
Online Human Activity Recognition using Low-Power
Wearable Devices

Ganapati Bhat1, Ranadeep Deb1, Vatika Vardhan Chaurasia1, Holly Shill2, Umit Y. Ogras1
1School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, AZ

2Lonnie and Muhammad Ali Movement Disorder Center, Phoenix, AZ

ABSTRACT
Human activity recognition (HAR) has attracted signi�cant research
interest due to its applications in health monitoring and patient re-
habilitation. Recent research on HAR focuses on using smartphones
due to their widespread use. However, this leads to inconvenient
use, limited choice of sensors and ine�cient use of resources, since
smartphones are not designed for HAR. This paper presents the
�rst HAR framework that can perform both online training and in-
ference. The proposed framework starts with a novel technique
that generates features using the fast Fourier and discrete wavelet
transforms of a textile-based stretch sensor and accelerometer data.
Using these features, we design a neural network classi�er which
is trained online using the policy gradient algorithm. Experiments
on a low power IoT device (TI-CC2650 MCU) with nine users show
97.7% accuracy in identifying six activities and their transitions
with less than 12.5 mW power consumption.

1 INTRODUCTION
Advances in wearable electronics has potential to disrupt a wide
range of health applications [11, 23]. For example, diagnosis and
follow-up for many health problems, such as motion disorders, de-
pend currently on the behavior observed in a clinical environment.
Specialists analyze gait and motor functions of patients in a clinic,
and prescribe a therapy accordingly. As soon as the patient leaves
the clinic, there is no way to continuously monitor the patient and
report potential problems [13, 27]. Another high-impact application
area is obesity related diseases, which claim about 2.8 million lives
every year [2, 4]. Automated tracking of physical activities of over-
weight patients, such as walking, o�ers tremendous value to health
specialists, since self recording is inconvenient and unreliable.

There has been growing interest in human activity recogni-
tion with the prevalence of low cost motion sensors and smart-
phones. For example, accelerometers in smartphones are used
to recognize activities such as stand, sit, lay down, walking,
and jogging [3, 16, 20]. This information is used for rehabilita-
tion instruction, fall detection of elderly, and reminding users to
be active [18, 35]. Furthermore, activity tracking also facilitates
physical activity, which improves the wellness and health of its
users [8, 9, 19]. HAR techniques can be broadly classi�ed based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’18, November 5–8, 2018, San Diego, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5950-4/18/11. . . $15.00
https://doi.org/10.1145/3240765.3240833

on when training and inference take place. Early work collects
the sensor data before processing. Then, both classi�er design and
inference are performed o�ine [5]. Hence, they have limited appli-
cability. Most recent work trains a classi�er o�ine, but processes
the sensor data online to infer the activity [3, 31]. However, to date,
there is no technique that can perform both online training and
inference. Online training is crucial, since it needs to adapt to new,
and potentially large number of, users who are not involved in
the training process. To this end, this paper presents the �rst HAR
technique that continues to train online to adapt to its user.

The vast majority, if not all, of recent HAR techniques employ
smartphones. Major motivations behind this choice are their wide-
spread use and easy access to integrated accelerometer and gyro-
scope sensors [35]. We argue that smartphones are not suitable for
HAR for three reasons. First, patients cannot always carry a phone
as prescribed by the doctor. Even when they have the phone, it is
not always in the same position (e.g., at hand or in pocket), which is
typically required in these studies [10, 31]. Second, mobile operat-
ing systems are not designed for meeting real-time constraints. For
example, the Parkinson’s Disease Dream Challenge [1] organizers
shared raw motion data collected using iPhones in more than 30K
experiments. According to the o�cial spec, the sampling frequency
is 100 Hz. However, the actual sampling rate varies from 89 Hz to
100 Hz, since the phones continue to perform many unintended
tasks during the experiments. Due to the same reason, the power
consumption is in the order of watts (more than 100× of our result).
Finally, researchers are limited to sensors integrated in the phones,
which are not speci�cally designed for human activity recognition.

This paper presents an online human activity recognition frame-
work using the wearable system setup shown in Figure 1. The
proposed solution is the �rst to perform online training and lever-
age textile-based stretch sensors in addition to commonly used
accelerometers. Using the stretch sensor is notable, since it pro-
vides low-noise motion data that enables us to segment the raw

Figure 1: Wearable system setup, sensors and the low-power
IoT device [34]. We knitted the textile-based stretch sensor
to a knee sleeve to accurately capture the leg movements

https://doi.org/10.1145/3240765.3240833

data in non-uniform windows ranging from one to three seconds.
In contrast, prior studies are forced to divide the sensor data into
�xed windows [4, 20] or smoothen noisy accelerometer data over
long durations [10] (detailed in Section 2). After segmenting the
stretch and accelerometer data, we generate features that enable
classifying the user activity into walking, sitting, standing, driving,
lying down, jumping, as well as transitions between them. Since the
stretch sensor accurately captures the periodicity in the motion, its
fast Fourier transform (FFT) reveals invaluable information about
the human activity in di�erent frequency bands. Therefore, we judi-
ciously use the leading coe�cients as features in our classi�cation
algorithm. Unlike the stretch sensor, the accelerometer data is no-
toriously known to be noisy. Hence, we employ the approximation
coe�cients of its discrete wavelet transform (DWT) to capture the
behavior as a function of time. We evaluate the performance of
these features for HAR using commonly used classi�ers including
neural networks, random forest, and k-nearest neighbor (k-NN).
Among these, we focus on neural networks, since it enables online
reinforcement learning (RL) using policy gradient [33] with low
implementation cost. Finally, this work is the �rst to provide a de-
tailed power consumption and performance break-down of sensing,
processing and communication tasks. We implement the proposed
framework on the TI-CC2650 MCU [34], and present an extensive
experimental evaluation using data from nine users and a total of
2614 activity windows. Our approach provides 97.7% overall recog-
nition accuracy with 27.60 ms processing time, 1.13 mW sensing
and 11.24 mW computation power consumption.

The major contributions of this work are as follows:
• A novel technique to segment the sensor data non-

uniformly as a function of the user motion,
• Online inference and training using a neural network, and

reinforcement learning based on policy gradient,
• A low power implementation on a wearable device and ex-

tensive experimental evaluation of accuracy, performance
and power consumption using nine users.

The rest of the paper is organized as follows. We review the
related work in Section 2. Then, we present the feature generation
and classi�er design techniques in Section 3. Online learning using
policy gradient algorithm is detailed in Section 4. Finally, the ex-
perimental results are presented in Section 5, and our conclusions
are summarized in Section 6.

2 RELATED WORK AND NOVELTY
Human activity recognition has been an active area of research due
to its applications in health monitoring, patient rehabilitation and in
promoting physical activity among the general population [4, 7, 8].
Advances in sensor technology have enabled activity recognition
to be performed using body mounted sensors [29]. Typical steps
for activity recognition using sensors include data collection, seg-
mentation, feature extraction and classi�cation.

HAR studies typically use a �xed window length to infer the
activity of a person [4, 20]. For instance, the studies in [4, 20] use
10 second windows to perform activity recognition. Increasing the
window duration improves accuracy [7], since it provides richer
data about the underlying activity. However, transitions between
di�erent activities cannot be captured with long windows. More-
over, �xed window lengths rarely capture the beginning and end

of an activity. This leads to inaccurate classi�cation as the window
can have features of two di�erent activities [7]. A recent work
proposes action segmentation using step detection algorithm on
the accelerometer data [10]. Since the accelerometer data is noisy,
they need to smoothen the data using a one-second sliding window
with 0.5 second overlap. Hence, this approach is not practical for
low-cost devices with limited memory capacity. Furthermore, the
authors state that there is a strong need for better segmentation
techniques to improve the accuracy of HAR [10]. To this end, we
present a robust segmentation technique which produces windows
whose sizes vary as a function of the underlying activity.

Most existing studies employ statistical features such as mean,
median, minimum, maximum, and kurtosis to perform HAR [4, 20,
28]. These features provide useful insight, but there is no guarantee
that they are representative of all activities. Therefore, a number
of studies use all the features or choose a subset of them through
feature selection [28]. Fast Fourier transform and more recently
discrete wavelet transform have been employed on accelerometer
data. For example, the work in [10] computes the 5th order DWT
of the accelerometer data. Eventually, it uses only a few of the
coe�cients to calculate the wavelet energy in the 0.625 - 2.5 Hz
band. In contrast, we use only the approximation coe�cients of
a single level DWT with O (N /2) complexity. Unlike prior work,
we do not use the FFT of the accelerometer data, since it entails
signi�cant high frequency components without clear implications.
In contrast, we employ leading FFT coe�cients of the stretch sensor
data, since it gives a very good indication of the underlying activity.

Early work on HAR used wearable sensors to perform data col-
lection while performing various activities [5]. This data is then
processed o�ine to design the classi�er and perform the inference.
However, o�ine inference has limited applicability since users do
not get any real time feedback. Therefore, recent work on HAR
has focused on implementation on smartphones [3, 8, 17, 31]. Com-
pared to wearable HAR devices, smartphones have limited choice of
sensors and high power consumption. In addition, results on smart-
phones are harder to reproduce due to the variability in di�erent
phones, operating systems and usage patterns [9, 31].

Finally, existing studies on HAR approaches employ commonly
used classi�ers, such as k-NN [14], support vector machines [14],
decision trees [30], and random forest [14], which are trained o�ine.
In strong contrast to these methods, the proposed framework is the
�rst to enable online training.
3 FEATURE SET AND CLASSIFIER DESIGN
3.1 Goals and Problem Statement
The goal of the proposed HAR framework is to recognize the six
common daily activities listed in Table 1 and the transitions between
them in real-time with more than 90% accuracy under mW power
range. These goals are set to make the proposed system practical
for daily use. The power consumption target enables day-long
operation using ultrathin lithium polymer cells [12].

Table 1: List of activities used in the HAR framework

• Drive (D) • Jump (J) • Lie Down (L)
• Sit (S) • Stand (Sd) • Walk (W)
• Transition (T) between the activities

Figure 2: Overview of the proposed HAR framework

The stretch sensor is knitted to a knee sleeve, and the IoT device
with a built-in accelerometer is attached to it, as shown in Figure 1.
All the processing outlined in Figure 2 is performed locally on the
IoT device. More speci�cally, the streaming stretch sensor data is
processed to generate segments ranging from one to three seconds
(Section 3.2). Then, the raw accelerometer and stretch data in each
window are processed to produce the features used by the classi-
�er (Section 3.3). Finally, these features are used for both online
inference (Section 3.4) and reinforcement learning using policy
gradient (Section 4). Since communication energy is signi�cant,
only the recognized activity and time stamps are transmitted to a
gateway, such as a phone or PC, using Bluetooth whenever they
are nearby (within 10m). The following sections provide a theoreti-
cal description of the proposed framework without tying them to
speci�c parameters values. These parameters are chosen to enable
a low-overhead implementation using streaming data. The actual
values used in our experiments are summarized in Section 5.1 while
describing the experimental setup.

3.2 Sensor Data Segmentation
Activity windows should be su�ciently short to catch transitions
and fast movements, such as fall and jump. However, short windows
can also waste computation time and power for idle periods, such
as sitting. Furthermore, a �xed window may contain portions of
two di�erent activities, since perfect alignment is not possible.
Hence, activity-based segmentation is necessary to maintain a high
accuracy with minimum processing time and power consumption.

To illustrate the proposed segmentation algorithm, we start with
the snapshot in Figure 3 from our user studies. Both the 3-axis
accelerometer and stretch sensor data are preprocessed using a
moving average �lter similar to prior studies. The unit of accel-
eration is already normalized to gravitational acceleration. The
stretch sensor outputs a capacitance value which changes as a func-
tion of its state. This value ranges from around 390 pF (neutral)
to close to 500 pF when it is stretched [24]. Therefore, we normal-
ize the stretch sensor output by subtracting its neutral value and
scaling by a constant: s (t) = [sraw (t) −min(sraw)]/Sconst . We

19 21 23 25 27 29 31 33
Time (s)

-2

0

2

A
cc

el
er

at
io

n
(g

)

ax ay az

19 21 23 25 27 29 31 33
Time (s)

0

2

4

6

8

N
or

m
al

iz
ed

St

re
tc

h
C

ap
ac

ita
nc

e

-2

0

2

Si
gn

 o
f D

er
iv

at
iv

e

Figure 3: Illustration of the segmentation algorithm

adopted Sconst = 8 to obtain a comparable range to accelerometer
readings. First, we note that the 3-axis accelerometer data exhibits
signi�cantly larger variations compared to the normalized stretch
capacitance. Therefore, decisions based on accelerations are prone
to false hits [10]. In contrast, we propose a robust solution which
generates the segments speci�ed with red ∗ markers in Figure 3.

The boundaries between di�erent activities can be identi�ed
by detecting the deviation of the stretch sensor from its neutral
value. For example, the �rst segment in Figure 3 corresponds to a
step during walk. The sensor value starts increasing from a local
minimum to a peak at the beginning of the step. The beginning
of the second segment (t ≈ 21 s) exhibits similar behavior, since it
is another step. Although the second step is followed by a longer
neutral period (the user stops and sits to a chair at t ≈ 23 s), the
beginning of the next segment is still marked by a rise from a local
minimum. In general, we can observe a distinct minimum (fall fol-
lowed by rise as in walk) or a �at period followed by rise (as in walk
to sit) at the boundaries of di�erent activity windows. Therefore,
the proposed segmentation algorithm monitors the derivative of
the stretch sensor to detect the activity boundaries.

We employ the 5-point derivative formula given below to track
the trend of the sensor value:

s ′(t) =
s (t − 2) − 8s (t − 1) + 8s (t + 1) − s (t + 2)

12 (1)

where s (t) and s ′(t) are the stretch sensor value and its deriva-
tive time step t , respectively. When the derivative is positive, we
know that the stretch value is increasing. Similarly, a negative value
means a decrease, and s ′(t) = 0 implies a �at region. Looking at a
single data point can catch sudden peaks and lead to false alarms.
To improve the robustness, one can look at multiple consecutive
data points before determining the trend. In our implementation,
we conclude that the trend changes only if the last three derivatives
consistently signal the new trend. For example, if the current trend
is �at, we require that the derivative is positive for three consecu-
tive data points to �lter glitches in the data point. Whenever we
detect that the trend changes from �at or decreasing to positive, we
produce a new segment. Finally, we bound the window size from
below and above to prevent excessively short or long windows. We
start looking for a new segment, only if a minimum duration (one
second in this work) passes after starting a new window. Besides

Jump Walk Sit Stand

3-axis accelerometer

Stretch sensor

Transition

Figure 4: Illustration of the sensor data segmentation

preventing unnecessarily small segments, this approach saves com-
putation time. Similarly, a new segment is generated automatically
after exceeding an upper threshold. This choice improves robust-
ness in case a local minimum is missed. We use tmax = 3 s as the
upper bound, since it is long enough to cover all transitions.

Figure 4 shows the segmented data for the complete duration of
the illustrative example given in Figure 3. The proposed approach
is able to clearly segment each step of walk. Moreover, it is able to
capture the transitions from walking to sitting and sitting to stand-
ing very well. This segmentation allows us to extract meaningful
features from the sensor data, as described in the next section.

3.3 Feature Generation
To achieve a high classi�cation accuracy, we need to choose rep-
resentative features that capture the underlying movements. We
note that human movements typically do not exceed 10-Hz. Since
statistical features, such as mean and variance, are not necessarily
representative, we focus on FFT and DWT coe�cients, which have
clear frequency interpretations. Prior studies typically choose the
largest transform coe�cients [31] to preserve the maximum sig-
nal power as in compression algorithms. However, sorting loses
the frequency connotation, besides using valuable computational
resources. Instead, we focus on the coe�cients in the frequency
bins of interest by preserving the number of data samples in each
segment, as described next.
Stretch sensor features: The stretch sensor shows a periodic pat-
tern for walking, and remains mostly constant during sitting and
standing, as shown in Figure 4. As the level of activity changes, the
segment duration varies in the (1,3] second interval. We can pre-
serve 10 Hz sampling rate for the longest duration (3 s during low
activity), if we maintain 25 = 32 data samples per segment. As the
level of activity intensi�es, the sampling rate grows to 32 Hz, which
is su�cient to capture human movements. We choose a power of 2,
since it enables e�cient FFT computation in real-time. When the
segment has more than 32 samples due to larger sensor sampling
rate, we �rst sub-sample and smooth the input data as follows:

ss [k] =
1

2SR

SR∑
i=−SR

s (tSR + i), 0 ≤ k < 32 (2)

where SR = bN /32c is the subsampling rate, and ss [k] is the sub-
sampled and smoothed data point. When there are less than 32
samples, we simply pad the segment with zeros.

After standardizing the size, we take the FFT of the current win-
dow and the previous window. We use two windows as it allows us
to capture any repetitive patterns in the data. With 32 Hz sampling

rate during high activity regions, we cover Fs/2 =16 Hz activity
per Nyquist theorem. We observe that the leading 16 FFT coe�-
cients, which cover the [0-8] Hz frequency range, carry most of the
signal power in our experimental data. Therefore, they are used
as features in our classi�ers. The level of the stretch sensor also
gives useful information. For instance, it can reliably di�erentiate
sit from stand. Hence, we also add the minimum and maximum
value of the stretch sensor to the feature set.
Accelerometer features: Acceleration data contains faster
changes compared to the stretch data, even though the underlying
human motion is slow. Therefore, we sub-sample and smoothen
the acceleration to 26 = 64 points following the same procedure
given in Equation 2. Three axis accelerometers provide acceleration
ax , ay and az along x−, y− and z−axes, respectively. In addition,
we compute the body acceleration excluding the e�ect of gravity д
as bacc =

√
a2x + a

2
y + a

2
z − д, since it carries useful information.

Discrete wavelet transform is an e�ective method to recursively
divide the input signal to approximation Ai and detail Di coe�-
cients. One can decompose the input signal to log2 N samples where
N is the number of data points. After one level of decomposition,
A1 coe�cients in our data correspond to 0-32 Hz, while D1 coe�-
cients cover 32-64 Hz band. Since the former is more than su�cient
to capture acceleration due to human activity, we only compute
and preserve A1 coe�cients with O (N /2) complexity. The num-
ber of features could be further reduced by computing the lower
level coe�cients and preserving largest ones. As shown in the per-
formance breakdown in Table 5, using the features in the neural
network computations takes less time than computing the DWT
coe�cients. Moreover, keeping more coe�cients and preserving
the order maintains the shape of the underlying data.
Feature Overview: In summary, we use the following features:
Stretch sensor: We use 16 FFT coe�cients, the minimum and maxi-
mum values in each segment. This results in 18 features.
Accelerometer: We use 32 DWT coe�cients for ax , az and bacc . In
our experiments, we use only the mean value of ay , since no activity
is expected in the lateral direction, and bacc already captures its
e�ect given the other two directions. This results in 97 features.
General features: The length of the segment also carries important
information, since the number of data points in each segment is
normalized. Similarly, the activity in the previous window is useful
to detect transitions. Therefore, we also add these two features to
obtain a total of 117 features.

3.4 Supervised Learning for State Classi�cation
In the o�ine phase of our framework, the feature set is assigned a
label corresponding to the user activity. Then, a supervised learning
technique takes the labeled data to train a classi�er which is used
at runtime. Since one of our major goals is online training using
reinforcement learning, we employ a cost-optimized neural network
(NN). We also compare our solution to most commonly used classi�ers
by prior work, and provide brief explanations.
Support Vector Machine (SVM): SVM [14] �nds a hyperplane
that can separate the feature vectors of two output classes. If a
separating hyperplane does not exist, SVM maps the data into
higher dimensions until a separating hyperplane is found. Since
SVM is a two-class classi�er, multiple classi�ers need to be trained
for recognizing more than two output classes. Due to this, SVM is

not suitable for reinforcement learning with multiple classes [21],
which is the case in our HAR framework.
Random Forests and Decision Trees: Random forests [14] use
an ensemble of tree-structured classi�ers, where each tree indepen-
dently predicts the output class as a function of the feature vector.
Then, the class which is predicted most often is selected as the
�nal output class. C4.5 decision tree [30] is another commonly used
classi�er for HAR. Instead of multiple trees, C4.5 uses a single tree.
Reinforcement learning using random forests has been recently
investigated in [26]. As part of the reinforcement learning process,
additional trees are constructed and then a subset of trees is chosen
to form the new random forest. This adds additional processing
and memory requirements on the system, making it unsuitable for
implementation on a wearable system with limited memory.
k-Nearest Neighbors (k-NN): k-Nearest Neighbors [14] is one of
the most popular techniques used by many previous HAR studies.
k-NN evaluates the output class by �rst calculating k nearest neigh-
bors in the training dataset. Then, it chooses the class that is most
common among the k neighbors and assigns it as the output class.
This requires storing all the training data locally. Since storing the
training data on a wearable device with limited memory is not
feasible, k-NN is not suitable for online training.
Proposed NN Classi�er: We use the neural network shown in
Figure 5 as our classi�er. The input layer processes the features
denoted byX, and relay to the hidden layer with the ReLU activation.
It is important to choose an appropriate number of neurons (Nh)
in the hidden layer to have a good accuracy, while keeping the
computational complexity low. To obtain the best trade-o�, we
evaluate the recognition accuracy and memory requirements as a
function of neurons, as detailed in Section 5.2.

The output layer includes a neuron for each activity ai ∈ A =
{D, J ,L, S, Sd,W ,T }, 1 ≤ i ≤ NA, where NA is the number of activi-
ties in set A, which are listed in Table 1. Output neuron for activity
ai computes Oai (X,θin ,θ) as a function of the input features X,
and the neural network weights {θin ,θ }. To facilitate the policy
gradient approach described in Section 4, we express the output
Oai in terms of the hidden layer outputs as:

Oai (X,θin ,θ) = Oai (h,θ) =
Nh+1∑
j=1

hjθ j,i , 1 ≤ i ≤ NA (3)

where hj is the output of the jth neuron in the hidden layer, and
θ j,i is the weight from jth neuron to output activity ai . Note that
hj is a function of X and θin . The summation goes to Nh + 1, since
there are Nh neurons and one bias term in the hidden layer.

After computing the output functions, we use the softmax acti-
vation function to obtain the probability of each activity:

π (ai | h,θ) =
eOai (h,θ)∑NA
j=1 e

Oaj (h,θ)
, 1 ≤ i ≤ NA (4)

We express π (ai | h,θ) as a function of the hidden layer outputs h
instead of the input features, since our reinforcement learning algo-
rithm will leverage it. Finally, the activity which has the maximum
probability is chosen as the output.
Implementation cost: Our optimized classi�er requires 264 mul-
tiplications for the FFT of stretch data, 118Nh + (Nh + 1)NA multi-
plications for the NN and uses only 2 kB memory.

Figure 5: The NN used for activity classi�cation and RL.

4 ONLINE LEARNING with POLICY GRADIENT
The trained NN classi�er is implemented on the IoT device to recog-
nize the human activities in real-time. In addition to online activity
recognition, we employ policy gradient based reinforcement learn-
ing (RL) to continue training the classi�er in the �eld. Online train-
ing improves the recognition accuracy for new users by as much
as 33%, as demonstrated in our user studies. We use the following
de�nitions for the state, action, policy, and the reward.
State: Stretch sensor and accelerometer readings within a segment
are used as the continuous state space. We process them as described
in Section 3.3 to generate the input feature vector X (Figure 5).
Policy: The NN processes input features as shown in Figure 5 to
generate the hidden layer outputs h = {hj , 1 ≤ j ≤ Nh + 1} and the
activity probabilities π (ai |h,θ), i.e., the policy given in Equation 4.
Action: The activity performed in each sensor data segment is
interpreted as the action in our RL framework. It is given by
arдmax π (ai |h,θ), i.e., the activity with maximum probability.
Reward: Online training requires user feedback, which is de�ned
as the reward function. When no feedback is provided by the user,
the weights of the network remain the same. The user can give
feedback upon completion of an activity, such as walking, which
contains multiple segments (i.e., non-uniform action windows). If
the classi�cation in this period is correct, a positive reward (in our
implementation +1) is given. Otherwise, the reward is negative
(−1). We de�ne the sequence of segments for which a reward is
given as an epoch. The set of epochs in a given training session is
called an episode following the RL terminology [33].
Objective: The value function for a state is de�ned as the total
reward that can be earned starting from that state and following the
given policy until the end of an episode. Our objective is to maximize
the total reward J (θ) as a function of the classi�er weights.
Proposed Policy Gradient Update: In general, all the weights in
the policy network can be updated after an epoch [33]. This is useful
when we start with an untrained network with random weights.
When a policy network is trained o�ine as in our example, its �rst
few layers generate broadly applicable intermediate features [22].
Consequently, we can update only the weights of the output layer
to take advantage of o�ine training and minimize the computation
cost. More precisely, we update the weights denoted by θ in Figure 5
to tune our optimized NN to individual users.

Since we use the value function as the objective, the gradient of
J (θ) is proportional to the gradient of the policy [33]. Using this
result, the update equation for θ is given as:

θt+1 � θt + αrt
∇θπ (at | h,θt)
π (at | h,θt)

, α : Learning rate (5)

where θt and θt+1 are the current and updated weight matrices,
respectively. Similarly, at is the current action at time t , rt is the
corresponding reward, and h denotes the hidden layer outputs.
Hence, we need to compute the gradient of the policy to update the
weights. To facilitate this computation and partial update, we parti-
tion the weights into two disjoint sets as St and St . The weights
that connect to the output Oat corresponding to the current action
are in St . The rest of the weights belong to the complementary
set St . With this de�nition, we summarize the weight update rule
in a theorem in order not to disrupt the �ow of the paper with
derivations. Interested readers can go through the proof.
Weight Update Theorem: Given the current policy, reward and
the learning rate α , the weights in the output layer of the NN given
in Figure 5 are updated online as follows:

θt+1, j,i �



θt, j,i + αrt (1 − π (at | h,θt)) · hj θt, j,i ∈ St

θt, j,i − αrtπ (ai | h,θt)) · hj θt, j,i ∈ St
(6)

Proof: The partial derivative of the policy π (at | h,θ) with respect
to the weights θ j,i can be expressed using the chain rule as:

∂π (at | h,θ)
∂θ j,i

=
∂π (at | h,θ)
∂Oai (h,θ)

∂Oai (h,θ)
∂θ j,i

(7)

where 1 ≤ j ≤ Nh + 1 and 1 ≤ i ≤ NA. When θt, j,i ∈ St , action at
corresponds to output Oat (h,θ). Hence, we can express the �rst
partial derivative using Equation 4 as follows:

∂π (at | h,θ)
∂Oat (h,θ)

=
eOat (h,θ)∑Na
j=1 e

Oaj (h,θ)
−

(
eOat (h,θ)

)2(∑Na
j=1 e

Oaj (h,θ)
)2

= π (at | h,θ)
(
1 − π (at | h,θ)

)
(8)

Otherwise, i.e., θt, j,i ∈ St , the derivative is taken with respect to
another output. Hence, we can �nd the partial derivative as:

∂π (at |h,θ)
∂Oai (h,θ)

= −
eOat (h,θ)eOai (h,θ)(∑NA

j=1 e
Oaj (h,θ)

)2 = −π (at |h,θ)π (ai |h,θ) (9)

The second partial derivative in Equation 7, ∂Oai (h,θ)/∂θ j,i , can
be easily computed as hj using Equation 3. The weight update is the
product of learning rate α , reward rt , hj and the partial derivative
of the policy with respect to the output functions. For the weights
θt, j,i ∈ St , we use the partial derivative in Equation 8. For the
remaining weights, we use Equation 9. Hence, we obtain the �rst
and second lines in Equation 6, respectively. Q.E.D �

In summary, the weights of the output layer are updated online
using Equation 6 after a user feedback. Detailed results for the
improvement in accuracy using RL are presented in Section 5.3.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
Wearable System Setup: The proposed HAR framework is imple-
mented on the TI-CC2650 [34] IoT device, which includes a motion
processing unit. It also integrates a radio that runs Bluetooth Low
Energy (BLE) protocol. This device is placed on the ankle, since

this allows for a maximum swing in the accelerometer [16]1. The
users wear the �exible stretch sensor on the right knee to capture
the knee movements of the user. In our current implementation,
the stretch sensor transmits its output to the IoT device over BLE
to provide �exibility in placement. To synchronize the sensors, we
record the wall clock time of each sensor at the beginning of the
experiment. Then, we compute the o�set between the sensors, and
use this o�set to align the sensor readings, as proposed in [32].
After completing the processing on the IoT device, the recognized
activities and their time durations are transmitted to a host, such
as a smartphone, for debugging and o�ine analysis.
Parameter Selection: We use the default sampling frequencies:
100 Hz for the stretch sensor and 250 Hz for the accelerometer.
Lower sampling frequencies did not produce any signi�cant power
savings. The raw sensor readings are preprocessed using a moving
average �lter with a window of nine samples.
User Studies: We evaluate the accuracy of the proposed approach
using data from nine users, as summarized in Table 2. The users con-
sist of eight males and one female, with ages 20–40 years and heights
160–180 cm. Data from only �ve of them are employed during the
training phase. This data is divided into 80% training/validation
and 20% test following the common practice. The rest of the user
data is saved for evaluating only the online reinforcement learn-
ing framework. Each user performs the activities listed in Table 1
while wearing the sensors. For example, the illustration in Figure 4
is from an experiment where the user jumps, takes 10 steps, sits
on a chair, and �nally stands up. The experiments vary from 21
seconds to 6 minutes in length, and have di�erent composition of
activities. We report results from 58 di�erent experiments with a
100 minutes total duration, as summarized in Table 2. After each
experiment, the segmentation algorithm presented in Section 3.2
is used to identify non-uniform activity windows. This results in
2614 unique di�erent segments in our experimental data. Then,
each window is labeled manually through visual inspection by four
human experts. Finally, the labeled data is used for o�ine training.
Comparing speci�c HAR approaches is challenging, since data is
collected using di�erent platforms, sensors and settings. Therefore,
we compare our results with all commonly used classi�ers in the
next section. We also release the labeled experimental data to the
public on the eLab web page2 to enable other researchers to make
comparisons using a common data set.

Table 2: Summary of user studies
Users Unique Experiments No. of Segments Duration (min)

9 58 2614 100

5.2 Training by Supervised Learning
We use a neural network to perform online activity recognition and
training. The NN has to be implemented on the wearable device
with a limited memory (in our case 20kB). Therefore, it should have
a small memory footprint, i.e., number of weights, while giving a
high recognition accuracy. To achieve robust online weight updates
during reinforcement learning, we �rst �x the number of hidden
layers to one. Then, we vary the number of neurons in the hidden
1 We plan to integrate the stretch sensor and the TI-CC2650 into single �exible hybrid
electronics device [15], as shown in Figure 1, in our future work.
2http://elab.engineering.asu.edu/public-release/

http://elab.engineering.asu.edu/public-release/

layer to study the e�ect on the accuracy and memory requirements.
Speci�cally, we vary the number of hidden layer neurons from
one to seven. Note that the number of neurons in the output layer
remains constant as we do not change the number of activities
being recognized. Figure 6 shows the recognition accuracy (left
axis) and memory requirements (right axis) of the network as a
function of number of neurons in the hidden layer. We observe that
the accuracy is only about 80%, when a single neuron is used in
the hidden layer. As we increase the number of neurons, both the
memory requirements and accuracy increase. The accuracy starts
saturating after the third neuron, while the number of weights and
memory requirements increase. In fact, the increase in memory
requirement is linear, with an increase of around 500 bytes with
every additional neuron in the hidden layer. Thus, there is a trade-
o� between the memory requirements and accuracy. In our HAR
framework, we choose an NN with four neurons in the hidden layer
as it gives an overall accuracy of about 97.7% and has a memory
requirement of 2 kB, leaving the rest of the memory for operating
system and other tasks.

1 2 3 4 5 6 7

Number of Neurons

60

70

80

90

100

R
e
c
o

g
n

it
io

n
 A

c
c
u

ra
c
y
 (

%
)

0

1

2

3

4

M
e

m
o

ry
 U

s
a

g
e

 (
k

B
)

Recognition Accuracy

Memory Usage

Figure 6: Comparison of accuracy with number of neurons

5.2.1 Confusion Matrix
We analyze the accuracy of recognizing each activity in our experi-
ment in Table 3. There is one column and one row corresponding
to the activities of interest. The numbers on the diagonal show the
recognition accuracy for each activity. For example, the �rst row
in the �rst column shows that driving is recognized with 99.4% ac-
curacy. According to the �rst row, only 0.6% of the driving activity
windows are classi�ed falsely as “Transition”. To provide also the
absolute numbers, the number in parenthesis at the beginning of
each row shows the total number of activity windows with the cor-
responding label. For instance, a total of 155 windows were labeled
“Drive” according to row 1.

We achieve an accuracy greater than 97% for �ve of the seven
activities. The accuracy is slightly lower for jump because it is more

Table 3: Confusion matrix for 5 training users

Drive Jump Lie
Down Sit Stand Walk Tran-

sition
D (155) 99.4% 0.00 0.00 0.00 0.00 0.00 0.6%
J (181) 0.00 93.4% 0.00 0.00 1.1% 3.9% 1.6%
L (204) 0.00 0.00 100% 0.00 0.00 0.00 0.00
S (394) 0.25% 0.25% 0.00 97.7% 0.76% 0.00 1.0%

Sd (350) 0.00 0.29% 0.00 0.00 98.6% 1.1% 0.00
W (806) 0.00 0.50% 0.00 0.00 0.62% 98.5% 0.37%
T (127) 0.00 3.1% 0.79% 2.4% 0.79% 2.4% 90.5%

dynamic than all the other activities. Moreover, there is a higher
variability in the jump patterns for each user, leading to slightly
lower accuracy. It is also harder to recognize transitions due to the
fact that each transition segment contains features of two activities.
This can lead to a higher confusion for the NN, but we still achieve
more than 90% accuracy. We also note that the loss in accuracy is
acceptable for transitions, since we can indirectly infer a transition
by looking at the segments before and after the transition.
5.2.2 Comparison with other classi�ers
It is not possible to do a one to one comparison with existing ap-
proaches because they use di�erent devices, data sets and activities.
Therefore, we use our data set with the commonly used classi�ers
described in Section 3.4. The results are summarized in Table 4. Al-
though we use only a single hidden layer and minimize the number
of neurons, our implementation achieves competitive test and over-
all accuracy compared to the other classi�ers. We also emphasize
that our NN is used for both online classi�cation and training on
the IoT device.

Table 4: Comparison of accuracy for di�erent classi�ers

Classi�er Train Acc. (%) Test Acc. (%) Overall Acc. (%)
Random Forest 100.00 94.58 98.92
C4.5 99.09 93.90 98.05
k-NN 100.00 94.80 98.96
SVM 97.68 95.03 97.15
Our NN 98.53 94.36 97.70

5.3 Reinforcement Learning with new users
The NN classi�er is used to recognize the activities of four new
users that are previously unseen by the network. This capability
provides a real world evaluation of the approach, since a device
cannot be trained for all possible users. Due to variations in usage
patterns, it is possible that the initial accuracy for a new user is low.
Indeed, the initial accuracy for users 6 and 9 is only about 60–70%.
Therefore, we use reinforcement learning using policy gradients to
continuously adapt the HAR system to each user. Figure 7 shows
the improvement achieved using reinforcement learning for four
users. Each episode in the x-axis corresponds to an iteration of RL
using the data set for new users. The weights of the NN are updated
after each segment as a function of the user feedback for a total of
100 episodes. Moreover, we run 5 independent runs, each consisting
of 100 epochs, to obtain an average accuracy of the NN at each
episode. We observe consistent improvement in accuracy for all the
four users. The accuracy for users 6 and 9 starts low and increases
to about 93% after about 20 episodes. User 8 starts with a higher
accuracy of about 85%. The accuracy increases quickly to about 98%
after 10 episodes. In summary, reinforcement learning improves
the accuracy for users not previously seen by the network. This
ensures that the device can adapt to new users very easily.

5.4 Power, Performance and Energy Evaluation
To fully assess the cost of the proposed HAR framework, we present
a detailed breakdown of execution time, power consumption and
energy consumption for each step. The �rst part of HAR involves
data acquisition from the sensors and segmentation. Since the seg-
mentation algorithm run continuously while the data is acquired,
its energy consumption is included in the sensing block. Table 5

10
0

10
1

10
2

Episode

50

60

70

80

90

100

R
e
c
o

g
n

it
io

n
 A

c
c
u

ra
c
y
 (

%
)

User 6

User 7

User 8

User 9

Figure 7: Reinforcement learning results for four new users
shows the power and energy consumption for a typical segment
of 1.5 s. The average power consumption for the data acquisition
is 1.13 mW, leading to a total energy consumption of 1695 µJ. If
the segments are of a longer duration, the energy consumption for
data sensing increases linearly. Following the data segmentation,
we extract the features and run the classi�er. The execution time,
power and energy for these blocks are shown in the "Compute"
rows in Table 5. As expected, the FFT block has the largest execu-
tion time and energy consumption. However, it is still two orders
of magnitude lower than the duration of a typical segment. Finally,
the energy consumption of the BLE communication block is given
in the last row of Table 5. Since we transmit the inferred activity,
the energy consumed by the BLE communication is only about
43 µJ. With less than 12.5 mW average power consumption, our
approach enables close to 60-hour uninterrupted operation using a
200 mAh @ 3.7 V battery [12]. Hence, it can enable self-powered
wearable devices [6] that can harvest their own energy [25].
Table 5: Execution time, power and energy consumption

Block Exe.
Time (ms)

Average
Power (mW) Energy (µJ)

Sense Read/Segment 1500.00 1.13 1695.00

Compute
DWT 7.90 9.50 75.05
FFT 17.20 11.80 202.96
NN 2.50 12.90 32.25
Overall 27.60 11.24 310.26

Comm. BLE 8.60 5.00 43.00

6 CONCLUSIONS
We presented a HAR framework on a wearable IoT device using
stretch and accelerometer sensors. The �rst step of our solution
is a novel technique to segment the sensor data non-uniformly as
a function of the user motion. Then, we generate FFT and DWT
features using the segmented data. Finally, these features are used
for online inference and training using an NN. Our solution is the
�rst to perform online training. Experiments on TI-CC2650 MCU
with nine users show 97.7% accuracy in identifying six activities
and their transitions with less than 12.5 mW power consumption.
Acknowledgment: This work was supported by NSF CAREER
award CNS-1651624.
REFERENCES
[1] Parkinsons Disease Digital Biomarker DREAM Challenge. [Online] https://www.

synapse.org/#!Synapse:syn8717496/wiki/. Accessed 04/15/2018.
[2] World Health Organization, Obesity and Overweight. Fact Sheets, 2013. [Online]

http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 03/22/2018.
[3] D. Anguita et al. Energy E�cient Smartphone-Based Activity Recognition Using

Fixed-Point Arithmetic. J. of Universal Comput. Sci., 19(9):1295–1314.

[4] M. Arif, M. Bilal, A. Kattan, and S. I. Ahamed. Better Physical Activity Classi�ca-
tion Using Smartphone Acceleration Sensor. J. of Med. Syst., 38(9):95, 2014.

[5] L. Bao and S. S. Intille. Activity Recognition From User-Annotated Acceleration
Data. In Int. Conf. on Pervasive Comput., pages 1–17, 2004.

[6] G. Bhat, J. Park, and U. Y. Ogras. Near-Optimal Energy Allocation for Self-
Powered Wearable Systems. In Proc. Int. Conf. on Comput.-Aided Design, pages
368–375, 2017.

[7] A. G. Bonomi, A. H. Goris, B. Yin, and K. R. Westerterp. Detection of Type,
Duration, and Intensity of Physical Activity Using an Accelerometer. Medicine
& Science in Sports & Exercise, 41(9):1770–1777, 2009.

[8] J. Bort-Roig et al. Measuring and In�uencing Physical Activity With Smartphone
Technology: A Systematic Review. Sports Medicine, 44(5):671–686, 2014.

[9] M. A. Case, H. A. Burwick, K. G. Volpp, and M. S. Patel. Accuracy of Smartphone
Applications and Wearable Devices for Tracking Physical Activity Data. Jama,
313(6):625–626, 2015.

[10] Y. Chen and C. Shen. Performance Analysis of Smartphone-Sensor Behavior for
Human Activity Recognition. IEEE Access, 5:3095–3110, 2017.

[11] K. Dinesh et al. Signal Analysis for Detecting Motor Symptoms in Parkinson’s
and Huntington’s Disease Using Multiple Body-A�xed Sensors: A Pilot Study.
In Image and Signal Process. Workshop, pages 1–5, 2016.

[12] DMI International Distribution Ltd. Curved lithium thin cells. [Online] http:
//www.dmi-international.com/data%20sheets/Curved%20Li%20Polymer.pdf Ac-
cessed 04/18/2018.

[13] A. J. Espay et al. Technology in Parkinson’s Disease: Challenges and Opportuni-
ties. Movement Disorders, 31(9):1272–1282, 2016.

[14] J. Friedman, T. Hastie, and R. Tibshirani. The Elements of Statistical Learning,
volume 1. Springer, 2001.

[15] U. Gupta, J. Park, H. Joshi, and U. Y. Ogras. Flexibility-Aware System-on-Polymer
(SoP): Concept to Prototype. IEEE Trans. Multi-Scale Comput. Syst., 3(1):36–49,
2017.

[16] N. Győrbíró, Á. Fábián, and G. Hományi. An Activity Recognition System for
Mobile Phones. Mobile Networks and Appl., 14(1):82–91, 2009.

[17] Y. He and Y. Li. Physical Activity Recognition Utilizing the Built-in Kinematic
Sensors of a Smartphone. Int. J. of Distrib. Sensor Networks, 9(4):481–580, 2013.

[18] R. Jafari, W. Li, R. Bajcsy, S. Glaser, and S. Sastry. Physical Activity Monitoring
for Assisted Living at Home. In Int. Workshop on Wearable and Implantable Body
Sensor Network, pages 213–219, 2007.

[19] M. Kirwan, M. J. Duncan, C. Vandelanotte, and W. K. Mummery. Using Smart-
phone Technology to Monitor Physical Activity in the 10,000 Steps Program: A
Matched Case–Control Trial. J. of Med. Internet Research, 14(2), 2012.

[20] J. R. Kwapisz, G. M. Weiss, and S. A. Moore. Activity Recognition Using Cell
Phone Accelerometers. ACM SigKDD Explorations Newsletter, 12(2):74–82, 2011.

[21] M. G. Lagoudakis and R. Parr. Reinforcement Learning as Classi�cation: Lever-
aging Modern Classi�ers. In Proc. Int. Conf. Mach. Learn., pages 424–431, 2003.

[22] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan. A Fast and
Accurate Online Sequential Learning Algorithm for Feedforward Networks. IEEE
Trans. Neural Netw., 17(6):1411–1423, 2006.

[23] A. Mosenia, S. Sur-Kolay, A. Raghunathan, and N. K. Jha. Wearable Medical
Sensor-Based System Design: A Survey. IEEE Trans. Multi-Scale Comput. Syst.,
3(2):124–138, 2017.

[24] B. O’Brien, T. Gisby, and I. A. Anderson. Stretch Sensors for Human Body Motion.
In Electroactive Polymer Actuators and Devices, volume 9056, page 905618, 2014.

[25] J. Park et al. Flexible PV-cell Modeling for Energy Harvesting in Wearable IoT
Applications. ACM Trans. Embed. Comput. Syst., 16(5s):156, 2017.

[26] A. Paul and D. P. Mukherjee. Reinforced Random Forest. In Proc. Indian Conf. on
Comput. Vision, Graphics and Image Processing, pages 1:1–1:8, 2016.

[27] Pérez-López et al. Dopaminergic-Induced Dyskinesia Assessment Based on a
Single Belt-Worn Accelerometer. Arti�cial Intell. in Medicine, 67:47–56, 2016.

[28] S. Pirttikangas, K. Fujinami, and T. Nakajima. Feature Selection and Activ-
ity Recognition From Wearable Sensors. In Int. Symp. on Ubiquitious Comput.
Systems, pages 516–527, 2006.

[29] S. J. Preece et al. Activity Identi�cation Using Body-Mounted Sensors–A Review
of Classi�cation Techniques. Physiological Measurement, 30(4):R1, 2009.

[30] J. R. Quinlan. C4. 5: Programs for Machine Learning. Elsevier, 2014.
[31] M. Shoaib et al. A Survey of Online Activity Recognition Using Mobile Phones.

Sensors, 15(1):2059–2085, 2015.
[32] S. Sridhar, P. Misra, G. S. Gill, and J. Warrior. Cheepsync: A Time Synchronization

Service for Resource Constrained Bluetooth LE Advertisers. IEEE Commun. Mag.,
54(1):136–143, 2016.

[33] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press,
2nd edition, 2018.

[34] Texas Instruments Inc. CC-2650 Microcontroller. [Online] http://www.ti.com/
product/CC2650 Accessed 04/18/2018.

[35] A. Wang, G. Chen, J. Yang, S. Zhao, and C.-Y. Chang. A Comparative Study
on Human Activity Recognition Using Inertial Sensors in a Smartphone. IEEE
Sensors J., 16(11):4566–4578, 2016.

https://www.synapse.org/#!Synapse:syn8717496/wiki/.
https://www.synapse.org/#!Synapse:syn8717496/wiki/.
http://www.who.int/mediacentre/factsheets/fs311/en/.
http://www.dmi-international.com/data%20sheets/Curved%20Li%20Polymer.pdf
http://www.dmi-international.com/data%20sheets/Curved%20Li%20Polymer.pdf
http://www.ti.com/product/CC2650
http://www.ti.com/product/CC2650

	Abstract
	1 Introduction
	2 Related Work and Novelty
	3 Feature Set and Classifier Design
	3.1 Goals and Problem Statement
	3.2 Sensor Data Segmentation
	3.3 Feature Generation
	3.4 Supervised Learning for State Classification

	4 Online Learning with Policy Gradient
	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Training by Supervised Learning
	5.3 Reinforcement Learning with new users
	5.4 Power, Performance and Energy Evaluation

	6 Conclusions
	References

