° videos provide highly immersive and interactive expe-
riences to viewers. However, streaming 360° video contents
over resource-constrained wireless networks is challenging.
The key reason is that, due to their panoramic nature, 360°
videos’ sizes are much larger (4% to 6x) than regular videos
under the same perceived quality. As a result, the player may
need to download hundreds or thousands MB of data for
streaming only a couple of minutes of 360° videos.

To reduce the high bandwidth consumption, a promis-
ing approach that is being actively studied by the research
community is the viewport-adaptive streaming paradigm.
Its high-level idea is straightforward: since the viewer only
consumes a small fraction of a panoramic scene, the client
player can prefetch the visible area based on predicting the
viewer’s future viewport. Areas that are not predicted to be
consumed will not be downloaded, or they could be fetched
at a lower quality. This approach can significantly reduce
the bandwidth usage, or boost the video quality under the
same bandwidth utilization compared to today’s viewport-
agnostic approach of downloading all 360° contents.

Despite the intuitive idea, developing a practical viewport-
adaptive 360° video streaming system faces numerous chal-
lenges, just to name a few below. How to accurately predict
a viewer’s viewport? How to deal with inaccurate viewport
prediction (VP)? How to play only a small area of the whole
panoramic video? How to decide which area(s) to fetch? How
to design a rate adaptation algorithm that selects the right
video quality based on the current network condition and VP
results? Finally, how to integrate everything into a holistic
system running efficiently on smartphones?

To advance the state-of-the-art of 360° video streaming,
we develop Flare, a practical viewport-adaptive streaming
system running on smartphones. Compared to previous sys-
tems, Flare consists of a novel framework of the end-to-end
streaming pipeline. Flare also introduces new streaming algo-
rithms, and brings numerous system-level and network-level
optimizations. In addition, Flare is a general framework for
360° video streaming that does not depend on a specific video
encoding technology. Full technical details of Flare [2] will
be presented at the main conference of ACM MobiCom 2018.



Figure 1: Chunk, tile, frame, and tile segmentation (4x6 tiles).

2 THE DESIGN OF FLARE

We now provide a high-level overview of the Flare system,
which consists of a player application running on a commod-
ity smartphone and a server application that hosts the 360°
videos. All key logics including VP, rate adaptation, decoding,
and rendering are performed on the client side.

We first describe how to prepare the video content. As
shown in Figure 1, we segment each original panoramic
video chunk into tiles. A tile (yellow area) has the same
duration and number of frames as the chunk it belongs to,
but occupies only a small spatial portion. Each tile can be
independently downloaded and decoded. Therefore, ideally
a player needs to download only tiles that cover a user’s
viewport trajectory.

Figure 2 sketches the high-level system design of Flare.
The client performs VP in realtime to estimate the direction
that the viewer is about to look at, using the head movement
stream obtained from smartphone’s sensors. Then a very im-
portant component on the client side is the Download Planner.
It takes as streamed input the VP and network capacity esti-
mation, and computes (1) the set of tiles to be downloaded
and (2) their desired qualities, which are handled by Tile
Scheduler and Rate Adaptation, respectively. In theory, these
two aspects need to be jointly considered. But a key design
decision we make is to separate these two decision processes,
i.e,, first calculating the to-be-fetched tiles (the job of Tile
Scheduler), and then determining their qualities (Rate Adap-
tation). The rationale behind this is two-fold. First, jointly
considering both leads to a big inflation of the decision space
and thus the algorithm complexity; second, (1) is more im-
portant than (2) because a missing tile will inevitably cause
stalls. When tiles arrive from the server, they are properly
buffered, decoded, projected, and rendered to the viewer, as
shown in the right part of Figure 2. Compared to the client
side, the server is relatively “dumb” - simply transmitting the
tiles per clients’ requests. This client-server function parti-
tion follows the DASH streaming paradigm, which facilitates
scalability and ease of deployment. We next provide more
details for the important components in Figure 2.

e Viewport Prediction (VP). We follow a typical online
machine-learning (ML) paradigm by using the most recent
hw (history window) seconds worth of head movement data

Real-time Head —> Project, Render, Display
Movement Reading :
Decoded Frame Buffer

o oo

Network Viewport Gt e e
Capacity Prediction 1

Estimation (VP)
l l Decoders o ° °
, t
Rate Tile Decoding Scheduler

Adaptation Scheduler 4

Encoded Tile Buffer

e

Tiles from Server

Download Planner

Requests to Server

Client/Server Boundary

Remote Server
Figure 2: The Flare system architecture.

to predict the viewport in the next pw (prediction window)
seconds. This involves both training and testing. In our de-
sign, we take a very lightweight approach with the purpose
of adapting to the continuous and fast-paced head movement.
Specifically, Flare uses simple linear regression for pw < 1
and ridge regression (a variant of LR for better coping with
overfitting) for pw > 1 given their reasonable accuracy.

e Tile Scheduler computes the set of tiles to be fetched
based on VP. Assume that at time Ty, VP is invoked by the
scheduler to update the to-be-fetched tile list. Instead of per-
forming a single prediction, the scheduler conducts multiple
predictions for time ¢t = Ty + ér, Ty + 267, ..., Ty + mdr, in or-
der to construct the trajectory of the user’s future viewports.
We pick ér=100ms and m=30, yielding a predicted trajectory
of 3 seconds. Next, we map the trajectory to an ordered list
of tiles. The higher rank a tile stands in the list, the more
important the tile is, and the earlier the server will transmit
the tile. When ranking the tiles, our algorithm jointly consid-
ers several aspects: each tile’s distance to the center of the
predicted viewport, the tile’s playback time, and historical
VP accuracy. The ordered tiles are then passed to the rate
adaptation module to determine their qualities.

o Rate Adaptation. Flare’s rate adaptation approach is in-
spired by MPC [3], which provides a principled model that
considers different QoE objectives for Internet videos. Lever-
aging the high-level concept from MPC, we develop a practi-
cal formulation for rate adaptation of tile-based 360° video
streaming. Our formulation considers four QoE objectives:
consumed bitrate, stall duration, inter-chunk (temporal) qual-
ity change, and inter-tile (spatial) quality change. With these
QoE objectives defined, the rate adaptation problem can be
formulated as the following: determining the quality level for
each to-be-fetched tile so that the overall utility, defined as a
weighted sum of the four QoE objectives, is maximized. We
then develop several performance boosting techniques that
enable Flare to invoke the rate adaptation at a very fast pace
at runtime to adapt to viewer’s continuous head movement.



¢ Dealing with Inaccurate VP. Due to the randomness of
human head movement, the VP is inherently imperfect. Flare
employs three mechanisms to tolerate inaccurate VP. The
first one is naturally provided by the tiles themselves: since
a tile must be fetched as long as any of its frames intersects
with any predicted viewport, oftentimes only a small portion
of a fetched tile is consumed. This wastes some bandwidth
but helps absorb inaccurate VP as long as the error does not
cross a tile. The second mechanism is to fetch additional
tiles that are not in the originally predicted tile set. We call
them “out-of-sight” (OOS) tiles because if the prediction is
accurate, a viewer will not see those tiles. The procedure of
adding OOS tiles is integrated into the tile ranking algorithm
performed by Tile Scheduler. The third mechanism is the
server-side design with details described in our full paper [2].
o Tile Decoding. In Flare, a viewport typically contains mul-
tiple independently-encoded tiles that are played at the same
time. We employ several techniques to effectively decode
them. First, we leverage multiple concurrent hardware de-
coders (e.g., 4 parallel H.264 decoders on SGS8) to accelerate
the decoding process. Second, we allow decoders to cache
the decoded (uncompressed) tiles to be played in the future
into the Decoded Frame Buffer (DFB). Doing so improves
the overall decoding performance and facilitates smooth
playback when visible tiles change, as long as future tiles
are properly cached in DFB. Third, we develop the Decoding
Scheduler, which selects from the tiles waiting at the Encoded
Tile Buffer (Figure 2) the most important ones to decode, in
order to further mitigate decoding-incurred stalls.
Implementation and Evaluation. We have imple-
mented Flare on commodity Android smartphones and
Linux OS. The player is written in Java using Android SDK
and C++ using Android NDK. Overall, our implementation
consists of 14,200 lines of code (LoC). We have conducted
extensive evaluations (~400 hours’ playback on WiFi and
~100 hours over LTE). The experimental results demonstrate
that Flare significantly improves the quality-of-experience
(QoE) in real-world settings. Compared to non-viewport-
adaptive approaches, Flare yields up to 18x quality level
improvement on WiFi, and achieves considerable bandwidth
reduction (up to 35%) and video quality enhancement (up to
4.9%) on LTE. Please refer to our full paper [2] for details.

3 DEMONSTRATION PLAN

Our demonstration testbed consists of three SGS8 smart-
phones as video clients (labeled as A, B, and C), two laptops as
video servers (labeled as X and Y), one WiFi access point, and
a VR headset. The smartphones and laptops are connected to
our WiFi AP that provides local wireless connectivity. The
servers are pre-loaded with several HD 360 videos in 4K
resolution. The demonstration consists of two components:
(1) comparing the video quality and resource consumption

Q3.8 B51

Figure 3: Our developed visualization module that renders tiles in
different colors (9 tiles are shown). The three numbers on the top-
left corner are key performance statistics: average quality level (Q),
downloaded bytes (B) and cumulative stall duration (S).

between Flare and a traditional viewport-agnostic streaming
approach, and (2) letting the audience experience Flare in
person. We next describe both components.

Performance Comparison. We put smartphone A and
B side-by-side, and use laptop X as their server. Phone A
runs the Flare system, and Phone B runs a classic viewport-
agnostic algorithm such as BBA [1]. Both smartphones will
replay the same head movement trace collected from a real
user. On the server side, we emulate diverse network condi-
tions by using the tc tool to replay pre-recorded bandwidth
traces collected from real cellular networks. The audience
will be able to tell the video quality difference between Flare
and BBA, with Flare being better. In addition, from the perfor-
mance statistics shown on the screen (Figure 3), the audience
can also quantitatively compare their key metrics including
average quality, bandwidth usage, stall duration.

In-person Experience. We insert Smartphone C into a
VR headset and use laptop Y as the server. We invite the
audience to watch 360° videos on the headset. To visualize
the tiles, we develop an optional visualization module that
renders tiles in different colors, as shown in Figure 3. The
viewer can try different videos as well as change configura-
tions such as the segmentation scheme (4x6 tiles by default),
VP algorithm, and the number of parallel decoders.

Our demo requires the default space (one 6 X 2.5 ft table)
and three power outlets. No Internet connectivity is needed
as we use a local WiFi network provided by our AP. The
expected setup time of our demo is less than 5 minutes.

REFERENCES

[1] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A
Buffer-Based Approach to Rate Adaptation: Evidence from a Large
Video Streaming Service. In Proceedings of SIGCOMM 2014, pages
187-198. ACM, 2014.

F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan. Flare: Practical
Viewport-Adaptive 360-Degree Video Streaming for Mobile Devices. In
ACM MobiCom, 2018.

X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A Control-Theoretic Ap-
proach for Dynamic Adaptive Video Streaming over HTTP. In Proceed-
ings of SIGCOMM 2015, pages 325-338. ACM, 2015.

[2

—

[3

[}



