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In this paper we describe a physical realization of a family of non-compact
Kähler threefolds with trivial canonical bundle in hybrid Landau-Ginzburg
models, motivated by some recent non-Kähler solutions of Strominger sys-
tems, and utilizing some recent ideas from GLSMs. We consider threefolds
given as fiber products of compact genus g Riemann surfaces and noncompact
threefolds. Each genus g Riemann surface is constructed using recent GLSM
tricks, as a double cover of P1 branched over a degree 2g + 2 locus, realized
via nonperturbative effects rather than as the critical locus of a superpoten-
tial. We focus in particular on special cases corresponding to a set of Kähler
twistor spaces of certain hyperKähler four-manifolds, specifically the twistor
spaces of R4, C2/Zk, and S1 × R3. We check in all cases that the condi-
tion for trivial canonical bundle arising physically matches the mathematical
constraint.
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1 Introduction

Over the years, there has been much work on non-Kähler solutions of het-
erotic compactifications with H flux, known as the Strominger system [1].
This paper is inspired by the recent work [2] in which a new family of com-
pact non-Kähler analogues of Calabi-Yau threefolds, a new set of potential
solutions to the Strominger system, was constructed. In this paper, we do
not construct physical theories for non-Kähler targets, but instead apply re-
cent tricks in GLSMs to build physical theories for Kähler analogues of the
fiber products discussed in [2].

Specifically, suppose M is a compact hyperKähler manifold with real
dimension four and Σ is a compact Riemann surface of genus g ≥ 3. Then, a
manifold X with holomorphically-trivial canonical bundle can be constructed
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as the pullback

X = φ∗Z = Z ×P1 Σ Z = M × P1

Σ P1

π

φ

where Z is the twistor space of M together with the natural holomorphic
projection π and φ is a nonconstant holomorphic map. It was argued in [2]
that the threefold X has trivial canonical bundle as long as

φ∗O(2) ∼= KΣ.

In this paper, the curve Σ will be constructed as a branched double cover of
P1, for which case the condition above for the fiber product to have trivial
canonical bundle reduces to simply g = 3, independent of the details of M .

Motivated by the mathematical construction above, we will give a phys-
ical realization of threefolds of trivial canonical bundle constructed as fiber
products of genus g curves with noncompact Kähler threefolds, including as
special cases certain noncompact Kähler1 twistor spaces. We will take the
Riemann surface of genus g and the holomorphic map φ to be a branched
double cover over P1, realized physically via nonperturbative tricks as in [3].
Because we describe fiber products with Kähler threefolds, including Kähler
twistor spaces of certain hyperKähler four-manifolds, the Calabi-Yau three-
folds we realize are non-compact and Kähler, as opposed to non-Kähler spaces
of trivial canonical bundle which were the focus of [2].

We will construct higher-energy theories that realize these geometries as
(2,2) supersymmetric hybrid Landau-Ginzburg models. These hybrid models
do not seem to have a UV description as GLSMs, though some GLSMs do
come close, as we shall explain later.

We begin in section 2 with a review of GLSMs for genus g curves, con-
structed via nonperturbative methods as branched double covers. In section 3
we construct (2,2) supersymmetric hybrid Landau-Ginzburg models for the
fiber products above, of curves with a few noncompact Kähler threefolds. In
section 4 we specialize to fiber products of curves and twistor spaces, which
arise as special cases. In appendix A we review some pertinent mathematics.

1 Most twistor spaces are not Kähler.
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Although we are not able to give physical realizations of any non-Kähler
geometries in this paper, it is our hope that the ideas we present here will
later be extended to non-Kähler fiber product constructions.

Finally, before starting, we should add a caution. We discuss non-compact
Kähler manifolds with trivial canonical bundle. However, Yau’s theorem does
not apply to non-compact cases, so it is possible2 that some might not have
Ricci-flat metrics. (Nevertheless, we will sometimes call these noncompact
Kähler spaces of trivial canonical bundle, “Calabi-Yau’s,” though this ter-
minology is inaccurate.) This is an issue for both the spaces themselves as
well as for Landau-Ginzburg models on such spaces that do not have known
UV completions as GLSMs. In the case of Landau-Ginzburg models, if the
metric is not Ricci-flat, not even asymptotically, then, RG flow would be
more complicated, and our analysis likely too naive. Our proposed hybrid
Landau-Ginzburg models are constructed on the assumption that they have
Ricci-flat metrics, at least asymptotically, so that the renormalization group
flow works as expected.

It is not entirely out of the realm of possibility that complications in RG
flow, alluded to above, might actually generate nonzeroH flux in a low-energy
theory, especially in (0,2) supersymmetric versions of this construction where
one has less control over RG flow. We will leave this possibility to future work.

2 GLSM for P2g+1[2, 2] and curves of genus g

One essential piece of our construction will be a trick from [3], in which
GLSMs describe geometries nonperturbatively, rather than as the critical
locus of a superpotential. As it plays a critical role in this paper, we review
the highlights in this section.

Section 4.1 of [3] discusses a gauged linear sigma model for P2g+1[2, 2]

2 One set of examples is discussed in [4]. A second set of examples arises by removing
an anticanonical divisor with deep singularities from a projective manifold, then the com-
plement will not have a complete Ricci-flat metric, though it may still have a non-complete
Ricci-flat metric. A third set of examples arises from the cotangent bundle of a compact
Kähler manifold X. On a tubular neighborhood of the zero section, one can find a unique
Ricci-flat metric which restricts to the given Kähler metric on the zero section and is circle
invariant. This metric extends to a Ricci-flat metric on the whole cotangent bundle if and
only if X is a homogeneous Fano or semi-abelian variety. For example, if X is a Riemann
surface of genus at least two, there is a Ricci-flat metric on a disk bundle of fixed radius
but it cannot be extended beyond that bundle to the entire cotangent bundle.
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(with g ≥ 1) which realizes a genus g Riemann surface, via nonperturbative
tricks, in its r ≪ 0 phase. That model will play an essential role in this
paper, so we shall quickly review it here.

The GLSM in question is a U(1) gauge theory with (2,2) supersymmetry
and 2g + 2 chiral superfields ϕi of charge 1 and two chiral superfields p1, p2
of charge −2, with superpotential

W = p1Q1(ϕ) + p2Q2(ϕ) =
∑
ij

ϕiA
ij(p)ϕj, (1)

where Qi are quadratic functions of ϕ’s, and Aij(p) is a (2g + 2) × (2g + 2)
symmetric matrix whose entries are linear in the pa.

For r ≫ 0 (geometric phase), one can do the usual analysis of the critical
loci to argue that the GLSM flows to a sigma model on a complete intersection
of two quadrics in P2g+1.

The r ≪ 0 phase is more interesting. D terms imply that p1 and p2 can
not simultaneously vanish, and the superpotential generically gives a mass
to the ϕ’s. On that open set where all the ϕ’s are massive, since the p’s
have nonminimal charges, physics sees a double cover of the P1 mapped out
by p’s [3, 5, 6]. On the locus where any ϕ becomes massless, specifically the
degree 2g+2 locus {detA = 0} where the mass matrix develops at least one
zero eigenvalue, the double cover collapses to a single cover.

Put simply, {detAij = 0} defines the branch locus on the double cover of
P1. (Monodromies about the branch locus correspond to Berry phases and
are described in [3].) The resulting geometry, a double cover of P1 branched
over a degree 2g + 2 loci, is a compact Riemann surface of genus g.

3 Hybrid Landau-Ginzburg models for fiber

products

3.1 Fiber products with vector bundles on P1

In this section we will consider a general set of fiber products, between curves
and vector bundles on P1. Specifically, let V be the total space of the rank-
two vector bundle O(a) +O(b) → P1.
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Mathematically, we are considering the fiber product3

X = φ∗V = V ×P1 Σ V

Σ P1

π

φ

The fiber product X will have trivial canonical bundle if

KΣ = φ∗(detV ). (2)

We will consider the special case of genus g curves Σ constructed as
branched double covers, for which the condition above reduces to

a+ b = g − 1. (3)

Now, in general, we will want to describes cases in which a or b are
positive, and the total space of such V is challenging to describe with a
GLSM. Recall that the total space of O(−1)⊕O(−1) → P1 can be described
by a GLSM with a single U(1) gauge field and four chiral superfields:

• two chiral superfields pa of charge +1 corresponding to homogeneous
coordinates on the base P1,

• two chiral superfields ya of charge −1 corresponding to the two line
bundles O(−1).

Naively, one could try a similar GLSM with the charges of the chiral su-
perfields ya flipped to +1 describing two O(+1) line bundles. However, D
terms in the resulting GLSM make it clear that that GLSM will describe the
space P3. To describe the total space of the bundle above, one would need
to remove a different exceptional locus than the one canonically dictated by
the D terms for a quotient of flat space.

Setting aside the issue above, the fiber product would formally be de-
scribed by the GLSM with gauge grop U(1) and matter

• 2g + 2 chiral superfields ϕi of charge −1,

• 2 chiral superfields pa of charge +2,

3 As an aside, if π : Σ → P1 is the projection from the genus g curve to P1, then the
fiber product X is the total space of La ⊕ LB → Σ, where Ln = π∗O(n).
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• 2 chiral superfields ya, yb of charges 2a, 2b,

and superpotential

W =
∑
ij

ϕiϕjA
ij(p),

where Aij is a symmetric (2g+2)× (2g+2) matrix with entries linear in the
p’s.

We have taken the matrix Aij to be independent of the y’s, to preserve
translation invariance along the fibers as well as a global SU(2) rotation
symmetry between the y’s. In models discussed later we will make similar
restrictions so as to reproduce the desired geometries.

In passing, if we were to add terms to the superpotential to realize the
most general case compatible with gauge invariance, i.e. adding terms involv-
ing ya, yb, and sufficient ϕ factors, we would get the GLSM for P2g+1[2, 2, 2a, 2b]
(with an overall sign flip on the charges, inverting the r ≫ 0 and r ≪ 0
phases). (This includes the GLSM for P7[2, 2, 2, 2], studied in [3] because
of the geometric realization of its r ≪ 0 phase.) Note that the Calabi-Yau
condition for that complete intersection also reduces to (3).

Assuming that p1 and p2 are homogeneous coordinates on P1, one can
easily see, modulo the issue with D terms, that the mass matrix in the F
term imply the fiber product geometry in the phase r ≫ 0. First, following
the same argument in section (2), the fields ϕi and pa describe the genus g
Riemann surface as the branched double cover of P1. On the other hand, the
fields ya and yb correspond to the fiber coordinates on O(a)⊕O(b) since we
assumed that p1 and p2 are homogeneous coordinates on P1. The fiber prod-
uct structure is achieved by identifying two different P1 in the holomorphic
map and the total space of V . The identification is manifest in our theory.

Finally, let us consider the Calabi-Yau condition. The sum of the charges
in this theory is precisely

−2g + 2 + 2a+ 2b,

and so vanishes precisely when the mathematical condition (3) for trivial
canonical bundle is satisfied.

As mentioned above, the putative GLSM above does not quite work, be-
cause the D terms will not describe the correct exceptional locus in general.
To evade the issue of positive-degree line bundles on P1 in GLSMs, we con-
struct a hybrid Landau-Ginzburg model, an ungauged sigma model on the
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total space of
O(−1/2)2g+2 ⊕O(a)⊕O(b) → P1, (4)

with superpotential

W =
∑
ij

ϕiϕjA
ij(p), (5)

where the mass matrix Aij(p) should now be interpreted as a generic sym-
metric (2g + 2)× (2g + 2) matrix of sections of O(+1) → P1.

Notice that the P1 in the target space (4) is actually a Z2 gerbe on P1

indicated by the line bundle denoted O(−1/2). The bundle O(−1/2) is a
special kind of line bundle that only exist for gerbes. On the other hand,
it is also a fiber bundle of P1 whose fibers are the orbifolds [C/Z2]. More
details of such line bundles on gerbes over projective spaces are discussed in
appendix B of [7].

Generically on the P1, the ϕi are massive, away from the locus {detA =
0}, and so the Z2 gerbe implies a branched double cover, as usual, and hence
the fiber product of the genus g Riemann surface and the vector bundle V
over P1.

The condition for the canonical class to be trivial in this hybrid model
is that the first Chern class of the vector bundle (4) match the first Chern
class of the canonical bundle, meaning specifically that

(2g + 2)(−1/2) + a+ b = −2,

which again reduces to the mathematical condition (3).
There is a possible technical issue with this construction, due to the

fact that there is no non-compact version of Yau’s theorem, as described
in the introduction. We describe above a hybrid Landau-Ginzburg model
over a Kähler space with holomorphically trivial canonical bundle (in the case
g = 3); however, that does not guarantee that a Ricci-flat metric exists in the
noncompact case. If the metric is not Ricci-flat, at least asymptotically, then
the RG flow may be more complicated than we have naively supposed. If the
model arose from a GLSM, we could appeal to RG flow from the GLSM, but
as we have not been able to write down a UV GLSM, we cannot guarantee
that an asymptotically Ricci-flat metric exists. Analogous potential issues
arise in every hybrid Landau-Ginzburg model described in this paper.
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3.2 Fiber products with hypersurfaces in vector bun-
dles

Let V denote the rank-three vector bundle

O(a)⊕O(b)⊕O(c) → P1,

and consider the hypersurface f(x, y, z) = 0, where x, y, z are coordinates
along the fibers of V , and f is of degree4 d. Mathematically, for the fiber
product of this hypersurface with the curve Σ of genus g to have trivial
canonical bundle, we must require that the degree d match the degree of
φ∗V , for φ : Σ → P1, which means, for Σ realized as a branched double cover
of P1,

d = a+ b+ c+ 1− g. (6)

Modulo the same issue with D terms and positive-degree line bundles
discussed in the last section, we can construct a ‘fake’ GLSM for the fiber
product with the hypersurface in V as a U(1) gauge theory with matter

• 2g + 2 chiral superfields ϕi of charge −1,

• 2 chiral superfields pa of charge +2,

• 3 chiral superfields x, y, z of charges 2a, 2b, 2c, respectively,

• 1 chiral superfield q of charge −2d,

and superpotential

W =
∑
ij

ϕiϕjA
ij(p) + qf(x, y, z),

where Aij is a symmetric (2g + 2) × (2g + 2) matrix with entries linear in
the p’s. (As before, we do not consider more general possible terms, in order
to preserve pertinent symmetries.) The sum of the charges in this theory
vanishes when

g + d = a+ b+ c+ 1, (7)

matching the mathematical condition given above for the canonical bundle
of the fiber product to be trivial.

4 In the sense of weighted projective spaces, so that the monomials x, y, z have weights
a, b, c, respectively.
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As before, there is a problem involving D terms in the putative GLSM
above. To evade this issue, we can construct a hybrid Landau-Ginzburg
model which describes the geometry. Specifically, this will be an ungauged
sigma model on the total space of

O(−1/2)2g+2 ⊕O(a)⊕O(b)⊕O(c)O(−d) → P1, (8)

where we interpret the bundle in terms of a Z2 gerbe on the P1, and with
superpotential

W =
∑
ij

ϕiϕjA
ij(p) + qf(x, y, z),

where the mass matrix Aij(p) is a generic symmetric (2g + 2) × (2g + 2)
matrix of sections O(+1) → P1.

This hybrid Landau-Ginzburg model realizes the same fiber product struc-
ture as the fake GLSM above. The superpotential contains a mass matrix
for the ϕi, i = 1, . . . , 2g + 2, that gives them a mass away from the locus
{detA = 0}. As a result, at generic points on the P1, the remaining massless
fields are invariant under the gerbe Z2, which physics sees [3, 5] as a double
cover of P1, branched over the locus {detA = 0}. Consequently, one obtains
a fiber product of the genus g curve and the hypersurface.

The Calabi-Yau condition for the hybrid Landau-Ginzburg model is the
condition that c1 of the bundle (8) match c1 of the canonical bundle of P1,
which in this case implies

(2g + 2)(−1/2) + a+ b+ c− d = −2.

It is straightforward to check that this matches the condition (7) given earlier.

4 Fiber products with twistor spaces

In this section, we will construct (2,2) supersymmetric hybrid Landau-Ginzburg
theories which should RG flow to sigma models on the non-compact Kähler
Calabi-Yau threefolds constructed as fiber products of genus three curves and
twistor spaces, as explained in the introduction. The (Kähler) twistor spaces
we consider here are the twistor spaces5 of R4, C2/Zk and S1 × R3. These
will all correspond to special cases of the constructions in section 3, so we

5 Sometimes, blowdowns of the twistor spaces.
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will strive to be brief. In each case, since the curve is realized as a branched
double cover of P1, the Calabi-Yau condition is that the curve be of genus
3 – details of the hyperKähler manifold are otherwise irrelevant. In each of
our models, we will recover the genus three condition as a consistency check.

4.1 Fiber product with twistor space of R4

From [8], the twistor space of R4 can be described as the total space of
O(+1)⊕O(+1) → P1. Our construction for this case is a special case of the
construction in section 3.1.

As discussed in section 3.1, there is a technical question of how to realize
positive-degree line bundles in GLSMs, so we instead construct a lower en-
ergy theory, a hybrid Landau-Ginzburg model. Specifically, this will be an
ungauged sigma model on the total space of

O(−1/2)2g+2 ⊕O(+1)⊕O(+1) → P1, (9)

with superpotential

W =
∑
ij

ϕiϕjA
ij(p),

where the mass matrix Aij(p) should now be interpreted as a generic sym-
metric (2g + 2)× (2g + 2) matrix of sections of O(+1) → P1.

The superpotential contains a mass matrix for the ϕi, i = 1, . . . , 2g + 2,
that gives them a mass away from the locus {detA = 0}. Therefore, at
generic points on the P1, the remaining massless fields are all non-minimally
charged. The Riemann surface of genus g is given by a double cover of P1

branched over a degree 2g+2 locus as before. Also, the fields y1 and y2 are the
coordinates on the fibers of O(+1) ⊕ O(+1) of the same P1. Consequently,
one obtains a fiber product of the genus g Riemann surface and twistor space
of R4 over P1.

The Calabi-Yau condition for the total space of a vector bundle over P1

is that the first Chern class of the vector bundle should be the same as the
first Chern class of the canonical bundle of P1. In this case, one gets

(2g + 2)(−1/2) + 1 + 1 = −2.

It implies that the genus of the Riemann surface is three, as expected.
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4.2 Fiber product with twistor space of C2/Zk

Next, we will give a physical theory describing the fiber product with (the
blowdown of) a different twistor space, namely the the twistor space of C2/Zk

[8, 9]. The group Γ = Zk acts on C2 as follows:

(z1, z2) → (e2πin/kz1, e
−2πin/kz2).

Notice that the monomials x = zk1 , y = zk2 , z = z1z2 are invariant under
the group Γ. Therefore the singular surface C2/Γ can be described by a
hypersurface embedding in C3,

{xy = zk} ⊂ C3 = SpecC[x, y, z].

One can turn on a universal family of complex structure deformations which
is given by adding lower order terms in z. As a result, the hypersurface
defining equation becomes

xy = zk + a1z
k−1 + · · ·+ ak =

k∏
i=1

(z − fi),

where ai and fi are constant parameters. The twistor space is a resolution
of the hypersuface

{xy =
k∏

i=1

(z − fi(p))} ⊂ Tot(O(+k)⊕O(+k)⊕O(+2) → P1),

where x, y are fiber coordinates on the bundle O(+k), z on O(+2), and fi
are sections of O(+2) → P1. In particular, for each point of P1, the fiber is
a deformation of C2/Zk. In the special case k = 2, the fiber space is also
known as an Eguchi-Hanson space.

We can realize the hypersurface above, a blowdown of the twistor space,
using the same ideas as in section 3.2. Specifically, we propose a hybrid
Landau-Ginzburg model, an ungauged sigma model whose target space is
the total space of

O(−1/2)2g+2 ⊕O(+k)2 ⊕O(+2)⊕O(−2k) → P1,

with fiber coordinates ϕi on O(−1/2)2g+2, x, y on O(+k)2, z on O(+2) and
q on O(−2k). The superpotential is

W =
∑
ij

ϕiϕjA
ij(p) + q(xy −

k∏
i=1

(z − fi(p))), (10)
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where fi are sections of O(2) → P1 and Aij(p) is symmetric (2g+2)×(2g+2)
matrix with elements which are sections of O(1) → P1.

Going through the same analysis as in section 3.2, one obtains the desired
fiber product geometry. Note that the Calabi-Yau condition in this case is

(−1/2)(2g + 2) + k + k + 2 + (−2k) = −2

hence g = 3, as expected.

4.3 Fiber product with twistor space of S1 × R3

The last case we will discuss here is the fiber product with (the blowdown
of) the twistor space of S1 ×R3 [8]. Since the analyses is similar to previous
sections, we will present our proposition briefly here. The space S1 ×R3 can
be defined as C2/Γ where Γ is given by

(z1, z2) → (z1 + 1, z2).

Following the same process as in section 4.2, the twistor space is defined by
a resolution of the hypersurface

{y2 + zx2 =z + (f1(p)
2 + f2(p)

2) + 2f1(p)
2f2(p)

2x}
⊂ Tot (O ⊕O(+2)⊕O(+4) → P1),

where x is a fiber coordinate on the line bundle O, y on O(+2), z on O(+4)
and f1, f2 are two sections of O(+2) → P1.

We can construct a hybrid Landau-Ginzburg model realizing this geome-
try as a special case of the construction in section 3.2. This hybrid Landau-
Ginzburg model is defined on the total space of

O(−1/2)2g+2 ⊕O(0)⊕O(+2)⊕O(+4)⊕O(−4) → P1,

with superpotential

W =
∑
ij

ϕiϕjA
ij(p)+q(y2+zx2−z−(f1(p)

2+f2(p)
2)−2f1(p)

2f2(p)
2x), (11)

where Aij is a symmetric (2g + 2) × (2g + 2) matrix with entries that are
sections of O(1) → P1.

The Calabi-Yau condition

(−1/2)(2g + 2) + 3(+2) + (−4) = −2

implies that g = 3, as expected.
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5 Conclusions

In this paper, we have constructed hybrid Landau-Ginzburg models that
RG flow to a new family of non-compact Calabi-Yau threefolds, constructed
as fiber products of genus g curves and noncompact K”ahler threefolds. We
only consider curves given as branched double covers of P1. Our construction
utilizes ‘nonperturbative’ constructions of the genus g curves given in [3], and
so provides a new set of exotic UV theories that should RG flow to sigma
models on Calabi-Yau manifolds, in which the Calabi-Yau is not realized
simply as the critical locus of a superpotential.

As important special cases, we applied these constructions to describe
fiber products with certain Kähler twistor spaces of noncompact hyperKähler
four-manifolds, specifically R4, C2/Zk and S1×R3. We check that the Calabi-
Yau condition one sees in physics matches that from mathematics, namely
that the curve have genus three, independent of details of the four-manifold.

We see this work as a first step to realizing GLSMs for compact non-
Kähler analogues of Calabi-Yau threefolds constructed in [2], to which we
hope to return in the future.
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A Review of pertinent mathematics

According to proposition 2.2 of [2], the fiber product of a twistor space X
and a genus g curve Σ with some map φ : Σ → P1 has trivial canonical
bundle if and only if

φ∗O(2) ∼= KΣ. (12)

We can see this as follows. Let π : X → P1 be the twistor space for
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any hyperKähler surface, then the relative symplectic form is a nowhere-
zero section of KX/P1 ⊗ π∗O(2), hence KX/P1

∼= π∗O(−2). Furthermore, by
definition,

KX/P1 = KX ⊗ π∗K−1
P1 ,

= KX ⊗ π∗O(2).

This gives
KX = π∗O(−4).

Next, for the fiber product Z = X ×P1 Σ,

KZ/Σ = p∗XKX/P1 ,

= p∗Xπ
∗O(−2) = π∗

ZO(−2),

using πZ = π ◦ pX = φ ◦ pΣ, and where pΣ : Z → Σ, πZ : Z → P1 are
projections. Hence,

KZ = p∗ΣKΣ ⊗KZ/Σ,

= p∗ΣKΣ ⊗ π∗
ZO(−2).

To double-check, we can also compute

KZ = p∗XKX ⊗KZ/X ,

= p∗XKX ⊗ p∗ΣKΣ/P1 ,

= p∗Xπ
∗O(−4)⊗ p∗Σ (KΣ ⊗ φ∗O(2)) ,

= π∗
ZO(−4)⊗ p∗ΣKΣ ⊗ π∗

ZO(2),

= p∗ΣKΣ ⊗ π∗
ZO(−2),

matching the result above. In any event, using the fact that πZ = π ◦ pX =
φ ◦ pΣ, we see that KZ is trivial if and only if

KΣ = φ∗O(2).

The fact that this condition does not depend upon X follows from the
fact that KX is always a pullback of O(−4).

Now, under what circumstances is (12) satisfied?
Let us consider the case that Σ is a spectral cover of P1, the case of

relevance for this paper. Let d be the degree of the projection map φ :
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Σ → P1, then 2d = 2g − 2 for g the genus of Σ, hence g = d + 1. From
Hurwitz, KΣ = φ∗O(−2)⊗O(R), where R ⊂ Σ is the ramification divisor of
φ : Σ → P1. Thus, to satisfy (12), we must satisfy O(R) = φ∗O(4).

For a hyperelliptic double cover, the degree of the ramification divisor is
2g+2 and O(R) = f ∗O(g+1). Thus, in such a case, one must require g = 3.

More generally spectral covers have the property that their ramification
divisor is a pullback. If φ : Σ → P1 is a spectral cover of degree d emebedded
in the total space of O(k), then O(R) = φ∗O((d− 1)k). To satisfy (12), one
must require (d− 1)k = 4, which gives three options (for the case that Σ is
a spectral cover of P1):

• d− 1 = 1, k = 4, which gives a hyperelliptic curve of genus 3 (the case
that arises in this paper),

• d− 1 = 2, k = 2, which gives a 3-sheeted spectral cover of P1 of genus
4,

• d− 1 = 4, k = 1, which gives a 5-sheeted spectral cover of P1 of genus
6.

Note this condition is not satisfied for Σ a genus one curve.
If we drop the spectral curve constraint on Σ, then there are solutions

in any genus ≥ 3. We can see this as follows. First, the condition (12)
for the fiber product to have trivial canonical class can be rephrased as the
statement that φ is given by a basepoint-free pencil of sections in some spin
structure L on Σ. From a theorem of Harris [10], if g ≥ 3, the moduli space
of pairs (Σ, L) such that Σ is smooth of genus g and L is a spin structure
which has a pencil of sections has dimension 3g − 4.

For another example, there is a theorem of Farkas [11] which says that
for any g ≥ 10, the moduli space of pairs (Σ, L) such that Σ is a smooth
curve of genus g and L is a spin structure which gives an embedding of Σ in
P3 is of dimension 3g − 9. Given such a pair and compose the embedding
ϕL : Σ → P3 with a generic projection from some point not in the image,
one will get a morphism Σ → P1 which has the desired property. Thus, for
g ≥ 10, there is a 3g−9-dimensional space of pairs with the desired property.

So far we have discussed conditions for the fiber product Z to have holo-
morphically trivial canonical bundle. Next, let us turn to the question of
when Z is Kähler. Since Z is a finite cover of X, Z is Kähler if and only if
X is Kähler.
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