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ABSTRACT

Mobility tracking of IoT devices in smart city infrastruc-

tures such as smart buildings, hospitals, shopping centers,

warehouses, smart streets, and outdoor spaces has many ap-

plications. Since Bluetooth Low Energy (BLE) is available

in almost every IoT device in the market nowadays, a key

to localizing and tracking IoT devices is to develop an ac-

curate ranging technique for BLE-enabled IoT devices. This

is, however, a challenging feat as billions of these devices

are already in use, and for pragmatic reasons, we cannot

propose to modify the IoT device (a BLE peripheral) itself.

Furthermore, unlike WiFi ranging – where the channel state

information (CSI) is readily available and the bandwidth can

be increased by stitching 2.4GHz and 5GHz bands together

to achieve a high-precision ranging, an unmodified BLE pe-

ripheral provides us with only the RSSI information over a

very limited bandwidth. Accurately ranging a BLE device is

therefore far more challenging than other wireless standards.

In this paper, we exploit characteristics of BLE protocol (e.g.

frequency hopping and empty control packet transmissions)

and propose a technique to directly estimate the range of a

BLE peripheral from a BLE access point by multipath pro-

filing. We discuss the theoretical foundation and conduct

experiments to show that the technique achieves a 2.44m

absolute range estimation error on average.
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1 INTRODUCTION

Mobility Tracking in Smart Infrastructure. As the adoption

of IoT devices continues, smart city infrastructures are com-

ing to life. The rapid growth of IoT devices and services is

impacting healthcare, smart retail store, home automation,

parking automation, factory automation, workforce manage-

ment and consumer electronics. Localizing and tracking IoT

devices further enables new applications. For example, in

a healthcare facility, a fine-grained localization of IoT de-

vices allows caregivers to observe their patients’ movements

and whereabouts in real-time and receive notifications in

case of emergencies such as when a patient falls, wanders

around, enters an off-limit area, or calls for help. Emerging

smart retail stores like Amazon Go [5] can track customers

solely based on RF signals and reduce an overwhelming use

of cameras. In smart parking and metering systems, con-

nected vehicles can be localized using RF signals emitted by

their radios. Similarly, in many other domains, an accurate

localization of IoT devices solves important open problems

such as occupancy detection, accessibility aid for visually

impaired people, warehouse automation, and energy and

resource management in smart infrastructure.

The Rise of BLE-Enabled IoT Devices. Bluetooth low energy

(BLE) is becoming the de-facto communication standard for

IoT devices due to its low-power physical and data link layer
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Figure 1: Network-based BLE Localization: Multiple

BLE access points estimate the ranges of the periph-

erals d1,d2 and d3, and apply trilateration to localize

them.

operation which is suited to low-power, long lasting, battery-

operated devices, and a transaction-oriented light-weight

service layer that facilitates rapid development of services

on resource constrained devices. By 2020, the global value

of BLE devices deployed for IoT services is expected to be

as much as $5.57 billion, with most of the value coming

from devices in smart home, healthcare, and manufacturing.

Although BLE is designed for low bandwidth traffic, in recent

years, multimedia content such as images and 3D augmented

reality data have been carried over BLE [40–42]. The growth

of BLE is increasing in scale and in scope, and it is catalyzing

large scale IoT deployments in smart cities.

BLE Localization Models. A BLE device acts either as a

low-power BLE peripheral (e.g., smart watches, heart rate

monitors, blood pressure monitors, and weighing machines)

or a relatively higher-power BLE central device (e.g., a smart-

phone). State-of-the-art BLE-based localization techniques [26,

44] typically refer to localizing a central device by using a

set of peripherals as anchors. For example, the use of BLE

beacons (e.g., iBeacon [6, 7]), which are placed at predeter-

mined fixed locations as anchor points, to localize people

carrying smartphones is an ideal example of such a model.

In this model, the infrastructure is low-power, but the mobile

device that receives signals from the beacons to estimate its

own location is not. We, on the other hand, are interested in

localizing low-power, resource-constrained BLE peripherals

that may be carried or worn by humans (e.g. wearables), or

are attached to mobile platforms such as hospital beds, mo-

bile robots, or drones. Since BLE peripherals are extremely

resource constrained, the earlier model where the mobile

device computes its own location is not feasible anymore.

Furthermore, as most of these peripherals are commercial off-

the-shelf devices, we are, in general, not capable of running

programs on them. Hence, we investigate a flipped model

where a set of networked BLE central devices (i.e., BLE gate-

ways/access points) are deployed in a smart city infrastructure

(like cellular towers or base stations) and they are continuously

receiving signals from nearby BLE peripherals and localizing

these peripherals in real-time.A representative setup is shown

in Figure 1 where each access point (a BLE central) estimates

the range (i.e. the direct point-to-point distance) from the

target peripheral. Range measurements at three or more ac-

cess points are combined to estimate the exact location of

the peripheral.

Rethinking BLE Localization UsingMultipath Profiling. BLE-

based localization techniques can be broadly categorized into

either fingerprinting [30] or RSSI-based ranging [17, 23, 53].

The downside of fingerprinting is that it requires a significant

amount of training effort to characterize an environment and

often such a characterization is temporary as the environ-

ment changes over time. RSSI-based ranging, on the other

hand, suffers from low accuracy as no existing technique has

so far been able to deal with multipath e�ect in BLE commu-

nication. In this paper, we rethink the problem and propose

a completely new approach to BLE localization where we

estimate the multipath profile (i.e, the propagation delay of

different paths) of a BLE communication when signals from

a peripheral reaches a central. From the estimated multipath

profile, we are able to isolate the direct propagation path

(both LoS and NLoS), and hence, estimate the range.

The proposed range estimation process does not require

any modifications to the peripheral devices [13, 15, 33]. Un-

like existing approaches, it does not require a peripheral

device to carry additional tags or beacons [20]. There are

some approaches [16, 40] where the knowledge of transmis-

sion power carried by a BLE beacon message (a special type

of BLE peripheral) is exploited. This does not completely

solve the problem since not all BLE peripherals are BLE

beacons, and the conversion of a BLE peripheral to a BLE

beacon, although possible, requires a complete firmware re-

placement. Hence, the problem of determining the range of

an unmodified BLE peripheral is extremely challenging as

the only information that is available to the centrals is the

received signal strengths (RSSI) of the BLE peripherals. Our

proposed technique exploits this RSSI information at differ-

ent hopping channels in order to obtain the time-of-flight

(ToF) of the direct path signal from an IoT device (peripheral)

to an access point (central).

In this paper, for the first time, we form a theoretical foun-

dation to infer the frequency response of a baseband signal

by measuring the power of a BLE symbol or RSSI measure-

ments at different BLE data channels. An access point, once

after extracting the frequency response of a baseband signal,

applies inverse discrete Fourier transform (IDFT) to estimate

the multipath profile for range/location estimation. To val-

idate our approach, we build a BLE test-bed and evaluate

the proposed technique using commercial-off-the-shelf BLE
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peripheral devices in both uncontrolled and controlled set-

tings.

Di�erence from WiFi Multipath Profiling. Several recent

works [31, 49] on WiFi-based indoor localization have used

Channel State Information (CSI) at subcarrier level to de-

rive the multipath profile. Subcarrier level CSI provides fine

grained information on channel characteristics such as dis-

tortion and attenuation of signals which can be exploited

to estimate the multipath profile. This is possible with WiFi

(802.11a and 802.11ac) as most of the commodity WiFi net-

work interface cards (NIC) are equipped with a channel esti-

mator component that estimates the CSI during demodulat-

ing each OFDM subcarriers. Unfortunately, CSI information

is not available in any BLE chip as BLE implements a very

simple modulation scheme and due to its low-power opera-

tion, no BLE chip estimates CSI at the physical layer. Because

of the unavailability of CSI information, multipath profiling

in BLE is drastically different than WiFi.

Summary of Contributions. The contributions of this paper

are as follows:

• To the best of our knowledge, we are the first to form a

theoretical foundation to estimate frequency response

of a BLE baseband signal bymeasuring RSSI at different

BLE channels.

• We develop a technique to estimate multipath profile

of BLE signals using commodity hardware, and ulti-

mately measure the time-of-flight of the direct path to

estimate the range of an unmodified BLE peripheral .

• We evaluate the proposed BLE ranging solution un-

der different uncontrolled environments (e.g. in line of

sight, in non line of sight, and at different locations),

quantify the required wait time and effect of interfer-

ence, and achieve an overall average estimated error

of 2.44m (1.5m–1.87m in line of sight).

2 BACKGROUND

2.1 Bluetooth Low Energy

BLE Channels. Bluetooth Low Energy (BLE) is a wireless

technology which is especially designed for low power de-

vices that operate in the 2.4GHz ISM band [25]. In this band,

BLE has 40 channels, numbered from 0 to 39. Each chan-

nel is 2 MHz wide. BLE uses 3 channels (37, 38, and 39) for

advertisements, on which, BLE peripherals transmit adver-

tisement packets to announce their presence and to establish

connection with a central device. The rest of the channels

are used for data transmission between a peripheral and a

central device. BLE uses a frequency hopping mechanism

to transmit data packets at different channels by using a

pseudo-random hopping sequence, which is known to both

the peripheral and the central device.

Figure 2: Connection interval between the peripheral

and the central device link-layer connection.

BLE Connection. During connection establishment, a pe-

ripheral and a central agree upon the hopping sequence and

the connection interval. A connection interval is the time

between two data transfer or connection events. As shown

in Figure 2, at each connection event, a central initiates data

transmission. At a connection event, a peripheral replies

with a single data packet for each data packet transmission

from a central. By default, if there is no data to transmit, both

the central and the peripheral transmit a packet that is called

an Empty Link Layer PDU (Protocol Data Unit). An Empty

PDU transmission allows a peripheral to sync with a central

and keep the link layer connection alive. In our approach

to BLE ranging, we use RSSI measurements of these Empty

PDUs transmitted by a peripheral device at different data

channels.

BLE Modulation and Communication. BLE transmits data

at 1Mbps, with 1 bit per symbol. The physical layer of BLE

uses Gaussian Frequency Shift Keying (GFSK) modulation to

generate baseband signals from a bit stream of 0s and 1s. In

BLE, before applying the GFSK modulation, a bit sequence

is transformed into a baseband pulse sequence (∈ {+1,−1})

by using non-return-to-zero (NRZ) line coding. Later, this

baseband pulse sequence is passed through a Gaussian filter

before modulation to make the baseband pulse transitions

(i.e, from +1 to -1, or -1 to 1) smoother. Thus, BLE reduces

the interference with neighboring channels at the cost of

an increased inter-symbol interference. In the modulation,

smooth baseband pulse sequence is mapped to phase devia-

tion as follows:

θ (t) =
πh

T

∫ t

−∞

∞∑
n=−∞

x[n]д(μ − nT ) dμ (1)

where, x[n] ∈ {+1,−1} is the baseband pulse sequence, and

д(.) is the Gaussian filter or the pulse shaping function [9].

In the above equation, h and T are the modulation index1,

and the symbol period. After modulation, given fc is the

carrier frequency, the BLE passband signal can be described

as follows:

1The BLE standard defines modulation index in the range [0.45, 0.55].
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Figure 3: Technique to transform channel frequency

response to multipath profile.

s(t) = A cos(2π fct + θ (t)) (2)

In section 4.1, we use Equation 2 to discuss the theoretical

foundation of estimated multipath profile for BLE signal.

2.2 Multipath Profile

Multipath Profiling. Signals from a transmitter to a re-

ceiver arrives directly as well as indirectly (e.g. after reflec-

tion and scattering). A multipath profile provides the propa-

gation delay and the corresponding power strength profiles

of the multipath arrivals of a signal. It can be measured di-

rectly by detecting multipath signals with different arrival

times (i.e., time-of-flight) in the time domain– which re-

quires sophisticated hardware that features high sampling

frequency. Another way to obtain the multipath profile is to

characterize the channel response in the frequency domain

and to apply Inverse Fast Fourier Transform (IFFT) on that

frequency response.

Illustrative Example. Figure 3 shows the process of esti-

matingmultipath profile in time domain from the channel re-

sponse in frequency domain. It shows the channel frequency

response (left plot), where f0 is the starting frequency, ∆f

is the resolution of frequency sampling, and L ∗ ∆f is the

total bandwidth of the frequency response. After the normal-

izing and IFFT transformation on the frequency response,

we obtain multipath profile (right plot), which is a series

of signal samples in the time domain with various delays,

τ0,τ0 + ∆τ , ...,τ0 + L ∗ ∆τ . Here ∆τ is the time resolution in

Multipath profile that is inversely related to the bandwidth

of the frequency response, ∆τ = 1/(L ∗ ∆f ) = 1/B, here B is

the total frequency bandwidth. Note that, as long as the fre-

quency response bandwidth is fixed, the number of equally

spaced frequency sampling in the middle has no impact on

the time resolution inmultipath profile. That means, ∆τ does

not depends on the value of L, as long as the total bandwidth

B is fixed. Note that, For the given multipath profile in figure

3, the maximum propagation delay of a signal arrival that

we can measure is L ∗ ∆τ .

Isolating Direct Path. In the derived multipath profile, sig-

nal samples having high amplitudes represent different prop-

agation paths of the transmitted signal (both direct and indi-

rect). Among them, the earliest signal samples with a high

amplitude (not necessarily highest) represents the direct path

delay or time-of-flight. Note that direct path signal can be

Line-of-sight (LoS) or Non-Line-of-sight (NLoS). In case of

NLoS, the absorption in the obstacles might reduce the the

amplitude of the direct path compare to indirect path. This

makes it harder to distinguish or detect direct path. Our re-

sults also reflects that. Given the direct path propagation

delay, we can estimate the relative range between a transmit-

ter and a receiver. For the scenario in Figure 3, we have two

spikes in the multipath profile. The first (earliest) spike rep-

resents the direct signal path and the other spike represents

the indirect signal path.

3 SYSTEM OVERVIEW

3.1 System Architecture

Networked BLE Access Points. Our system adopted network

infrastructure based localization model as shown in Figure 4.

As part of the infrastructure, we have BLE access points

at fixed known locations. The role of these access points

is to estimate the range (i.e the direct distance) of target

BLE peripherals and send the range information to a central

server. Using range estimates of a peripheral from multiple

access points, the server localizes it by applying standard

techniques such as trilateration [23], triangulation [17], or

inter Ring Location Algorithm [21]). Since estimating the

range is the key to localizing a BLE device, it remains the

main focus of this paper.

Scenarios. This model is suitable for large scale facilities

such as retailer store, smart parking system, and hospitals,

where BLE peripheral devices are connected to the network

via access points [8]. Unlike previous approaches, our objec-

tive is to localize the peripheral devices (such as hear-rate

monitoring, blood glucose monitoring, light bulb, motion-

sensor, etc.) rather than BLE beacons like iBeacons.

Assumptions. We assume each peripheral to be localized

is connected to a central device such as BLE gateway or

access point in our model. We further assume, besides the

connection establishment, BLE access points have the ac-

tive/passive sniffing capability. In that case, a BLE access

point can sniff the Link Layer packets (i.e., empty PDU) of

a peripheral, while being connected the peripheral. Prior to

communication with a BLE peripheral, first the BLE access

point share the link-layer connection information (e.g. hop-

ping sequence, connection interval) with the other access

points in vicinity. Thus, they are all able to sniff the transmit-

ted link-layer packets from the peripheral device, and be able

4
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to localize and track it. We further assume that the infras-

tructure is setup in a way that a peripheral is always heard

by at least three access points. Since we adopt a multipath

profiling-based localization technique, a line-of-sight (LOS)

between a peripheral and an access point is not necessary in

our system as long as the BLE signal penetrates the medium.

Scalability. In our localizationmodel, each central device/or

access points act independently to measures the relative dis-

tance of a peripheral device. In addition, in estimating relative

range/or location of a peripheral device, we only collect the

the empty PDU transmission from that device. In that case,

the presence of multiple peripheral devices might effect on

the number of empty PDU transmission from a peripheral

device, we can successfully collect from. Therefore it might

effect on the time to locate a peripheral device, but it will not

have any effect on the accuracy of localization. Therefore,

with enough number of access point deployment, we can

localize large number of peripheral devices.

Range Estimation Overview. As mentioned earlier, range

estimation is done after estimating the multipath profile of

a BLE communication, which in turn, obtained by forming

a channel frequency response. To estimate the channel fre-

quency response, each access point measures the power of a

BLE baseband symbol (i.e., RSSI) from the sniffed or captured

packets at different frequencies (i.e., BLE channels). This step

leverages BLE’s frequency hopping design.

After forming the channel frequency response, an access

point estimates the multipath profile which provides an es-

timated time-of-flight (ToF) of the direct path between the

peripheral and itself. By multiplying the estimated ToF with

the velocity of light, each access point estimates a relative

distance (i.e. range) of the peripheral. Each access point sends

the estimated range to the central server where rest of the lo-

calization happens by combining range measurements from

three or more access points.

3.2 System Features

The proposed localization system has the following features.

• Independent of Surrounding Environment. Many RSSI-

based BLE indoor localization techniques use fingerprinting

or radio-propagation models [19, 45, 46]. These techniques

are dependent on environment parameters, therefore, any

change in the environment makes such models partially or

fully invalid. In our proposed system, we use multipath pro-

filing technique for range estimation, which is independent

of the surrounding environment [50]. In addition, instead of

using RSSI based models which are inaccurate and environ-

ment dependent, we use RSSI as an indirect measurement of

the channel state information.

Figure 4: Network based BLE Localization. Periph-

eral communicates with a central device in connected

mode. Multiple fixed BLE access points sniffs the traf-

fic and estimate the time-of-�ight (ToF) of direct path.

Then the central server receives the ToF estimations

and localize the peripheral.

• Unmodified BLE Peripherals. Most RSSI-based localiza-

tion systems require changes to a peripheral to inject addi-

tional information into the BLE packets such as transmis-

sion power and time stamp [34]. Some recent proposals rely

on additional sensors such as audio and IMUs of a smart-

phone [13, 35] to localize the device. Unlike smartphones,

BLE peripherals are not always equipped with additional

sensors which can be leveraged to enhance the overall loca-

tion estimation accuracy. Some techniques require hardware

modifications such as a directional antenna or an additional

BLE beacon tag to the peripheral device [3]. Any such mod-

ifications (in hardware or software) are impractical due to

the fact that billions BLE-enabled IoT devices are already

in use. In our system, we leverage standard BLE protocol

implementation without any modification to the peripheral.

• Available Physical Layer Information. Even though both

BLE and WiFi operate in 2.4GHz band, they have completely

different physical layer implementations (e.g. modulation/

demodulation, frequency hopping, and bandwidth). Because

of this difference, localizing BLE devices is quite different

from localizing WiFi devices. For example, WiFi has multi-

ple sub-carriers per channel whereas BLE has no concept of

sub-carriers at all. Therefore, unlike WiFi, we do not have

access to sub-carrier level channel state information (CSI)

of BLE’s physical layer from which we could directly esti-

mate the multipath profile. Since estimating CSI is an essen-

tial step in WiFi demodulation, CSI comes as a by product

of WiFi demodulation. Many WiFi chipsets are engineered

to obtain this CSI information. On the other hand, CSI is

not available in BLE as BLE uses a low-power, lightweight

modulation/demodulation scheme, and thus, no BLE chipset

provides CSI. The only physical layer information that BLE

chipsets provide is the RSSImeasurement per channel. Hence,

we devise a range estimation technique for BLE devices that

is dependent only on RSSI measurements.

5
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4 RANGE ESTIMATION

In this subsections, we explain multipath profile and channel

frequency response estimation–which are the two major

steps to estimating range of unmodified BLE peripherals.

4.1 Estimating Multipath Profile in BLE

Multipath Profile. In an indoor environment, a transmitted

signal travels on different paths before it reaches a receiver.

On each path, transmitted signals experience a different de-

lay, attenuation, and phase accumulation. The ultimate re-

ceived signals are a combination of these different multi-path

signals. Typically, multipath profile is a technique to identify

these propagation delays of different paths on receiving a

signal [50]. This ultimately allows us to estimate the time-

of-flight (ToF) of the direct path, i.e. the path with the least

propagation delay. In this subsection, we discuss the theoret-

ical foundation of estimating multipath profile for BLE just

by using received baseband signal strengths (i.e., RSSI). In

addition, we discuss, the process of estimating time of flight

(ToF) of the direct path from the derived multipath profile.

Theoretical Derivation. Let us assume that a BLE sym-

bol reaches the receiver through L different paths. The re-

ceived signal from each path corresponds to amplitudes

{ai ,a2, . . . ,aL} and propagation delays {τ1,τ2, . . . τL}. In pres-

ence of these multiple paths, the received passband signal

y(t) is represented as follows:

y(t) = h(t) ∗ s(t) =

L∑
i=1

aicos(2π fc (t − τi ) + θ (t − τi )) (3)

where, s(t) is the BLE passband signal for the transmitted

symbol, and h(t) =
∑L

i=1 aiδ (t − τi ), is channel impulse re-

sponse with time-invariant assumption, where ai and τi are

the amplitude and the time delay of the ith path. In order

to demodulate the received signal, a receiver first multiplies

cos(2π fct) and −sin(2π fct) to the passband signal y(t) to get

the real and imaginary parts of the baseband signal r (t) as

follows:

r (t) = cos(2π fct)y(t) − jsin(2π fct)y(t) (4)

Finally, the receiver applies a low pass filter on r (t) to get

the following complex baseband signal:

V (fc ) =
1

2

L∑
i=1

aie
−j2π fcτi e jθ (t−τi ) =

1

2

L∑
i=1

aie
−j2π fcτiv(τi )

(5)

Here v(τi ) = e jθ (t−τi ), is the ith path component of the

received baseband signal, and V (fc ) is the ultimate received

baseband signal, which is a superposition of multi-path com-

ponents. During demodulation, each symbol is extracted

from this baseband signal V (fc ).

Figure 5: In BLE, theoretical limit of absolute error in

estimated distance is at most 2 m usingmultipath pro-

filing technique.
In Equation 5, we see a Discrete Fourier Transform (DFT)

relation between the baseband signal V (fc ) and the multi-

path componentv(τi )with various delaysτi . Therefore, when

we apply the inverse discrete Fourier transform (IDFT) on

the frequency response of the baseband signal, we obtain

the propagation delay of multiple signal paths. Note that

the baseband signal value is not often directly accessible in

BLE. However, RSSI measurements of a received symbol is

proportional to the power of the baseband signal, V (fc ) [51].

Therefore, if we measure the RSSI readings of a symbol at

different carrier frequencies fc , uniformly spaced between

2402MHz to 2480MHz, we can infer the frequency response

of a baseband signal. Thus, applying inverse Fourier trans-

form on the received RSSI measurement gives us multipath

profile for BLE. Once estimating multipath profile, we derive

the direct ToF by selecting the earliest time that shows high

amplitude value. Then we multiply the speed of light with

the direct ToF to estimate the direct distance or range.

Time and Distance Resolution. In multipath profile, time-

resolution is a key parameter that defines the granularity of

identifiability of delays of different multipaths. A higher time-

resolution allows us to identify a fine-grained range. Accord-

ing to inverse Fourier transform theory, the time-resolution

of a multipath profile is related to the BLE spectrum band-

width. Such a connection indicates that a wider bandwidth

leads to a higher time-resolution for the multipath profile.

BLE spectrum bandwidth is limited to 80MHz, which limits

the time-resolution to 13.5ns that is equivalent to a distance

resolution of 3.75m.

Measuring only the RSSI of the empty PDU packet in the

data channels, enforce us to not consider two advertisement

channels 37 and 39, which ultimately reduces the frequency

bandwidth to 76MHz, and the distance resolution to 4m.

Thus, in our multipath profile, each estimated distance be-

comes a multiple of 4m. In that case, any actual distance that

falls between 4 ∗ n and 4 ∗ (n + 1) (for n=0,1,2,..L), we will

observe a higher amplitude either in 4 ∗n or 4 ∗ (n + 1) based

on its closest proximity in the multipath profile. That means,

according to Figure 5, any distance between 12m to 14m

will show higher value for distance 12m, and any distance

between 14m to 16mwill show higher value for distance 16m

6
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in the multipath profile. Thus, we have at most 2m absolute

measurement error in the worst case.

For a bandwidth of B, twomultipaths are indistinguishable

if their propagation delays differ by less than 1/B. In that case,

both multipaths are viewed as one multipath component.

Therefore, the time resolution ∆τ leads to c/B uncertainty in

terms of the length difference between non-distinguishable

paths, where c is the speed of signal propagation. In BLE, the

path length uncertainty is 4m, which limits our BLE ranging

up to ±2m.

4.2 Forming Channel Frequency Response

Necessary BLE Channels. In order to perform multipath

profiling at a sufficient granularity, an access point needs

to collect RSSI readings from a peripheral over multiple

BLE channels, which need to be uniformly spaced between

2402MHz to 2480MHz. Note that, in forming the channel

frequency response from RSSI reading for range estimation,

we do not need to sample all BLE channels. Typically, at an

indoor environment, the maximum range of a BLE periph-

eral device is limited to 16-20 meters. Given the available

bandwidth, the minimum time resolution in multipath pro-

file can be around 4m as discussed in Section 4.1. Therefore,

in addition to the lower and the upper ends of BLE channels’

measurements, we only need to measure at least 2-3 equally

spaced channels in between the two ends to range a BLE pe-

ripheral with maximum possible resolution using multipath

profiling.

Dealing with WiFi Interference. Since BLE implements an

adaptive hopping mechanism to avoid interference with

other 2.4GHz communications, in presence of WiFi, a BLE

devices will not hop to all channels. However, some lower

end and upper end channels (e.g. channel 0 and 36) are not af-

fected by WiFi interference. In this case, in addition to these

two ends, if we have enough BLE channel measurements

in the middle, WiFi interference will have no impact on the

accuracy of range estimation with BLE.

Required Waiting Time. According to the BLE standard, at

every connection-interval, a BLE peripheral hops to a differ-

ent channel. In off-the-shelf BLE devices, we find that the

connection-interval is between 7.5ms to 120ms depending on

the trade-off between data rate and power consumption. In

our experiments, we observe that it takes about 2-3 seconds

to collect enough number of BLE channel measurements to

form the channel frequency response.

Collected Packet Types. BLE devices use different transmis-

sion powers for transmitting different types of packets. For

example, the transmission power of a BLE advertisement

packet is different from a BLE data packet. Similarly, BLE

data packets have different transmission power levels than

(a) (b)

Figure 6: (a) Custom BLE access point using three

Ubertooth One sniffers and a Raspberry Pi, (b) RF

shielded room (Faraday cage) where some of the ex-

periments (controlled) are done.

empty PDU packet transmissions. Since transmission power

affects RSSI readings, when forming the channel frequency

response from RSSI readings, we need to make sure that

the transmission power of each received empty PDU packet

are the same across different channels. Hence, we normalize

the RSSI measurements across different channels to make

sure that the channel response is invariant to the transmis-

sion power. Unfortunately, we do not have any control on

changing or knowing the transmission power of the BLE

packets from a peripheral device. However, the transmission

power of empty PDUs remain the same from a peripheral

device across different BLE channels. Therefore, when col-

lecting RSSI readings from a peripheral, we choose empty

PDU packets from a peripheral, which is easy to differen-

tiate from a central’s empty PDU, and other data PDUs. In

addition, empty PDUs are sent at every connection interval

(i.e., in milliseconds). Therefore, in a very short time, an ac-

cess point can collect RSSI readings from a peripheral across

multiple BLE channels.

5 IMPLEMENTATION NOTES

In this section, we discuss key implementation issues of the

system that we think are helpful for anyone who wants to

reproduce the results.

Access Point. We use off-the-shelf hardware to implement

the BLE access points as well as the peripherals. Since our

main objective is to measure the range, we passively monitor

a peripheral device at an access point and sniff its packets

while it is connected to another central device.

To implement the access points, we use Bluetooth Low

Energy (BLE) sniffers called the Ubertooth One [4] which are

connected to a Raspberry Pi 3 [11] as shown in Figure 6(a).

Since we do not know which of the three advertisement

channels will be used to establish a connection, we use three

Ubertooth Ones to quickly pick up the link layer connection
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between a peripheral and a central. Here, each ubertooth

one is connected to one of the three advertisement channels.

Ubertooth One is an open source hardware platform for

experimenting with 2.4GHz wireless protocols. It is equipped

with a RP-SMA RF connector, CC2591 RF front end, CC2400

wireless transceiver, and a LPC175x ARM Cortex-M3 micro-

controller. Ubertooth sniffs the 2.4GHz ISM band and receives

the signals transmitted by BLE peripherals [12]. Ubertooth

by default provides the average RSSI of a packet. In order to

collect fine-grained RSSI readings per symbol, we customize

the Ubertooth firmware.

Once the Ubertooth picks up the link layer connection, it

starts following the hop sequence and collects RSSI values

per symbol for empty PDUs.

Peripheral Device. As peripheral devices, we use unmodi-

fied Lightblue Beans [2] paired with their sister application

on an Android smartphone (Nexus 5).

6 EVALUATION

In this section, at first, we describe the experimental setup.

Then, we evaluate the ranging accuracy of the proposed

BLE-ranging method in uncontrolled environment. Next,

we quantify the time needed to form channel frequency re-

sponse both experimentally and with simulation. Finally, we

demonstrate the effect of other 2.4 GHz wireless interference

on channel frequency response.

6.1 Experimental Setup

Indoor scenarios mostly consists of corridors and rooms

of different sizes. Thus we choose corridors and rooms of

medium size for our experimental evaluation. We use three

scenarios (Table 1) for conducting the experiments. For the

first scenario, we choose a long corridor in one of the build-

ings at our campus. We keep the access point and the periph-

eral in line of sight. As the second scenario, we use the same

corridor but place a metallic board between the peripheral

and the access point to create a non-line of sight scenario.

In both of these scenarios, we vary the distance between the

access point and the peripheral from 2m to 16m and collect

RSSI values at different distances. Finally, we select a lab

room in the department as our third scenario and vary the

distance between the access point and the peripheral from

4m to 8m.

As discussed earlier, we can not differentiate between two

paths with less than 4m distance between each other. So,

we do not collect any data at positions with less than 4m

distance from the walls in the direction of the direct path.

The data collection process ensures that people do not move

between the peripheral and the access point. However, sev-

eral WiFi access points (10 on the floor) and other wireless

devices including WiFi, classic Bluetooth and other BLE de-

vices have been present in the environment. As mentioned

earlier, we only log the RSSI values of the empty PDUs from

the peripherals. For each distance/ trial points, we collect

data for two minutes and we get around 2000 values for each

data point. For a trial, we take the mode of the RSSI of the

empty PDUs in each channel. We choose mode as it is robust

against outliers.

Table 1: Experimental Scenarios

Environment Range

Scenario 1 Corridor (Line of Sight) 2m - 16m

Scenario 2 Corridor (Non Line of Sight) 2m - 16m

Scenario 3 Room (Line of Sight) 4m - 8m

6.2 Ranging Accuracy

In Figure 7, we show the average absolute ranging error for

each scenario. Although the average estimated error is 1.83m

for the line of sight scenario in the corridor (scenario 1), it

rises to 4m in the non line of sight scenario (scenario 2).In the

non-line of sight scenario, the direct path signal experiences

a drop in power while penetrating obstacles, and becomes

weaker compare to indirect paths, which make it harder to

identify. In scenario 3 (room), we achieve the lowest average

estimated error of 1.5m.

Figure 7: The average estimated absolute distance er-

ror in three uncontrolled scenarios is 2.44m.

In Figure 8, we show the relationship between the esti-

mated and the actual distances for all three scenarios. Since

many data points in Figure 8 coincides and these coincident

points are visually represented by a single point. Here, we

see that the trend line of the data is a straight line having

a near 45 degree angle with the axes. This trend line has a

mean squared error of 0.42m.

6.3 Channel Frequency Response
Formation Time

In Figure 9, we empirically determine the probability of

achieving different bandwidths for various amount of wait-

ing time. We avoid collecting data from two bordering chan-

nels (channel 37 & 39) as these are advertisement channels

8
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Figure 8: The scatterplot of actual distances and cor-

responding estimated distances for all uncontrolled

environments shows a linear trend having a mean-

squared error of 0.42m.

and do not carry empty PDUs. Therefore, we achieve a high-

est bandwidth of 76MHz as opposed to 80 MHz. We observe

that our system is able to achieve 72 MHz bandwidth 79% of

the time when it waits for at least 2s to collect RSSI measure-

ments. Similarly, the system achieves the highest 76 MHz

bandwidth 70% of the time if it waits for 3s. The correspond-

ing distance errors for each of the three types of bandwidths

are mentioned in Table 2.

In Figure 10, we show the expected bandwidth (as well

as the distance error) for both experimentally and with sim-

ulation. In order to simulate the pseudo random frequency

hopping mechanism in BLE, we use an uniformly distributed

pseudo random number generator. We choose the connec-

tion interval or hopping interval to be a random number

between 7.5 ms and 100ms [1]. We use over 1,50,000 data

points for the simulation. In Figure 10, we observe that both

simulation and data from real experiments achieve an ex-

pected bandwidth of around 73MHz in 2 seconds. Although

in simulation we observe 75.03 MHz of expected bandwidth

in 5s, in real-life data it is 73.63 MHz. From these observa-

tions, we conclude that the proposed system achieves an

absolute error of 2.06m at most by collecting RSSI values for

about 2s to form the channel frequency response.

Table 2: Theoretical distance resolutions and maxi-

mum distance errors for different bandwidths (B)

Bandwidth Distance Resolution Theoretical Max

Distance Error

76 MHz 3.95 m ± 1.97 m

74 MHz 4.05 m ± 2.03 m

72 MHz 4.16 m ± 2.08 m

Note that for simplicity and a low cost implementation,

we use off-the-shelf BLE sniffer (Ubertooth One) which is

prone to dropping packets [12] as its clock drifts over time

and it waits to resynchronize itself. As a result of packet

drops, we require more time to receive a desired bandwidth

than expected. This is an implementation issue and can be

Figure 9: The probability of achieving bandwidths

(76MHz, 74MHz, and 72MHz) increases with waiting

time.

Figure 10: The expected bandwidth and corresponding

theoretical maximum absolute distance error limit

in uncontrolled environments for different waiting

times for both empirical and simulation results are

shown.

resolved by using a robust software defined radio such as an

USRP.

6.4 Effect of Interference in 2.4GHz

Different wireless technologies, e.g. WiFi, Zigbee, and classic

Bluetooth, coexists in the 2.4GHz ISM band along with the

BLE. A major reason for BLE to hop frequencies is to avoid

interference with these other technologies. Hence, BLE tends

to avoid channels that tends to have a higher traffic [43]. We

create such interference scenario and quantify performance

of our proposed system under such interferences.

In order to understand the hopping behavior accurately,

we use a RF shielded room (a Faraday cage) as shown in

Figure 6(b) for these experiments. This room is made with

Ferrous walls (including ceiling and floor) with a non-Ferrous

layer on top. This combination of Ferrous and non-Ferrous

material makes the room free from all types of RF interfer-

ence from the outside world. To introduce controlled inter-

ference inside the room, we set up a WiFi access point that

communicates with a laptop on WiFi channel 1. This is the

only other signal besides the signals between the BLE periph-

eral and BLE central. Although the BLE connection avoided

overlapped BLE channels with WiFi channel 1, we achieve

72.89 MHz bandwidth in 2 seconds as shown in Figure 11.

We further observe that the simulated data achieve 74.96

MHz bandwidth in 5s.
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Figure 11: The expected bandwidth and corresponding

theoretical maximum absolute distance error limit in

presence of only WiFi channel 1 for different waiting

times for both empirical and simulation results are

shown.

Figure 12 shows the result of a similar experiment but this

time with only WiFi channel 6 activated. Here, we achieve

71.16 MHz and 72.70MHz bandwidth in 2 seconds for empir-

ical data and simulated data respectively. From these obser-

vations, we can conclude that we can achieve at least 71.16

MHz bandwidth in the presence of other wireless signals.

Figure 12: The expected bandwidth and corresponding

theoretical maximum absolute distance error limit in

presence of only WiFi channel 6 for different waiting

times for both empirical and simulation results are

shown.

7 RELATEDWORK

RSSI-based Fingerprinting. RSSI-based fingerprinting is the

most popular localization technique for BLE-enabled devices.

Several studies has been performed to compare the perfor-

mance of BLE and WiFi based fingerprinting [24, 29, 38].

These studies achieved better accuracy using BLE-based fin-

gerprinting compared to WiFi-based fingerprinting. In order

to improve the fingerprinting accuracy, filters are proposed

to remove the outliers [32]. For further refinement, complex

methods e.g. fusion of BLE and WiFi RSSI [48], estimation of

the propagation model [28, 36] , consideration of the effect of

different channels [37] have been proposed for fingerprinting.

However, the requirement of generating radio map for differ-

ent scenarios makes fingerprinting a costly and impractical

solution. Although some works address this challenge by

using crowd-sourcing [14] and model based estimation [22],

this approach is difficult to deploy as giving incentives to

public every time is not feasible. To avoid radio map genera-

tion and eliminate the effect of environment change, we use

multipath profiling for estimating the distance.

RSSI-based Ranging. Another popular localization approach

is RSSI-based ranging with BLE beacons (e.g. iBeacon [7],

estimode [6]) with algorithms like trilateration, triangula-

tion, inter Ring location etc. In these approaches, multiple

BLE beacons (at least three) advertise custom iBeacon pack-

ets [10] and a central device (e.g. smartphone) receives the

packets to localize itself. This iBeacon packet is different

from BLE peripheral packets [10] and contains extra infor-

mation e.g. transmission power. Such technique consists of

two parts - localization and ranging. In order to improve

the localization accuracy of trilateration and triangulation,

both preprocessing and post processing of the data has been

proposed [17, 23].

Ranging is the most important step of the ranging-based

approach. RSSI-based regression models and path loss model

are themost common techniques for ranging BLE devices [39,

52, 53]. However, these models are highly vulnerable with

the change of scenarios and thus requires remodeling for

different environments. In order to tackle this problem [19]

proposed a solution to estimate the environment using mo-

tion sensor of the smartphone. However, all IoT peripherals

are not equipped with motion sensors. Moreover, to increase

the precision, fusion of WiFi based fingerprinting and BLE

based trilateration has been proposed. Even though it in-

creased the accuracy, such technique requires the presence

of both BLE and WiFi radio in the IoT device which is not

always possible. Besides, the high computational need in the

target device for such methods, makes these an inefficient

solution for battery powered IoT devices. In our system, we

follow network-based localization model, where the calcula-

tions are performed in the access points.

Network-based Localization. A few works have focused on

network-based localization techniques, where several BLE

access points localize a BLE enabled device. However, these

techniques require special software (e.g., modified transmis-

sion packets to carry extra proximity and transmission power

information) or hardware (e.g., directional antenna) in the pe-

ripheral device [3, 34]. To avoid modifying the transmission

packet [20] proposes attaching a BLE beacon to the target

BLE peripheral. Even though BLE beacons are inexpensive,

attaching beacons to every peripheral is not a viable solution.

In our solution, we do not require any special or modified

hardware or software in the peripheral devices.
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Using Additional Devices and Sensors. [19] locates and

tracks a BLE beacon using smartphone and improves the

accuracy by estimating the environment, mitigating the RSS

fluctuation and noise filtering. However, this solution re-

quires additional sensors (e.g. magnetometer and IMU) and

specific movement of the smartphone (L-shaped). Many

other works have used additional sensors e.g. acoustic sen-

sors [13], IMU [18, 33], magnetometer [15] of the smartphone

respectively to improve localization accuracy. But, such tech-

niques require additional hardware which is not a scalable

for large scale deployments. Our localization system is not

dependent on any parameters (e.g. transmitting signal, data

packet format, timestamp and payload information) that may

vary from device to device. Moreover, our localization re-

quires no modification (both software or hardware) to the

peripheral device.

CSI-based Solutions. Some works [31, 49] have used phys-

ical layer information of WiFi protocol (e.g. Channel State

Information (CSI) [27]) for fine-grained localization. For ex-

ample, [49] uses CSI to estimate the time-of-flight (ToF),

and [31] combines CSI and MIMO setup to estimate the

angle-of-arrival (AoA) and ToF. Though these works have

achieved sub-meter level accuracy, these methods for WiFi is

not directly applicable to BLE. Because, CSI is not available,

and its existing estimation technique is not practical for BLE

Physical layer implementation.

8 DISCUSSION

Lack of Phase Information. In our approach, we only es-

timate the multipath profile, which is the time delay of dif-

ferent paths of the signal. We apply IFFT on the frequency

response of a baseband signal to estimate the multipath pro-

file. However, our approach of estimating multipath profiling

is limited by the BLE bandwidth spectrum, which have a low

time resolution to differentiate multipath signals that are

separated by less than 4.16m. In addition, we use frequency

response of the signal strength of a symbol (i.e., RSSI), which

is an indirect measurement of the power of a baseband signal,

to estimate the multipath profile. As we see in equation 5,

the baseband signal has both amplitude and phase. Unfortu-

nately, available BLE sniffers (e.g., ubertooth) are unable to

extract both amplitude and phase information of a baseband

signal. In our approach, we use a coarse information (i.e.,

RSSI) in estimating the multipath profile. Thus, we loose

phase information in our multipath profile estimation for

BLE signal. With the phase accumulation information of

different paths, one could estimate the travel time of a signal.

Limitations of Ubertooth. We have used BLE sniffer (Uber-

tooth One) to implement our access points for simplicity of

implementation. However, being a low cost sniffer, Ubertooth

One has some limitations. Due to the clock drift of the system,

it fails to stay time synchronized with the BLE peripheral

and central. Thus it experiences time shift while hopping

and results in missing hops and packets [12]. However, this

is an implementation issue and can be solved by either using

more powerful BLE sniffers or creating wide-area IoT service

utilizing BLE devices at the edge [47].

9 CONCLUSION

In this paper, we address the ranging of BLE peripheral de-

vices under a practical constraint of not modifying them

in any ways. We leverage the frequency hopping mecha-

nism, modulation-demodulation technique and empty con-

trol packet transmission of BLE protocols to solve the ranging

problem using multipath profiling. The approach is invariant

to the environment and the types of the peripheral devices.

Along with providing theoretical formation of our approach,

we evaluate our ranging solution, and determine the time

needed to perform multipath profiling and the effect of the

presence of other wireless signals.
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