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Abstract—Smallformfactorandlow-cost wearabledevices
enableavarietyofapplicationsincludinggesturerecognition,
health monitoring,andactivitytracking.Energyharvestingand
optimalenergymanagementarecriticalfortheadoptionofthese
devices,sincetheyareseverelyconstrainedbybatterycapacity.
Thispaperconsidersoptimalgesturerecognitionusingself-powered
devices. Weproposeanapproachto maximizethenumberof
gesturesthatcanberecognizedunderenergybudgetandaccuracy
constraints. Weconstructacomputationallyefficientoptimization
algorithmwiththehelpofanalytical modelsderivedusingthe
energyconsumptionbreakdownofawearabledevice.Ourempirical
evaluationsdemonstrateupto2.4× increaseinthenumberof
recognizedgesturescomparedtoamanuallyoptimizedsolution.

I.INTRODUCTION

Wearableinternetofthings(IoT)devicesarebecomingpopular
duetotheirsmallformfactorandlowcost[3].Smallformfactor
enablesinterestingapplicationsincludinggesture-basedcontrol,
healthmonitoring,andactivitytracking[2,12].However,italso
limitsthebatterycapacity,whichisoneofthemajorobstacles
forwidespreadadoptionofwearableIoTdevices[13].
Wearabledevicescannotrelyonhighcapacitybatteriesused

insmartphonesduetotheirrelativelylargesizeandweight(2100
mAh @42g)[7].Lighterflexiblebatteriescannotbeused
aloneeither,sincetheyhavemodestcapacities(200mAh @
1.2g)[6].Therefore,harvestingenergyfromambientsources
iscrucialtorelievefromthedependenceonbatteries[5].Recent
researchshowsthatphotovoltaiccells(PV-cells)canprovide10–
100mW/cm2density[10]. Wearabledevicescangreatlybenefit
fromthisharvestingpotential,sincetheycanbepersonalizedfor
eachuser.Forexample,thedevicecanlearntheusagepatterns,
andadapttheoperatingpointstoitsuser.
Inthiswork,weconsiderwearabledevicespoweredprimarily

throughambientenergysources,asillustratedinFigure1.Since
theamountoftheharvestedenergysetstheavailableenergy
budget,thedevicehastomaximizetheworkperformedunder
thisenergybudget
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.Tothisend,weemploygesturerecognition
asthetargetdomain,becauseithasawiderangeofbiomedical
applications,suchasgesture-basedcontrolandinteractionwith
assistivedevices.Moreprecisely,wedynamicallymaximizethe
numberofgesturesthatcanberecognizedunderenergybudget
andaccuracyconstraints.
Energy-optimalgesturerecognitionproblemisconvolutedby

threemajorchallenges.First,accurateenergyconsumptionand
gesturerecognitionaccuracymodelsareneededtoguidethis
optimization.Second,thisproblemshouldbesolvedatruntime
withminimumimplementationoverhead.Finally,theoptimization
methodologyhastobevalidatedusinganenergyharvesting
deviceanduserstudies.Toaddressthesechallenges,weemploy
acustom wearabledevice whosecomponentsareillustrated
inFigure1.Usingthisprototype,wecharacterizethepower

Fig.1. Wearablegesturerecognitionsystem.

consumptionoftheaccelerometer,microprocessorandBluetooth
LowEnergy(BLE)whileperforminggesturerecognition.Then,
wedevelopacompactenergymodelthatcanbeusedatruntime
bytheproposedoptimizationapproach.Similarly,weanalyze
therecognitionaccuracyasafunctionofthegesturerecognition
durationbyperforminguserstudies.Finally,wepresentacompu-
tationallyefficientalgorithmtoperformgesturerecognitionunder
theenergybudgetandaccuracyconstraints. Weshowthatthe
proposedapproachincreasesthenumberofrecognizedgestures
byupto2.4×comparedtomanualoptimization.

Insummary,themajorcontributionsofthispaperare:
•Analgorithmtomaximizethenumberofgesturesthatcan
berecognizedunderenergybudgetandaccuracyconstraints,

•Empiricalevaluationsonawearabledeviceprototypethat
demonstrateupto2.4×increaseinthenumberofrecog-
nizedgesturescomparedtomanualoptimization.

Therestofthepaperisorganizedasfollows. Wereviewthe
relatedworkinSectionII. Wepresenttheproposedenergy-
optimalgesturerecognitionframeworkinSectionIII.Finally,we
discusstheexperimentalresultsinSectionIV,andsummarizethe
conclusionsinSectionV.

II.RELATEDWORK
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WearableIoTdeviceshavebeenstudiedextensivelydueto
theirformfactorandcostadvantages.Researchershaveproposed
gesture-basedcontrol,healthmonitoring,andactivitymonitoring
asapplicationsofIoTdevices[8].Significantamountofresearch
hasalsofocusedonwearabledeviceswithenergyharvesting[5].
Forinstance,ajacketwithsolarandthermalenergyharvestingis
proposedin[5].EnergyharvestinginIoTdeviceshasnecessitated
thedevelopmentofenergymanagementandallocationalgorithms
forwearableIoTdevices[4].Forexample,thealgorithmproposed
in[4]usesadynamicprogrammingapproachtoperformanear-
optimalenergyallocationforself-poweredwearabledevices.In
thiswork,weassumethattheenergybudgetforeachtimehorizon
isprovidedbyasimilaralgorithm.
Power-awarecomputingiscriticalforwearabledevicesdue

tolimitedenergybudget.Therefore,recentresearchhasfocused
onanaccuracy-powertrade-offin wearabledevices[9,14].
Forinstance,thetechniquepresentedin[14]usesadynamic
sensorselectiontominimizethepowerconsumptionofagesture
recognitionbodyareanetwork.Thisleadstoamaximizationof
thenetworklifetime.Theworkin[9]proposesanalgorithm



foroffloadinggesturerecognitiontoasmartphoneforcertain
gestures,suchthattheenergyconsumptionofthesystemis
minimized.Incontrasttotheseapproaches,weproposeanovel
runtimealgorithmthatoptimizesgesturerecognitiononthe
wearabledeviceunderenergybudgetandaccuracyconstraints.
Tothisend,wefirstformulateanonlinearoptimizationproblem
tomaximizethenumberofgestures.Then,weuseexperimental
measurementsonawearabledevicetoderivealowcomplexity
solutiontotheproblem.

III.ENERGY-OPTIMALGESTURERECOGNITION

A.Self-PoweredWearableDevicePrototype

ThetargetwearabledeviceshowninFigure2harvestsenergy
usingPV-cellsandanenergyharvestingcircuit.Sincethehar-
vestedenergyisintermittentandexhibitssignificantvariations
overaday[4],wealsoemploya45 mAhLithium-polymer
batterywith1gweight.ThepowercircuitryemploysaPV-cell
SP3-37anda MPPTchargerTIBQ25504.Thetargetsystem
includesamicroprocessorTICC2650andamotionprocessing
unitInvensenseMPU-9250.
Whenattachedtouser’shand,thewearabledevicecaptures

thehandmotionusingthe3-axisaccelerometer.Then,themicro-
processorprocessesthecaptureddatatorecognizetheintended
gesture.Finally,thedecodedgestureistransmittedtothetarget
physicalsystemthroughtheBLEinterface.Theenergybudget
availableforgesturerecognitionisdeterminedbytheharvested
energy.Tobepractical,thesystemhastomaximizethenumberof
intendedoperations(i.e.,recognizedgestures)underthisbudget

(a) Mounted prototype (b) Prototype attached on the hand

,
while maintaininga minimumlevelofrecognitionaccuracy.
Therefore,weproposeamethodologytoachievethisgoal.

Fig.2. Gesturerecognitionprototypeusedinthiswork.

B.ProblemFormulation
Giventhecharacteristicsoftheenergyharvestingsystem,we

candeterminetheenergythatcanbeharvestedoverafinite
horizonth [4]. WeusethisamountastheenergybudgetEb
availableforthewearabledevice.Wedefinethegesturerecogni-
tiondurationtgasthetimespentbythedevicetoinferasingle
gesture.Thewearabledeviceactivelysensesthehandmotionand
processesthedataduringthisperiod,whichtakesaportionof
th.Wedenotethenumberofgesturesrecognizedwithinthefinite
horizonbyNg(tg),sinceitisafunctionofthegesturerecognition
duration.TheenergyconsumptionpergestureEg(tg)isafunction
oftg,becausetgdeterminestheactivetimeoftheprocessorand
sensor.Similarly,theenergyconsumptionofthedeviceduringthe
idletimeisdenotedbyEi(tg).Finally,theenergyconsumedfor
transmittingtherecognizedgestureisdenotedbyEcomm. With
thisnotation,weformulatetheoptimizationproblemas:

maximize Ng(tg) suchthat (1)

Etotal(tg)=Eg(tg)·Ng(tg)+Ei(tg)+Ecomm≤Eb (2)

Gacc(tg)≥Gacc,min (3)

Thefirstconstraintinthisformulationensuresthatthetotal
systemenergyconsumptionislessthantheenergybudget.The

secondconstraintguaranteesthattheaccuracyGacc(tg)isgreater
thanaminimumaccuracyGacc,min.NotethatGacc(tg)isa
functionoftg,sincetgdeterminesthenumberofdatapoints
usedforgesturerecognitiongiventhesamplingfrequency.
SolvingtheoptimizationproblemgivenbyEquations1–3at

runtimeisnoteasy,sinceboththeobjectiveandconstraintsare
nonlinear.Moreover,systemdependenciesmakeithardtomodel
thebehaviorofEg(tg)andEi(tg).

C.GestureRecognitionClassifierDesign

Wedefinefivegesturesmadebyhand–backward,forward,
left,right,and wave–asshowninFigure3.Inaddition,
weincludeastationarygesturetodetectwhenthedeviceis
inactive.Toclassifythesegestures,onecanuseavarietyof
supervisedlearningalgorithms,suchassupportvectormachine
(SVM),decisiontree,logisticregressionandneuralnetwork
(NN).Selectingtheappropriatealgorithmdependsontheinput
datasize,accuracyandlatencyrequirements,aswellasavailable
computationalpowerandmemory.Inourapplication,theinput
isprovidedbya3-axisaccelerometerwith50Hzsamplingrate.
Sincecommongesturestakeapproximately0.8s[1],thenumber
ofdatapointsforeachgestureis120.
Wetarget90%orhigheraccuracyonasmallIoTdevice.Using

usersubjectexperiments,weverifiedthatSVM,decisiontreeand
NNclassifierscanmeetthisaccuracyrequirement.Inadditionto
accuracy,wealsoaimataflexiblesolutionthatcanbeeasily
extendedtomorenumberofgestures,inputfeatures,andother
applications.Furthermore,personalassistivedevicescanlearnits
user’sbehaviorandadaptthealgorithmatruntimetomaximize
therecognitionaccuracy.Inthiswork,weadoptaNNclassifier,
sinceitfacilitatesthetwoadditionalconstraintswiththehelpof
aprogrammablesolutionandreinforcementlearning.
TheinputlayerinourNNclassifierisconnectedtotheinput

features,i.e.,thesensordata.Theoutputlayerhas6neurons,one
correspondingtoeachgestureshowninFigure3.Eachoutput
neuronevaluatestheprobabilityofthecorrespondinggesture.
Ourprogrammablesolutiontakesthenumberofhiddenlayers,
thenumberofneuronsineachlayer,andtheweightsasinputs.
Then,itinstantiatestheclassifierthatisreadytorunonthe
MCU.InordertochoosethenumberofneuronsinourNN,we
performdesignspaceexplorationbyvaryingthenumberofhidden
layersandneuronsineachlayer.Weobservethattheincreasein
accuracydiminishesoncethenumberofneuronsexceedsthree.
Inourexperiments,weemployfourneuronsinthehiddenlayer,
sincefurtherincreasedoesnotimprovetheaccuracy,anditleads
duetoalowervariationinaccuracycomparedtousing3neurons.
WeemploytwoversionsoftheNNforgesturerecognition:

•BaselineNNusesall120accelerometersamplescollectedby
the3-axisaccelerometerduringtgasinputfeatures.

•ReducedNNemploystransformedfeaturesderivedfromthe
rawaccelerometerdata.Weutilizetheminimum,maximumand
meanvaluesofeachaxis(x,y,z)overtg.Hence,thisamounts
toatotalof9inputfeatures.Sincethenumberoftransformed
featuresdoesnotdependontg
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Fig.3.Illustrationofthetargetgestures.



D.EnergyConsumptionCharacterization

Asmentionedbefore,solvingtheoptimizationproblemgiven
inEquations1-3requiresmodelingenergypergestureEg(tg)
andidleenergyEi(tg)asafunctionofgesturerecognition
durationtg.Therefore,weanalyzethepowerconsumptionof
the microprocessorandthesensor(i.e.,accelerometer)while
processingonegesture.Thedashedblueandsolidredlines
inFigure4representthemeasuredpowerconsumptionofthe
microprocessorandthesensor,respectively.Initially,thesystem
waitsforusermotionintheidlestate. Whentheusermakes
agesture,theaccelerometersensorwakesthesystemup,and
performsapreprocessingroutinetopreparetheaccelerometer
andmicroprocessor.Then,theaccelerometerstartssamplingthe
motiondataforadurationof tg
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. Weobservetwodifferent
levelsofpowerconsumptioninthesensor.Thesensorpower
consumptionisclosetozeroduringidlestate,whileitconsumes
around2mWpowerintheactivestate.Thepowerconsumption
alsoexhibitspeaksduringthestatetransitionsbecauseofpre-
andpost-processingofdataacquisition.Oncethedataacquisition
iscompleted,themicroprocessorprocessesthesensordata,and
transmitstherecognizedgestureusingBLE.Unlikethesensor,
thepowerconsumptionofthe microprocessorshowsperiodic
peaks,whicharecausedbytheBLEmoduletomaintainanactive
connection.Inaddition,pre-processingandpost-processingtasks
causelargerpeaksinthemicroprocessorpower.

Fig.4.Powerconsumptionduringagesturerecognitionwhentg=400ms.

E.SolutiontotheOptimizationProblem

Thissectionpresentsatechniquetomaximizethenumberof
gesturesthatcanberecognizedundertheenergybudgetand
accuracyconstraintsgiveninEquations1–3.
Longergesturerecognitiondurationtgimplieslongeractive

timeforboththesensor(moredatasamples)andmicroprocessor
(moreprocessing),asshowninFigure4.Consequently,thetotal
energyconsumptionisanincreasingfunctionofthegesture
recognitiondurationtg.Wecharacterizetheenergyconsumption
thoroughlyandconstructadetailedenergymodeltocapturethis
relation[11].Withthehelpofthischaracterization,weillustrate
theenergyconsumptionasafunctionoftginFigure5(theleft
axis).Theenergybudget,specifiedbythehorizontaldottedline,
limitstheenergyconsumedbythesystem.Hence,thegesture
recognitiondurationtgisboundedfromabovebythegivenenergy
budgetEb.Similarly,thegesturerecognitionaccuracyisexpected
toimprove,iflargernumberofdatasamplesareused.Itsprecise
behaviorcanbefoundafteruserstudies,butwecanconceptualize
itasanon-decreasingfunctionofthegesturerecognitionduration,
asillustratedbytherightaxisinFigure5.Consequently,the
minimumaccuracyrequirementboundsthegesturerecognition
durationtg
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Fig.5. Energybudgetandminimumaccuracyrequirementsconstrainthe
gesturerecognitiondurationtgfromaboveandbelow,respectively.Hence,
wemaximizethenumberofrecognizedgestureswithinthefeasibleregion.

aresult,thefeasibleregionfortheoptimizationproblemisthe
intersectionoftheregionsforenergyandaccuracy,ashighlighted
inFigure5.
TomaximizethenumberofrecognizedgesturesNg(tg),we

expressthetotalenergyconsumptionasafunctionoftg,i.e.,
wemodelEg(tg)andEi(tg).Then,wederiveanexpressionfor
Ng(tg)suchthatitcanbemaximizedwithinthefeasibleregion.
Finally,weprovethatNg(tg)ismaximizedwhentgischosenas
theminimumvaluewithinthefeasibleregion.Detailedmodels
andtheproofofthisresultisprovidedinthetechnicalreport[11]
duetopagelimitations.Inwhatfollows,weadopttheminimum
tgthatsatisfiestheaccuracyconstraintsbasedonouruserstudies.
Theeffectivenessofthisoptimizationisdemonstratedempirically
inthefollowingsection.

IV.EXPERIMENTALEVALUATION

A.ExperimentalSetup

Wearablesystem: Weusethein-house wearableprototype
describedinSectionIII-A.Itfeaturestestportsto measure
thepowerconsumptionofthe microprocessorandthe MPU
separately.PowermeasurementsareperformedusingNIPXIe-
4081andPXIe-4080digital multimetersystems with5kHz
samplingfrequency.
Gesturerecognition:ThewearabledeviceusestheNNtodetect
thegestureandtransmitsittoahostdevice.Thehostdevicestores
thedetectedandthereferencegesture.Wetesttheaccuracyofthe
gesturerecognitionsystemusing30datasetsfromsevenusers.
Eachsethasaseriesof50gesturesperformedinrandomorder.
TendatasetsarereservedfortrainingtheNN.Thetrainingdata
isfurtherdividedinto80%training,10%cross-validationand
10%testdata,whichisusedtoanalyzetheaccuracyoftheNN.
Weobtain96.5%,97.4%,and98.4%accuracyforthetraining,
cross-validationandtestdata,respectively.Theremaining20data
setsareusedfortestingtheaccuracyoftheNNafterthetraining
iscompleted.TheyareneverseenbytheNNduringthetraining
toreliablytesttherobustnessofourgesturerecognitionsystem.

B.GestureRecognitionAccuracyAnalysis

TherecognitionaccuracywiththebaselineNNis98.0%,thus
itishigherthan90%wetarget.Similarly,weobservegreater
than90%recognitionaccuracyforthereducedNNwhenthe
gesturerecognitiondurationtg>380ms,asshowninFigure6.
Thereisasignificantdegradationinaccuracywhentgisreduced
below380ms.Weobservethisbehaviorbecausealowertgdoes
notallowsufficienttimefortheNNtosufficientlydifferentiate
betweenthegestures.Moreover,theremaynotbesufficienttime
tocompleteagesture,whentgisnotlongenough.Forexample,
theaccuracyforthewavegesturedegradesfasterthantherest
ofthegestures,sincealargernumberofsamplesisrequiredto
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Fig.6. Accuracyofgesturerecognitionforalltheusers.

extractitssignature.Hence,weusetg=380msasthelower
boundofthegesturerecognitiontime. Wealsonotethatthe
accuracyofthebaselineNNdegradesmorerapidlywithreducing
tg,sinceitusesallthedatapoints.

C.OptimizationResults

Inputstotheproposedoptimizationmethodologyarethetime
horizonandcorrespondingenergybudget.Sincetheharvested
energycanfluctuaterapidlyduetoenvironmentalconditions,we
assumethas1minuteandanalyzetheoptimizationresultsfor
energybudgetEb={120mJ,180mJ,240mJ}.Wealsonotethat
alargertimehorizondoesnotchangethepercentagesavings
significantly,asitdoesnotchangetheproposedalgorithm.For
comparisons,weusethebaselineNNandamanuallyoptimized
versionofthebaselineNNbyincreasingtheBLEconnection
intervaltconntoreducetheBLEoverhead.Oursolution(labeled
asReduced)usestheproposedoptimizationalgorithm.Through-
outtheexperiments,weenforceaminimumgesturerecognition
accuracyof90%.
Whentheenergybudgetis120mJ,thebaselineNNisable

torecognizeonly4gestures,sincethestaticenergyandBLE
communicationconsume72.5%and21.6%oftheenergybudget,
respectively.Thebaseline NNcanrecognize15gesturesby
reducingBLEcommunicationenergywithlongertconn.Thepro-
posedoptimizationprovidesanadditional2×boostandincreases
Ngto31,asshowninFigure7.Increasingtheenergybudget
to180mJand240mJbenefitsthebaselineNNsignificantly.
Nevertheless,ouroptimizationapproachstillprovides2× and
2.4×improvementovertheoptimizedbaseline,respectively.In
particular,whentheenergybudgetis240mJ,themaximumNg
forourapproachislimitedbythe1-minutetimehorizon,notthe
energybudget.
WeillustratetheoptimizationresultsinmoredetailinFigure8.

Theimplicitupperboundinducedbyth isshownwiththe
dottedcurve,whiletheverticaldashedlineillustratestheaccuracy
constraint.TheresultobtainedwiththebaselineNNisthepoint
labeledwiththe marker.Incontrast,ouroptimizationapproach
enablesustovarythenumberofgesturesNg(tg)alongthesolid
curve.Thiscurveisadecreasingfunctionoftg,asshownby
theproofin[11].Hence,theoptimalpointisdeterminedasthe
minimumtg
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,asstatedinSectionIII-E.
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Fig.7. Comparisonofthenumberofrecognizedgesturesforvariousenergy
budgets.

Fig.8.IllustrationoftheoptimalsolutionwhenEb=120mJ.

V.CONCLUSIONS
WearableIoTdevicesarebecomingpopularininteresting

applicationssuchasgesture-basedcontrolduetotheirsmall
formfactorandlowcost.Batterylifelimitationisoneofthe
majorissuesofwearabledevices.Hence,energyharvestingand
optimaluseoftheharvestedenergyarecritical.Wepresentedan
optimizationapproachtomaximizethenumberofgesturescanbe
recognizedundertheenergybudgetandaccuracyconstraints.We
showthattheproposedalgorithmshowsupto2.4×improvement
inthenumberofrecognizedgesturesovertheoptimizedbaseline.
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