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Abstract— Small form factor and low-cost wearable devices
enable a variety of applications including gesture recognition,

health monitoring, and activity tracking. Energy harvesting and
optimal energy management are critical for the adoption of these
devices, since they are severely constrained by battery capacity.
This paper considers optimal gesture recognition using self-powered
devices. We propose an approach to maximize the number of
gestures that can be recognized under energy budget and accuracy
constraints. We construct a computationally efficient optimization
algorithm with the help of analytical models derived using the
energy consumption breakdown of a wearable device. Our empirical
evaluations demonstrate up to 2.4x increase in the number of
recognized gestures compared to a manually optimized solution.

I. INTRODUCTION

Wearable internet of things (IoT) devices are becoming popular
due to their small form factor and low cost [3]. Small form factor
enables interesting applications including gesture-based control,
health monitoring, and activity tracking [2, 12]. However, it also
limits the battery capacity, which is one of the major obstacles
for widespread adoption of wearable IoT devices [13].

Wearable devices cannot rely on high capacity batteries used
in smartphones due to their relatively large size and weight (2100
mAh @ 42 g) [7]. Lighter flexible batteries cannot be used
alone either, since they have modest capacities (200 mAh @
1.2 g) [6]. Therefore, harvesting energy from ambient sources
is crucial to relieve from the dependence on batteries [5]. Recent
research shows that photovoltaic cells (PV-cells) can provide 10—
100 mW/cm? density [10]. Wearable devices can greatly benefit
from this harvesting potential, since they can be personalized for
each user. For example, the device can learn the usage patterns,
and adapt the operating points to its user.

In this work, we consider wearable devices powered primarily
through ambient energy sources, as illustrated in Figure 1. Since
the amount of the harvested energy sets the available energy
budget, the device has to maximize the work performed under
this energy budget. To this end, we employ gesture recognition
as the target domain, because it has a wide range of biomedical
applications, such as gesture-based control and interaction with
assistive devices. More precisely, we dynamically maximize the
number of gestures that can be recognized under energy budget
and accuracy constraints.

Energy-optimal gesture recognition problem is convoluted by
three major challenges. First, accurate energy consumption and
gesture recognition accuracy models are needed to guide this
optimization. Second, this problem should be solved at runtime
with minimum implementation overhead. Finally, the optimization
methodology has to be validated using an energy harvesting
device and user studies. To address these challenges, we employ
a custom wearable device whose components are illustrated
in Figure 1. Using this prototype, we characterize the power
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Fig. 1. Wearable gesture recognition system.

consumption of the accelerometer, microprocessor and Bluetooth
Low Energy (BLE) while performing gesture recognition. Then,
we develop a compact energy model that can be used at runtime
by the proposed optimization approach. Similarly, we analyze
the recognition accuracy as a function of the gesture recognition
duration by performing user studies. Finally, we present a compu-
tationally efficient algorithm to perform gesture recognition under
the energy budget and accuracy constraints. We show that the
proposed approach increases the number of recognized gestures
by up to 2.4x compared to manual optimization.
In summary, the major contributions of this paper are:
« An algorithm to maximize the number of gestures that can
be recognized under energy budget and accuracy constraints,

« Empirical evaluations on a wearable device prototype that
demonstrate up to 2.4x increase in the number of recog-
nized gestures compared to manual optimization.

The rest of the paper is organized as follows. We review the
related work in Section II. We present the proposed energy-
optimal gesture recognition framework in Section III. Finally, we
discuss the experimental results in Section IV, and summarize the
conclusions in Section V.

II. RELATED WORK

Wearable IoT devices have been studied extensively due to
their form factor and cost advantages. Researchers have proposed
gesture-based control, health monitoring, and activity monitoring
as applications of IoT devices [8]. Significant amount of research
has also focused on wearable devices with energy harvesting [5].
For instance, a jacket with solar and thermal energy harvesting is
proposed in [5]. Energy harvesting in IoT devices has necessitated
the development of energy management and allocation algorithms
for wearable IoT devices [4]. For example, the algorithm proposed
in [4] uses a dynamic programming approach to perform a near-
optimal energy allocation for self-powered wearable devices. In
this work, we assume that the energy budget for each time horizon
is provided by a similar algorithm.

Power-aware computing is critical for wearable devices due
to limited energy budget. Therefore, recent research has focused
on an accuracy-power trade-off in wearable devices [9, 14].
For instance, the technique presented in [14] uses a dynamic
sensor selection to minimize the power consumption of a gesture
recognition body area network. This leads to a maximization of
the network lifetime. The work in [9] proposes an algorithm



for offloading gesture recognition to a smartphone for certain
gestures, such that the energy consumption of the system is
minimized. In contrast to these approaches, we propose a novel
runtime algorithm that optimizes gesture recognition on the
wearable device under energy budget and accuracy constraints.
To this end, we first formulate a nonlinear optimization problem
to maximize the number of gestures. Then, we use experimental
measurements on a wearable device to derive a low complexity
solution to the problem.

ITII. ENERGY-OPTIMAL GESTURE RECOGNITION
A. Self-Powered Wearable Device Prototype

The target wearable device shown in Figure 2 harvests energy
using PV-cells and an energy harvesting circuit. Since the har-
vested energy is intermittent and exhibits significant variations
over a day [4], we also employ a 45 mAh Lithium-polymer
battery with 1g weight. The power circuitry employs a PV-cell
SP3-37 and a MPPT charger TI BQ25504. The target system
includes a microprocessor TI CC2650 and a motion processing
unit Invensense MPU-9250.

When attached to user’s hand, the wearable device captures
the hand motion using the 3-axis accelerometer. Then, the micro-
processor processes the captured data to recognize the intended
gesture. Finally, the decoded gesture is transmitted to the target
physical system through the BLE interface. The energy budget
available for gesture recognition is determined by the harvested
energy. To be practical, the system has to maximize the number of
intended operations (i.e., recognized gestures) under this budget,
while maintaining a minimum level of recognition accuracy.
Therefore, we propose a methodology to achieve this goal.

(b) Prototype attached on the hand

(a) Mounted prototype
Fig. 2. Gesture recognition prototype used in this work.

B. Problem Formulation

Given the characteristics of the energy harvesting system, we
can determine the energy that can be harvested over a finite
horizon t; [4]. We use this amount as the energy budget Ej
available for the wearable device. We define the gesture recogni-
tion duration ¢¢ as the time spent by the device to infer a single
gesture. The wearable device actively senses the hand motion and
processes the data during this period, which takes a portion of
ty- We denote the number of gestures recognized within the finite
horizon by Ny (t4), since it is a function of the gesture recognition
duration. The energy consumption per gesture Eg(tg) is a function
of tg, because ¢4 determines the active time of the processor and
sensor. Similarly, the energy consumption of the device during the
idle time is denoted by E;(tg). Finally, the energy consumed for
transmitting the recognized gesture is denoted by Ecomm. With
this notation, we formulate the optimization problem as:

maximize Ng(tg) such that (1)
Eiotai(tg) =Eq(tg) - Ng(tgHEi(tg) +Ecomm < Ep (2
Gacc (tg) 2 Gacc,mi’n (3)

The first constraint in this formulation ensures that the total
system energy consumption is less than the energy budget. The

second constraint guarantees that the accuracy Gaec(tg) is greater
than a minimum accuracy Ggeemin- Note that Gaec(tg) is a
function of g4, since t; determines the number of data points
used for gesture recognition given the sampling frequency.

Solving the optimization problem given by Equations 1-3 at
runtime is not easy, since both the objective and constraints are
nonlinear. Moreover, system dependencies make it hard to model
the behavior of Eg4(tg) and E;(ig)-

C. Gesture Recognition Classifier Design

We define five gestures made by hand — backward, forward,
left, right, and wave — as shown in Figure 3. In addition,
we include a stationary gesture to detect when the device is
inactive. To classify these gestures, one can use a variety of
supervised learning algorithms, such as support vector machine
(SVM), decision tree, logistic regression and neural network
(NN). Selecting the appropriate algorithm depends on the input
data size, accuracy and latency requirements, as well as available
computational power and memory. In our application, the input
is provided by a 3-axis accelerometer with 50 Hz sampling rate.
Since common gestures take approximately 0.8 s [1], the number
of data points for each gesture is 120.

We target 90% or higher accuracy on a small IoT device. Using
user subject experiments, we verified that SVM, decision tree and
NN classifiers can meet this accuracy requirement. In addition to
accuracy, we also aim at a flexible solution that can be easily
extended to more number of gestures, input features, and other
applications. Furthermore, personal assistive devices can learn its
user’s behavior and adapt the algorithm at runtime to maximize
the recognition accuracy. In this work, we adopt a NN classifier,
since it facilitates the two additional constraints with the help of
a programmable solution and reinforcement learning.

The input layer in our NN classifier is connected to the input
features, i.e., the sensor data. The output layer has 6 neurons, one
corresponding to each gesture shown in Figure 3. Each output
neuron evaluates the probability of the corresponding gesture.
Our programmable solution takes the number of hidden layers,
the number of neurons in each layer, and the weights as inputs.
Then, it instantiates the classifier that is ready to run on the
MCU. In order to choose the number of neurons in our NN, we
perform design space exploration by varying the number of hidden
layers and neurons in each layer. We observe that the increase in
accuracy diminishes once the number of neurons exceeds three.
In our experiments, we employ four neurons in the hidden layer,
since further increase does not improve the accuracy, and it leads
due to a lower variation in accuracy compared to using 3 neurons.
We employ two versions of the NN for gesture recognition:

« Baseline NN uses all 120 accelerometer samples collected by
the 3-axis accelerometer during ¢4 as input features.

+ Reduced NN employs transformed features derived from the
raw accelerometer data. We utilize the minimum, maximum and
mean values of each axis (z,y, z) over tg. Hence, this amounts
to a total of 9 input features. Since the number of transformed
features does not depend on ¢4, we can change it at runtime.
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Fig. 3. Tlustration of the target gestures.



D. Energy Consumption Characterization

As mentioned before, solving the optimization problem given
in Equations 1-3 requires modeling energy per gesture Eg(tg)
and idle energy FE;(tg) as a function of gesture recognition
duration tg. Therefore, we analyze the power consumption of
the microprocessor and the sensor (i.e., accelerometer) while
processing one gesture. The dashed blue and solid red lines
in Figure 4 represent the measured power consumption of the
microprocessor and the sensor, respectively. Initially, the system
waits for user motion in the idle state. When the user makes
a gesture, the accelerometer sensor wakes the system up, and
performs a preprocessing routine to prepare the accelerometer
and microprocessor. Then, the accelerometer starts sampling the
motion data for a duration of ¢{;. We observe two different
levels of power consumption in the sensor. The sensor power
consumption is close to zero during idle state, while it consumes
around 2 mW power in the active state. The power consumption
also exhibits peaks during the state transitions because of pre-
and post- processing of data acquisition. Once the data acquisition
is completed, the microprocessor processes the sensor data, and
transmits the recognized gesture using BLE. Unlike the sensor,
the power consumption of the microprocessor shows periodic
peaks, which are caused by the BLE module to maintain an active
connection. In addition, pre-processing and post-processing tasks
cause larger peaks in the microprocessor power.
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Fig. 4. Power consumption during a gesture recognition when 4, = 400 ms.

E. Solution to the Optimization Problem

This section presents a technique to maximize the number of
gestures that can be recognized under the energy budget and
accuracy constraints given in Equations 1-3.

Longer gesture recognition duration ¢, implies longer active
time for both the sensor (mmore data samples) and microprocessor
(more processing), as shown in Figure 4. Consequently, the total
energy consumption is an increasing function of the gesture
recognition duration t5. We characterize the energy consumption
thoroughly and construct a detailed energy model to capture this
relation [11]. With the help of this characterization, we illustrate
the energy consumption as a function of ¢4 in Figure 5 (the left
axis). The energy budget, specified by the horizontal dotted line,
limits the energy consumed by the system. Hence, the gesture
recognition duration ¢4 is bounded from above by the given energy
budget Ey. Similarly, the gesture recognition accuracy is expected
to improve, if larger number of data samples are used. Its precise
behavior can be found after user studies, but we can conceptualize
it as a non-decreasing function of the gesture recognition duration,
as illustrated by the right axis in Figure 5. Consequently, the
minimum accuracy requirement bounds the gesture recognition
duration ¢y from below regardless of the shape of the curve. As

Min accuracy

=
g .
o 1 2
E : 2
] 1 5
E ___|Energy budget | ; 3
83:‘? " Max | <.
[
> 3 P Ngl) S
2 | inthe 1 =R,
5 ' feasible ! 2
= 1 region, O
@
.g :4 H o
'—

Gesture recognition duration (tg)

Fig. 5. Energy budget and minimum accuracy requirements constrain the
gesture recognition duration t; from above and below, respectively. Hence,
we maximize the number of recognized gestures within the feasible region.

a result, the feasible region for the optimization problem is the
intersection of the regions for energy and accuracy, as highlighted
in Figure 5.

To maximize the number of recognized gestures Ng(tq), we
express the total energy consumption as a function of ¢4, ie.,
we model Eg4(ty) and E;(tg). Then, we derive an expression for
Ng(tg) such that it can be maximized within the feasible region.
Finally, we prove that Ng(tg) is maximized when ¢4 is chosen as
the minimum value within the feasible region. Detailed models
and the proof of this result is provided in the technical report [11]
due to page limitations. In what follows, we adopt the minimum
tq that satisfies the accuracy constraints based on our user studies.
The effectiveness of this optimization is demonstrated empirically
in the following section.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Wearable system: We use the in-house wearable prototype
described in Section ITI-A. It features test ports to measure
the power consumption of the microprocessor and the MPU
separately. Power measurements are performed using NI PXle-
4081 and PXlIe-4080 digital multimeter systems with 5 kHz
sampling frequency.

Gesture recognition: The wearable device uses the NN to detect
the gesture and transmits it to a host device. The host device stores
the detected and the reference gesture. We test the accuracy of the
gesture recognition system using 30 data sets from seven users.
Each set has a series of 50 gestures performed in random order.
Ten data sets are reserved for training the NN. The training data
is further divided into 80% training, 10% cross-validation and
10% test data, which is used to analyze the accuracy of the NN.
We obtain 96.5%, 97.4%, and 98.4% accuracy for the training,
cross-validation and test data, respectively. The remaining 20 data
sets are used for testing the accuracy of the NN after the training
is completed. They are never seen by the NN during the training
to reliably test the robustness of our gesture recognition system.

B. Gesture Recognition Accuracy Analysis

The recognition accuracy with the baseline NN is 98.0%, thus
it is higher than 90% we target. Similarly, we observe greater
than 90% recognition accuracy for the reduced NN when the
gesture recognition duration ¢y > 380 ms, as shown in Figure 6.
There is a significant degradation in accuracy when tg4 is reduced
below 380 ms. We observe this behavior because a lower t, does
not allow sufficient time for the NN to sufficiently differentiate
between the gestures. Moreover, there may not be sufficient time
to complete a gesture, when 4 is not long enough. For example,
the accuracy for the wave gesture degrades faster than the rest
of the gestures, since a larger number of samples is required to
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Fig. 6. Accuracy of gesture recognition for all the users.
extract its signature. Hence, we use t; = 380 ms as the lower
bound of the gesture recognition time. We also note that the
accuracy of the baseline NN degrades more rapidly with reducing
tg, since it uses all the data points.

C. Optimization Results

Inputs to the proposed optimization methodology are the time
horizon and corresponding energy budget. Since the harvested
energy can fluctuate rapidly due to environmental conditions, we
assume t; as 1 minute and analyze the optimization results for
energy budget E={120 mJ, 180 mJ, 240 mJ}. We also note that
a larger time horizon does not change the percentage savings
significantly, as it does not change the proposed algorithm. For
comparisons, we use the baseline NN and a manually optimized
version of the baseline NN by increasing the BLE connection
interval fzonn to reduce the BLE overhead. Our solution (labeled
as Reduced) uses the proposed optimization algorithm. Through-
out the experiments, we enforce a minimum gesture recognition
accuracy of 90%.

When the energy budget is 120 mJ, the baseline NN is able
to recognize only 4 gestures, since the static energy and BLE
communication consume 72.5% and 21.6% of the energy budget,
respectively. The baseline NN can recognize 15 gestures by
reducing BLE communication energy with longer tconn. The pro-
posed optimization provides an additional 2x boost and increases
Ny to 31, as shown in Figure 7. Increasing the energy budget
to 180 mJ and 240 mJ benefits the baseline NN significantly.
Nevertheless, our optimization approach still provides 2x and
2.4x improvement over the optimized baseline, respectively. In
particular, when the energy budget is 240 mJ, the maximum Ny
for our approach is limited by the 1-minute time horizon, not the
energy budget.

We illustrate the optimization results in more detail in Figure 8.
The implicit upper bound induced by tp is shown with the
dotted curve, while the vertical dashed line illustrates the accuracy
constraint. The result obtained with the baseline NN is the point
labeled with the A marker. In contrast, our optimization approach
enables us to vary the number of gestures Ng(tg) along the solid
curve. This curve is a decreasing function of ¢4, as shown by
the proof in [11]. Hence, the optimal point is determined as the
minimum tg, as stated in Section III-E.
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V. CONCLUSIONS

Wearable IoT devices are becoming popular in interesting
applications such as gesture-based control due to their small
form factor and low cost. Battery life limitation is one of the
major issues of wearable devices. Hence, energy harvesting and
optimal use of the harvested energy are critical. We presented an
optimization approach to maximize the number of gestures can be
recognized under the energy budget and accuracy constraints. We
show that the proposed algorithm shows up to 2.4x improvement
in the number of recognized gestures over the optimized baseline.
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