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Abstract

Merging galaxies play a key role in galaxy evolution, and progress in our understanding of galaxy evolution is
slowed by the difficulty of making accurate galaxy merger identifications. We use GADGET-3 hydrodynamical
simulations of merging galaxies with the dust radiative transfer code SUNRISE to produce a suite of merging
galaxies that span a range of initial conditions. This includes simulated mergers that are gas poor and gas rich, and
that have a range of mass ratios (minor and major). We adapt the simulated images to the specifications of the
SDSS imaging survey and develop a merging galaxy classification scheme that is based on this imaging. We
leverage the strengths of seven individual imaging predictors (Gini, M;,, concentration, asymmetry, clumpiness,
Sérsic index, and shape asymmetry) by combining them into one classifier that utilizes Linear Discriminant
Analysis. It outperforms individual imaging predictors in accuracy, precision, and merger observability timescale
(>2 Gyr for all merger simulations). We find that the classification depends strongly on mass ratio and depends
weakly on the gas fraction of the simulated mergers; asymmetry is more important for the major mergers, while
concentration is more important for the minor mergers. This is a result of the relatively disturbed morphology of
major mergers and the steadier growth of stellar bulges during minor mergers. Since mass ratio has the largest
effect on the classification, we create separate classification approaches for minor and major mergers that can be
applied to SDSS imaging or adapted for other imaging surveys.

https://doi.org/10.3847/1538-4357 /aafd34

CrossMark

Key words: galaxies: active — galaxies: interactions — galaxies: kinematics and dynamics — galaxies: nuclei

1. Introduction

In the current A cold dark matter (ACDM) framework for
structure formation in the universe, galaxies form as gas cools at
the center of dark matter halos (e.g., White & Rees 1978; White &
Frenk 1991; Cole et al. 2008). These galaxies then grow through
gas accretion and mergers from small, irregular galaxies with high
rates of star formation to large, quiescent galaxies with lower rates
of star formation in the local universe (e.g., Glazebrook et al.
1995; Lilly et al. 1995; Giavalisco et al. 1996).

Simultaneously, supermassive black holes (SMBHs), which are
found at the centers of all massive galaxies, have accumulated
mass over time. Both SMBHs and galaxies grow through the
accretion of gas; SMBHs that are actively accreting gas are known
as active galactic nuclei (AGNs) and can be among the most
luminous objects in the universe. Observational correlations
suggest a co-evolution between SMBHSs and their host galaxies
(Magorrian et al. 1998; Ferrarese & Merritt 2000; Gebhardt et al.
2000), but it remains unclear which processes are most important
for triggering AGNs and star formation.

Observational work has identified three main processes that
drive evolution, but disagrees on the relative import of each
process. Tidal torques from major mergers (where the mass ratio
of the galaxies is less than 1:4) can drive gas accretion; some
work indicates that these tidal torques from major mergers are
primarily responsible for fueling both star formation (Mihos &
Hernquist 1994, 1996) and rapid SMBH growth (Di Matteo et al.
2005; Hopkins et al. 2005; Ellison et al. 2011; Koss et al. 2012;
Treister et al. 2012; Satyapal et al. 2014). Other work suggests
that minor mergers or continuous “cold flow” gas accretion are
the most important mechanism for shaping the morphologies of
galaxies, driving star formation, and contributing to the mass
growth of SMBHs (e.g., Daddi et al. 2007; Noeske et al. 2007;
Cisternas et al. 2011; Kocevski et al. 2012; Kaviraj 2013;

Villforth et al. 2014). Yet other studies find that secular
instabilities driven by disks and spiral arms in the local universe,
as well as highly irregular morphologies and high gas fractions
in the high-redshift universe, can dominate galaxy evolution.
These secular instabilities can grow pseudobulges locally and
contribute to significant gas inflows and disk and bulge growth
in high-redshift galaxies (e.g., Bournaud 2016 and references
therein). Many details of these processes that could drive
evolution remain unclear, such as when and how these processes
operate on AGNs and galaxies.

One main reason these details are unknown is that it is difficult
to build a clean observational sample of galaxy mergers (major
and minor). Imaging studies that rely upon one or a couple of
imaging predictors can fail to accurately identify mergers, which
leads to inconclusive results (e.g., Conselice 2014 and references
therein). Recent work has relied increasingly upon nonparametric
tools to identify merging galaxies from imaging surveys, such as
the Gini—M,, method or the CAS (Concentration—Asymmetry
—Clumpiness) method (Conselice et al. 2003; Lotz et al. 2004).
These methods are each individually limited by different merger
initial conditions, such as mass ratio and gas fraction, and by
merger stage. For instance, although identifying merging galaxies
using asymmetry tends to be more sensitive to early-stage
mergers, Gini—M, tends to identify late-stage mergers. Addi-
tionally, previous simulations of galaxy mergers have demon-
strated that the merger observability timescale varies strongly for
different nonparametric tools (e.g., Lotz et al. 2008, 2010a,
2010b).

We combine the sensitivities of different imaging predictors
to create an imaging classification method that is better able to
identify merging galaxies over a larger range of merger initial
conditions and merger stages. In R. Nevin et al. (2019, in
preparation), we will incorporate kinematic predictors as well.
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Table 1
Key Parameters of Our Suite of High-resolution GADGET-3 Galaxy Merger Simulations
Model M, (10" M) Stellar Mass (10'° M) Gas Fraction Mass Ratio
q0.5_fg0.3 20.8 59 0.3 1:2
q0.333_fg0.3 18.7 5.2 0.3 1:3
q0.333_fg0.1 18.7 6.3 0.1 1:3
q0.2_fg0.3_BT0.2 16.8 5.0 0.3 1:5
q0.1_fg0.3_BT0.2 15.1 4.6 0.3 1:10

It is challenging to identify galaxy mergers directly from
observations because each merger is observed at only a single
viewing angle and moment in time, whereas the full duration of
a merging event is several Gyr. Since the observational
signatures of a merger depend so heavily on the merger initial
conditions and stage of the merger, we create our classification
scheme from hydrodynamics simulations that cover a range of
merger initial conditions. In this way, we determine the
fundamental capabilities of different imaging predictors. We
utilize the GADGET-3 smooth-particle hydrodynamical code
coupled with the SUNRISE dust radiative transfer code to
construct mock observations of the simulated galaxies. From
these mock observations, we create the imaging classification
and determine its accuracy and precision for identifying galaxy
mergers of different gas fractions, mass ratios, and merger
stages. We tailor our classification for SDSS imaging, although
the code will be publicly available and can be easily modified
for different imaging surveys.

The remainder of this paper is organized as follows. We
describe the hydrodynamics and radiative transfer simulations,
techniques for matching the simulated galaxies to SDSS’s
specifications, and merger classification scheme in Section 2. In
Section 3, we describe the performance of the classification
scheme and the sensitivities of the individual imaging
predictors. We compare the technique to previous imaging
methods for merger identification and discuss the implications
for merging galaxy identification in imaging surveys in
Section 4. We present our conclusions in Section 5. A
cosmology with €2,, = 0.3, 2, = 0.7, and & = 0.7 is assumed
throughout.

2. Methods

We create the imaging classification scheme from simulated
galaxy mergers, which we introduce in Sections 2.1 and 2.2. In
order to develop the classification for SDSS imaging data, we
“SDSS-ize” the simulations to create mockup images matching
SDSS specifications in Section 2.3. Next, we determine the
separation of the stellar bulges to assign galaxy merger stage in
Section 2.4. Finally, we develop the imaging classification
scheme using LDA (Linear Discriminant Analysis) in
Section 2.5.

2.1. N-body/Hydrodynamics Merger Simulations

To develop our imaging classification scheme, we begin with
a suite of simulated merging and isolated galaxies. Specifically,
we use two of the high-resolution simulations from Blecha
et al. (2018), to which we have added three new simulations to
cover a larger parameter space of initial conditions. We also
have a set of isolated galaxies that is matched by stellar mass
and gas fraction to each merger simulation.

These simulations were carried out with GADGET-3 (Springel
& Hernquist 2003; Springel 2005), a smoothed-particle hydro-
dynamical (SPH) and N-body code that conserves energy and
entropy, and includes subresolution models for physical processes
such as radiative heating and cooling, star formation and
supernova feedback, and a multiphase interstellar medium
(ISM). All simulations have a baryonic mass resolution of
2.8 x 10" M., and a gravitational softening length of 23 pc.
SMBHs are modeled as gravitational “sink” particles that accrete
via an Eddington-limited Bondi—Hoyle (Bondi & Hoyle 1944)
prescription. AGN feedback is also incorporated by coupling 5%
of the accretion luminosity (Ly, = €raaMc?) to the gas as thermal
energy. We assume a radiative efficiency €.,q = 0.1 for accretion
rates M > 0.01Mgqq (Where Mgqq is the Eddington limit); below
this we assume radiatively inefficient accretion following Narayan
& McClintock (2008). GADGET has been used for many studies
concerning merging galaxies (e.g., Di Matteo et al. 2005; Blecha
et al. 2011, 2013; Snyder et al. 2013).

The merger progenitor galaxies include a dark matter halo, a
disk of gas and stars, a stellar bulge in some cases, and a central
SMBH. The initial conditions for each simulated galaxy merger
are given in Table 1, and the initial conditions for the matched
isolated galaxy simulations are given in Table 2. In this work,
we focus primarily on the effects of varying the merger mass
ratio and initial gas fraction, since these two parameters have
been shown to have the largest effect on the morphology and
star formation rates of merging galaxies in previous work (Cox
et al. 2008; Lotz et al. 2008, 2010a, 2010b; Blecha et al. 2013).
We include three major merger simulations (q0.5_fg0.3,
q0.333_fg0.3, and q0.333_fg0.1) with mass ratios 1:2, 1:3,
and 1:3, respectively. The initial progenitor gas fractions in
these simulations (defined as Mg disk/ (Maas,disk + M gisk))s
which are identical for both merging galaxies in a given
simulation, are 0.3, 0.3, and 0.1. These major merger
simulations have a bulge-to-total mass (B/T) ratio of 0. We
design the two 1:3 major merger simulations to have different
gas fractions but identical mass ratios to investigate the effects
of varying gas fractions on the morphology of mergers. We
also create two minor merger simulations (q0.2_fg0.3_BT0.2
and q0.1_fg0.3_BTO0.2), both of which have a B/T ratio of 0.2.
These two minor mergers have initial gas fractions of 0.3 and
mass ratios of 1:5 and 1:10, respectively. We design these two
minor mergers to have a gas fraction of 0.3 so that we can
directly compare mass ratios of 1:2, 1:3, 1:5, and 1:10 across
simulations with identical gas fractions. We further justify our
choice of initial conditions in Appendix A.

2.2. Radiative Transfer Simulations

In order to directly compare the simulated galaxies with
observations, we use the 3D, polychromatic, Monte Carlo dust
radiative transfer code SUNRISE (Jonsson 2006; Jonsson et al.
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Table 2
Key Parameters of the Matched Sample of Isolated Galaxies
Model Mo Stellar Mass Gas Fraction Matched Model(s)
10" M) (10" M)
ml_fg0.3 139 39 0.3 q0.5_fg0.3, q0.333_fg0.3
m0.5_fg0.3 6.9 2.0 0.3 q0.5_fg0.3
ml_fg0.1 14.0 4.7 0.1 q0.333_fg0.1
m0.333_fg0.1 4.7 1.6 0.1 q0.333_fg0.1
ml_fg0.3_BT0.2 13.7 42 0.3 q0.2_fg0.3_BT0.2, q0.1_fg0.3_BTO0.2

Note. These are matched to the mass of the primary or secondary galaxy in the merger for each simulation and the gas fraction. The gas fraction is the same for each

merger progenitor in a given simulation.

2010) to produce resolved UV to IR spectra and broadband
images.

It has been used extensively in combination with GADGET
galaxy merger simulations (e.g., Lotz et al. 2008, 2010a,
2010b; Narayanan et al. 2010; Wuyts et al. 2010).

Age- and metallicity-dependent spectral energy distributions
for each star particle are calculated using the STARBURST99
stellar population synthesis models (Leitherer et al. 1999).
Emission from H1I regions (including dusty photodissociation
regions) around young stars is calculated by applying
MAPPINGSIIT models (Groves et al. 2008) to newly formed
star particles, based on their age, metallicity, and surrounding
gas pressure. The AGN spectrum is determined using the
SMBH accretion rate and the luminosity-dependent templates
of Hopkins et al. (2007).

To calculate the dust distribution, we use the Draine & Li
(2007) Milky Way dust model with Ry = 3.1 and assume that
40% of gas-phase metals are in dust (Dwek 1998). A 3D
adaptively refined grid is placed on the simulation domain to
map the gas-phase metal distribution. Following Snyder et al.
(2013) and Blecha et al. (2018), we assume that gas in the cold
phase of the GADGET-3 multiphase ISM model has a
negligible volume filling factor and therefore does not
contribute to the attenuation of radiation. Although this may
not be an appropriate choice for extremely gas-rich, high-
redshift galaxies that produce extreme IR and submillimeter
luminosities (e.g., Hayward et al. 2011; Snyder et al. 2013), it
is a reasonable assumption for the low-redshift analog galaxy
simulations in our suite.

SUNRISE performs Monte Carlo radiative transfer through
this grid, computing emission from stars, HII regions, and
AGNSs, as well as energy absorption (including dust self-
absorption) to obtain the emergent, attenuated resolved SEDs
for seven different isotropically distributed viewing angles.

For each merger simulation, we perform SUNRISE calcula-
tions on snapshots at ~50-100 Myr intervals during the
merger. The spatial resolution of all images and resolved
spectra is 167 pc, which exceeds the resolution of the SDSS
survey (see Section 2.3). We divide each merger simulation
into early-stage, late-stage, and post-coalescence snapshots
based on the projected separations of the stellar bulges in the
images. We describe this process in more depth in Section 2.4.
In brief, early-stage mergers are defined as the snapshots with
average stellar bulge separations Ax > 10kpc. Late-stage
mergers are defined to have stellar bulges with separations of
1 kpc < Ax < 10 kpc. Post-coalescence snapshots are those in
which two stellar bulges are no longer resolvable in SDSS
(Ax < 1 kpe) since the spatial resolution of SDSS is 1-2 kpc.
For each merger simulation, we run SUNRISE at ~100 Myr

intervals in the early stage of the merging galaxies, at ~50 Myr
intervals in the late stage, and at ~100 Myr intervals for the
post-coalescence stage. This creates a roughly equal number of
~5-10 SUNRISE snapshots per merger stage. In Figure 2, we
show r-band images for early-stage, late-stage, and post-
coalescence snapshots from the 1:2 major merger gas-rich
simulation q0.5_fg0.3.

We also simulate isolated galaxies with matched stellar mass
and gas fraction for each merger simulation (Table 2).
Additionally, because the progenitor galaxies are still isolated
and undisturbed in the very early stages of the merger
simulations, we include snapshots prior to first pericentric
passage in our sample of isolated galaxy snapshots as well. We
confirm, using the supplemental outputs of SUNRISE, that the
star formation rate and AGN luminosity have yet to be affected
by the merger in these snapshots. Additionally, the imaging
predictors are not yet significantly different than the matched
sample of isolated galaxies.

We also include merger snapshots at times >0.5 Gyr after
final coalescence as isolated galaxies. Our motivation for this is
twofold. First, after >0.5 Gyr following final coalescence, the
simulated galaxies begin to lose tidal features but remain
centrally concentrated when compared to the isolated matched
sample of galaxies. If we include these post-coalescence
galaxies in the analysis as mergers, the technique becomes
overly sensitive to the central concentration of galaxies and is
most efficient at identifying early-type galaxies. Second, since
we wish to develop a tool that best identifies galaxy mergers in
the early, late, and beginning of the post-coalescence stage, we
terminate the merger period at 0.5 Gyr after final coalescence
for all simulations. We find that this choice of cutoff time
allows the sensitivity of our merger detection technique to
decay smoothly during the post-coalescence stage. We include
an isolated galaxy snapshot in Figure 2 as well as several
isolated snapshots prior to first pericentric passage and 0.5 Gyr
following final coalescence.

Broadband images for each snapshot are produced for seven
isotropically distributed viewpoints. We focus on the SDSS
r-band filter, since the r-band is a good tracer of stellar
populations in low-redshift galaxies. Since we next plan to
incorporate kinematic predictors into the analysis (R. Nevin et al.
2019, in preparation), we will apply the classification technique
to the MaNGA (Mapping Nearby Galaxies at Apache Point)
survey, which is an integral field spectrograph (IFS) survey of a
subsample of ~10,000 SDSS galaxies. We therefore place the
simulated galaxies at the average redshift of the MaNGA survey
(z) ~ 0.03) and extract the r-band images, which we process
further to match the specifications of the SDSS survey in
Section 2.3.
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To understand the range of redshift and surface brightness
for which our merger classification can return consistent
classifications, we experiment with adjusting the surface
brightness and redshift of the simulated images. The consis-
tency of the classification is closely tied to the behavior of the
imaging predictors, which are sensitive to both resolution and
the average signal-to-noise ratio (S/N) per pixel ((S/N)). For
instance, Lotz et al. (2004) find that Gini, M,q, C, A, and S are
reliable to 10% for (S/N) > 2 and systematically decrease with
(S/N) below this level. We implement an (S/N) cutoff of 2.5
(which is calculated for all pixels within the segmentation
mask) because the measurements of the imaging predictors
(especially A and S) from statmorph are unreliable below
this threshold (V. Rodriguez-Gomez 2019, private commu-
nication). For instance, A systematically decreases to negative
values below this threshold. We also use this (S/N) cutoff value
to assess the magnitude limit of the method (described below).

We find that the surface brightness of the simulated galaxies
changes over the course of each simulation. This happens as the
galaxies brighten and dim with star formation and AGN
activity as the merger proceeds. This corresponds to a range in
r-band apparent magnitude from 14-16 (at z=0.03). We
convert from surface brightness to r-band magnitude using the
conversion in Section 2.3 to convert to units of nanomaggies,
which we then convert to apparent magnitude using the
Petrosian radius as the aperture. We experiment with dimming
the images to determine how the r-band Petrosian magnitude of
a mock image relates to the S/N per pixel. The classification
becomes significantly different (since the mock images begin to
drop below an (S/N) value of 2.5) when the r-band Petrosian
magnitudes are >17. In other words, the classification only
works for r-band magnitudes >>17, and it should not be used for
fainter galaxies. For context, typical SDSS galaxies from this
paper (in Section 13) have (S/N) values between 5 and 10,
which corresponds roughly to r-band magnitudes of ~16.
Since SDSS imaging has a flux limit of 17.77 in the r-band, the
LDA classification technique applies to the majority of galaxies
in the SDSS photometric catalog (Strauss et al. 2002).

Likewise, we move the simulated galaxies to higher redshifts
while maintaining the same surface brightness and find that the
predictor coefficients in the classification change significantly
at z ~ 0.5. The average redshift of the SDSS photometric
survey is z ~ 0.4, so the LDA technique should still function
well for the majority of SDSS galaxies (Sheldon et al. 2012).

2.3. SDSS-izing Images from the Simulations

In order to construct a classification scheme that can be applied
directly to SDSS galaxies, we first “SDSS-ize” or degrade the
simulated images to match the specifications of the SDSS survey.
In this section, we describe the relevant SDSS imaging properties
and data products. Then, we provide a detailed description of the
process of SDSS-izing the simulated images. Finally, we detail
how we determine the stage of the merger snapshots.

The process of SDSS-izing the simulated images to create
mock images that match the specifications of the SDSS
imaging involves the following steps (Figure 1):

1. Clip the images.

2. Convolve and rebin to the spatial resolution and pixel
scale of SDSS imaging.

3. Introduce residual background noise.

4. Create an error image.

Nevin et al.

To complete these steps, we utilize the imaging properties
(i.e., noise, instrumental gain, sky levels, etc.) of SDSS
imaging, which are described in Albareti et al. (2017) and
Blanton et al. (2011). The SDSS imaging procedure involves
producing large field images that are composed of six long
rectangular images of the sky called “camcols.” The camcols
are then further split into individual filters (u, g, r, i, and z) and
six smaller “frame” images. Frame images are the basic data
product of SDSS; these images are background-subtracted and
include an extension with background sky levels, instrumental
gain, dark variance, and a calibration factor to convert between
flux and photoelectrons. The frame images can be further cut to
postage stamp images (in our case, with a field of view of
80”70 x 80”0). The most recent SDSS data release (DR13) uses
a specific NASA-Sloan Atlas (NSA) reprocessing of the
original SDSS DR7 imaging data, which includes a new
background subtraction that improves the photometry of large
galaxies (Blanton et al. 2011). We use DRI3 imaging
properties to compare to SDSS-ized images below. The median
seeing, which is the effective width (FWHM) of the PSF, for
SDSS imaging is 1743, and the pixel scale is 07396 pix '
(Ivezi¢ et al. 2004; Blanton et al. 2011).

We start with the imaging output of SUNRISE for the five
broadband SDSS filters (u, g, r, i, z). Here, we focus on the
SDSS r-band images since they best capture light from stellar
bulges for nearby galaxies. To best mimic the placement of the
imaging camera from SDSS, we use aperture photometry to
identify the brightest pixels over which to center the camera.
We identify the brightest source using Source Extractor,
which is a useful tool to extract sources through aperture
photometry on astronomical images (Bertin & Arnouts 1996).
Source Extractor separates an object from the back-
ground noise, applies a convolution filter to separate low
surface brightness sources from spurious detections, and
deblends sources. We use a detection threshold of 1.50 above
the local sky background and a minimum group number of two
pixels to trigger a detection. We use a normal convolution
kernel with size 3 x 3 pixels, an FWHM of two pixels, and a
deblending threshold of 32 (the recommended value for
Source Extractor). The output from Source Extrac-—
tor includes the x and y positions of sources and aperture
photometry, which includes Petrosian radii and corresponding
fluxes. We determine the brightest source from these fluxes and
then clip the image in an 80”0 square around this source. We
select an 80”0 square cutout because it allows us to accurately
determine the image background for the extraction of the
imaging predictors. Some of our simulation snapshots have
smaller fields of view (down to 50”0) since the simulated
galaxies are on the edge of the simulation field of view. We
include these smaller snapshots in the interest of maximizing
the temporal resolution of our method. We find that very few
mock images have a smaller field of view than 80”0 and that
this does not affect the imaging predictors for these snapshots.

After clipping the mock images, we convolve them with a
PSF with FWHM 1743, which is the median PSF for the r-
band (Ivezi€ et al. 2004). Then, we rebin the images to the pixel
scale of SDSS (07396 pixel 1.

We then convert to flux units typical of SDSS, introduce
residual background noise, and produce an error image, as
outlined below. The units of the simulated image are surface
brightness (W/m/m”/sr). We convert to flux density in
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Figure 1. Steps of the process to create mock images from the simulated images (1-3). We first clip the simulated image to the 8070 field of view (1). We then
convolve the image with the 1743 FWHM PSF and rebin to the 0”396 pixel scale of SDSS imaging (2). Finally, we add residual background noise that is
characteristic of SDSS imaging (3) to create a mock image (upper right panel). We compare to an SDSS image (lower right panel) that has been centered on a galaxy

and cut to the same 80”0 field of view as the mock image.

nanomaggies:
nanomaggy = Janskys x 3.631 x 10°,

where we first convert to Janskys using the pixel scale and
angular diameter distance of a simulated galaxy at the average
redshift of the MaNGA survey, z ~ 0.03. Again, we use the
average redshift of the MaNGA survey since we plan to further
develop the kinematic technique for MaNGA IFS in R. Nevin
et al. (2019, in preparation).

Then, we extract a nanomaggy to data number (dn)
conversion rate from each frame image (c). This conversion
rate is used to produce a mock image in units of counts (from
here on dn is synonymous with counts). We find an average c
value of 0.005 with a standard deviation of 0.0002. The
conversion rate varies little across the frames and camcols.

In order to introduce background noise to the mock images,
we characterize the residual background of the SDSS frame
images using bilinear interpolation. We also determine other
imaging properties such as background sky levels (prior to
background subtraction), instrumental gain, and dark variance
from the frame images. Since the gain and background sky
levels vary in complicated ways across the frames and camcols
(M. Blanton 2019, private communication), we characterize
these values based upon several locations from the larger frame
images.

For instance, we use 50 postage stamps (from the frame
images) that are selected to belong to all six camcols and
locations on the frame images. We extract a region from the
background and characterize its mean and standard deviation.
The postage stamp images have already been background-
subtracted, so this region is characteristic of the residual
background of SDSS images following the sky subtraction
step. We find that the typical residual background has a mean
of 0.33 dn (counts) with a standard deviation of 5.63 dn. After
conducting an improved background subtraction for the SDSS-
III DRS8 imaging data (which is the same imaging reduction

used for DR13), Blanton et al. (2011) find a residual standard
deviation of 0.02 nanomaggies in the r-band photometry. This
is ~4 dn, so our standard deviation of 5.63 dn is a good
approximation of the residual noise.

We reintroduce this background into our images by adding a
standard normal with a mean of 0.33 and a standard deviation
of 5.63 dn to each pixel. This mock image is used in the
calculation of the imaging predictors in Section 2.5.1. We use
both the conversion factor, ¢, and the residual background
value, bg.sq, to produce an image that is representative of an
SDSS image (in counts):

dn = nanomaggies/c + bg,.q4-

We use the images in units of dn for display purposes and for
the extraction of the imaging predictors.

Finally, we create an error image. To calculate the
photometric uncertainty, we use the average gain and dark
variance from the r-band frame images (4.7 photoelectrons per
dn and 1.2 dn?, respectively) in combination with the simulated
galaxy image to produce an error image in dn,

om = |/(dn+bgy) /gain + dark var,

where we also include the background counts prior to
background subtraction (bgg,). The photometric uncertainty
is dominated by the galaxy flux except for low surface
brightness features such as tidal tails, where the background
sky dominates. To determine the background sky level, we
extract a region from each sky image and measure the average
value. We find that this value varies between frame images and
that the mean background value is 121.2 dn with a standard
deviation of 37.4.

Figures 1 and 2 show examples of simulated images after the
image has been spatially convolved and rebinned, and the
residual background has been introduced to match the
specifications of the SDSS survey.
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Figure 2. Time series of r-band “SDSS-ized” images from the q0.5_fg0.3 merger simulation (mass ratio 1:2, gas fraction 0.3). To SDSS-ize simulated images, we
convert to counts, convolve to the seeing limit of the survey, rebin to the SDSS imaging pixel scale, and add background noise typical of SDSS imaging. All images
are centered on the brightest Source Extractor selected source and cut to the 80”0 (~50 kpc) SDSS imaging camera field of view. The merger images at
t = 0.05, 0.2, and 3.62 Gyr are included as isolated galaxies in the analysis. The merger images at t = 0.39, 0.78, 1.17, and 1.56 Gyr are early-stage mergers; the
images at = 1.81 and 2.05 Gyr are late-stage mergers; and the images at t = 2.2, 2.35, and 2.54 Gyr are post-coalescence mergers. The bottom middle image is an
isolated galaxy snapshot that is matched to the q0.5_fg0.3 simulation for mass and gas fraction.
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2.4. Measuring Stellar Bulge Separations

We use Source Extractor and GALFIT (Bertin &
Arnouts 1996; Peng et al. 2002) to identify, pinpoint, and
measure the separation of stellar bulges from the SDSS-ized
r-band images. Using Source Extractor, we first determine
if there are one or two stellar bulges within the field of view and
pinpoint their locations. We eliminate spurious detections from
Source Extractor using the above prescription for a
detection threshold (1.5¢0 above sky) combined with a normal
convolution kernel (a 3 x 3 pixel mask with an FWHM of 2
pixels). We avoid the detection of star-forming regions by
requiring that the flux within the measured Petrosian radius of
the secondary source be greater than 10% of the primary source.

Under these prescriptions, Source Extractor performs
well, detecting the primary and secondary stellar bulges for
four of the merger simulations without spurious detections or
detections of star-forming regions. To ensure that Source
Extractor is not detecting star-forming regions, we require
that the location of the regions identified by Source
Extractor correspond to the locations of the SMBHs
tracked by GADGET.

Source Extractor fails to accurately identify the
secondary source for the q0.1_fg0.3_BT0.2 simulation. Since
we require that the flux of the secondary source detected by
Source Extractor be greater than 10% of the flux of the
primary source, the 1:10 minor merger often falls below this
level. We do not lower the 10% detection cutoff since we wish
to avoid star-forming region detection, so we use the locations
of the SMBHs for the q0.1_fg0.3_BT0.2 simulation to identify
the secondary sources in order to determine merger stage.

Then, we use GALFIT, which is a two-dimensional fitting
algorithm that extracts structural components from images of
galaxies. It can fit one or more two-dimensional models such as
exponential disks, Sérsic profiles, Gaussian profiles, or Moffat
functions to the light profile of a galaxy. We use GALFIT to fit
a Sérsic profile to each source identified by Source
Extractor and extract the projected separations of the
stellar bulges (if there are two). With the GALFIT output in
hand, we average the projected separation of the stellar bulges
for all viewpoints of a given snapshot of a merger and use this
average to determine the merger stage. Again, if the average
separation is Ax > 10kpc, the merger is early stage, if the
separation is 1kpc < Ax < 10kpc the merger is late stage,
and separations Ax < 1 kpc are post-coalescence.

2.5. Creating the Classification Scheme

Using the simulated galaxies, we know a priori whether a
galaxy is a merging or nonmerging galaxy. In this section, we
discuss the preparation of the imaging parameters that we use
as an input to a supervised Linear Decomposition Analysis
(LDA). We refer to these imaging parameters as “predictors”
from here on because they help predict whether a galaxy is
undergoing a merger. We also describe the LDA technique,
which allows us to determine which imaging predictors are
critical for best separating the classes of merging and
nonmerging galaxies for each simulation.

2.5.1. Imaging Predictors

In this section, we first describe the imaging predictors and
then the methods used to extract them from the SDSS-ized
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galaxy images. We discuss their weaknesses and strengths; no
one imaging predictor is the best determination of a merging
galaxy. Instead, they are sensitive to different orientations,
merger stages, and mass ratios. The statistical power of the
LDA methodology allows us to select the most successful
predictors for various types of merging systems. We discuss
these results in Section 3.

There are two main approaches to identifying a galaxy
merger from imaging: parametric and nonparametric modeling
of the surface brightness of the galaxy image. The parametric
approach requires modeling the surface brightness of the
galaxy using integrated light profiles such as bulges, disks, or
Sérsic profiles. Since parametric modeling tends to assume a
symmetric profile for the surface brightness of a galaxy, it fails
for irregular galaxies as well as those with structures such as
compact nuclei, spiral arms, or bars (Lotz et al. 2004). More
recent work on merger identification has focused on the
nonparametric modeling of the surface brightness of galaxies.
Nonparametric tools can be applied to irregular galaxies as well
as the more standard early or late Hubble-type galaxies. We
employ two widely used nonparametric approaches as imaging
predictors: the CAS morphological classification technique and
the Gini—M,, method. We also use a binary variation of A, the
shape asymmetry (Ag) from Pawlik et al. (2016). Finally, we
incorporate one parametric approach, the Sérsic index (n).
Overall, we utilize seven different imaging predictors, defined
below: Gini, Mo, C, A, S, n, and Ag.

Concentration is defined by Lotz et al. (2004) as the ratio of
light within circular radii containing 80% and 20% of the total
flux of the galaxy:

C=35log (@)
720

where rg is the circular radius that contains 80% of the total flux,
and ryq is the circular radius that contains 20% of the total flux. We
use the approach from Conselice et al. (2003) that defines the total
flux as that within 1.5 Petrosian radii (rp) of the galaxy’s center.
We measure the Petrosian radius using Source Extractor.

A galaxy with a higher value for C has more light contained
within the central regions of the galaxy and is therefore more
likely to be an early-type galaxy.

The imaging rotational symmetry predictor, A, is from
Conselice et al. (2000):

E

(i, j) — Lgol, j)| |B(i, j) — Bigo(, j)|
A= _
%; 171G, pI Z,J: 1@, I

where asymmetry is summed over all pixels (i, j), I(, j) is the
image, I,g0(i, j) is the image rotated by 180° about the center, B
(i, j) is the background image (the background image is
described in Section 2.3 and includes only the residual
background typical of SDSS imaging following background
subtraction), and Bjgg is the background image rotated by 180°
about the same center. We define the center of the galaxy as the
location that minimizes the value of asymmetry as in Lotz et al.
(2008). Again, the galaxy image and background image are
both masked to 1.5rp.

A galaxy with a higher value of A has a disturbed structure
and/or bright tidal tails and is therefore more likely to be a
galaxy undergoing a merger. A is particularly good at
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identifying early-stage merging galaxies (following first
pericentric passage) when the structure of a merging galaxy
is most disturbed and tidal tails are most prominent.

The shape asymmetry, Ag, is measured using the same
procedure as the asymmetry, but with a binary detection mask.
The technique is described in detail in Pawlik et al. (2016) and
Rodriguez-Gomez et al. (2019). Since it is measured using a
binary mask, Ag is more sensitive to low surface brightness
tidal features than A.

Clumpiness or smoothness (S) is defined by Conselice et al.
(2003) and Lotz et al. (2004) to be the fraction of light within
clumpy distributions in a galaxy:

. Do) = TG )]
B 11,

— Bs,

where [(i, j) is the image and Is(i, j) is the smoothed image,
which is smoothed using a boxcar of width 0.25rp. Bg is the
average smoothness of the background calculated in a 10 x 10
pixel box using the same 0.25rp boxcar. S is summed over all
pixels (i, j) within 1.5rp of the galaxy’s center. However, the
pixels within 0.25rp of the galaxy center are excluded for
the calculation of S because the central regions of galaxies are
highly concentrated, and this increases the value of S (see
Conselice et al. 2003).

Since S measures the fraction of light from a galaxy that can
be found in clumpy distributions, it identifies merging galaxies
that have recently undergone star formation (e.g., Conselice
et al. 2003). For instance, galaxies with a low value of S tend to
be elliptical galaxies and galaxies with a high value of S are
either undergoing mergers (with star formation) or undergoing
bursty star formation without experiencing a merger event.

The CAS morphological classification system was put forth
as a method for cleanly separating galaxies based on their
morphologies using their location in CAS space. However, it is
limited in several ways. First, concentration assumes circular
symmetry and therefore fails for some irregular galaxies (Lotz
et al. 2004). For instance, Conselice et al. (2003) found that the
average value of C for ULIRGs (ultraluminous infrared
galaxies; Lig > 10'% L.) is not significantly different from that
of Hubble sequence galaxies. This is problematic for merger
identification since a significant fraction of ULIRGs (at least in
the local universe) are gas-rich major mergers (e.g., Veilleux
et al. 2002; Draper & Ballantyne 2012). Second, not all
mergers are asymmetric, and not all asymmetric galaxies are
mergers (Thompson et al. 2015). Third, clumpiness is very
dependent on the choice of boxcar width (smoothing length)
used to smooth the image (Andrae et al. 2011), which has not
been studied in detail. In this work, we find that clumpiness is
most sensitive to viewing angle and therefore a poor merger
predictor, so while we include it in the analysis, we focus more
on concentration and asymmetry. This decision is supported by
previous findings that focus on C and A alone from the CAS
morphology (e.g., Lotz et al. 2008).

The Gini coefficient is used to describe the relative
concentration of light in a galaxy and is insensitive to whether
the light lies at the center of the galaxy. Gini is sensitive to
major and minor mergers and is most sensitive for face-on
systems (Thompson et al. 2015). Gini is defined by Abraham
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et al. (2003) and Lotz et al. (2004) as

] n
Gini = ——)> (2i —n — D|f],
If In(n — 1)2[:( i
where f is the average flux value, n is the number of total
pixels in the image, and f; is the flux value for each pixel where
the n pixels are ordered by brightness in the summation.

Gini is high for galaxies with very bright single or multiple
nuclei and low for galaxies with more distributed light, such as
late-type disk galaxies. Therefore, a higher value of Gini will
select for merging galaxies during late-stage mergers (with
multiple bright nuclei) as well as post-coalescence merging
galaxies.

The M, coefficient is often combined with Gini to identify
merging galaxies. It measures the relative concentration of the
light in a galaxy and also does not assume a central
concentration. The second-order moment of the light in a
galaxy (Mo is the sum of the flux in each pixel, f;, multiplied
by the distance squared to the center of the galaxy,

Mot = ZM = Zf,‘ [(xi - xc)2 + (yi - yc)2],

where M; is the flux in a single pixel multiplied by the distance
squared to the center of the galaxy. The center (x,, y.) is chosen
to minimize the value of M. M,y is a tracer for the spatial
distribution of any bright areas in the galaxy. M, is then used
to compute M»,, which is defined by Lotz et al. (2004) to be the
normalized second-order moment of the brightest 20% of the
galaxy’s flux:

i 1

My = logm( v;

tot

], while Y f; < 0.2f,

where fi is the total flux of all of the pixels that are identified
by the segmentation map (defined below), and f; are the fluxes
rank-ordered from brightest to faintest. The division by M,
removes all dependence on the total galaxy flux.

M, is similar to C, but the center of the galaxy is a free
parameter, allowing it to be more sensitive to spatial variations
of light. Also, M,y is always a negative value due to the
logarithm. Clear mergers with multiple bright nuclei have
higher values of M, (M, > —1) and early-type galaxies have
lower values (M,y < —2; Lotz et al. 2008). Therefore, higher
values of M, select for merging galaxies.

Since Gini and M, are sensitive to the ratio of low surface
brightness pixels to high surface brightness pixels, we use a
segmentation map to measure both of these predictors, as in
Lotz et al. (2008). The segmentation map assigns pixels to the
galaxy that are above the threshold value given by the surface
brightness at the Petrosian radius. We use a segmentation map
instead of making S/N cuts, because galaxies with the same
morphologies but different intrinsic luminosities will have
different Gini values if the cut is made based on S/N.

In addition to the CAS and Gini—M,, nonparametric
predictors, we measure the shape asymmetry (Ag) for each
galaxy. Shape asymmetry is similar to the imaging asymmetry
we also describe above; it is calculated using the same method,
but with a binary detection mask instead of the image itself.
This weights all parts of the galaxy equally regardless of
relative brightness, making it a useful probe of morphological
asymmetry (as opposed to the asymmetry of the light
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distribution). It has proven useful for detecting faint asym-
metric tidal features that are suggestive of a merger (Pawlik
et al. 2016).

Our final imaging predictor is the Sérsic index, which is used
to define the exponential surface brightness profile of a galaxy:

R 1/n
IR) =1, exp[—bnl(R—e) - IU,

where I(R) is the intensity within a given circular radius; I, is
the intensity at the effective radius (R,), which is the radius that
contains half of the total light; and b,, is a constant that depends
on the Sérsic index, n (Sérsic 1963).

A Sérsic index of n =1 denotes an exponential disk,
indicative of a spiral galaxy, while n =4 denotes a de
Vaucouleurs profile, indicative of an elliptical galaxy. In
general, a higher n indicates light that is more centrally
concentrated. A division between morphologies has been
standardized as n < 2.5 for spirals and n 2 2.5 for ellipticals
(van der Wel et al. 2008). Fisher & Drory (2008) predicted that
values of n > 2 (steeper surface brightness profiles) are
produced by major mergers.

To extract the values of Gini, Mg, C, A, S, and Ag for each
galaxy, we utilize the galaxy morphology tool statmorph
(Rodriguez-Gomez et al. 2019). Within this tool, we invoke the
segmentation map defined from the surface brightness at 1.5r,,,
which is measured using Source Extractor. We measure
the value of n for each galaxy with GALFIT.

2.5.2. Identifying Mergers with Imaging Predictors

We seek a classifier that can separate merging and
nonmerging galaxies of various merger mass ratios, gas
fractions, viewing angles, and merger stages. We also need to
incorporate multiple different imaging predictors. LDA is
uniquely suited for these purposes. LDA is able to maximize
the separation between multiple classes (in our case, we only
need to separate two classes, “merging” versus “nonmerging”
galaxies). In this work, we use LDA as a classifier. Here, we
train LDA on our SDSS-ized simulation data to determine the
most important imaging predictors for each simulation. Then,
we combine all simulated galaxies to prepare an LDA classifier.
In a subsequent paper, we will apply the LDA classifier to the
SDSS galaxies.

Past work on simulated galaxies has shown that the
effectiveness of the imaging predictors depends strongly on
merger stage, the initial mass ratio, and the gas fraction of the
merging galaxies (Lotz et al. 2008, 2010a, 2010b). We
therefore run LDA for each simulation individually so that
we can compare the LDA outputs from different merger initial
conditions. In this way, we are able to compare the sensitivity
of different imaging predictors for minor and major mergers
with low and high gas fractions at three different merger stages
(early, late, post-coalescence). For each iterative LDA run, we
use simulated nonmerging galaxies that are matched for gas
fraction and stellar mass to the merging galaxies, since Lotz
et al. (2010b) found that gas fraction can alter the performance
of CAS and Gini—M,o. We therefore approach the LDA
classification with a set of galaxies for which we know a priori
if a galaxy belongs to the nonmerging (0) or merging (1) class.
We include enough nonmerging galaxies to roughly balance
the number of merging galaxies. Our motivation is to achieve
an accurate LDA classification by ensuring that the isolated
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galaxies cover a realistic range of imaging predictor space and
roughly balance the number of galaxies in the merging class.
We later account for the lack of merging galaxies in nature with
a prior (described below). We use disk-dominated simulated
galaxies to create the LDA, so it is important to note that this
classification technique is most applicable to galaxies with
similar properties.

The purpose of LDA is to use Bayesian likelihood to
calculate a posterior probability that a galaxy belongs to a given
class (for a review of LDA, see James et al. 2013):

ego(x)

p(molx) = (n

) | i)’

where 7, is the prior probability of the nonmerging class
(described below), 30 is the score of the nonmerging class, and
31 is the score of the merging class. The score is the relative
probability that the galaxy belongs to a class, so a galaxy will
be classified into the class that has the maximum score. This
classifier is nonbinary; instead of classifying galaxies as simply
nonmerging or merging, we will assign a probability that a
galaxy belongs to each class.

When there is only one input predictor, the discriminant
score for the nonmerging class is defined as

. e g

do(x) = x - 0—(2’ - T‘(’z + log(#),
where 30 (x) is the discriminant score for class 0 (the
nonmerging class) for a set of galaxies, x is the list of the
one measured predictor value for all simulated galaxies, i, is
the mean vector for the predictor for the nonmerging class, &2
is the variance of the predictor for the nonmerging class, log
(7p) is the prior probability of belonging to the nonmerging
class, and 31 (x) is defined the same way but for mergers.

For the priors of the two classes for the major mergers, we
use o = fronmere = 0.9 and 7 = fi..., = 0.1 based on the
fraction of nonmerging and merging galaxies from observa-
tions and simulations (e.g., Rodriguez-Gomez et al. 2015; Lotz
et al. 2011; Conselice et al. 2009; Lopez-Sanjuan et al. 2009;
Shi et al. 2009). We wuse 7= fionmero = 0.7 and
M = ferg = 0.3 for the minor mergers, since minor mergers
are three to five times more frequent in the local universe (e.g.,
Bertone & Conselice 2009; Lotz et al. 2011). We find that the
LDA analysis is relatively insensitive to the chosen priors
within a range of values (0.1 < fionmerg <0.9). For a full
discussion of priors, see Appendix B.

For multiple predictor variables (seven in our case), the LDA
score can be generalized:

~ R 1. A .
So(x) = xTS g — =g S 1y + log (o),

[\

where x, ¥, and fi, are now vectors for the values of the
predictors, covariance matrix, and mean value of each
predictor, respectively. LDA assumes that the data are normally
distributed, that the input predictors are independent, and that
each class has identical covariance matrices. The assumption of
homogeneity of the covariance matrices leads to the simplifica-
tion Xy = X = X. We examine these statistical assumptions
in more detail in Appendix C.
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Table 3
LD1 Predictor Coefficients with 1o Confidence Intervals
w Wo

Simulation Gini Mg C A S n Ag

All Major 0.69 + 0.21 3.84 4+ 0.23 5.78 4+ 0.21 13.14 + 0.61 —0.81 + 0.05
All Minor 8.64 + 1.14 14.22 + 1.66 5.21 £ 0.26 2.53 + 0.2 —0.87 + 0.04
q0.5_fg0.3 0.75 £ 0.29 —0.82 + 0.16 9.93 + 0.39 5.89 + 0.19 —2.76 £ 0.05
q0.333_fg0.3 4.18 £+ 0.22 6.15 + 0.68 2217 + 1.2 —0.44 + 0.14
q0.333_fg0.1 5.38 &+ 0.19 5.66 + 0.28 11.41 £+ 0.39 —0.56 + 0.1
q0.2_fg0.3_BTO0.2 19.34 + 2.89 —4.08 £ 3.29 24.69 + 1.87 5.88 + 0.43 3.97 + 0.31 —0.87 £ 0.07
q0.1_fg0.3_BT0.2 11.39 + 1.17 3327 £ 2.0 29.74 + 2.33 —5.05 £ 1.95 —1.75 £ 0.11

Note. Bolded values are significantly greater than zero (to 30). We include only the predictors that are selected by the forward stepwise selection; for example, in
q0.5_fg0.3, M», C, A, and Ay are excluded by this selection. w and W, are the weight vector (composed of the predictor coefficients) and the intercept, respectively.
Together, they describe the 1d1 hyperplane that best separates the populations of merging and nonmerging galaxies for each simulation. The coefficients have positive
or negative values; a positive coefficient indicates that increasing the corresponding predictor increases the likelihood that the galaxy is a merger.

We classify a galaxy as ‘“nonmerging” if 6 > 6, and
“merging” if & > 8. Since we are working in a multi-
dimensional space, this is equivalent to searching for the
dividing hyperplane that satisfies

RN | IR N
55 g — ENOT %o g + log(fo)
1A I, 71 N
N EIHTE] 'fiy + log(#).

The terms with the covariance matrices can be expanded
fully to yield a quadratic classifier, as is done in Quadratic
Discriminant Analysis (QDA). We assume the equality of
covariance matrices, which means the covariances between
predictors are roughly equivalent for the nonmerging and
merging classes (3= >;). This assumption yields a linear
classifier (LDA),

1
Sy — ) + Eugﬁ”uo

i .
+ Sy + log(ZY) = 0.
2 m

We solve for the hyperplane that satisfies the above equation,
LDI1,

LD1 = wix + Wy =0,

where the slope, W, is the weight vector

A

W= X"y — py)

and the intercept is given by wj

N 1 1 bl
Wy = 5#5271,“0 + EMITZ%M + log (ﬁ_(;)

LD1 is also known as the first discriminant axis. Since we
have only two classes (merging and nonmerging) to separate in
this analysis, the second, third, and so on discriminant axes are
unnecessary. Instead, we are able to focus only on one
hyperplane to separate the populations.

We run the LDA on the imaging input predictors, which are
the Gini, M,g, C, A, S, n, and As. We specifically utilize the
Python package sklearn for this analysis. By focusing on the
imaging predictors, our goal is to produce a result that is useful
for observational samples of galaxies with imaging only. Since
the imaging predictors are cross-correlated, meaning that

10

combinations of two of the predictors have a linear relationship
with one another (Appendix C), we also include “interaction”
terms that are multiples of all combinations of the imaging
predictors (e.g., Gini * Mg, Gini * C, Gini * A, etc.). We refer
to these as “interaction” terms, but they can be better thought of
as multiplicative terms that allow us to explore the synergistic
effects of combining predictors. These interaction terms allow
us to remove cross-correlation effects from the original
“primary” (Gini, My, C, A, S, n, and Ag) imaging predictors.
We can then directly explore how these primary imaging
predictors affect the classifier in Section 3.1.

Including the interaction terms, we have 34 input terms for
each run of LDA. Therefore, we first use forward stepwise
selection with k-fold cross-validation to select the best input
variables for each simulation. In brief, forward stepwise
selection proceeds by introducing one predictor at a time; we
choose the number of predictors that minimizes the number of
misclassifications determined with cross-validation. We speci-
fically implement k-fold cross-validation, which is a method to
divide the full sample of merging and nonmerging galaxies (for
each run) into k equally sized subsamples, where k = 10. We
then train the LDA on nine of the subsamples, and test on the
10th sample. We repeat this procedure 10 times, and the mean
number of misclassifications in all 10 test samples allows us to
decide which set of input predictors to select. We proceed,
adding one predictor at a time, until the minima of the
misclassifications are determined. We describe this process in
more detail in Appendix D.

The input predictors that are selected by the forward
stepwise selection are given in Tables 3 and 4, along with
their coefficient values and standard errors from the LDA run.
The standard errors are obtained using k-fold cross-validation
(Appendix D). If a predictor is selected by the forward stepwise
selection but the 30 standard error indicates that it is consistent
with zero, we eliminate it from the selected predictors. We refer
to the remaining imaging predictors and imaging predictor
interaction terms as “required” predictors henceforth because
they are necessary to separate the merging galaxies from the
nonmerging galaxies along LD1 for each simulation. LD1 is a
linear combination of the selected input imaging predictors and
interaction terms, with weights w and intercept term wj. Each
element of w corresponds to an imaging predictor or interaction
term, and their relative absolute values represent their degree of
importance to the classification. We report and interpret these
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Table 4
Same as Table 3 but for the Interaction Terms of All Runs
w
Simulation Gini * Mpq Gini * C Gini * A Gini * § Gini * n Gini * Ag My * C My * A My * S
All Major —3.68 + 0.93
All Minor —20.33 £+ 2.53
q0.5_fg0.3 —2.01 + 0.43
q0.333_fg0.3 —19.09 + 1.14
q0.333_fg0.1
q0.2_fg0.3_BTO0.2 2.98 + 3.57 —38.04 + 2.88
q0.1_fg0.3_BT0.2 —39.29 + 2.88 —27.95 + 2.48 28.81 + 2.04
My, * n My, * Ag CxA Cx*S Cxn C x Ag AxS Axn A * Ag
All Major —6.5 + 0.5 —6.12 + 0.27
All Minor —4.32 + 0.39
q0.5_fg0.3 —9.52 + 0.44
q0.333_fg0.3 —6.03 + 0.91
q0.333_fg0.1 —8.57 £+ 0.34 —5.92 + 0.3
q0.2_fg0.3_BTO0.2 —5.21 + 047
q0.1_fg0.3_BT0.2 7.16 £ 0.73 —20.28 + 0.86 —6.88 + 0.34
S*n S *x Ag n* Ag

All Major

All Minor
q0.5_fg0.3
q0.333_fg0.3
q0.333_fg0.1
q0.2_fg0.3_BT0.2
q0.1_fg0.3_BT0.2

Note. Bolded values are significantly greater than zero (to 30).

01 Areniqag 6107 ‘(ddyg) 9/:7/8 “TYNINO[ TVOISAHIONISY THJ,

‘Te 19 UIASN



THE ASTROPHYSICAL JOURNAL, 872:76 (34pp), 2019 February 10

coefficients, their relative signs, and their order of importance
in Section 3.

After running LDA on each simulation individually, we
assess their differences in Sections 4.3 and 4.4. Since the major
and minor merger LDA runs are significantly different, we
caution against combining all runs into one overall classifier.
We do attempt, however, to combine all simulations into one
classifier and find that it does not adequately separate merging
from nonmerging galaxies for all merger simulations. Instead,
we create two classifiers, one from the combined major merger
simulations and one from the combined minor merger
simulations, that will be used to classify the SDSS galaxies.
They could also function as a diagnostic tool to determine the
mass ratio of the merging galaxies.

In subsequent work, we will calculate the value of LD1, or
the score of a given galaxy, using the linear combination
of the terms from w and the input predictors and Wy given in
Section 3. For example, LD1 for the combined overall run for
major mergers is

LD1pgjor = 0.69 Gini + 3.84 C + 5.78 A + 13.14 Ag
—3.68Gini * Ag —65C * Ag — 6.12A % Ag

— 081, )

where all predictor inputs must be standardized before using

this equation. To standardize, we subtract the mean and divide

by the standard deviation of the set of all predictor values.
Likewise, LD1 for the minor merger combined simulation is

LDlninor = 8.64 Gini + 14.22 C + 521 A + 2.53 Ag
—20.33Gini * C — 432 A x Ag
—0.87.
3)

The decision boundary for LD1 for the major merger
combined run is 1.16 and 0.42 for the combined minor merger
run; all galaxies with values of LDI1 greater than these values
will be classified as merging. This decision boundary is the
halfway mark between the mean of the merging and
nonmerging galaxy distributions. From here on, we use
“LD1” to describe the linear combination of predictor
coefficients for each run of LDA.

LDI is a hyperplane, so it is unable to capture complicated
nonlinearities in the imaging predictors. For instance, there is
some migration for different merger stages that occurs for
predictors such as M,y, where merging galaxies occupy different
regions of predictor space for different phases of the merger. Since
the LDA captures the bulk behavior of each imaging predictor, it
searches for the overall trend for all stages within each merger
simulation and is unable to describe these nonlinearities.

LDA adequately separates nonmerging from merging galaxies.
For instance, Figure 3 presents the histograms for the imaging
predictors for all simulations, and it is clear that the imaging
predictors are each individually unable to separate the populations
of merging and nonmerging galaxies. After performing LDA, we
find that we are able to more cleanly separate the two classes
using the first discriminant axis LD1 (Figures 4 and 5).

Although it is possible to classify a galaxy as merging or
nonmerging given a decision boundary and a value of LD1, we
use the posterior probability that a galaxy belongs to a given
class from Equation (1). Since we standardize the input
predictors to train the LDA, classifying galaxies after the
determination of LDI1 is complicated. Instead of simply
plugging in measured values of predictors into LDI, it is
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necessary to apply the same standardization used in this work
prior to classification.

We discuss the statistical assumptions made by LDA in
Appendix C. We discuss the coefficients of LD1 in Section 3.1
and the implications for each run and the combined run.
Finally, we demonstrate in Appendix E that LDA classification
is able to accurately separate the classes of merging and
nonmerging galaxies.

3. Results

After running LDA for each galaxy merger, we compare the
results. We describe our methodology to compare the LDA
classifications from different simulations in Section 3.1.
Finally, we compute the observability timescales for
Gini—M,, A, Ags, and the LDA technique in Section 3.2. We
describe the LDA classification in more statistical detail in
Appendices B-E, where we include an investigation of the
merging galaxy priors used, a multivariate analysis of the
assumptions of LDA, a description of the k-fold error
estimation, and an examination of the accuracy and precision
of the tool, respectively.

3.1. Analyzing the LDI1 Coefficients

Since we run LDA on each merger simulation individually and
LD1 is a vector, we produce different values for each coefficient
of LDI. An advantage of LDA is that we are able to directly
interpret the relative weights of each individual predictor (Tables 3
and 4) for each simulation. We focus on the primary predictors,
which are in Table 3, since they are a more straightforward way to
interpret the influence of the imaging predictors than the
interaction terms in Table 4. We compare the values of these
primary coefficients of LD1 for each simulation. The coefficients
have positive or negative values; since a larger value of LDI
indicates that a galaxy is a merger, a positive coefficient indicates
that increasing the corresponding predictor increases the like-
lihood that the galaxy is a merger. Our goal is to determine if the
classification is significantly different for different simulations and
if it differs for different merger initial conditions.

We use stratified k-fold cross-validation (Appendix D) to
determine the standard error on the coefficients of LD1 that are
selected by forward stepwise selection. In brief, we randomly
split the sample into 10 parts, where nine parts are the training
sample and the 10th part is the test sample. Stratified k-fold
cross-validation ensures that the percentage of merging and
nonmerging galaxies in the test set matches that of the full
sample. We perform this operation 10 times and then calculate
the mean value and standard deviation (standard error) for the
LD1 coefficients and intercept (W and W) from the 10 iterations
of the training and test sets.

For both Tables 3 and 4, include the predictors that are selected
by the forward stepwise selection. Additionally, we put in bold the
input predictors that are significant (to 30 above zero) according
to their errors provided by &-fold cross-validation. We use both of
these predictor selection techniques to determine which predictors
are selected and significant (we exclude all other predictors from
our analysis and discussion). We show a visualization in Figure 6
of the order of importance of the individual primary imaging
predictors for each simulation. Overall, we can only discard the
clumpiness (S) primary predictor from our analysis; it is always
either excluded by the forward stepwise selection of predictors or
<30 above zero.
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Figure 3. Individual histograms for each imaging predictor for the combined major merger simulations (left) and combined minor merger simulations (right). We
show for all of the simulations combined that we are unable to cleanly separate the nonmerging (blue) and merging (pink and purple for major and minor mergers,
respectively) galaxies using any individual imaging predictor. The y-axis is the “Count” or number of merger simulation snapshots in each bin. The x-axis of each
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the standardized Gini value given here.

There are significant differences between the rankings of
imaging predictors for each simulation. For instance, we find
that the major merger simulations (q0.5_fg0.3, q0.333_£fg0.3,
and q0.333_fg0.1) have different rankings of predictor
importance; Ay and A are more important for the major
mergers. For minor mergers, Ag is unimportant, while C and
Gini become very important.

We interpret the sign of each coefficient individually for
each simulation in Section 4, compared to previous work. We
further interpret the relative importance of the coefficients for
different merger initial conditions and discuss how the value of
the predictors evolve as the merger progresses in Section 4.

3.2. Observability Timescales

To compare our new LDA technique to previous works that
identify merging galaxies, we calculate the observability
timescales of Gini—M5,, A, Ag, and the LDA technique for
the simulated galaxies. We focus on these particular predictors
because past work has defined cuts for Gini—M,,, A, and Ag,
and classified galaxies lying above these thresholds as merging.
Likewise, the observability timescale of Gini—M»g, A, and Ag
are measured from these cuts in predictor space, where a
simulated galaxy is “identifiable” as a merger for the duration
of the time it spends above these thresholds. For Gini—M,,
Lotz et al. (2008) used

Gini > —0.14 M,y + 0.33,

where everything above the line is defined as a merger. The
asymmetry cut is defined by Conselice et al. (2003):

A > 035,
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where galaxies with A values above 0.35 are mergers. The
shape asymmetry cut is from Pawlik et al. (2016):

Ag > 0.2,

where galaxies with Ag values above this cut are mergers.

We show these cuts in predictor space in Figures 7-9,
respectively, for the combined major and minor merger
simulations. We plot C with A in Figure 8 to include the
evolution of C, although there are is no formal cut in predictor
space for this predictor. For the same reason, we plot n against
Ag in Figure 9. In these three predictor space plots, we are able
to show all of the predictors (we only exclude S because it is
unimportant to the analysis).

For each snapshot in each merger simulation, we determine the
viewpoint-averaged value for Gini—M,,, A, and Ag. If a given
snapshot exceeds the cut threshold for a merging galaxy, we
designate that snapshot as “identifiable.” By combining all
identified snapshots, we determine the observability timescale,
which we list in Table 5. If zero snapshots were successfully
identified, the observability timescale is less than the time
resolution (i.e., <0.1 Gyr). The timescale of observability from
the LDA technique is shown in Figure 10; we label a snapshot of
a merger as identifiable if the viewpoint-averaged mean of LD1 is
above the decision boundary (shown with a horizontal black line).

For all simulations, we find that the timescale of observa-
bility for the LDA technique is longer than the individual
Gini—M,, A, and Ag timescales of observability. The overall
trend is ~0.2-0.8 Gyr observability timescales in Gini—M,,
very short timescales of observability for A (<0.1 Gyr), and
longer observability timescales in Ag that are >1 Gyr. The
observability window for LDA comprises ~80%-90% of the
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for each run.

total length of the merger event, which translates to
2.0-2.5 Gyr timescales for the major mergers and 3.5-8.8 Gyr
timescales for the minor mergers.

Opverall, the LDA observability timescale dominates because
it relies upon multiple different imaging predictors that are
sensitive to the merging galaxies at different stages of the
merger. However, for the major mergers, the Ag timescale is
comparable to the LDA observability timescale. We discuss
these trends, how observability timescales scale with the
merger initial conditions, and how these timescales compare to
previous work in Section 4.2.

4. Discussion

We explore the behavior of the individual predictors in the
LDA technique. Since we remove -correlations between
predictors with the interaction terms, we are able to discuss
the positive or negative signs of the primary predictors (we
refer to Gini, M,y, C, A, S, n, and Ag as the “primary
predictors™) in Section 4.1. We also compare these results to

past work with these imaging predictors and discuss how their
values change for merging and nonmerging galaxies. Then, we
discuss the strengths of the LDA technique. First, we focus on
the increased observability timescale of the LDA technique in
Section 4.2 and how it is sensitive to different stages of the
merger. We also discuss how different imaging predictors
change in sensitivity throughout the timeline of a merger.
Second, we focus on how the classification changes for
different mass ratios and gas fractions in Section 4.3 and
Section 4.4, respectively. Finally, we assess the overall
accuracy and precision of the LDA technique in Section 4.5
and test it on a subsample of SDSS galaxies in Section 4.6.

4.1. The Signs of the LDI1 Coefficients are Consistent with
Previous Works

One of the strengths of LDA is that we can independently
interpret the behavior of each predictor. We compare the
primary coefficients of LD1 to previous works by Conselice
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et al. (2003) and Lotz et al. (2008, 2010a, 2010b) in terms of
the signs (positive or negative) of the predictor coefficients.

In Figures 4 and 5, a higher value of LDI indicates that a
galaxy is more likely to be identified as a merger. Since LD1 is
linear, we can interpret the individual signs of the coefficients
in a similar way. If a coefficient is positive, this indicates that a
higher value of the coefficient will increase the probability that
a galaxy is classified as a merger and vice versa. We provide
Figures 7-9 to visually compare the location in predictor space
of the population of merging galaxies relative to the population
of nonmerging galaxies. Figures 11 and 12 examine the time
evolution of the values of individual predictors for the
q0.5_fg0.3 and q0.2_fg0.3_BT0.2 runs, respectively. We select
these two runs since they are representative of the predictor
evolution for a typical major and minor merger simulation.

Since this discussion relies upon the time evolution of
predictors, we quickly recap the definitions of merger stage. A
merger begins at first pericentric passage and ends 0.5 Gyr
following the final coalescence of the nuclei. An early-stage
merger is one where the separation of the stellar bulges is
Ax > 10kpc, a late-stage merger is 1 kpc < Ax < 10 kpc, and
a post-coalescence merger is Ax < 1 kpc.

Overall, we conclude that the positive/negative signs of the
individual predictor coefficients are as expected from past
studies of merger identification. We discuss the predictor
coefficients in more detail and how they change for different
mass ratios and gas fractions in Sections 4.3 and 4.4.

4.1.1. Gini

The Gini coefficients are significant and positive for the
combined major and minor merger simulations, as well as
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q0.333_fg0.3, q0.2_fg0.3_BT0.2, and q0.1_fg0.3_BTO0.2,
which is unsurprising because a higher Gini index has been
shown to identify merging galaxies with one or more bright
nuclei (e.g., Conselice 2014 and references therein).

4.1.2. My

The M, coefficient is insignificant for all runs. Interestingly,
the value of My for the mergers evolves with time; this behavior
can be examined in Figure 11, which shows the evolution of all
the imaging predictors with time for the q0.5_fg0.3 simulation.
This time evolution is especially apparent for the major merger
simulations. Early stage mergers evolve to the left toward the
merger region of the Gini—M,, diagram as their concentration
decreases early in the merger (recall that M, is similar to C but
does not depend on the location of the center of the galaxy). This
leftward migration toward the merger domain would correspond
to a negative value for the M, coefficient.

Then, in the post-coalescence stages, the merging galaxies
evolve away from the merger region on the Gini—M,q diagram, to
the right. Lotz et al. (2008) also find this trend in which galaxies
evolve away from the merger region of the Gini—M, diagram for
the later stages of a merger. This rightward migration makes sense
because post-coalescence galaxies begin to lose visually disturbed
features such as tidal tails and appear more concentrated in their
light distributions. This evolution of M, in both directions for
major mergers leads to a washing out of any dominant trend of
M, for the major merger simulations.

4.1.3. Concentration

The central concentration of light, C, is important for all
LDA runs except q0.333_fg0.3, where it is insignificant. The
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that the relative importance of predictors changes between all simulations.

value of the C coefficient is positive for all runs except
q0.5_fg0.3, where it is negative. A positive C coefficient
indicates that mergers tend to have a higher value of C. We first
discuss the overall behavior of C and then focus on the nuances
of C, such as the decrease of C during the early stages of major
mergers.

Since C is positive for the majority of merger simulations,
we can conclude that, in general, merging galaxies have more
centrally concentrated light than isolated galaxies. Lotz et al.
(2008) found that concentration is not a strong predictor of a
merger, but that it is higher for the later stages of a merger. This
is expected given that mergers tend to build elliptical galaxies,
which has been shown in detail for major mergers (e.g., Bendo
& Barnes 2000; Bournaud et al. 2005). It has additionally been
shown that minor mergers can contribute to stellar bulge
growth and drive a less dramatic transformation of galaxy
morphology (e.g., Walker et al. 1996; Cox et al. 2008). We
discuss C in more detail for different mass ratios in Section 4.3.

We observe a gradual increase of C with the progression of
the merger from the beginning of the early stage to the end of
the post-coalescence stage. We examine Figure 11 for the time
evolution of the C predictor for the q0.5_fg0.3 run. The value
of C for q0.5_fg0.3 demonstrates an increase with a slight
decrease during the early and late stages of the merger. It
remains heightened for the nonmerging snapshots following
final coalescence. This overall increase is typical behavior for
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the rest of the merger simulations and happens for the minor
merger simulations, without the dip during the end of the early
and beginning of the late stages (Figure 12). The increase of C
throughout the lifetime of each individual merger simulation
leads to positive coefficients of the C predictor in the LDA
technique. However, the dip in C values for q0.5_fg0.3 is
pronounced during the early stages and results in a negative
coefficient of C in the LDA.

4.1.4. Asymmetry and Shape Asymmetry

The LDI1 coefficients for the asymmetry (A) and shape
asymmetry (Ag) predictors both have positive values for all
simulations (Ag is insignificant only for q0.1_fg0.3_BTO0.2).
This indicates that the more asymmetric a galaxy, the more
likely we are to identify it as a merger. Asymmetry shows this
same relationship in Lotz et al. (2008) and Conselice et al.
(2003), where the value increases for mergers.

4.1.5. Clumpiness

Clumpiness () is insignificant for LD1 for all simulations.
This result is anticipated given that Lotz et al. (2008) found
clumpiness to be a less powerful predictor, but disagree with
Conselice et al. (2003), who found that clumpiness is higher for
merging galaxies. However, the sample of merging galaxies
from Conselice et al. (2003) is built from local luminous and
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Gini > 0.14M,, + 0.33; all galaxies above this cut are identified as mergers in other work (e.g., Lotz et al. 2008).

ultraluminous infrared galaxies (LIRGs and ULIRGs), both of
which are inherently very high in clumpiness. Thus, it is
expected that we do not see the same importance of S for the
merging galaxies in this work.

4.1.6. Sérsic Index

The Sérsic index, n, is also unimportant for all simulations. If
n is higher for merging galaxies, this indicates that merging
galaxies have steeper light profiles. The evolution of n is
closely tied to that of C, which is unsurprising given that these
predictors are correlated (Appendix C). n evolves toward
higher values for later stages in the merger, where only a single
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nucleus is present. The key difference between C and n is that n
has a smaller separation in value between merging and
nonmerging galaxies for most simulations, so it is an
unimportant coefficient for the classification.

4.2. LDA Lengthens the Timescale of Observability of Merging
Galaxies

The various LDA predictors evolve with time over the
course of a galaxy merger. By incorporating seven different
imaging predictors, we are able to capture a longer timeline for
merging galaxies with the LDA technique than with individual
predictors. In this section, we discuss the time evolution of the
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Figure 8. Same as Figure 7 but for the CA predictor space. The cut in CA space is A > 0.35; all galaxies to the right of this line are identified as mergers in other work

(e.g., Conselice et al. 2003).

imaging predictors and how this limits their observability
timescales. We also compare the estimates of observability
time of different imaging predictors to past work.

We show the time evolution of the individual predictors (and
LDI1) in Figures 11 and 12 for the q0.5_fg0.3 and
q0.2_fg0.3_BTO0.2 simulations, respectively. We include the
cutoff values of A and Ag; if a galaxy exceeds these values it is
“identifiable” as a merger as in Section 3.2. We show one
major and one minor merger simulation to demonstrate the
main differences between the time evolution of the predictors
for different mass ratios.

Using the Gini—M, cut in predictor space from Section 3.2,
most of the simulated merging galaxies would be identified as
merging by the cut in Gini—M,, during the early and late
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stages of merging, but for a shorter total time than with the
LDA technique. The Gini—M>q 0.59 Gyr time frame (indicated
by the spike in My, values) for the q0.5_fg0.3 major merger is
shown in Figure 11. The q0.333_fg0.3 and q0.333_fg0.1
simulations are also identified by this cut during the early and
late stages of merging for a similar time frame. However, as the
mass ratio begins to increase for minor mergers, the
observability timescale of the merger from the Gini—Mq
technique decreases. For instance, the q0.2_fg0.3_BT0.2
merger is identified by this cut during the early and late stages
of merging, but only for a 0.19 Gyr time frame (also indicated
by a spike in M,, values in Figure 12). These results are
consistent with previous work; Lotz et al. (2008) found that
Gini—M,, is most sensitive to mergers during the first pass
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Table 5
Observability Timescales in Gyr for the Four Different Merger Identification
Techniques Compared in Section 3.2 as Well as the Total Time of the Merger

Total Mer-
Simulation ger Time LDA  Gini—M>g A Ag
q0.5_fg0.3 2.20 1.96 0.59 <0.1 2.20
q0.333_fg0.3 2.64 2.45 0.34 <0.1 2.64
q0.333_fg0.1 2.83 2.05 0.78 <0.1 234
q0.2_fg0.3_BT0.2 3.52 3.52 0.19 <0.1 3.52
q0.1_fg0.3_BT0.2 9.17 8.78 0.73 <0.1 779

(early stage) and the final coalescence of the nuclei (late stage),
and Lotz et al. (2010a) showed that Gini—M, is sensitive to
merger mass ratios less than 1:9. Also, our 0.2-0.8 Gyr
Gini—M, timescale of observability for the simulations with
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a mass ratio >1:9 is consistent with the 0.2-0.6 Gyr timescale
of observability from Lotz et al. (2008).

The A cutoff identifies some of the early and late stages of
the major mergers, but has an even shorter timescale of
observability than Gini—M,,. This behavior is apparent in
Figure 11 when the A value exceeds the 0.35 cutoff value
during the beginning of the early stage and in a spike during the
late stage of the merger. This is consistent with Lotz et al.
(2008), where the first passage and final coalescence (during
the late stage) show the largest asymmetries. Although the A
value exceeds 0.35 for more snapshots in the major merger
simulations, we find a <0.1 Gyr timescale for both major and
minor mergers. This <0.1 Gyr timescale for minor mergers can
be seen in Figure 12, where the A value only approaches the
cutoff value for one snapshot. Lotz et al. (2010a) found an A
timescale of 0.2-0.4 Gyr for major mergers and then less than
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Figure 10. Average value of LD1 (mean for all viewpoints) of each snapshot of a merger for all galaxy merger simulations with confidence intervals 1o above and
below the mean. The horizontal black line is the decision boundary; galaxies above this line are classified as mergers and galaxies below this line are nonmergers. LD1
and the decision boundary are different for each merger. The vertical dashed lines mark the beginning of the late stage, the beginning of the post-coalescence stage,
and the end of the merger (0.5 Gyr following final coalescence). The blue line and confidence intervals are for the matched samples of nonmerging galaxies for each
simulation. LD1 provides sensitive identification of merger morphology at many stages throughout the merger.
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Figure 11. Time evolution of the imaging predictors for the q0.5_fg0.3 simulation. The LD1 sensitivity is shown in the bottom-right panel for comparison; the dashed
vertical lines mark the beginning of the late stage, beginning of the post-coalescence stage, and end of the merger. We plot the nonmerging galaxies in dark blue for
comparison purposes. We also plot horizontal lines for the Ag and A cutoffs in the literature (0.2 and 0.35, respectively) and for the decision boundary for LD1. The
dark blue lines are for the matched sample of isolated galaxies. The most powerful predictors for the q0.5_fg0.3 simulation are Ag, A, and C.

0.06 Gyr for minor mergers. Although we have a shorter
timescale of continuously heightened A values for the major
merger simulations, we find that the major mergers result in
more snapshots where the value of A exceeds 0.35, which is
consistent with the longer observability timescale of A for
major mergers from Lotz et al. (2010a).

Ag has a longer timescale of observability than A and
Gini—M,, for both major and minor mergers. The merging
galaxies evolve to have large values of Ag at various times
throughout the early, late, and post-coalescence stages of the
merger. Ag identifies the major mergers at nearly all points
throughout the simulation, expanding the sensitivity of the
LDA technique in time. It only fails to identify the major
mergers at some post-coalescence stages. Ag is notably much
better at identifying the minor mergers as mergers than both A
and Gini— M,,, and it is most sensitive to the early and late
stages of these mergers. Overall, Ag shows less dependence on
time in the merger and is a more consistent identifier of
merging galaxies during the early, late, and early post-
coalescence stages. This makes sense because Ag is sensitive
to faint tidal features; it should therefore be more successful
than A at identifying disturbed structures at all times.

Finally, we focus on the time evolution of C, which is not
assigned a cutoff value in the literature but which has
significant importance within the LDA technique. We find
that all mergers show elevated values of C, especially for the
post-coalescence stages, meaning that C is critical within the
LDA technique for capturing the post-coalescence snapshots in
time. Gini exhibits a similar behavior to C for the minor
mergers, becoming most enhanced during the late and post-
coalescence stages.

Snyder et al. (2018) applied a random forest classifier to the
Mlustris galaxies and found that features that rely on
concentration are more important for selecting recent mergers
while features that rely on asymmetries are more important for
selecting galaxies that are about to merge. Although the Illustris
simulation is a cosmological merger tree simulation, it is
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informative that the results are consistent with the time
sensitivities of various imaging predictors in this work.

Unlike the individual imaging predictors, we find that the
sensitivity of the LDA depends only minimally on merger
stage. It is slightly less sensitive for the very early stages and
very late post-coalescence stages of the merger; this is expected
since the galaxies often appear visually to be isolated galaxies
prior to first pericentric passage and after coalescence. As
discussed in Section 2.1, we use the very early and very late
stages of the merger (prior to first passage and >0.5 Gyr
following final coalescence) as isolated galaxies in this
analysis, so these galaxies are very similar in imaging to
galaxies at an adjacent point in time. This explains why the 1o
confidence intervals overlap with the decision boundary for
many of these very early-stage and very late-stage snapshots in
Figure 10.

The individual imaging classification techniques are sensi-
tive to the different stages of a merger. For instance, A and
Gini—M, identify early and late-stage mergers; Ag identifies
early-stage, late-stage, and some post-coalescence mergers; and
C is most sensitive to post-coalescence mergers. LDA is able to
combine these imaging techniques into one more complete
classifier that maintains sensitivity throughout the lifetime of a
merger.

4.3. The Coefficients of LD1 Change with Mass Ratio

When we examine the relative importance of various
predictors for merger simulations with varying mass ratios,
we determine that Ag and A are relatively more important for
the major mergers and that C and Gini are relatively more
important for the minor mergers. A is important for all merger
simulations.

First, we address the major mergers, where Ag and A are both
important coefficients and indicators of disturbed visual
morphology. The A coefficient has a normalized value of
0.28-1.0 for the three major mergers and the combined major
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Figure 12. Same as Figure 11 but for the q0.2_fg0.3_BT0.2 simulation. The most powerful predictors for the q0.2_fg0.3_BT0.2 simulation are C, Gini, A, and Ag.

merger runs, indicating that it is one of the most important
primary predictors. It is less important for the minor mergers
and the combined minor merger simulation, but its relative
importance is still high, ~0.24-0.89 (Figure 6). This result
agrees with Lotz et al. (2010a), who found that A is a good
probe of major mergers with mass ratios between 1:1 and 1:4.
This is because the major mergers have more disturbed
morphologies, especially during the early stages of the merger.
However, the A predictor remains important for the minor
mergers, where the visual morphology is less disturbed.

Ag is more sensitive (than A) to faint tidal tails in galaxies.
The Ag coefficient ranges in normalized values from 0.25-1.0
for the major mergers and 0.16-0.18 for the minor mergers.
Since both A and Ag track visual morphology, it is significant
that while A is important for all runs, Ag is less important for
the minor mergers. This suggests that the more disturbed visual
morphology of major mergers is best identified with both
measures of asymmetry. On the other hand, minor mergers rely
more on measures of concentration like C and Gini, so while A
is still an important predictor for them, it is less dominant.

Next, we address C and Gini, where their importance to the
minor mergers can be attributed to two main factors: scatter and
necessity. The major mergers show more scatter in C value,
while the minor mergers show a general trend of C
enhancement as the mergers progress. In Figure 8, the major
mergers range from values of 1-5.5, while the minor mergers
only span 2—4 in C. Upon examination of the predictor values
with time (Figures 11 and 12), we verify that C increases
steadily with time for the minor mergers and reaches a peak
value of ~3-3.5. For major mergers, C shows a general
increase with time but also decreases during the most visually
disturbed epochs of the merger (early and late stage). However,
the major mergers do ultimately build more concentrated
remnants than the minor mergers, with C values peaking
at 4-4.5.

Gini is heightened for both major and minor mergers in
Figures 11 and 12. The LDA for the major mergers was able to
rely upon stronger predictors such as A and Ag to fully separate
the populations of merging and nonmerging galaxies.
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However, the minor mergers are less distinguishable from
nonmerging galaxies using these predictors. Therefore, Gini
becomes more important for the minor mergers. This result is
consistent with Lotz et al. (2010a), who found that Gini—M,,
remains effective for identifying minor mergers down to mass
ratios of 1:9.

Figure 6 also shows an important difference between the 1:2
major merger and the 1:3 major mergers. Between the two
mass ratios, measurements of concentration (C and Gini)
become slightly more important in the 1:3 major mergers,
initiating the trend toward minor mergers.

Our findings regarding C make sense given the current
understanding of galaxy morphological evolution. To first order,
equal mass ratio major mergers build large elliptical galaxies (e.g.,
Bendo & Barnes 2000; Bournaud et al. 2005) while intermediate
mass ratio mergers (down to 1:10) are predicted to build galaxies
with spiral-like morphologies and elliptical-like kinematics (e.g.,
Jog & Chitre 2002; Bournaud et al. 2004). Very high mass ratio
mergers (minor mergers, >1:10) build disturbed spiral-like
galaxies (e.g., Naab et al. 2014 and references therein). However,
some work has found that multiple minor mergers can still build
elliptical surface brightness profiles in the remnant galaxy
(Bournaud et al. 2007; Jesseit et al. 2009; Bois et al. 2011) and
that even one merger of a very minor mass ratio can build stellar
bulges in the remnant (Cox et al. 2008).

Statistically, minor mergers are much more common than
major mergers, accounting for three times as many mergers
(e.g., Bertone & Conselice 2009; Lotz et al. 2011). The
ubiquitous nature of minor mergers increases their relative
importance for galaxy evolution. For example, Ownsworth
et al. (2014) found that the majority of stellar mass is added to
galaxies by star formation (24% of stellar mass) and minor
mergers (34% of stellar mass), whereas major mergers only
account for 17% of the total galaxy stellar mass at z = 0.3.
Other observations of local elliptical galaxies and the dearth of
major mergers indicate that minor mergers may be more
important than previously thought for building local elliptical
galaxies with more concentrated light profiles (Trujillo et al.
2009; Taylor et al. 2010).
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The above picture of galaxy morphological evolution is
consistent with the differences between C for the major and
minor merger simulations. C is more important for the minor
mergers, because it exhibits less scatter, than for the major
mergers, where the dip in C weakens the overall strength of the
coefficient in the LDA technique. The major merger remnants
show a greater overall enhancement of C by the end of the
merger, building galaxies with C ~ 4-5 that are more
consistent with the classical picture of large elliptical galaxies.
Visually, the galaxy remnants for major and minor mergers still
have disk profiles with a more concentrated center, indicative
of an enhancement of the stellar bulge. This means that by the
end of the merger, minor and major mergers have both
enhanced the concentration of the light profile of the galaxy
and therefore contributed to the morphological evolution of
galaxies.

4.4. The Coefficients of LD1 Do Not Change (Significantly)
with Gas Fraction

Next, we examine differences between the gas-rich and gas-
poor simulations. We specifically compare 0.333_fg0.3 to
q0.333_fg0.1, which are both 1:3 mass ratio major mergers
matched for all properties except gas fraction. The important
predictors for the gas-poor merger are Ag, A, and C, while Ag,
A, and Gini are important for the gas-rich merger. Overall,
these coefficients are very similar between the gas-rich and gas-
poor simulations. Both rely upon measurements of asymmetry
(A and Ag). Both simulations also rely upon measurements of
concentration (Gini and C). Although C is more important for
the gas-poor merger, Gini is more important for the gas-rich
merger.

Lotz et al. (2010b) established that Gini—M,, is weakly
dependent on gas fraction whereas A is relatively enhanced for
gas-rich mergers. Since A and Ag are relatively important for
both gas-rich and gas-poor simulations, we conclude that the
dominant initial condition must be mass ratio for A to remain
important for the gas-poor major merger.

Although there is little difference in Ag in terms of the
coefficients for the gas-rich and gas-poor simulations, there is a
small difference in the observability timescales for Ag and
Gini—M,. The observability times for Ag is shorter for the gas-
poor major merger in Table 5. The timescale of observability
for Ag for q0.333_fg0.1 is 2.34 Gyr while it is 2.64 Gyr for
q0.333_fg0.3. Since the overall merger timescales are so
similar for these two simulations, the Ag observability timescale
is significantly longer for the gas-rich major merger. The
Gini—M, timescale is also significantly different for the gas-
rich and gas-poor simulations; it is longer for the gas-poor
major merger (0.78 Gyr) and shorter for the gas-rich major
merger (0.34 Gyr). This result is consistent with Lotz et al.
(2010b), where the result is that the Gini—M,, observability
timescale decreases slightly with increasing gas fraction while
the A observability timescale increases with gas fraction. The
Gini—M,, timescale may be decreasing slightly with gas
fraction here for similar reasons as stated in Lotz et al. (2010b):
the increased dust obscuration at the central nuclei lowers the
Gini values for gas-rich simulations. The gas-poor simulation
has the longest Gini—M,, observability timescale of all the
simulations.

Kormendy et al. (2009) suggested that both dry and wet
mergers (gas poor and gas rich, respectively) build up the bulge
mass of a galaxy, contributing to its elliptical morphology (or
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Table 6
LDA Performance

Simulation Accuracy Precision Recall F; Score
All Major 0.85 0.97 0.80 0.88
All Minor 0.81 0.94 0.66 0.78
q0.5_fg0.3 091 0.98 0.82 0.90
q0.333_fg0.3 0.90 0.97 0.87 0.92
q0.333_fg0.1 0.86 0.96 0.83 0.89
q0.2_fg0.3_BTO0.2 0.88 0.96 0.78 0.86
q0.1_fg0.3_BT0.2 0.89 0.89 0.79 0.84

Note. We list the accuracy, precision, recall, and F; score as defined in
Appendix E for all runs of the LDA classification.

an increased value of C). Overall, dry mergers are more
important for building elliptical galaxies but wet mergers can
also increase the central concentration of a galaxy since they
drive starbursts that contribute to bulge growth. The C value for
the gas-rich major merger increases with time to a peak value
of ~4.3, while the gas-poor major merger increases to a peak
value of ~4.7. The gas-poor major merger seems to have a
slightly higher concentration, possibly reflecting the tendency
for dry mergers to build galaxies with elliptical morphologies.
However, these values are not significantly different when we
take into consideration the viewpoint-averaged standard
deviation for these snapshots. Therefore, the difference in gas
fraction is not producing a significant difference in the
concentration of the remnant.

Overall, while the timescale of observability for Ag is longer
for the gas-rich major merger and the timescale of observability
of Gini—M,, is longer for the gas-poor major merger (which is
consistent with Lotz et al. 2010b), the differences in LDA
coefficients are most pronounced for mergers of different mass
ratios (Section 4.3). This is why we choose to separate the
combined runs by mass ratio as opposed to gas fraction.

4.5. The LDA Technique Is Accurate and Precise at Identifying
Merging Galaxies

The accuracy and precision of the LDA technique are very
high (the accuracy is 85% and 81%, and the precision is 97%
and 94% for the major merger and minor merger combined
simulations, respectively; Table 6 in Appendix E). We use
accuracy to determine the relative number of true detections
(TP, true positives, and TN, true negatives) to all detections
(includes FP, false positives, and FN, false negatives); the
accuracy is defined as (TP + TN)/(TP + TN + FP + FN). If
the accuracy is high, this means that our method does a good
job of minimizing the number of false positives and false
negatives. We use precision to determine the relative number of
true positives to all positive detections, including false
positives; the precision is defined as (TP/(TP+FP)). If the
precision is high, then there is a low percentage of false
positives, which is desirable because false positives are
nonmerging galaxies that are incorrectly included as mergers.
We want to avoid contamination in the sample of merging
galaxies when we apply the technique to real imaging.

In this section, we compare the accuracy and precision of the
LDA technique to those of past work, which utilizes pair
studies or cuts in Gini—M, space, A, or As. We also compare
to other works that have utilized machine learning tools to
identify merging galaxies.
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First, we compare the LDA accuracy and precision to those
of close pair studies with SDSS. Darg et al. (2010) compared
Galaxy Zoo classifications of major mergers to all SDSS galaxy
pairs with a projected separation of <30 kpc and a line-of-sight
velocity offset <500 km s~ '. After visually examining all 2308
close pair objects, they find that 28% of objects are chance
superpositions and/or have no signs of interaction. Although
this is an imperfect comparison to our work since close pair
studies only capture a brief snapshot of a merger, the overall
result is that 28% of the close pairs are false positives. Darg
et al. (2010) also estimated that only 20% of advanced mergers
identified in Galaxy Zoo are pairs in SDSS, which is a small
fraction of true positives. In comparison to the LDA technique,
pair studies have low accuracy, since many mergers are missed
by the technique, and low precision, since there is also a
significant fraction of false positives.

Next, we directly compare the accuracy and precision of the
LDA technique to those of the cuts in predictor space introduced
in Section 3.2. We measure the accuracy and precision of the
Gini—M,,, A, and Ag cuts for the simulations and find that
precision remains high. This means that these methods do not
incorrectly identify nonmergers as mergers. In fact, they have the
opposite problem and fail to identify merging galaxies as such,
leading to low accuracies. We find that Gini—M, has accuracies
from 60% to 70%, A has accuracies from 40% to 60%, and Ag has
accuracies from 70% to 90%. The low accuracy of the A predictor
agrees with Conselice et al. (2003), who found that the fraction of
mergers (defined to be a sample of ULIRGs) that are correctly
identified by A is ~50%.

We also find that there is a difference in accuracy for
different mass ratios. For example, the minor mergers fall at the
bottom of the accuracy ranges given above. This is worrisome
because the cuts in predictor space are preferentially selecting
major mergers, which are much less numerous than minor
mergers. In contrast, the LDA accuracy changes by less than
10% between all simulations, ranging from ~85%-90%
accuracy for all simulations. Using Gini—M,y, A, or Ag in
isolation is not sensitive enough to correctly and consistently
identify mergers of all mass ratios at all merger stages.

Our LDA technique is more accurate and precise than
individual imaging predictor classifiers and is comparable to
other techniques that combine many different imaging
predictors. For instance, Snyder et al. (2018) and Goulding
et al. (2018) used random forest classifiers with a collection of
similar parametric and nonparametric imaging predictors to
classify merging and nonmerging galaxies and find similar
accuracies and precisions.

Snyder et al. (2018) wused the Illustris cosmological
simulation to produce synthetic deep Hubble Space Telescope
images of merging galaxies at 12 time steps over a range of
redshifts (0.5 <z < 5). While Snyder et al. (2018) work with
galaxies dissimilar to our low-redshift SDSS galaxies, we are
able to roughly compare the two methods because both rely
upon similar imaging predictors. For instance, Snyder et al.
(2018) used a binary classification that relies upon Gini, M5,
A, and C as inputs (among other imaging predictors). They find
a similar accuracy and precision of their classifier when they
test it using the simulated Illustris galaxies. The result is a
classifier that relies on different imaging predictors for different
merger stages, similar to the LDA technique in our work. The
random forest has a completeness of ~70% and a purity of
10% at z = 0.5 and 60% at z = 3. Completeness is defined as
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TP/(TP+FN), which is defined as recall in our work, and
purity is TP/(TP+FP), which is defined as precision here.

Since the isolated galaxy sample in Snyder et al. (2018) is
different than the sample of isolated disks used in this work, we
are unable to directly compare the false positive and false
negative rates. We instead discuss one relative strength of the
LDA technique. Some of the false negatives in Snyder et al.
(2018) result from the failure of the method to detect some
minor mergers, and some of the false positives result from a
narrow temporal definition of the duration of the merger, which
is restricted to 500 Myr. One relative strength of the LDA
technique is that it is built from high temporal resolution
simulations and is therefore able to use a more complete
definition of merging galaxies. It also extends the definition of
merging galaxies beyond the 500 Myr time frame used in
Snyder et al. (2018). This is a general strength of high temporal
resolution isolated simulations over large cosmological
simulations.

Goulding et al. (2018) used a random forest to create a
nonbinary classifier that separates their sample of Hyper Suprime-
Cam (HSC) galaxies into subsamples of major mergers, minor
mergers and irregulars, and non-interacting galaxies. The input
imaging predictors include Gini, C, A, S, and n for the galaxy
images as well as the residual images after subtracting a GALFIT
surface brightness model. They visually classified galaxies in the
HSC sample to test the performance of the classifier and found that
the major mergers suffer from mild contamination (~10%) with an
overall completeness for the merger samples of 75%. The LDA
technique has a comparable result with 4% contamination and
79% completeness for major mergers. The minor mergers are more
difficult to distinguish from isolated and major mergers in
Goulding et al. (2018) and therefore have increased contamination
and decreased completeness. The LDA technique, on the other
hand, only suffers from 6% contamination and 66% completeness
for minor mergers. It should be noted that Goulding et al. (2018)
created and tested the random forest method on real galaxy images,
so this is an imperfect comparison, simply meant to roughly
compare the accuracy and precision of different imaging merger
identification methods. Additionally, since the LDA technique is
developed from disk-dominated galaxies, its accuracy and
precision apply best to galaxy samples that match the properties
of the simulated galaxies used to construct the technique.

4.6. Testing the Technique on SDSS Galaxies

To preliminarily test the performance of the LDA technique
on real images of galaxies, we apply the major and minor
merger classification techniques to a sample of SDSS galaxies
that have been identified as mergers, spirals, and ellipticals in
Galaxy Zoo (Lintott et al. 2008, 2011). We randomly select 50
galaxies from each galaxy morphology classification (merger,
spiral, and elliptical) using a “superclean” cutoff value of perg,
Pets Pcs > 0.95, where pyer, is the probability that the galaxy is
a merger, p. is the probability that the galaxy is classified as
elliptical, and pcs is the probability that the galaxy is classified
under the umbrella classification of “combined spirals.” The
probabilities are the percentage of Galaxy Zoo users that
selected a given morphology type. We require that these
galaxies exceed the (S/N) cutoff value of 2.5.

We apply the major and minor merger combined LDA
techniques to each of the three subsamples of galaxy types and
determine the fraction of galaxies that are classified by the LDA
technique as merging and nonmerging. We show some example
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Figure 13. r-band images of Galaxy Zoo mergers (top), elliptical galaxies (middle), and spiral galaxies (bottom) that are classified as mergers (left column) and
nonmergers (right column) by the major merger classification technique. For each case, the probability that the galaxy is a merger as classified by the major merger
technique (Pperg major) 1 given. The major merger technique identifies 86% of Galaxy Zoo mergers as mergers, 73% of Galaxy Zoo ellipticals as mergers, and 14% of

Galaxy Zoo spirals as mergers.

classifications for the major merger classification tool in
Figure 13. For the major merger classification tool, we find that
86% of the Galaxy Zoo mergers are identified as mergers, 73% of
the Galaxy Zoo elliptical galaxies are identified as mergers, and
14% of the Galaxy Zoo spirals are classified as mergers. We show
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images of these classification categories in Figure 13 for the major
merger classifier. For the minor merger classification, 93% of
Galaxy Zoo mergers are classified as mergers, 61% of the Galaxy
Zoo ellipticals are classified as mergers, and 43% of the Galaxy
Zoo spirals are classified as mergers.
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Figure 14. r-band images of a Galaxy Zoo spiral galaxy that is identified as a merger by the minor merger technique (left) and a nonmerger by the major merger

technique (right). The probabilities that the galaxy is a merger are listed.

The difficulty in using the Galaxy Zoo sample as a test
sample is that we do not know a priori which galaxies are
merging. We are able to use the Galaxy Zoo merger sample as
“true” mergers since they are obvious visual mergers (classified
as such by Galaxy Zoo users), so the fraction of true positives
and false negatives is reliable. The Galaxy Zoo users were
conservative, only reluctantly classifying the most obvious
mergers as such (Darg et al. 2010). However, we are unable to
adequately establish the relative fractions of false positives and
true negatives since the samples of Galaxy Zoo ellipticals and
spirals may be contaminated by merging galaxies that lack the
obvious visual signs of clear major mergers such as tidal tails.
Therefore, our discussion mainly relies upon the fraction of true
positives and false negatives from the classification of the
Galaxy Zoo mergers and only briefly discusses true negatives
and false positives from the Galaxy Zoo ellipticals and spirals
population. We plan to delve into this discussion in more depth
in a future work that presents the classification of real galaxies
(R. Nevin et al. 2019, in preparation).

The major merger classifier recovers ~86% of the Galaxy
Zoo mergers. This fraction agrees with the fraction of true
positives and false negatives from the simulation measured in
Appendix E, where 82% of true mergers are identified as such.
Figure 13 shows a failure mode of the major merger classifier.
The classifier fails to identify the Galaxy Zoo merger in the top
right of the figure as a merger because although it appears to be
two separate galaxies by eye, the two galaxies are symme-
trically aligned in such a way that A and Ag are low. We plan to
investigate the failure modes of the technique in more detail in
R. Nevin et al. (2019, in preparation).

The minor merger classification identifies 93% of the Galaxy
Zoo mergers as such, which is more than predicted (62%) when
testing on simulated galaxies. It is important to note that the
Galaxy Zoo mergers are more likely to be major mergers in
their early phases with clear visual disturbances. Therefore, the
minor merger tool performs better than expected since it is
applied to galaxies that are more easily identified than most
minor mergers in the simulated galaxy sample.

The fraction of nonmergers (according to Galaxy Zoo) that are
identified as mergers by the LDA technique is low for the spiral
galaxies and high for the elliptical galaxies. For instance, the
major merger classifier tool identifies 73% (14%) of the Galaxy
Zoo elliptical (spiral) galaxies as mergers. The spiral galaxy false
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positive rate is closer to the 3% false positive rate from the major
merger classifier when it is tested on simulated galaxies. However,
there is an excess of galaxies identified as mergers in the Galaxy
Zoo elliptical galaxy population. It is not obvious that these
galaxies have undergone mergers recently from visual inspection.
Although it is possible that some of these galaxies have recently
merged, many of them may be false positives. It is important to
note that the galaxies that are classified as mergers among the
Galaxy Zoo elliptical galaxies have ppers values that are barely
above the 0.5 threshold we define here for the LDA classification.
In future work, we plan to set multiple probability thresholds to
eliminate false positives among our merger samples. Finally, since
the LDA technique was constructed from disk-dominated
galaxies, it is most accurate and precise at classifying galaxies
that most closely match the specifications of the simulated sample.
Therefore, it may not be as accurate for elliptical galaxies. We
plan to address this concern in future work (R. Nevin et al. 2019,
in preparation) when we apply the classification to SDSS galaxies.
There is an interesting discrepancy between the false positive
rate of the major and minor merger technique for the sample of
Galaxy Zoo spirals. The major merger technique identifies 14%
of the sample as merging whereas the minor merger technique
identifies 43% of the sample as merging. Of the Galaxy Zoo
spirals, there are 16 galaxies that are classified as merging by
the minor merger technique that are classified as nonmerging
by the major merger technique. We visually inspect these
galaxies and find that ~50% could be classified as spirals with
a disturbed structure, while ~40% have a secondary point
source component that could either be a star-forming region or
a stellar bulge. More follow-up work is required here, but
preliminarily, it appears that the minor merger technique is
identifying some possible minor mergers that have been missed
by Galaxy Zoo users. It is possible that it could also be
identifying star-forming regions because although we prescribe
a 10% flux threshold for the fitting of n, it could be fitting
bright star-forming regions that exceed this threshold. More
work is required to distinguish between these two possibilities.
It is expected that the major merger technique also misses some
of these minor mergers. We show an example of a possible
minor merger that was detected by the minor merger technique
but not by the major merger technique in Figure 14. This
galaxy has a disturbed spiral structure, and some possible
secondary point sources that could be star-forming regions.
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5. Conclusion

We create a suite of merging and nonmerging disk-
dominated galaxies with different gas fractions, mass ratios,
and bulge-to-total mass ratios using GADGET-3 hydrody-
namics simulations. We use the dust radiative transfer code
SUNRISE to produce resolved dust-attenuated optical spectra
from the simulations, from which we extract SDSS r-band
images at ~0.1 Gyr intervals. These snapshots cover the early,
late, and post-coalescence stages of the simulated mergers. We
then “SDSS-ize” the simulated images of galaxies, introducing
residual noise and convolving to the seeing limit of the SDSS
survey. We use these “SDSS-ized” images to measure seven
different imaging predictors (Gini, My, concentration (C),
asymmetry (A), clumpiness (S), Sérsic index (n), and shape
asymmetry (Ag)), which we combine to create an LDA
classification scheme. This classification technique is able to
accurately identify merging galaxies over a range of mass
ratios, gas fractions, viewing angles, and merger stages. We
create two overall classifications, one for major mergers and
one for minor mergers, that we will apply to classify SDSS
galaxies, assigning each galaxy a posterior probability of being
a merging galaxy. Based on these results, we make the
following conclusions:

1. The LDA technique outperforms previous merger
identification methods such as Gini—M,,, A, and Ag in
terms of accuracy and precision. While the precisions of
Gini—M,, A, and Ay are high with few false positives,
the accuracies vary between 40%—90% and change with
merger mass ratio. The LDA technique improves upon
this with accuracies of 85% (81%) and precisions of 97%
(94%) for the combined major (minor) merger simula-
tions. The LDA accuracy and precision vary little with
merger initial conditions (<10%), indicating that the
LDA technique is more stable and accurate than
individual predictor merger identification techniques.

2. The LDA technique lengthens the timescale of observa-
bility of merging galaxies (>2 Gyr), and the galaxy
mergers are identified at all stages (early, late, and post-
coalescence) of a merger. The observability timescales
for Gini—M,,, A, and Ag are 0.2-0.8, <0.1, and
2.2-7.8 Gyr, respectively. The LDA technique incorpo-
rates many imaging predictors and is therefore able to
combine the strengths of all these imaging predictors to
be sensitive to all stages of the galaxy mergers.

3. The predictor coefficients of LD1 change little with gas
fraction and are most affected by the mass ratio of the
merging galaxies. For instance, A and Ag are important
for major mergers due to their visually disturbed
morphology while C and Gini are more important for
minor mergers, since they show consistent enhancement
in light concentration as the merger progresses. This
supports the idea that even minor mergers can build
stellar bulges. A is an important coefficient for a range of
mass ratios, identifying major and minor mergers alike.

We plan to apply this imaging LDA technique to the SDSS
galaxies (R. Nevin et al. 2019, in preparation). Additionally,
since the MaNGA survey is an imaging and IFS survey, we
will incorporate several kinematic predictors based on the
stellar velocity and stellar velocity dispersion maps from the
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hydrodynamics simulations into this analysis to improve the
classification.
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Appendix A
Initial Conditions

We vary the initial masses, mass ratios, gas fractions, and
B/T (bulge-to-total mass) ratios of the merging galaxy models
based upon previous works with similar merger simulations
(e.g., Cox et al. 2008; Lotz et al. 2008; Blecha et al.
2011, 2018). Additionally, we select the values for these initial
conditions based upon the range of observed values for present-
day galaxies in SDSS as in Cox et al. (2008). Our goal is to
produce simulated mergers that are typical of merging galaxies
in SDSS and also comparable to previous works with the
imaging predictors of simulated galaxies (e.g., Cox et al. 2008;
Lotz et al. 2008).

Our simulations span a range in total stellar mass,
10.6 < log M, (M) < 10.8, which agrees well with the
fiducial models used in Cox et al. (2008) that have a range in
total mass 9.0 < log M, (M) < 10.7. SDSS galaxies span a
range in stellar mass (for individual galaxies) of 9 < log M,
(M) < 11. When we compare this to the total mass of the
merger simulations (which combine two galaxies), we find that
the simulated galaxies are in the middle of the expected mass
range for SDSS galaxies.

We vary the total mass ratio between 1:2 and 1:10 to capture
three major merger simulations and two minor merger
simulations. We are able to compare to Lotz et al. (2010a)
and Cox et al. (2008), who chose mass ratio ranges of 1:1-1:20
and 1:1-1:22.7, respectively.

We select gas fractions between 0.1-0.3. This range is
typical of the SDSS galaxies, which have gas fractions between
0 and 0.5 (Catinella et al. 2010). The mean gas fraction of the
SDSS population is ~0.2-0.3, which is in good agreement with
our choice to run most galaxy simulations with a gas fraction of
0.3. Additionally, Cox et al. (2008) and Lotz et al. (2010b)
varied the gas fraction between 0.2-0.4 and 0.2-0.5,
respectively, providing a good amount of overlap for
comparison of results.

Most of our simulations do not have stellar bulges, but we do
include bulges in the minor merger simulations. Cox et al.
(2008) demonstrated that bulges act to stabilize the disk of the
galaxy for large mass ratio mergers (they see this effect
primarily for 1:5 to 1:20 mass ratio mergers), leading to less
disturbed morphology than bulgeless mergers. Since this effect
is most prominent for minor mergers, we include stellar bulges
in the progenitor galaxies for these simulations. We lack the
computational resources to additionally investigate this effect
for major mergers.

The B/T ratio depends on the total stellar mass of a galaxy
and SDSS galaxies range between 9 < log M, (M.) < 11.
Measured B/T ratios for this stellar mass range for galaxies in
SDSS span 0-0.6 (Bluck et al. 2014). Therefore, our choice of
a B/T ratio of 0.2 for the minor merger simulations is typical of
SDSS galaxies. We use a matched sample of isolated galaxies
so that the slightly enhanced C and n values for the minor
mergers (relative to the major mergers) are accounted for in the
LDA technique.

Appendix B
Merging Galaxy Priors

LDA requires a prior to characterize the data set if the
relative numbers of objects in each class are not representative
of the overall population. If the frequency of merging and
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nonmerging galaxies in our simulated data set exactly matched
the frequency of merging and nonmerging galaxies in nature,
our priors would be [0.5, 0.5] and would not need to be
specified. However, because we have a lower frequency of
nonmerging galaxies in our inputs to LDA relative to the
frequency of nonmerging galaxies in reality, we use the
fraction of merging galaxies in the universe (fmerg) as our prior.

We use a different fraction for major and minor mergers. For
major mergers, we use the fraction of merging galaxies,
fmerg = 0.1 from Lotz et al. (2011). This is an average,
calculated from different fi,,; measurements that rely upon
Gini—M,, and A to determine merger fractions for galaxies in
the local universe (Lotz et al. 2008; Conselice et al. 2009;
Lépez-Sanjuan et al. 2009; Shi et al. 2009). We choose not to
use pair fractions to determine fier; as they tend to under-
estimate the fraction of merging galaxies because pair studies
are only sensitive to the early stages of a merger.

It is important to note that Lotz et al. (2011) used individual
predictors (such as Gini—M,, or A alone) to identify mergers
and found short timescales of observability (~0.2-0.6 Gyr). As
discussed in Section 3.2, we find timescales of observability
>2 Gyr from the LDA technique, and therefore fiers = 0.11is a
conservative estimate. In reality, observed merger fractions
may be underestimated in the local universe (particularly for
minor mergers) because the observability timescales of past
imaging methods are short. Using merging galaxies in the
Millennium simulation, Bertone & Conselice (2009) found that
the estimate of fe, for minor and major mergers increases by a
factor of 2—-10 if the observability timescale is increased from
0.4 Gyr to 1 Gyr.

Although the fraction of minor mergers is less certain, studies
have indicated that it is three to five times greater than the major
merger rate, SO W€ US€ frere = 0.3 for the minor merger
simulations (e.g., Bertone & Conselice 2009; Lotz et al. 2011).

For comparison purposes, we also estimate fier, from the
Mlustris simulation. Using estimations of the timescale of the
merger, we convert from merger rate (measured directly from
Mlustris to be ~0.1 Gyr™'; Rodriguez-Gomez et al. 2015) to the
merger fraction of galaxies in the local universe. If we multiply
this rate by the ~2 Gyr timescale estimate from our work, we
find fierg = 0.2, which is in good agreement with the 0.1 value
for finerg from observations of merging galaxies in the literature.
If we use the 0.2-0.6 Gyr timescale from Lotz et al. (2008), we
find a much lower merger fraction of fier, = 0.02-0.06.

Since the estimates of fir, are so uncertain, we compare the
results of using different values for fjonmerg ON the outcome of
the LDA in Figure 15. For each simulation, we have more
snapshots of merging galaxies than nonmerging, which is not
reflective of reality. We use the LDA accuracy to measure the
sensitivity of the technique to the input priors. We find that the
LDA is relatively insensitive to prior selection within a range of
priors on the fraction of merging and nonmerging galaxies.
This range exists from 0.1 < fionmere < 0.9. As we increase
Jnonmerg above 0.9, we start to see the accuracy decline from
~80%-90% correct identifications to 60%—70%. Although this
is a significant decline, the decline is somewhat asymptotic.
Therefore, at our chosen prior for major mergers (0.9), the
accuracy has declined to around 90% for the three major
merger simulations pictured, which is still very high.
Additionally, while the minor merger simulations are less
accurate as fyonmerg inCreases, the prior for minor mergers is 0.7,
so they do not fall off as fast in accuracy at this point.
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Appendix C
Testing the Assumptions of LDA with a Multivariate
Analysis

We carry out a simple multiple linear regression analysis to
test the assumptions of LDA and examine the input predictors.
Many of these techniques as well as an introduction to LDA are
covered in James et al. (2013). The key assumptions of LDA
include multivariate normality, homoscedasticity (that the
covariance among groups is equal), and an absence of
multicollinearity. However, it should also be noted that LDA
is relatively robust to slight violations of these assumptions and
can still be reliable even when certain assumptions are violated
(Duda et al. 2001; Li et al. 2006). We conduct a preliminary
multivariate analysis of the input predictors to screen for
multicollinearity and violations of normality and homoscedas-
ticity. We present our results for the major merger and minor
merger combined simulations and show plots just for the major
merger combined simulation.

We first address the multivariate normality assumption by
examining the individual histograms of the input predictors for
both of the combined simulations (the major merger combined
simulation is Figure 16). Visually, the predictors do not seem to
be drawn from a normal distribution. We conduct Shapiro—
Wilke and Kolmogorov—Smirnov tests for normality, and in
both cases, we are able to reject the null hypothesis that the data
are drawn from a Gaussian multivariate normal distribution for
the majority of predictors.

We also address the homoscedasticity assumption in
Figure 16. By examining the distributions of the values for
each class for a cross-section of input predictors, we are able to
determine that the covariances for each class are not equal. We
conduct a Levene test and confirm that we can reject the null
hypothesis and that the covariance matrices are not equal. This
is unsurprising given that multivariate normality is also
violated.
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We next examine the relationships between predictors to
determine if the predictors demonstrate multicollinearity. A
violation of multicollinearity could lead to a decrease in the
predictive ability of LDA. We screen for multicollinearity
visually in Figure 17 using a Hinton visual diagram where the
size and color of the boxes indicate the strength and sign
(positive is red and negative is blue) of the correlation. We find
that many predictors have a large positive correlation. We
further examine the strength of the correlation and find that n
and C have the most significant correlation for the major
mergers with a Pearson’s r value of 0.72. For the minor
mergers, M5, and A have the largest correlation with an r value
of 0.66. All Pearson’s r values are below 0.99, the threshold
value for multicollinearity, so we can rule out multicollinearity
in this data set. However, we must still deal with these
correlations using interaction terms, which remove cross-
correlation effects from the coefficients of LD1 so that we can
individually assess trends with the seven main coefficients
(James et al. 2013).

To screen for outliers, we use box and whisker plots.
Outliers can affect the LDA classification, dominating the
analysis. We find that a few inputs are greater than 1.5 times
the interquartile range (as indicated by the extent of the
whiskers). However, overall, there are very few outliers. We
also calculate the Z-scores for each predictor and find that none
are outside 30 from the sample mean.

To verify that each predictor is necessary in the LDA, we
conduct Ordinary Least Squares (OLS) fitting. We first linearly
regress each predictor against the class label (a binary variable
for merger/nonmerger classification). Although a logit regres-
sion would be a better tool with more than two classes, a linear
regression is appropriate here because the response is binary
(James et al. 2013). Additionally, for a binary response
variable, LDA is quite similar to multiple linear regression.
We find that almost all predictors have a p-value for the t-test
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below 0.05, indicating that there is a significant relationship
between the predictor and the class, or in other words, that the
predictor is required for classification. The only predictors that
fail this test are the Gini, M5, and S predictors, which fail for
the minor merger simulations, and the n predictor, which fails
for the major merger simulation. We also find in our LDA
modeling that the Gini, My, and S predictors are fairly
unimportant for the minor merger simulation and that n is
unimportant for the major merger simulation. We also run the
OLS fitting for all simulations and find that there are no
predictors that are unimportant across the board. Therefore, we
include all of the predictors in the LDA classification. We
ultimately discover that all predictors are important according
to the forward stepwise selection for certain simulations, so we
cannot eliminate them prior to the LDA.

Overall, the data violate multivariate normality and homo-
scedasticity while passing the tests for multicollinearity and
extreme outliers. For classification purposes, LDA is very
robust to varying distributions of the data and can still achieve
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good performance even when the covariance matrices are not
equal and normality assumptions are violated (Duda et al.
2001; Li et al. 2006).

One alternative approach to LDA is to utilize QDA, which
does not rely on the equality of covariance matrices. We test
the accuracy, precision, recall, and F; score of both an LDA
and a QDA method (see Appendix E for the accuracy of LDA).
We find that the LDA classifier performs very well, and while
the QDA classifier increases accuracy, recall, and F score by
~5%, the LDA classifier is still above ~85% for accuracy on
all simulations. A downside to using QDA is that it is
inherently nonlinear and does not allow us to directly interpret
each predictor individually. We choose to use LDA because it
allows for a more practical interpretation of the imaging
predictors and because it does an adequate job of separating the
merging and nonmerging classes across all simulations.

Additional ways to prepare the input data for better
classification include increasing the number of observations
(number of galaxy snapshots) and standardizing the data. We
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already have at least 20-30 snapshots per class and are
therefore more robust to violations of normality and homo-
geneity of covariance. Also, when we combine all the
individual runs of LDA for the final combined major and
minor merger runs, we increase the sample size to at least 100
observations per class. This final analysis is robust to violations
of normality and homoscedasticity.

We also find that the predictors require standardization prior
to the input to LDA; they have very different means and
standard deviations, which could affect the output of LDA. For
instance, if one variable has a large mean, it could dominate the
first discriminant axis (LD1). We standardize the input
predictors to all have a mean of zero and a standard deviation
of one prior to our LDA classification.

Appendix D
Forward Stepwise Variable Selection and k-fold Cross-
validation

A limitation of LDA is that there are no standard errors on
the LDA predictor coefficients. We use the stratified k-fold
cross-validation method with 10 folds to return an estimate of
the underlying distribution of possible values for the LDA
coefficients given the data. k-fold cross-validation functions by

31

dividing the sample into k equal-sized samples, where the first k
— 1 samples will be used as the training set and the kth sample
will be used as the test set. We repeat the LDA k times and
estimate the mean and standard deviation of the LDA
coefficients from the data. Stratified cross-validation specifi-
cally requires that the test sample includes a number of
snapshots from each class that are representative of the overall
sample.

This method is effective for minimizing bias and variance
given the correct choice of k (James et al. 2013). For instance,
Efron (1983) proved that k-fold cross-validation is ‘“almost
unbiased” if k is large and the sampling is random (this
approaches leave-one-out cross-validation (LOOCV) when
k = n, where n is the sample size). However, LOOCV has a
high variance since it involves finding the variance of n fitted
models which are trained on nearly identical data. The mean of
highly correlated quantities has a higher variance, so we choose
an intermediate value of k so that we avoid high bias and high
variance. Kohavi (1995) found that stratified k-fold cross-
validation with 10 folds is the most effective at model selection
even if computation power allows for more folds. We also find
that k = 10 is a good choice to ensure that the number of
misclassifications (cross-validation error) is minimized and that
the mean and standard error of the LD1 coefficients is stable.
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selected from this method.

We use forward stepwise selection with k-fold cross-
validation to determine which predictors are necessary to build
LD1 for each simulation. The purpose of this process is to
avoid introducing excess predictors that are unnecessary to the
separation of the merging and nonmerging galaxies along LD1.
We choose forward stepwise selection since it is less
computationally expensive than the best subset selection
(James et al. 2013).

Forward stepwise selection begins with a model without
predictors. It then determines which predictor to add by
comparing the cross-validation error for each predictor. The
cross-validation error is also the number of misclassifications
corresponding to each model. For instance, the first step of
forward stepwise selection is comparing the cross-validation error
from a model with only one predictor (i.e., Gini) to all other
possible models with only one term (i.e., a model with M,,, a
model with M5, * Gini, etc.). The one-term model with the lowest
number of misclassifications is selected. Next, the forward
stepwise election iteratively attempts to add all remaining
predictors to the model. It chooses to add a term only if the
cross-validation error of the overall model is less than that of the
previous step. Again, it adds the term that minimizes the cross-
validation error as compared to all other possible terms.

The forward stepwise selection proceeds until no more terms
are required to decrease the cross-validation error. We refer to
the predictors in the final model as the “required” predictors.
We show the process in Figure 18, where we determine the
number of predictors necessary for the LD1 for each simulation
by minimizing the cross-validation error with forward stepwise
selection. We additionally use the one-standard-error rule from
James et al. (2013) to select the best overall model. This allows
us to select the simplest model for which the estimated cross-
validation error is within one standard error of the lowest point
on the curve in Figure 18. The standard error of the cross-
validation error is the standard deviation of the number of
misclassifications for all 10 k-folds.

Appendix E
LDA Performance: Accuracy and Precision of the Classifier

We investigate the performance of the classifier using the
confusion matrix (Figure 19). The confusion matrix is constructed
using the 10 randomized test and training sets of galaxies, which
were created in the k-fold method described in Appendix D. It is
the mean confusion matrix from the 10 k-fold runs.

The confusion matrix shows the number of nonmerging
galaxies from the test set that were correctly classified as
nonmerging (upper left) and the number of merging galaxies
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that were correctly identified as merging (lower right), which
are referred to as “True Negatives” (TN) and “True Positives”
(TP), respectively. The top-right corner of the confusion matrix
is the galaxies that were classified as merging although they are
in fact nonmerging. These are the “False Positives” or FP. The
bottom-left square is the galaxies that are merging but were not
correctly identified as merging, or the “False Negatives,” FN.
In Figure 19, we show the normalized percentage of galaxies
that fall into each category for the final combined major and
minor merger runs of LDA.

From the confusion matrix, we quantify the accuracy,
precision, recall, and F; score of the LDA classification in
order to assess the overall performance of the LDA method for
each simulation.

The accuracy is the number of correct classifications divided
by the total number of classifications:

_ TN + TP
TN + TP + EN + FP’

We assess the precision of the LDA, or the fraction of correct
positive predictions:

P= _IP .
TP + FP
Recall is the fraction of true positives that are classified as such:
R=—1F
TP + FN

The F, score is the harmonic mean of recall and precision:

2TP

E:— .
2TP + FN + FP

We collect the accuracy, precision, recall, and F, score values
for all simulations in Table 6. We find that the LDA
classification performs well, with all performance metrics
around or above ~0.7-0.9. Accuracy ranges from 0.85 to 0.91,
while precision is between 0.89 and 0.98 for all runs. This
confirms our discussion from Appendix C; the LDA method is
accurate, and therefore we are not concerned that our violations
of normality and homoscedasticity are detrimental to the
classification.

The LDA has a very high precision value. This indicates that
it does an excellent job of identifying all merging galaxies as
merging. This is critical to the next phase of analysis, which
will include classifying SDSS galaxies; we do not wish to
misidentify mergers and are more tolerant of false positives
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Figure 19. Confusion matrices for the major (left) and minor (right) combined simulations. The y-axis represents the true categories of the test set of galaxies from the
simulation. The x-axis is the predicted category from the LD1 classifier for the test set of galaxies.

than false negatives, given that this initial classification is
created from simulated galaxies.
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