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Cyber-physical systems (CPS) and the Internet of Things (IoT) offer a significant potential to improve the ef-

fectiveness of assistive technologies for thosewith physical disabilities. Practical assistive technologies should

minimize the number of inputs from users to reduce their cognitive and physical effort. This article presents

an energy-efficient framework and algorithm for assistive indoor navigation with multi-modal user input.

The goal of the proposed framework is to simplify the navigation tasks and make them more instinctive for

the user. Our framework automates indoor navigation using only a few user commands captured through

a wearable device. The proposed methodology is evaluated using both a virtual smart building and a proto-

type. The evaluations for three different floorplans show one order of magnitude reduction in user effort and

communication energy required for navigation, when compared to conventional navigation methodologies

that require continuous user inputs.
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1 INTRODUCTION

The continuing expansion of the Internet of Things (IoT) will soon enable disruptive applications
by interconnecting billions of smart devices with each other and their users [27]. One high-impact
application area is in assistive technologies for the physically challenged population. The Annual
World Report onDisability reveals that 15% of theworld’s population liveswith a disability, and 110
to 190 million of these people have significant difficulties in functioning [1]. We can significantly
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improve the quality of life of this population by providing accessibility to smart cyber-physical
systems (CPS) that process sensory inputs and assist with everyday tasks [13]. In this work, we
focus specifically on an instinctive assistive indoor navigation system that minimizes the number
of user inputs to reduce both physical and cognitive effort.
Traditional electronic systems rely heavily on user intervention for all decision-making. For ex-

ample, electric wheelchairs require a continuous stream of direction commands, similar to driving
a car. This puts all the decision making and navigation burden on the person with limited ability.
The other extreme decision making is a fully autonomous navigation system, which has a list of
all possible destinations. Setting the final destination and leaving the navigation to the wheelchair
removes the burden of continuous control from the user. However, a fully autonomous system
would be possible only if the user can specify all the possible destinations through a pre-defined
interface. This alternative to user intervention lacks flexibility and has three drawbacks. First, use
of a pre-defined framework itself requires a non-trivial interface, such as a graphical user interface,
a touch screen, or speech recognition. A person with a disability may face difficulty in selecting
the destination by interaction with this type of an interface. Second, all the potential destinations
need to be known a priori and encoded in a menu. Third, the final destination is not always pre-
determined. In short, a fully autonomous solution pushes the complexity to receiving a “precise
input.” In contrast, this work aims to assist the user by receiving simple commands. To this end,
we propose to distribute the intelligence between the person and the assistive device. In analogy
to the nervous system, the person acts as the “brain” by indicating the intended action to the de-
vice through a seamless mechanism. The proposed navigation framework acts as the “spinal cord,”
which interprets the user’s intent and manages the actions of the assistive device. For instance,
the person may lean or turn towards a certain direction to indicate the intended movement in the
indoor navigation example. Then, the proposed framework automates the immediate turn and also
predicts the possible target(s) while moving the person towards them. Essentially, the combination
of the proposed framework and the wheelchair serves as a natural extension of the body.
The goals of the proposed assistive cyber-physical system are to achieve natural human-machine

communication and minimize the number of user inputs. To achieve these goals, we address two
major challenges. The first challenge is communicating the user’s intent with the device in a natu-
ral and simple way. The second is interpreting and utilizing this input to drive the physical system.
To address the first challenge, we limit the user’s inputs to a small set of simple commands and send
them to the wearable device using multi-modal communication [34]. At the physical device side,
we implement an algorithm to predict the intermediate destinations using the simple commands
and floorplan information.
Human to machine communication: Machine to human communication can occur through
a variety of mechanisms, ranging from display to audio. However, human to machine com-
munication is more limited (and potentially more so for those with physical disabilities) when
traditional mechanisms such as keyboards, touch screens, and mice, are not viable. This is often
the case when dealing with a cyber-physical system. Speech recognition is a good candidate for
a natural interaction with smart devices. However, we choose not to rely on any single modality
for human-machine communication, as any given form of communication may have limitations
in terms of its effectiveness (e.g. speech recognition in noisy environments). Moreover, users
with certain disabilities may prefer some forms of interaction as opposed to others. For example,
those with motor control disorders may have difficulty with hand gestures. As such, we propose a
multi-modal communication architecture that allows more flexible interaction with smart devices.
Multi-modal communication is defined as the use of multiple complementary mechanisms, such
as speech, gestures, and facial expressions [34] as forms of communication with smart devices. In
our experiments, we employ hand gesture recognition, speech recognition, and a brain-machine
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Fig. 1. The major components of the proposed system. Multi-modal communication architecture and as-

sistive indoor navigation algorithms are described in Sections 4 and 5, respectively. The wearable device is

energy limited as it is physically separated from the wheelchair.

interface (BMI) that records and analyzes electroencephalogram (EEG) signals. The proposed sys-
tem allows users to potentially pick different mechanisms or a combination based on their ability
to generate these inputs. As shown in Figure 1, the proposed system infers a minimal set of user
inputs {Back (B), Forward (F ), Left (L), Right (R), Stop (S)} using a combination of three modalities.
Processing the user input: To compensate for the reduction in user effort, the receiving device
(i.e., the wearable device) must have the intelligence to interpret the user’s intent. To be practical,
the algorithms should run on the wearable device in real timewithminimum energy overhead.1 To
address this need, we present an algorithm that can predict the possible set of destinations using
only a few commands and floorplan information. To start, we encode each possible destination
on the floorplan using a sequence of commands. Each new command is appended to a sequence
of received commands to form a prefix. Then, this prefix is used to predict possible destinations,
and automate navigation until the next decision point. We show that the proposed technique not
only reduces the time to target, but more importantly, eliminates the need for a continuous user
inputs, implying a reduction in communication energy consumption. As a result, we achieve 4.5×
reduction in the number of user inputs and communication energy.
The major contributions of this article are:

• An algorithm to predict the user intent and automate navigation with minimum number of
user inputs

• A system prototype that generates simple commands, and implements the proposed
algorithm

• A co-simulation framework for modeling cyber-physical systems and extensive evaluations
on a virtual smart building using three real floorplans.

The rest of this article is organized as follows. Related work appears in Section 2. We describe
the proposed assistive system and the techniques for generating user commands in Sections 3 and
4, respectively. The proposed indoor navigation algorithm is presented in Section 5, while energy
and performance evaluations appear in Section 6. Finally, conclusions and future directions are
summarized in Section 7.

2 RELATEDWORK

IoT-enabled devices have a huge potential to assist people with disabilities [13, 14, 39], in addition
to improving the quality of life in general. This has led to a large variety of application-oriented
wearable devices that allow for natural forms of human-machine communication [25]. The
user inputs that control these devices are typically generated by classifying a single mode of

1Note that wearable device, which interprets the user intent and communicates the commands, is energy-limited unlike

the physical device (wheelchair).
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communication, such as speech, hand gestures, facial expressions, brain-activity, and body, head,
or eye movements [4, 21, 37].
Devices designed to communicate through a single input modality restrict the usage only

to persons capable of producing that particular input [44]. For example, a person with an
articulation disorder may face difficulty in using speech-recognition devices. Furthermore, devices
that rely on a singlemodality can suffer frompoor accuracy [34].More than 30% ofmobility aids are
completely abandoned because of poor device performance or changes in user priorities, such as
improvement or decline in their medical conditions [33]. Implementing multi-modal communica-
tion can alleviate these issues. By utilizing a variety of inputs, we can improve the flexibility of the
device to support a wide group of users with differing abilities or changing priorities. For example,
a user who suffers from a speech impediment after an accident may prefer gesture-based control
of devices. Additionally, multi-modal communication has the potential to improve the recognition
accuracy and robustness [15]. However, this also leads to a new challenge, because the final control
decision has to be determined by fusing multiple inputs. A variety of decision-fusion algorithms
have been developed to address this need [15, 24, 44]. We employ the majority voting algorithm
to determine the final decision from our input devices [46].
Many assistive technologies rely heavily on tens of low-level commands directly from the user

to actuators to complete a task. This requires high physical, cognitive, or linguistic effort [30].
It also increases the task completion time, since frequent responses from the user are required
for task completion. In our work, we specifically focus on the technology surrounding assistive
indoor navigation. Many researchers have explored ways in which automation can reduce the
burden on the user for navigation tasks [5, 8, 43]. For example, vision-based robot navigation is
presented in [6], where the trajectory is represented as a set of images. This type of an approach
requires image processing, and it is limited to the path on the input images. Likewise, method-
ologies presented in References [5] and [43] require computationally intensive vision processing
that involves extensive information processing. The work in Reference [17] addresses controlling
wheeled and humanoid robots using a BMI. The authors present algorithms for learning command
hierarchies using the history of the commands generated by the user. The researchers in Reference
[40] performed a study on assistive indoor navigation with a semi-autonomous wheelchair with
multi-modal inputs. Their work focuses mostly on the control framework around the wheelchair
system, including a simulation environment to test the control system. In contrast, our study ex-
plores the navigation algorithm for an IoT-enabled wheelchair on an indoor floorplan that contains
a grid of RFID sensors. The low-level control signals that drive the wheelchair are generated using
a wearable device that interprets user inputs. We combine simple user inputs with the contextual
information about the wheelchair environment (i.e., the floorplan, current state and location of
the wheelchair). We also target reducing the user effort, communication energy cost, and compu-
tational requirements compared to more conventional methods for assistive indoor navigation.

3 CYBER-PHYSICAL SYSTEM OVERVIEW

The cyber-physical system we have designed is depicted in Figure 1. The first component of this
system is the wearable device, which we model using a Raspberry Pi board [36]. This device is
responsible for processing the user inputs from multiple sources by using the approach described
in Section 4. It generates a final decision for wheelchair actuation and communicates with the
wheelchair controller. We use the following three modalities to capture the user commands as
inputs to the wearable device:

• Gestures: Hand, head, or body movements can be used to capture simple commands we
employ. We utilize accelerometer and gyroscope sensors [42] to capture simple tilting
and twisting movements on one hand that correspond to navigation commands. While
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traditional controls (e.g., a joystick) require a large number of precise movements, a simple
hand gesture can be less precise to accommodate users with motion-related disabilities.
Gesture recognition can also be tailored for each user to improve the accuracy.

• Speech: While natural speech recognition is demanding, a handful of simple voice com-
mands can be recognized with less processing power. We use the Pocketsphinx speech
recognition system [23] to detect the user’s voice commands for navigation.

• Brain-machine Interface (BMI): People who have difficulty in producing voice and ges-
ture commands can employ wearable EEG-based BMIs to generate the inputs [29]. In this
work, we use the Emotiv EPOC headset [16] to capture raw EEG inputs and facial expres-
sions that represent navigation commands. BMI serves as a natural addition to our system,
since users typically think about the gestures and speech commands they produce.

The next component of our system is the IoT-enabled wheelchair device. We use the Intel Edison
[7] board to actuate all navigation-related tasks for the wheelchair. Traditional electric wheelchairs
(without any navigation algorithm) require a continuous stream of manual inputs for directions to
move. Every turn, stop, and movement command needs to be specified by the user. This requires
the user to generate and transmit many commands, which may use up limited battery energy of
the wearable device [3, 31]. Therefore, in our proposed solution, the Edison board runs a prediction
algorithm that uses these inputs and the floorplan information to automate segments of the naviga-
tion.We show that this significantly reduces the number of user inputs and overall communication
energy of the wearable device. The details of this implementation are discussed in Section 5.

4 MULTI-MODAL COMMUNICATION TECHNIQUE

4.1 Overview and Preliminaries

To enable intuitive human-machine communication, we employ a multi-modal communication
approach. Each modality uses a classifier to interpret the user intent using its inputs. We make the
following definitions to formulate the multi-modal communication problem:

• Let H = {H i , 1 ≤ i ≤ L} represent the set of classification modalities or devices, where L is
the total number of classifier devices. In our experiments, we have L = 3 with the following:
—H 1: BMI system
—H 2: Speech recognition system
—H 3: Gesture detection system

• Let Γ = {γj , 1 ≤ j ≤ M } represent the set of possible user-generated commands, where M
is the total number of commands. In our experiments, we have M = 5 with the following
possible commands:
—Γ = {B, F ,L,R, S }, representing the commands of Backwards, Forward, Left, Right, and
Stop, respectively.

Then, we denote the user’s intended command and the classifier decision as follows:

• The user’s intended command at time t is represented by Ct ∈ Γ
• The classifier’s decision at time t from classification modality H i is represented by Di

t ∈ Γ
We state that classifier H i successfully detects the user intent at time t , if Ct = Di

t . Otherwise,
the lack of any classifier output or Ct � Dt

t imply an incorrect classification.

4.2 Fusion of Decisions

Our L-mode classification system generates L decisions (one for each modality) using the set of
classifiers H i . Therefore, we need a fusion algorithm to determine the final decision by using each
individual classifier decision as an input. We propose the following two-step procedure:
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(1) Use optimal Bayesian classification to determine the correct interpretation probability for
each modality H i . That is, compute P (Ct = γ |Di

t = γ ) for each H i and each possible com-
mand γ ∈ Γ = {B, F ,L,R, S }. This techniques is detailed in Section 4.2.1.

(2) Employ a lightweightmajority voting scheme to select the final output of the multi-modal

system, denoted by D
f
t . This technique is explained in Section 4.2.2.

The following subsections detail these two steps.

4.2.1 Optimal Bayesian Classification. For a given classification modality H i , the conditional

probabilityP (Ct = γ |Di
t = γ ) serves as a useful measure of the corresponding classifier’s credibility.

Since event distribution is unknown in practice, this conditional probability can be estimated by
using an optimal Bayesian classifier, as follows:

P (Ct = γ |Di
t = γ ) =

P (Di
t = γ |Ct = γ )P (Ct = γ )

P (Di
t = γ |Ct = γ )P (Ct = γ ) + P (D

i
t = γ |Ct � γ )P (Ct � γ )

, (1)

where the denominator, P (Di
t = γ ), is expanded using the total probability theorem.

To compute the credibility of each modality using Equation (1), we need the command gener-
ation (P (Ct = γ ), P (Ct � γ )) and conditional probability terms. The command generation prob-
abilities can be estimated by using contextual information and history of commands, which are
provided by our indoor navigation algorithm. Therefore, we describe their computation in Sec-
tion 5.4 after presenting the necessary background. Next, we examine the conditional probability
terms:

• P (Di
t = γ |Ct = γ ) represents the conditional probability that modality H i infers γ given the

user command is γ .
• P (Di

t = γ |Ct � γ ) represents the conditional probability that classification modality H i in-
fers γ , when the user actually sent a different command (false detection of command γ ).

We conduct an offline analysis using user subject experiments to determine the accuracy of each
classification modality. Once offline training is completed, the user begins to use the wheelchair
and wearable device for indoor navigation task. We note that the decision accuracy of some classi-
fiers may vary over time and use conditions. For example, the accuracy of speech recognition may
decrease in noisy environments. Therefore, we also provide an online mechanism to continually
adjust these conditional probabilities over time while the device is in regular use.

Offline Training to Determine Conditional Probabilities: During the training phase, we ask
the user to generate each command a total of T times (T = 50 in our experiments). We record the
performance of each classifier H i in a matrix, denoted byO i , as follows:

Oi = [oit, j ] =

Intent→ B F L R S
Time ↓

���������
�

���������
�

t1 oi1,B oi1,F oi1,L oi1,R oi1,S

t2 oi2,B oi2,F oi2,L oi2,R oi2,S
...

...
...

...
...

...

tT oi
T ,B oi

T ,F oi
T ,L oi

T ,R oi
T ,S

(2)
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Fig. 2. Online update ofOi .

The columns of O i from j = 1, . . . ,M represent the outcomes the ith modality Di
t ∈ Γ used in

the experiment. Each rows of O i from t = 1, . . . ,T represent a different trials for each intended
command. For example, oi1,F represents the outcome of the ith modality in the first trial, while

testing for the forward command.
Once this matrix is generated, computing the conditional probabilities P (Di

t = γ |Ct = γ ) and
P (Di

t = γ |Ct � γ ) is a matter of counting the frequency of each outcome. For example, P (Di
t =

F |Ct = F ) is computed using the second column of Oi . The number of rows for which oi
j,F = F

gives the total number of trials that the ith modality generates the outcomes correctly as F . Hence,
P (Di

t = F |Ct = F ) is simply the number of of correct outcomes divided by the total number of trials
T .
Online Training to Update Oi : Since various environmental factors can affect any particular
classifier’s accuracy over time, we also propose an online technique to update the elements of
matrixO i at runtime.
O i is a T ×M (i.e., 50 × 5) vector, as defined in Equation (2). Each column stores the last 50

decisions made by modality “i” for a given intent. For instance, the first column of O i stores the
decisions made by modality “i ,” when the intent was Backwards (Column 1 in Equation (2)). At
runtime, we employ a sliding window of length T = 50 (i.e., the last 50 decisions for each intent
are stored). When a new decision is made, the oldest entry is dropped and replaced with the new
one. In this way, each column of O i reflects the latest 50 decisions for the corresponding intent.
Then, these up-to-date columns are used to compute the conditional probability of generating each
action, given an intent.
The main challenge in implementing the sliding window is the uncertainty in the true user

intent. That is, there is no ground truth reference for intended user commands. Therefore, we

must decide upon a method to determine if any particular final classifier decision, D
f
t , is the true

intended user command. We observe that a user will immediately try to correct an incorrect clas-
sification decision. Similarly, we observe that the same user will not issue another immediate com-
mand if he is satisfied with the fused decision from all classification modalities, likely indicating a
correct final decision. Therefore, we assume that if a new command does not arrive within a pre-

defined time threshold, tth , the final decision D
f
t matches the user’s intended commandCt . In this

case, we store these newest Di
t value for eachH

i in the column of eachO i that corresponds to this
true intended command, while discarding the oldest values, as described in Figure 2. If, instead,
the user does generate a new command within the same pre-defined time threshold, then we as-

sume that the user was not satisfied with the last generated final decisionD
f
t . This implies that the

command was incorrectly classified by our multi-modal system. Unlike the other case, we cannot
simply update the O i matrices, since the correct intended decision is still unknown. Therefore,
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when an incorrect event is interpreted, the system will attempt to re-interpret the user’s intent
until a correct decision can be determined. When a user is finally satisfied with the final fused de-

cision,D
f
t , we conclude that all the previous incorrect attempts were made with the same intended

command. Then, the corresponding columns in eachO i are updated with the previous Di
t values

generated by the multi-modal system, as shown in Figure 2.
We note that reinforcement learning (RL) algorithm [41] is a powerful alternative technique

for making online updates. We opted for a simpler online update mechanism, because we tar-
get low-power systems with very limited computational power and memory. In contrast, RL
is data intensive and requires more computations than our simple updates, which have linear
complexities.

4.2.2 Majority Voting for Final Decision. From the above discussion, we know that the condi-
tional probability P (Ct = γ |Di

t = γ ) gives a measure for the credibility of a decision from classifier
H i . We utilize this credibility as a weight, denoted by w i

j,t , for each decision in the multi-modal

classification system and form the weight matrixW t = [w i
j,t ]. Here, j represents the user com-

mands Ct ∈ Γ used in the experiment. Hence,W t is an L ×M matrix that contains the weight for
all supported commands related to each classifier, at time t . In our system, each classifier can out-
put a decision from the same set of five commands, which are B, F , L, R, and S . For each classifier
H i at time t , we can then define a decision matrix (of size L ×M). An element of the decisionmatrix,
Φt = [ϕij,t ] ∈ {1, 0} is 1 if the jth command in Γ is detected by classifier H i at time t. Otherwise,

ϕij,t is set to 0. For a particular classifier H i , i.e., along the ith row, the decision matrix will only

have one nonzero elements corresponding to the generated command from classifier H i . This is
because each classifier only outputs one decision.
We calculate the score for each potential decision γ ∈ Γ by fusing the weights and decisions

from all classifiers H 1 − HL , as follows:

score = diaд
(
W T

t × Φt

)
. (3)

The entries of this array provide a measure of the likelihood of each command. Therefore, we

determine the final fused decision D
f
t by simply choosing the decision corresponding maximum

element of score as

D
f
t = arдmax (score ). (4)

We also experimented with alternative voting rules discussed in Reference [35] and observed that
weightedmajority voting provides themost robust solution. Indeed, themajority voting ruleworks
well on most domains and is one of the most robust voting rules [11].

5 ASSISTIVE INDOOR NAVIGATION

5.1 Preliminaries

Each potential destination on the target floorplan, e.g., a room, is called an explicit point of interest
(POI). For example, Figure 4 shows one of the floorplans used in our simulations and highlights
the explicit POIs with �markers. When two explicit POIs cannot be connected by a straight path
due to an obstacle, such as a wall, we introduce implicit POIs. The implicit POIs are the points
on the floorplan that connect two or more explicit POIs using a straight path. They can also be
considered the turning points that the wheelchair needs to pass through to go from one explicit
POI to another. The implicit POIs in Figure 4 are shown with ◦ markers.

Definition 1 (Point of Interest Graph). The POIs in the target floorplan are represented by the
directed graph GF (V ,E),
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Fig. 3. Implicit POI generation. (a) A sample floorplan with two explicit POIs, m and n, (b) Lines of sight

of explicit POIs, (c) Generation of implicit POI, p, from the intersection of lines of sight, and (d) POIs with

connected edges.

• The set of vertices, V , represents all possible POIs. Each vertex vi ∈ V has two attributes.
The first one specifies the position (Pxi , Pyi ), and the second one shows whether the corre-
sponding POI is explicit or implicit.

• The edges E denote the set of paths that connect the POIs. Each edge ei ∈ E has an attribute
di , which gives the distance between its end points.

Definition 2 (Wheelchair State). The state of the wheelchair at time t is given by the triple
St = (xt ,yt ,θt ). xt and yt denote the coordinates of the wheelchair, while θt is the orientation at
time t .

Definition 3 (User Command). The user inputs needed for navigation are referred to as user

command. In this work, we use Γ = {F ,R,L,B, S } commands to predict the user intent and automate
navigation towards the intended target.

Problem Formulation: Given the current state of the wheelchair St = (xt ,yt ,θt ) and the user
command Ct ∈ {F ,R,L,B, S },
Determine the set of possible target vertices and automate the wheelchair navigation until the

next decision point.
The proposed solution to this problem consists of three steps:

(1) generating the POI graph GF (V ,E),
(2) predicting intended task using the fused command from the user, and
(3) planning and automating the navigation until the next decision point.

5.2 POI Graph Generation

We generate the POI graph GF (V ,E) at the beginning of the navigation task using the image
of the floorplan that marks only the explicit POIs. The implicit POIs are inserted automatically
by dividing the path between two explicit POIs into multiple segments, when there is a wall or
another obstacle on the path. This process is illustrated step by step in Figure 3. The point of
interest generation algorithm considers the obstacles that are known at the time of planning. In
extreme circumstances, moving objects or obstacles may block parts of the planned trajectory. As
soon as such an obstacle is detected, the POI graph is constructed using the current position as the
initial point. Then, a new trajectory is generated following the user input at that location.
Once the explicit and implicit POI locations are known, we mark the starting position as the

root of GF (V ,E), as illustrated in Figure 4(b). The rest of the POI graph GF (V ,E) is constructed
using a breadth-first search on the floorplan. Starting with the root, the breadth-first search checks
if moving forward would bring the wheelchair to an explicit or implicit POI in the graph. If this is
true, then it inserts an edge between the current vertex and the new vertex. Then, the new edge
is labeled as F and its distance is recorded. After repeating this process for right and left turns,
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Fig. 4. (a) A sample floorplan used in this work, (b) An illustrative portion of floorplan graph automatically

generated from the floorplan.

the algorithm moves to the next unvisited POI until all POIs are visited. The result is the final
POI graph GF (V ,E), where the edges are labeled with F , R, or L. For example, the POI graph in
Figure 4(b) shows that moving forward from the starting position would bring the wheelchair
to the implicit POI represented by vertex 2. Likewise, a right turn at vertex 2 would move the
wheelchair to implicit POI 3.
In summary, the POI graph and the labels enable us to encode the path from the current position

to all possible destinations using the labels. For example, the path from the starting position (vertex
1) to the explicit POI represented by vertex 6 can be encoded by {F ,R,R, F }. This encoding is used
by the prediction step of the proposed technique to automate the navigation, as described next.

5.3 Prediction Algorithm

The navigation algorithm starts with an empty command queue and the POI graph GF (V ,E), as
outlined in Figure 5. When a new user input is received, the algorithm traverses the outgoing edge
labeled with the received command, and appends it to the queue. If an explicit POI is reached, then
the algorithm starts automated navigation from the wheelchair’s current position to this POI.
Otherwise, the algorithm checks if the outdegree of the new vertex is equal to one. An outdegree
of one means that the wheelchair can pass through the POI without waiting for any further user
input. Therefore, the algorithm moves to the next POI, and adds the label of the outgoing edge to
the queue. This process repeats until an explicit POI or a POI with outdegree greater than one is
reached. By default, our algorithm returns the command queue constructed until that point, since
an outdegree greater than one means that the corresponding vertex is a decision point. Hence, the
wheelchair moves automatically until reaching the last POI encoded in the command queue. If the
user provides the next input before this POI, then the algorithm runs again with the new input to
construct the next command queue without interrupting the operation. Otherwise, it stops at the
last POI and waits for the next user input.
We note that it is also possible to speculate the edge that will be taken upon reaching a vertex

with outdegree greater than one. Speculation can be made with the help of most commonly visited
explicit POIs, and can potentially automate the navigation all the way to the final target. However,
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Fig. 5. The flow diagram of the prediction algorithm.

the downside of speculation is the probability of a wrong decision, unless the user provides the
next command before the speculation point.We do not exercise speculation, since the default mode
already operates uninterrupted if the next user input arrives before reaching the decision point.
Furthermore, the cost of an incorrect decision is significantly larger than stopping, and we do not
want the accuracy of the navigation algorithm to depend on the timing of the user inputs.
Computational Complexity and Scalability: The size of the POI graph affects two parameters.
First, the POI has to be stored in memory. Therefore, it is important to fit POI to the on-chip mem-
ory for fast response. This is not a major limitation, since we can easily fit a POI of around 250
thousand nodes to 1MB on low-cost platforms like Intel Edison. The second and more important
consideration is the computational complexity of the proposed technique. The worst-case com-
plexity of the POI graph generation step grows quadratically with the number of explicit POIs in
the floorplan. The worst-case happens only if no three explicit POIs are collinear. The complexity
of the prediction step, which is the critical portion for real-time operation, grows linearly with the
diameter ofGF (V ,E). Since only the prediction part needs to be performed repeatedly in real-time,
the computation time does not present a major limitation, either. Experimental runtime and power
overhead measurements on the Intel Edison board show that our algorithm can run in real-time
with ≈ 0.7% power consumption overhead.

5.4 Updating Command Probabilities using Contextual Awareness

As mentioned in Section 4, Equation (1) requires computing the command generation probabilities
P (Ct = γ ) and P (Ct � γ ), which depend on the context [28]. For example, users are unlikely to go
Forwardwhile facing awall. Since we compute these probabilities using the contextual information
provided by the user’s destination preferences and floorplan, this computation is presented in this
section.
In the beginning, the probability that the user intends a specific command is distributed uni-

formly among all possible commands, i.e., P (Ct = γ ) =
1
M

and P (Ct � γ ) = M−1
M

. Since this is gen-
erally not true, we propose a method for updating these values when more information is gathered
about the user and environment during online training.
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Table 1. The Wheelchair Parameters

Used in this Work

Wheelchair Specifications

Maximum speed 2.24m/s
Distance between wheels 0.314m

First, we consider the history of a user’s preferred destinations. To keep track of a user’s destina-
tion preferences from each POI, we define the history matrix, ΨVk for each point on the floorplan:

ΨVk =
[
ψVk
1 ψVk

2 · · · ψ
Vk
s

]
, (5)

where s is the size of the history and {ψVk
1 ,ψ

Vk
2 , . . . ,ψ

Vk
s } ∈ V . By storing the destinations that a

user visits on the floorplan, we can update the probability of the user visiting the destinations.
We calculate the probability of visiting the destinations based on context of the floorplan. In

Figure 4(b), we see how the graph of POIs is generated as a tree, with branches connecting a given
POI to possible POIs from that location. We also note the commands required to bring the user to
each POI from that location. It is then apparent that not all possible commands can be used to reach
a POI from each location on the graph (e.g., a user cannot issue a forward command if it makes the
wheelchair run into a wall). We can further update the probabilities of certain commands by only
considering the set of possible commands from each POI on the graph. Bymaking these inferences,
we can improve our estimates of the credibility for each classification modality.
The history matrix ΨVK remembers the latest s destinations (in our case s = 20 locations). If

the user starts abruptly visiting new destinations outside this set, then the list of the most recently
visited destination will start changing accordingly. Due to the sliding window nature, the response
of our algorithm to this changewill not be instantaneous. That is, before the new set of destinations
dominate the history, the POI will be affected by the older destinations.

5.5 Path Planning

We implement automated navigation using the kinematic model of two-wheeled robots:

ẋt = vf cos (θt ), ẏt = vf sin(θt ), θ̇t = ω, (6)

wherevf andω are the forward and angular velocities.We can expressvf andω using the velocities
of the right and left wheels (vR ,vL), and the distance between the wheels (d) as

vf =
vR +vL

2
, ω =

vR −vL
d

. (7)

We generate the trajectory using this kinematic model and the path following algorithm presented
in Reference [10]. This algorithm computes the vf and ω needed to follow a given trajectory from
one POI to the next. Then, we use Equation (7) to calculate the reference velocities of the wheels.
The wheelchair parameters used in this work are provided in Table 1.

5.6 Wheelchair State Estimation

The proposed algorithm requires the current state of the wheelchair to automate navigation.
Therefore, there is a need for an indoor localization technique [18, 20]. We employ dead reckon-
ing and absolute position sensing to accomplish this. Dead reckoning computes the speed of each
wheel (vR ,vL) with the help of optical encoders. Then, we estimate the wheelchair state St using
Equations (6) and (7). However, the optical encoder is subject to localization uncertainties [12],
which can lead to significant cumulative measurement error over time, as depicted in Figure 6.
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Fig. 6. Deviation from the actual path due to localization error.

Therefore, a direct sensing localization technique is essential to minimize the localization error.
Direct sensing techniques include radio-frequency identification (RFID), infrared, ultrasound iden-
tification, Bluetooth beacons, or a barcode based localization [18]. Likewise, the orientation can be
calculated using magnetic compasses, gyroscopes, or high-accuracy orientation sensors [26]. We
chose the RFID based localization technique presented in Reference [32] due to the low cost and
simple implementation. This method employs RFID tags, which are evenly spaced on a rectangular
grid throughout the floorplan. It also assumes that the orientation (θt ) is known at the beginning of
the navigation task. When the wheelchair moves within the radius of detection of a new RFID tag
(r ), the coordinates of this RFID tag (xtaд , ytaд) and orientation are used to compute the absolute
coordinates using

xt = rcos (θt ) + xtaд , (8)

yt = rsin(θt ) + ytaд . (9)

Consecutively, the last two known locations are used to update θt . We note that the position
estimation from this method is associated with a measurement error, {	derror |	derror ∈ �,−r <
	derror < r }. However, the error from RF sensing is an order of magnitude smaller than the cu-
mulative error from optical encoders and shown in Figure 6.

6 EXPERIMENTAL AND SIMULATION RESULTS

In this section, we first discuss experimental results obtained using our wearable system prototype.
Then, we present thorough simulation studies on complex floorplans, performed with the help of
experimental measurements.

6.1 Evaluation on an IoT Prototype

The IoT system shown in Figure 1 is prototyped using Raspberry Pi, the Intel Edison IoT board,
and a Wi-Fi router. The Raspberry Pi models the wearable device used to capture the user intent

and run the decision fusion algorithm described in Section 4. The inferred decision command D
f
t

is transmitted to the Edison board, which controls the wheelchair. The Edison board generates the
motor commands to navigate the wheelchair using the algorithm presented in Section 5.
The power consumption of the device physically connected to the wheelchair (in our system

the Edison board) is not critical, since it can share the wheelchair’s battery. However, the wearable
device (in our system Raspberry Pi) relies on limited battery energy, so the energy consumption
at the wearable device should be minimized. The wireless communication energy is the largest
component of the total energy consumption. Hence, we employ communication energy saving
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Table 2. Run-time and Power Consumption of the Proposed Algorithm

Running on Raspberry Pi [36]

Proposed Algorithm Communication

Energy OverheadRun-time Power Consumption Overhead
2.10ms 2.60mW 0.13mJ

Fig. 7. IoT-enabled wheelchair prototype and the Intel Edison board.

mechanisms while also limiting the added computational burden. The computation energy is lim-
ited using the light-weight decision fusion algorithm presented in Section 4, while the communi-
cation energy is saved by minimizing the number of commands transmitted to the wheelchair. To
quantify this savings, we measure the power consumption of the Raspberry Pi using an external
power meter, both with and without wireless transmission. By comparing the difference in total
energy consumption, the energy consumed for transmitting each command is found as 0.13mJ, as
summarized in Table 2. We note that using a low-power protocol like Bluetooth LE would reduce
this overhead, but the relative savings reported under the simulation results would remain the
same. On average, the proposed algorithm generates the queue of commands in 2.10ms and has a
power consumption overhead of only 2.60mW, as shown in Table 2.
Our algorithm completes the navigation task with a small number of user inputs. Hence, the

main benefit of the proposed algorithm is significantly reduced user effort. Furthermore, reduced
effort translates directly into a smaller number of wireless transmissions and lower energy con-
sumption.
Finally, the picture of our proof-of-concept wheelchair and Edison board is shown in Figure 7.

Since systematic and repeatable study with different floorplans and user-input scenarios is not
feasible on this prototype, we developed a simulation framework, as described next.

6.2 Simulation Methodology

Systematic evaluation of the proposed assistive indoor navigation algorithm is essential to draw
meaningful conclusions about its performance in realistic scenarios. To achieve this, we employ
a Virtual Robot Experimentation Platform (V-REP) to construct a co-simulation framework for
the floorplans given in Figures 8 and 9 [19]. The co-simulation framework consists of three major
components, as illustrated in Figure 10. The physical layer models the physical world using V-REP,
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Fig. 8. Floorplan-B and the POIs used in our simulations.

Fig. 9. 3D view of Floorplan-A. The POI graph of this floorplan is given in Figure 4.

Fig. 10. The architecture of the co-simulation framework.
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which accounts for the dynamics of the objects including the wheelchair. This model includes the
walls, doors, sensors, human actors, the wheelchair, other objects and obstacles. The behaviors of
the objects in the physical layer are modeled by the control layer implemented in Matlab. Finally,
the network layer, also implemented in Matlab, models the communication network.
We opt for detailed simulation-based evaluation in order not to limit our experimental space

with regards to floorplan generation, obstacles, wheelchair model and type, among several other
variables. Our co-simulation framework enables evaluation of the complex scenarios by consider-
ing the tight interactions among the different layers, which are developed simultaneously. Mod-
eling the physical environment using V-REP enables us to focus on developing and evaluating
the target algorithm. Hence, this provides a valuable and versatile test bench for evaluating the
effectiveness of our algorithm under different experimental environments.
Three sets of experiments are performed with each floorplan:

Manual navigation with ideal inputs: The user generates the navigation commands to manu-
ally control the wheelchair using ideal inputs. Ideal means that the intended commands are gen-
erated with 100% accuracy.
Manual navigation with realistic inputs: In these experiments, the wheelchair is controlled
manually using the simple commands using the three modalities introduced in Section 3, i.e.,
gesture, speech recognition and BMI inputs. These commands cannot be interpreted with 100%
accuracy due to imperfect sensing and processing. In our work, the interpretation accuracies of
realistic inputs using BMI, speech recognition, and gesture recognition range between [54%, 68%],
[70%, 92%], and [88%, 94%], respectively. On average, the interpretation accuracy of uni-modal
classifiers ranges from 60% to 90%. During these experiments, the continuous command polling
rate is set to 2Hz for manual navigation with both ideal and realistic inputs.
Automated navigations with realistic inputs: We use the realistic inputs as in the second ex-
periment. However, we employ the proposed indoor navigation algorithm described in Section 5,
instead of manually driving the wheelchair. Fusion of the decisions improved the interpretation
accuracy range and average to [94%, 98%] and 96%, respectively.
We sequentially navigate the wheelchair from the initial position to 18 different POIs, and repeat

each simulation 50 times to obtain averages. During the experiments, we consider the essential ele-
ments of automated indoor navigation, such as localization, path planning, and obstacle detection.
When not in range of a new RFID, the wheelchair estimates its location and orientation from the
optical encoders installed on both wheels. Then, the wheelchair corrects its position according
to the RF tag, when it comes inside RF transmission range, as discussed in Section 5. Obstacle
avoidance is another issue considered in automated navigation [22]. In our virtual simulation, we
employed proximity sensor-based object detection to avoid collision with people or other objects.

6.3 Simulation Results

Task completion times: Figures 11(a), 11(b), and 11(c) show the average completion times for
Floorplan-A, Floorplan-B, and Floorplan-C, respectively. The destination POIs are sorted in de-
creasing order with respect to their distance to the starting point. For Floorplan-A, the navigation
times with realistic inputs range from 32 to 183s, and have an average of 125s. With regards to
navigation time, the proposed algorithm outperforms manual control of the wheelchair with con-
tinuous user inputs (in both the ideal input and realistic input scenarios). More precisely, it reduces
the navigation time range to 21–121s, and the average to 86s. We observe that the proposed al-
gorithm with realistic inputs achieves a lower completion time than manual wheelchair control
using ideal inputs, even though the wheelchair speed remains the same. The reason for this im-
provement is the automation of the navigation without relying on continuous user inputs, leading
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Fig. 11. Time to target for navigating from the initial position to 18 different POI targets.

to a smoother trajectory with fewer stops and turns. Moreover, the standard deviation reduces
from 40 to 26s. This shows that the proposed algorithm not only decreases the navigation time but
also makes the results more predictable.
The improvements achieved by the proposed approach are even larger in Floorplan-B and

Floorplan-C, as shown in Figures 11(b) and 11(c). More specifically, the reduction in navigation
time ranges from 25% to 34% in Floorplan-B, and 24% to 30% in Floorplan-C. The reason for this
larger improvement is the increased complexity of these floorplans, i.e., a larger number of turns
and larger distances in these floorplans.
The number of user inputs and impact on communication energy: The main purpose and
major benefit of using the proposed indoor navigation technique is the reduction in the number
of commands the user has to generate. Our automated technique decreases the number of user
inputs on average 4.0× in Floorplan-A, 5.2× in Floorplan-B, and 5.0× in Floorplan-C. The huge re-
duction in user effort translates into considerable savings in communication energy consumption,
as shown in Figures 12(a), 12(b), and 12(c). In particular, the proposed technique cuts down the
total communication energy on average from 9.9 to 2.4mJ in Floorplan-A, from 10.8 to 2.1mJ in
Floorplan-B, and from 10.9 to 2.1mJ in Floorplan-C. Moreover, Figure 12 shows that the total num-
ber of inputs is also significantly lower than that required for manual driving of the wheelchair
with ideal inputs. In summary, the proposed automated navigation algorithm results in 24.0%
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Fig. 12. Communication energy cost for navigating from the initial position to 18 different POI targets.

Table 3. Summary of the Improvements Obtained with the Proposed Algorithm

Improvement

Over

Time Number of Inputs

Average Worst Case Average Worst Case
Realistic Inputs 34.1% 30.5% 78.5% 74.8%
Ideal Inputs 24.0% 20.8% 72.6% 67.2%

improvement in average navigation time and 72.6% reduction in the number of user inputs, as
shown in Table 3.
Floorplan Complexity Analysis and Summary: We also analyze the average navigation time
and the number of required user inputs as a function of the floorplan complexity. As a measure
of complexity, we use the number of turns in the floorplan and distances between the POIs. Since
the results are similar, we show only the plots for the number of turns. Figure 13 shows the vari-
ation in total communication energy as a function of number of turns in the floorplan. A larger
number of turns implies a larger number of user inputs and, consequently, higher communica-
tion energy consumption. This plot also clearly reveals the effectiveness of the proposed indoor
navigation algorithm in reducing the user effort and communication energy. More importantly,
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Fig. 13. The total communication energy as a function of number of turns in the floorplan.

Fig. 14. The navigation time as a function of number of turns in the floorplan.

the savings grow with the floorplan complexity. We observed the same trends also for naviga-
tion time, as shown in Figure 14. The improvements are smaller for the navigation time, since the
traveled distance and wheelchair speed do not change. Nevertheless, we still observe considerable
improvement, which grows further with floorplan complexity.

6.4 Cost-Benefit Analysis

The prediction algorithm is implemented using Intel Edison and Raspberry Pi. These boards are
available commercially and at a low-cost. RFIDs are gaining extensive attention due to their small
size and low cost [2]. Each tag costs approximately $0.05–$0.10 [45]. Sensors and devices used for
modality classification vary depending on the need of the user. As a result, the cost of such devices
may vary widely. For example, classificationmodalities such as gesture and speech recognition can
be implemented using low-cost development boards for less than $50 [38]. Portable EEG headsets
are commercially available in the range of $200–$500 [9].
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Hence, with a negligible added cost, a regular electric wheelchair can be used to implement a ro-
bust assistive indoor navigation system, which offers the advantages discussed in the experimental
results.

7 CONCLUSIONS AND FUTURE WORK

IoT technology offers a huge potential to assist people with physical disabilities. Designing effec-
tive and practical solutions requires addressing two challenges. The first one is providing a natural
and simple mechanism to capture user commands, while the second challenge is utilizing these
commands to minimize user intervention. This article presented a low-cost and practical IoT sys-
tem that addresses both of these challenges. Our assistive indoor navigation algorithm delivers
one order of magnitude reduction in number of user inputs to complete complex tasks.
As future work, we plan to repeat the evaluations using a real wheelchair in addition to the

V-REP simulation software. This is an important step in determining the true viability of this
algorithm as an application for assisting those with disabilities. The proposed approach can also
be extended for outdoor navigation. This extension requires accurate localization, e.g., using global
positioning system instead of RFID markers, and the floorplan of a bounded region.
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