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ABSTRACT

Mobility tracking of IoT devices in smart city infrastruc-
tures such as smart buildings, hospitals, shopping centers,
warehouses, smart streets, and outdoor spaces has many ap-
plications. Since Bluetooth Low Energy (BLE) is available
in almost every IoT device in the market nowadays, a key
to localizing and tracking IoT devices is to develop an ac-
curate ranging technique for BLE-enabled IoT devices. This
is, however, a challenging feat as billions of these devices
are already in use, and for pragmatic reasons, we cannot
propose to modify the 10T device (a BLE peripheral) itself.
Furthermore, unlike WiFi ranging — where the channel state
information (CSI) is readily available and the bandwidth can
be increased by stitching 2.4GHz and 5GHz bands together
to achieve a high-precision ranging, an unmodified BLE pe-
ripheral provides us with only the RSSI information over a
very limited bandwidth. Accurately ranging a BLE device is
therefore far more challenging than other wireless standards.
In this paper, we exploit characteristics of BLE protocol (e.g.
frequency hopping and empty control packet transmissions)
and propose a technique to directly estimate the range of a
BLE peripheral from a BLE access point by multipath pro-
filing. We discuss the theoretical foundation and conduct
experiments to show that the technique achieves a 2.44m
absolute range estimation error on average.
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1 INTRODUCTION

Mobility Tracking in Smart Infrastructure. As the adoption
of 10T devices continues, smart city infrastructures are com-
ing to life. The rapid growth of IoT devices and services is
impacting healthcare, smart retail store, home automation,
parking automation, factory automation, workforce manage-
ment and consumer electronics. Localizing and tracking IoT
devices further enables new applications. For example, in
a healthcare facility, a fine-grained localization of IoT de-
vices allows caregivers to observe their patients’ movements
and whereabouts in real-time and receive notifications in
case of emergencies such as when a patient falls, wanders
around, enters an off-limit area, or calls for help. Emerging
smart retail stores like Amazon Go [5] can track customers
solely based on RF signals and reduce an overwhelming use
of cameras. In smart parking and metering systems, con-
nected vehicles can be localized using RF signals emitted by
their radios. Similarly, in many other domains, an accurate
localization of IoT devices solves important open problems
such as occupancy detection, accessibility aid for visually
impaired people, warehouse automation, and energy and
resource management in smart infrastructure.

The Rise of BLE-Enabled IoT Devices. Bluetooth low energy
(BLE) is becoming the de-facto communication standard for
IoT devices due to its low-power physical and data link layer
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Figure 1: Network-based BLE Localization: Multiple
BLE access points estimate the ranges of the periph-
erals di,d; and ds, and apply trilateration to localize
them.

operation which is suited to low-power, long lasting, battery-
operated devices, and a transaction-oriented light-weight
service layer that facilitates rapid development of services
on resource constrained devices. By 2020, the global value
of BLE devices deployed for IoT services is expected to be
as much as $5.57 billion, with most of the value coming
from devices in smart home, healthcare, and manufacturing.
Although BLE is designed for low bandwidth traffic, in recent
years, multimedia content such as images and 3D augmented
reality data have been carried over BLE [40-42]. The growth
of BLE is increasing in scale and in scope, and it is catalyzing
large scale IoT deployments in smart cities.

BLE Localization Models. A BLE device acts either as a
low-power BLE peripheral (e.g., smart watches, heart rate
monitors, blood pressure monitors, and weighing machines)
or a relatively higher-power BLE central device (e.g., a smart-
phone). State-of-the-art BLE-based localization techniques [26,
44] typically refer to localizing a central device by using a
set of peripherals as anchors. For example, the use of BLE
beacons (e.g., iBeacon [6, 7]), which are placed at predeter-
mined fixed locations as anchor points, to localize people
carrying smartphones is an ideal example of such a model.
In this model, the infrastructure is low-power, but the mobile
device that receives signals from the beacons to estimate its
own location is not. We, on the other hand, are interested in
localizing low-power, resource-constrained BLE peripherals
that may be carried or worn by humans (e.g. wearables), or
are attached to mobile platforms such as hospital beds, mo-
bile robots, or drones. Since BLE peripherals are extremely
resource constrained, the earlier model where the mobile
device computes its own location is not feasible anymore.
Furthermore, as most of these peripherals are commercial off-
the-shelf devices, we are, in general, not capable of running
programs on them. Hence, we investigate a flipped model
where a set of networked BLE central devices (i.e., BLE gate-
ways/access points) are deployed in a smart city infrastructure
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(like cellular towers or base stations) and they are continuously
receiving signals from nearby BLE peripherals and localizing
these peripherals in real-time. A representative setup is shown
in Figure 1 where each access point (a BLE central) estimates
the range (i.e. the direct point-to-point distance) from the
target peripheral. Range measurements at three or more ac-
cess points are combined to estimate the exact location of
the peripheral.

Rethinking BLE Localization Using Multipath Profiling. BLE-
based localization techniques can be broadly categorized into
either fingerprinting [30] or RSSI-based ranging [17, 23, 53].
The downside of fingerprinting is that it requires a significant
amount of training effort to characterize an environment and
often such a characterization is temporary as the environ-
ment changes over time. RSSI-based ranging, on the other
hand, suffers from low accuracy as no existing technique has
so far been able to deal with multipath effect in BLE commu-
nication. In this paper, we rethink the problem and propose
a completely new approach to BLE localization where we
estimate the multipath profile (i.e, the propagation delay of
different paths) of a BLE communication when signals from
a peripheral reaches a central. From the estimated multipath
profile, we are able to isolate the direct propagation path
(both LoS and NLoS), and hence, estimate the range.

The proposed range estimation process does not require
any modifications to the peripheral devices [13, 15, 33]. Un-
like existing approaches, it does not require a peripheral
device to carry additional tags or beacons [20]. There are
some approaches [16, 40] where the knowledge of transmis-
sion power carried by a BLE beacon message (a special type
of BLE peripheral) is exploited. This does not completely
solve the problem since not all BLE peripherals are BLE
beacons, and the conversion of a BLE peripheral to a BLE
beacon, although possible, requires a complete firmware re-
placement. Hence, the problem of determining the range of
an unmodified BLE peripheral is extremely challenging as
the only information that is available to the centrals is the
received signal strengths (RSSI) of the BLE peripherals. Our
proposed technique exploits this RSSI information at differ-
ent hopping channels in order to obtain the time-of-flight
(ToF) of the direct path signal from an IoT device (peripheral)
to an access point (central).

In this paper, for the first time, we form a theoretical foun-
dation to infer the frequency response of a baseband signal
by measuring the power of a BLE symbol or RSSI measure-
ments at different BLE data channels. An access point, once
after extracting the frequency response of a baseband signal,
applies inverse discrete Fourier transform (IDFT) to estimate
the multipath profile for range/location estimation. To val-
idate our approach, we build a BLE test-bed and evaluate
the proposed technique using commercial-off-the-shelf BLE



peripheral devices in both uncontrolled and controlled set-
tings.

Difference from WiFi Multipath Profiling. Several recent
works [31, 49] on WiFi-based indoor localization have used
Channel State Information (CSI) at subcarrier level to de-
rive the multipath profile. Subcarrier level CSI provides fine
grained information on channel characteristics such as dis-
tortion and attenuation of signals which can be exploited
to estimate the multipath profile. This is possible with WiFi
(802.11a and 802.11ac) as most of the commodity WiFi net-
work interface cards (NIC) are equipped with a channel esti-
mator component that estimates the CSI during demodulat-
ing each OFDM subcarriers. Unfortunately, CSI information
is not available in any BLE chip as BLE implements a very
simple modulation scheme and due to its low-power opera-
tion, no BLE chip estimates CSI at the physical layer. Because
of the unavailability of CSI information, multipath profiling
in BLE is drastically different than WiFi.

Summary of Contributions. The contributions of this paper
are as follows:

e To the best of our knowledge, we are the first to form a
theoretical foundation to estimate frequency response
of a BLE baseband signal by measuring RSSI at different
BLE channels.

e We develop a technique to estimate multipath profile
of BLE signals using commodity hardware, and ulti-
mately measure the time-of-flight of the direct path to
estimate the range of an unmodified BLE peripheral .

e We evaluate the proposed BLE ranging solution un-
der different uncontrolled environments (e.g. in line of
sight, in non line of sight, and at different locations),
quantify the required wait time and effect of interfer-
ence, and achieve an overall average estimated error
of 2.44m (1.5m-1.87m in line of sight).

2 BACKGROUND

2.1 Bluetooth Low Energy

BLE Channels. Bluetooth Low Energy (BLE) is a wireless
technology which is especially designed for low power de-
vices that operate in the 2.4GHz ISM band [25]. In this band,
BLE has 40 channels, numbered from 0 to 39. Each chan-
nel is 2 MHz wide. BLE uses 3 channels (37, 38, and 39) for
advertisements, on which, BLE peripherals transmit adver-
tisement packets to announce their presence and to establish
connection with a central device. The rest of the channels
are used for data transmission between a peripheral and a
central device. BLE uses a frequency hopping mechanism
to transmit data packets at different channels by using a
pseudo-random hopping sequence, which is known to both
the peripheral and the central device.
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Figure 2: Connection interval between the peripheral
and the central device link-layer connection.

BLE Connection. During connection establishment, a pe-
ripheral and a central agree upon the hopping sequence and
the connection interval. A connection interval is the time
between two data transfer or connection events. As shown
in Figure 2, at each connection event, a central initiates data
transmission. At a connection event, a peripheral replies
with a single data packet for each data packet transmission
from a central. By default, if there is no data to transmit, both
the central and the peripheral transmit a packet that is called
an Empty Link Layer PDU (Protocol Data Unit). An Empty
PDU transmission allows a peripheral to sync with a central
and keep the link layer connection alive. In our approach
to BLE ranging, we use RSSI measurements of these Empty
PDUs transmitted by a peripheral device at different data
channels.

BLE Modulation and Communication. BLE transmits data
at 1Mbps, with 1 bit per symbol. The physical layer of BLE
uses Gaussian Frequency Shift Keying (GFSK) modulation to
generate baseband signals from a bit stream of 0s and 1s. In
BLE, before applying the GFSK modulation, a bit sequence
is transformed into a baseband pulse sequence (€ {+1,—-1})
by using non-return-to-zero (NRZ) line coding. Later, this
baseband pulse sequence is passed through a Gaussian filter
before modulation to make the baseband pulse transitions
(i.e, from +1 to -1, or -1 to 1) smoother. Thus, BLE reduces
the interference with neighboring channels at the cost of
an increased inter-symbol interference. In the modulation,
smooth baseband pulse sequence is mapped to phase devia-
tion as follows:

h [T«
o =5 [ ) alnlgu-nT)dp

n=—co

(1)

where, x[n] € {+1, -1} is the baseband pulse sequence, and
g(.) is the Gaussian filter or the pulse shaping function [9].
In the above equation, h and T are the modulation index!,
and the symbol period. After modulation, given f. is the
carrier frequency, the BLE passband signal can be described
as follows:

The BLE standard defines modulation index in the range [0.45, 0.55].
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Figure 3: Technique to transform channel frequency
response to multipath profile.

s(t) = Acos(2r fot + 0(t)) (2)
In section 4.1, we use Equation 2 to discuss the theoretical
foundation of estimated multipath profile for BLE signal.

2.2 Multipath Profile

Multipath Profiling. Signals from a transmitter to a re-
ceiver arrives directly as well as indirectly (e.g. after reflec-
tion and scattering). A multipath profile provides the propa-
gation delay and the corresponding power strength profiles
of the multipath arrivals of a signal. It can be measured di-
rectly by detecting multipath signals with different arrival
times (i.e., time-of-flight) in the time domain- which re-
quires sophisticated hardware that features high sampling
frequency. Another way to obtain the multipath profile is to
characterize the channel response in the frequency domain
and to apply Inverse Fast Fourier Transform (IFFT) on that
frequency response.

Hlustrative Example. Figure 3 shows the process of esti-
mating multipath profile in time domain from the channel re-
sponse in frequency domain. It shows the channel frequency
response (left plot), where f; is the starting frequency, Af
is the resolution of frequency sampling, and L = Af is the
total bandwidth of the frequency response. After the normal-
izing and IFFT transformation on the frequency response,
we obtain multipath profile (right plot), which is a series
of signal samples in the time domain with various delays,
70, To + AT, ..., 79 + L * Ar. Here At is the time resolution in
Multipath profile that is inversely related to the bandwidth
of the frequency response, At = 1/(L = Af) = 1/B, here B is
the total frequency bandwidth. Note that, as long as the fre-
quency response bandwidth is fixed, the number of equally
spaced frequency sampling in the middle has no impact on
the time resolution in multipath profile. That means, Az does
not depends on the value of L, as long as the total bandwidth
B is fixed. Note that, For the given multipath profile in figure
3, the maximum propagation delay of a signal arrival that
we can measure is L * At.
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Isolating Direct Path. In the derived multipath profile, sig-
nal samples having high amplitudes represent different prop-
agation paths of the transmitted signal (both direct and indi-
rect). Among them, the earliest signal samples with a high
amplitude (not necessarily highest) represents the direct path
delay or time-of-flight. Note that direct path signal can be
Line-of-sight (LoS) or Non-Line-of-sight (NLoS). In case of
NLoS, the absorption in the obstacles might reduce the the
amplitude of the direct path compare to indirect path. This
makes it harder to distinguish or detect direct path. Our re-
sults also reflects that. Given the direct path propagation
delay, we can estimate the relative range between a transmit-
ter and a receiver. For the scenario in Figure 3, we have two
spikes in the multipath profile. The first (earliest) spike rep-
resents the direct signal path and the other spike represents
the indirect signal path.

3 SYSTEM OVERVIEW

3.1 System Architecture

Networked BLE Access Points. Our system adopted network
infrastructure based localization model as shown in Figure 4.
As part of the infrastructure, we have BLE access points
at fixed known locations. The role of these access points
is to estimate the range (i.e the direct distance) of target
BLE peripherals and send the range information to a central
server. Using range estimates of a peripheral from multiple
access points, the server localizes it by applying standard
techniques such as trilateration [23], triangulation [17], or
inter Ring Location Algorithm [21]). Since estimating the
range is the key to localizing a BLE device, it remains the
main focus of this paper.

Scenarios. This model is suitable for large scale facilities
such as retailer store, smart parking system, and hospitals,
where BLE peripheral devices are connected to the network
via access points [8]. Unlike previous approaches, our objec-
tive is to localize the peripheral devices (such as hear-rate
monitoring, blood glucose monitoring, light bulb, motion-
sensor, etc.) rather than BLE beacons like iBeacons.

Assumptions. We assume each peripheral to be localized
is connected to a central device such as BLE gateway or
access point in our model. We further assume, besides the
connection establishment, BLE access points have the ac-
tive/passive sniffing capability. In that case, a BLE access
point can sniff the Link Layer packets (i.e., empty PDU) of
a peripheral, while being connected the peripheral. Prior to
communication with a BLE peripheral, first the BLE access
point share the link-layer connection information (e.g. hop-
ping sequence, connection interval) with the other access
points in vicinity. Thus, they are all able to sniff the transmit-
ted link-layer packets from the peripheral device, and be able



to localize and track it. We further assume that the infras-
tructure is setup in a way that a peripheral is always heard
by at least three access points. Since we adopt a multipath
profiling-based localization technique, a line-of-sight (LOS)
between a peripheral and an access point is not necessary in
our system as long as the BLE signal penetrates the medium.

Scalability. In our localization model, each central device/or
access points act independently to measures the relative dis-
tance of a peripheral device. In addition, in estimating relative
range/or location of a peripheral device, we only collect the
the empty PDU transmission from that device. In that case,
the presence of multiple peripheral devices might effect on
the number of empty PDU transmission from a peripheral
device, we can successfully collect from. Therefore it might
effect on the time to locate a peripheral device, but it will not
have any effect on the accuracy of localization. Therefore,
with enough number of access point deployment, we can
localize large number of peripheral devices.

Range Estimation Overview. As mentioned earlier, range
estimation is done after estimating the multipath profile of
a BLE communication, which in turn, obtained by forming
a channel frequency response. To estimate the channel fre-
quency response, each access point measures the power of a
BLE baseband symbol (i.e., RSSI) from the sniffed or captured
packets at different frequencies (i.e., BLE channels). This step
leverages BLE’s frequency hopping design.

After forming the channel frequency response, an access
point estimates the multipath profile which provides an es-
timated time-of-flight (ToF) of the direct path between the
peripheral and itself. By multiplying the estimated ToF with
the velocity of light, each access point estimates a relative
distance (i.e. range) of the peripheral. Each access point sends
the estimated range to the central server where rest of the lo-
calization happens by combining range measurements from
three or more access points.

3.2 System Features

The proposed localization system has the following features.

e Independent of Surrounding Environment. Many RSSI-
based BLE indoor localization techniques use fingerprinting
or radio-propagation models [19, 45, 46]. These techniques
are dependent on environment parameters, therefore, any
change in the environment makes such models partially or
fully invalid. In our proposed system, we use multipath pro-
filing technique for range estimation, which is independent
of the surrounding environment [50]. In addition, instead of
using RSSI based models which are inaccurate and environ-
ment dependent, we use RSSI as an indirect measurement of
the channel state information.
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Figure 4: Network based BLE Localization. Periph-
eral communicates with a central device in connected
mode. Multiple fixed BLE access points sniffs the traf-
fic and estimate the time-of-flight (ToF) of direct path.
Then the central server receives the ToF estimations
and localize the peripheral.

e Unmodified BLE Peripherals. Most RSSI-based localiza-
tion systems require changes to a peripheral to inject addi-
tional information into the BLE packets such as transmis-
sion power and time stamp [34]. Some recent proposals rely
on additional sensors such as audio and IMUs of a smart-
phone [13, 35] to localize the device. Unlike smartphones,
BLE peripherals are not always equipped with additional
sensors which can be leveraged to enhance the overall loca-
tion estimation accuracy. Some techniques require hardware
modifications such as a directional antenna or an additional
BLE beacon tag to the peripheral device [3]. Any such mod-
ifications (in hardware or software) are impractical due to
the fact that billions BLE-enabled IoT devices are already
in use. In our system, we leverage standard BLE protocol
implementation without any modification to the peripheral.

Central Device

o Available Physical Layer Information. Even though both
BLE and WiFi operate in 2.4GHz band, they have completely
different physical layer implementations (e.g. modulation/
demodulation, frequency hopping, and bandwidth). Because
of this difference, localizing BLE devices is quite different
from localizing WiFi devices. For example, WiFi has multi-
ple sub-carriers per channel whereas BLE has no concept of
sub-carriers at all. Therefore, unlike WiFi, we do not have
access to sub-carrier level channel state information (CSI)
of BLE’s physical layer from which we could directly esti-
mate the multipath profile. Since estimating CSI is an essen-
tial step in WiFi demodulation, CSI comes as a by product
of WiFi demodulation. Many WiFi chipsets are engineered
to obtain this CSI information. On the other hand, CSI is
not available in BLE as BLE uses a low-power, lightweight
modulation/demodulation scheme, and thus, no BLE chipset
provides CSL The only physical layer information that BLE
chipsets provide is the RSSI measurement per channel. Hence,
we devise a range estimation technique for BLE devices that
is dependent only on RSSI measurements.



4 RANGE ESTIMATION

In this subsections, we explain multipath profile and channel
frequency response estimation—-which are the two major
steps to estimating range of unmodified BLE peripherals.

4.1 Estimating Multipath Profile in BLE

Multipath Profile. In an indoor environment, a transmitted
signal travels on different paths before it reaches a receiver.
On each path, transmitted signals experience a different de-
lay, attenuation, and phase accumulation. The ultimate re-
ceived signals are a combination of these different multi-path
signals. Typically, multipath profile is a technique to identify
these propagation delays of different paths on receiving a
signal [50]. This ultimately allows us to estimate the time-
of-flight (ToF) of the direct path, i.e. the path with the least
propagation delay. In this subsection, we discuss the theoret-
ical foundation of estimating multipath profile for BLE just
by using received baseband signal strengths (i.e., RSSI). In
addition, we discuss, the process of estimating time of flight
(ToF) of the direct path from the derived multipath profile.

Theoretical Derivation. Let us assume that a BLE sym-
bol reaches the receiver through L different paths. The re-
ceived signal from each path corresponds to amplitudes
{ai,az,...,ar}and propagation delays {ry, 73, . . . 7. }. In pres-
ence of these multiple paths, the received passband signal
y(t) is represented as follows:

L
y(t) = h(t) +s(t) = ) azeos@rfult = 1)) + 0t = 7)) (3)
i=1
where, s(t) is the BLE passband signal for the transmitted
symbol, and A(t) = Zle a;6(t — 1;), is channel impulse re-
sponse with time-invariant assumption, where a; and z; are
the amplitude and the time delay of the i** path. In order
to demodulate the received signal, a receiver first multiplies
cos(2r f,t) and —sin(2rx f.t) to the passband signal y(t) to get
the real and imaginary parts of the baseband signal r(¢) as
follows:

r(t) = cos(2rm fet)y(t) — jsin(2m fet)y(t) (4)

Finally, the receiver applies a low pass filter on r(t) to get
the following complex baseband signal:

L L
1 . . 1 .
V(fc) = 5 Z aie—JancTieJG(t—‘ri) _ 5 Z aie—jZIrfcriv(Ti)
i=1 i=1
(5)

Here v(t;) = /%% is the i*" path component of the
received baseband signal, and V(f) is the ultimate received
baseband signal, which is a superposition of multi-path com-
ponents. During demodulation, each symbol is extracted
from this baseband signal V(f,).
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Figure 5: In BLE, theoretical limit of absolute error in
estimated distance is at most 2 m using multipath pro-

filing technique.
In Equation 5, we see a Discrete Fourier Transform (DFT)

relation between the baseband signal V(f.) and the multi-
path component v(r;) with various delays z;. Therefore, when
we apply the inverse discrete Fourier transform (IDFT) on
the frequency response of the baseband signal, we obtain
the propagation delay of multiple signal paths. Note that
the baseband signal value is not often directly accessible in
BLE. However, RSSI measurements of a received symbol is
proportional to the power of the baseband signal, V(f;) [51].
Therefore, if we measure the RSSI readings of a symbol at
different carrier frequencies f;, uniformly spaced between
2402MHz to 2480MHz, we can infer the frequency response
of a baseband signal. Thus, applying inverse Fourier trans-
form on the received RSSI measurement gives us multipath
profile for BLE. Once estimating multipath profile, we derive
the direct ToF by selecting the earliest time that shows high
amplitude value. Then we multiply the speed of light with
the direct ToF to estimate the direct distance or range.

Time and Distance Resolution. In multipath profile, time-
resolution is a key parameter that defines the granularity of
identifiability of delays of different multipaths. A higher time-
resolution allows us to identify a fine-grained range. Accord-
ing to inverse Fourier transform theory, the time-resolution
of a multipath profile is related to the BLE spectrum band-
width. Such a connection indicates that a wider bandwidth
leads to a higher time-resolution for the multipath profile.
BLE spectrum bandwidth is limited to 80MHz, which limits
the time-resolution to 13.5ns that is equivalent to a distance
resolution of 3.75m.

Measuring only the RSSI of the empty PDU packet in the
data channels, enforce us to not consider two advertisement
channels 37 and 39, which ultimately reduces the frequency
bandwidth to 76 MHz, and the distance resolution to 4m.
Thus, in our multipath profile, each estimated distance be-
comes a multiple of 4m. In that case, any actual distance that
falls between 4 % n and 4 * (n + 1) (for n=0,1,2,..L), we will
observe a higher amplitude either in 4 * n or 4 % (n + 1) based
on its closest proximity in the multipath profile. That means,
according to Figure 5, any distance between 12m to 14m
will show higher value for distance 12m, and any distance
between 14m to 16m will show higher value for distance 16m



in the multipath profile. Thus, we have at most 2m absolute
measurement error in the worst case.

For a bandwidth of B, two multipaths are indistinguishable
if their propagation delays differ by less than 1/B. In that case,
both multipaths are viewed as one multipath component.
Therefore, the time resolution Az leads to ¢/B uncertainty in
terms of the length difference between non-distinguishable
paths, where c is the speed of signal propagation. In BLE, the
path length uncertainty is 4m, which limits our BLE ranging
up to =2m.

4.2 Forming Channel Frequency Response

Necessary BLE Channels. In order to perform multipath
profiling at a sufficient granularity, an access point needs
to collect RSSI readings from a peripheral over multiple
BLE channels, which need to be uniformly spaced between
2402MHz to 2480MHz. Note that, in forming the channel
frequency response from RSSI reading for range estimation,
we do not need to sample all BLE channels. Typically, at an
indoor environment, the maximum range of a BLE periph-
eral device is limited to 16-20 meters. Given the available
bandwidth, the minimum time resolution in multipath pro-
file can be around 4m as discussed in Section 4.1. Therefore,
in addition to the lower and the upper ends of BLE channels’
measurements, we only need to measure at least 2-3 equally
spaced channels in between the two ends to range a BLE pe-
ripheral with maximum possible resolution using multipath
profiling.

Dealing with WiFi Interference. Since BLE implements an
adaptive hopping mechanism to avoid interference with
other 2.4GHz communications, in presence of WiFi, a BLE
devices will not hop to all channels. However, some lower
end and upper end channels (e.g. channel 0 and 36) are not af-
fected by WiFi interference. In this case, in addition to these
two ends, if we have enough BLE channel measurements
in the middle, WiFi interference will have no impact on the
accuracy of range estimation with BLE.

Required Waiting Time. According to the BLE standard, at
every connection-interval, a BLE peripheral hops to a differ-
ent channel. In off-the-shelf BLE devices, we find that the
connection-interval is between 7.5ms to 120ms depending on
the trade-off between data rate and power consumption. In
our experiments, we observe that it takes about 2-3 seconds
to collect enough number of BLE channel measurements to
form the channel frequency response.

Collected Packet Types. BLE devices use different transmis-
sion powers for transmitting different types of packets. For
example, the transmission power of a BLE advertisement
packet is different from a BLE data packet. Similarly, BLE
data packets have different transmission power levels than
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Ubertooth One

Raspberry Pi
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Figure 6: (a) Custom BLE access point using three
Ubertooth One sniffers and a Raspberry Pi, (b) RF
shielded room (Faraday cage) where some of the ex-
periments (controlled) are done.

empty PDU packet transmissions. Since transmission power
affects RSSI readings, when forming the channel frequency
response from RSSI readings, we need to make sure that
the transmission power of each received empty PDU packet
are the same across different channels. Hence, we normalize
the RSSI measurements across different channels to make
sure that the channel response is invariant to the transmis-
sion power. Unfortunately, we do not have any control on
changing or knowing the transmission power of the BLE
packets from a peripheral device. However, the transmission
power of empty PDUs remain the same from a peripheral
device across different BLE channels. Therefore, when col-
lecting RSSI readings from a peripheral, we choose empty
PDU packets from a peripheral, which is easy to differen-
tiate from a central’s empty PDU, and other data PDUs. In
addition, empty PDUs are sent at every connection interval
(i.e., in milliseconds). Therefore, in a very short time, an ac-
cess point can collect RSSI readings from a peripheral across
multiple BLE channels.

5 IMPLEMENTATION NOTES

In this section, we discuss key implementation issues of the
system that we think are helpful for anyone who wants to
reproduce the results.

Access Point. We use off-the-shelf hardware to implement
the BLE access points as well as the peripherals. Since our
main objective is to measure the range, we passively monitor
a peripheral device at an access point and sniff its packets
while it is connected to another central device.

To implement the access points, we use Bluetooth Low
Energy (BLE) sniffers called the Ubertooth One [4] which are
connected to a Raspberry Pi 3 [11] as shown in Figure 6(a).
Since we do not know which of the three advertisement
channels will be used to establish a connection, we use three
Ubertooth Ones to quickly pick up the link layer connection



between a peripheral and a central. Here, each ubertooth
one is connected to one of the three advertisement channels.

Ubertooth One is an open source hardware platform for
experimenting with 2.4GHz wireless protocols. It is equipped
with a RP-SMA RF connector, CC2591 RF front end, CC2400
wireless transceiver, and a LPC175x ARM Cortex-M3 micro-
controller. Ubertooth sniffs the 2.4GHz ISM band and receives
the signals transmitted by BLE peripherals [12]. Ubertooth
by default provides the average RSSI of a packet. In order to
collect fine-grained RSSI readings per symbol, we customize
the Ubertooth firmware.

Once the Ubertooth picks up the link layer connection, it
starts following the hop sequence and collects RSSI values
per symbol for empty PDUs.

Peripheral Device. As peripheral devices, we use unmodi-
fied Lightblue Beans [2] paired with their sister application
on an Android smartphone (Nexus 5).

6 EVALUATION

In this section, at first, we describe the experimental setup.
Then, we evaluate the ranging accuracy of the proposed
BLE-ranging method in uncontrolled environment. Next,
we quantify the time needed to form channel frequency re-
sponse both experimentally and with simulation. Finally, we
demonstrate the effect of other 2.4 GHz wireless interference
on channel frequency response.

6.1 Experimental Setup

Indoor scenarios mostly consists of corridors and rooms
of different sizes. Thus we choose corridors and rooms of
medium size for our experimental evaluation. We use three
scenarios (Table 1) for conducting the experiments. For the
first scenario, we choose a long corridor in one of the build-
ings at our campus. We keep the access point and the periph-
eral in line of sight. As the second scenario, we use the same
corridor but place a metallic board between the peripheral
and the access point to create a non-line of sight scenario.
In both of these scenarios, we vary the distance between the
access point and the peripheral from 2m to 16m and collect
RSSI values at different distances. Finally, we select a lab
room in the department as our third scenario and vary the
distance between the access point and the peripheral from
4m to 8m.

As discussed earlier, we can not differentiate between two
paths with less than 4m distance between each other. So,
we do not collect any data at positions with less than 4m
distance from the walls in the direction of the direct path.
The data collection process ensures that people do not move
between the peripheral and the access point. However, sev-
eral WiFi access points (10 on the floor) and other wireless
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devices including WiFi, classic Bluetooth and other BLE de-
vices have been present in the environment. As mentioned
earlier, we only log the RSSI values of the empty PDUs from
the peripherals. For each distance/ trial points, we collect
data for two minutes and we get around 2000 values for each
data point. For a trial, we take the mode of the RSSI of the
empty PDUs in each channel. We choose mode as it is robust
against outliers.

Table 1: Experimental Scenarios

Environment Range
Scenario 1 Corridor (Line of Sight) 2m - 16m
Scenario 2 Corridor (Non Line of Sight) 2m - 16m
Scenario 3 Room (Line of Sight) 4m - 8m

6.2 Ranging Accuracy

In Figure 7, we show the average absolute ranging error for
each scenario. Although the average estimated error is 1.83m
for the line of sight scenario in the corridor (scenario 1), it
rises to 4m in the non line of sight scenario (scenario 2).In the
non-line of sight scenario, the direct path signal experiences
a drop in power while penetrating obstacles, and becomes
weaker compare to indirect paths, which make it harder to
identify. In scenario 3 (room), we achieve the lowest average
estimated error of 1.5m.

Scenario 1 Scenario 2 Scenario3

Average
Absolute Error
(m)
OoOrRrNWRAOUV

Figure 7: The average estimated absolute distance er-
ror in three uncontrolled scenarios is 2.44m.

In Figure 8, we show the relationship between the esti-
mated and the actual distances for all three scenarios. Since
many data points in Figure 8 coincides and these coincident
points are visually represented by a single point. Here, we
see that the trend line of the data is a straight line having
a near 45 degree angle with the axes. This trend line has a
mean squared error of 0.42m.

6.3 Channel Frequency Response
Formation Time

In Figure 9, we empirically determine the probability of

achieving different bandwidths for various amount of wait-

ing time. We avoid collecting data from two bordering chan-

nels (channel 37 & 39) as these are advertisement channels
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Figure 8: The scatterplot of actual distances and cor-
responding estimated distances for all uncontrolled
environments shows a linear trend having a mean-
squared error of 0.42m.

and do not carry empty PDUs. Therefore, we achieve a high-
est bandwidth of 76MHz as opposed to 80 MHz. We observe
that our system is able to achieve 72 MHz bandwidth 79% of
the time when it waits for at least 2s to collect RSSI measure-
ments. Similarly, the system achieves the highest 76 MHz
bandwidth 70% of the time if it waits for 3s. The correspond-
ing distance errors for each of the three types of bandwidths
are mentioned in Table 2.

In Figure 10, we show the expected bandwidth (as well
as the distance error) for both experimentally and with sim-
ulation. In order to simulate the pseudo random frequency
hopping mechanism in BLE, we use an uniformly distributed
pseudo random number generator. We choose the connec-
tion interval or hopping interval to be a random number
between 7.5 ms and 100ms [1]. We use over 1,50,000 data
points for the simulation. In Figure 10, we observe that both
simulation and data from real experiments achieve an ex-
pected bandwidth of around 73MHz in 2 seconds. Although
in simulation we observe 75.03 MHz of expected bandwidth
in 5s, in real-life data it is 73.63 MHz. From these observa-
tions, we conclude that the proposed system achieves an
absolute error of 2.06m at most by collecting RSSI values for
about 2s to form the channel frequency response.

Table 2: Theoretical distance resolutions and maxi-
mum distance errors for different bandwidths (B)

Bandwidth Distance Resolution Theoretical Max
Distance Error

76 MHz 3.95m +1.97m
74 MHz 4.05m +2.03m
72 MHz 416 m + 2.08 m

Note that for simplicity and a low cost implementation,
we use off-the-shelf BLE sniffer (Ubertooth One) which is
prone to dropping packets [12] as its clock drifts over time
and it waits to resynchronize itself. As a result of packet
drops, we require more time to receive a desired bandwidth
than expected. This is an implementation issue and can be
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Figure 10: The expected bandwidth and corresponding
theoretical maximum absolute distance error limit
in uncontrolled environments for different waiting
times for both empirical and simulation results are
shown.

resolved by using a robust software defined radio such as an
USRP.

6.4 Effect of Interference in 2.4GHz

Different wireless technologies, e.g. WiFi, Zigbee, and classic
Bluetooth, coexists in the 2.4GHz ISM band along with the
BLE. A major reason for BLE to hop frequencies is to avoid
interference with these other technologies. Hence, BLE tends
to avoid channels that tends to have a higher traffic [43]. We
create such interference scenario and quantify performance
of our proposed system under such interferences.

In order to understand the hopping behavior accurately,
we use a RF shielded room (a Faraday cage) as shown in
Figure 6(b) for these experiments. This room is made with
Ferrous walls (including ceiling and floor) with a non-Ferrous
layer on top. This combination of Ferrous and non-Ferrous
material makes the room free from all types of RF interfer-
ence from the outside world. To introduce controlled inter-
ference inside the room, we set up a WiFi access point that
communicates with a laptop on WiFi channel 1. This is the
only other signal besides the signals between the BLE periph-
eral and BLE central. Although the BLE connection avoided
overlapped BLE channels with WiFi channel 1, we achieve
72.89 MHz bandwidth in 2 seconds as shown in Figure 11.
We further observe that the simulated data achieve 74.96
MHz bandwidth in 5s.
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Figure 11: The expected bandwidth and corresponding
theoretical maximum absolute distance error limit in
presence of only WiFi channel 1 for different waiting
times for both empirical and simulation results are
shown.

Figure 12 shows the result of a similar experiment but this
time with only WiFi channel 6 activated. Here, we achieve
71.16 MHz and 72.70MHz bandwidth in 2 seconds for empir-
ical data and simulated data respectively. From these obser-
vations, we can conclude that we can achieve at least 71.16
MHz bandwidth in the presence of other wireless signals.
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Figure 12: The expected bandwidth and corresponding
theoretical maximum absolute distance error limit in
presence of only WiFi channel 6 for different waiting
times for both empirical and simulation results are
shown.

7 RELATED WORK

RSSI-based Fingerprinting. RSSI-based fingerprinting is the
most popular localization technique for BLE-enabled devices.
Several studies has been performed to compare the perfor-
mance of BLE and WiFi based fingerprinting [24, 29, 38].
These studies achieved better accuracy using BLE-based fin-
gerprinting compared to WiFi-based fingerprinting. In order
to improve the fingerprinting accuracy, filters are proposed
to remove the outliers [32]. For further refinement, complex
methods e.g. fusion of BLE and WiFi RSSI [48], estimation of
the propagation model [28, 36] , consideration of the effect of
different channels [37] have been proposed for fingerprinting.
However, the requirement of generating radio map for differ-
ent scenarios makes fingerprinting a costly and impractical
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solution. Although some works address this challenge by
using crowd-sourcing [14] and model based estimation [22],
this approach is difficult to deploy as giving incentives to
public every time is not feasible. To avoid radio map genera-
tion and eliminate the effect of environment change, we use
multipath profiling for estimating the distance.

RSSI-based Ranging. Another popular localization approach
is RSSI-based ranging with BLE beacons (e.g. iBeacon [7],
estimode [6]) with algorithms like trilateration, triangula-
tion, inter Ring location etc. In these approaches, multiple
BLE beacons (at least three) advertise custom iBeacon pack-
ets [10] and a central device (e.g. smartphone) receives the
packets to localize itself. This iBeacon packet is different
from BLE peripheral packets [10] and contains extra infor-
mation e.g. transmission power. Such technique consists of
two parts - localization and ranging. In order to improve
the localization accuracy of trilateration and triangulation,
both preprocessing and post processing of the data has been
proposed [17, 23].

Ranging is the most important step of the ranging-based
approach. RSSI-based regression models and path loss model
are the most common techniques for ranging BLE devices [39,
52, 53]. However, these models are highly vulnerable with
the change of scenarios and thus requires remodeling for
different environments. In order to tackle this problem [19]
proposed a solution to estimate the environment using mo-
tion sensor of the smartphone. However, all IoT peripherals
are not equipped with motion sensors. Moreover, to increase
the precision, fusion of WiFi based fingerprinting and BLE
based trilateration has been proposed. Even though it in-
creased the accuracy, such technique requires the presence
of both BLE and WiFi radio in the IoT device which is not
always possible. Besides, the high computational need in the
target device for such methods, makes these an inefficient
solution for battery powered IoT devices. In our system, we
follow network-based localization model, where the calcula-
tions are performed in the access points.

Network-based Localization. A few works have focused on
network-based localization techniques, where several BLE
access points localize a BLE enabled device. However, these
techniques require special software (e.g., modified transmis-
sion packets to carry extra proximity and transmission power
information) or hardware (e.g., directional antenna) in the pe-
ripheral device [3, 34]. To avoid modifying the transmission
packet [20] proposes attaching a BLE beacon to the target
BLE peripheral. Even though BLE beacons are inexpensive,
attaching beacons to every peripheral is not a viable solution.
In our solution, we do not require any special or modified
hardware or software in the peripheral devices.



Using Additional Devices and Sensors. [19] locates and
tracks a BLE beacon using smartphone and improves the
accuracy by estimating the environment, mitigating the RSS
fluctuation and noise filtering. However, this solution re-
quires additional sensors (e.g. magnetometer and IMU) and
specific movement of the smartphone (L-shaped). Many
other works have used additional sensors e.g. acoustic sen-
sors [13], IMU [18, 33], magnetometer [15] of the smartphone
respectively to improve localization accuracy. But, such tech-
niques require additional hardware which is not a scalable
for large scale deployments. Our localization system is not
dependent on any parameters (e.g. transmitting signal, data
packet format, timestamp and payload information) that may
vary from device to device. Moreover, our localization re-
quires no modification (both software or hardware) to the
peripheral device.

CSI-based Solutions. Some works [31, 49] have used phys-
ical layer information of WiFi protocol (e.g. Channel State
Information (CSI) [27]) for fine-grained localization. For ex-
ample, [49] uses CSI to estimate the time-of-flight (ToF),
and [31] combines CSI and MIMO setup to estimate the
angle-of-arrival (AoA) and ToF. Though these works have
achieved sub-meter level accuracy, these methods for WiFi is
not directly applicable to BLE. Because, CSI is not available,
and its existing estimation technique is not practical for BLE
Physical layer implementation.

8 DISCUSSION

Lack of Phase Information. In our approach, we only es-
timate the multipath profile, which is the time delay of dif-
ferent paths of the signal. We apply IFFT on the frequency
response of a baseband signal to estimate the multipath pro-
file. However, our approach of estimating multipath profiling
is limited by the BLE bandwidth spectrum, which have a low
time resolution to differentiate multipath signals that are
separated by less than 4.16m. In addition, we use frequency
response of the signal strength of a symbol (i.e., RSSI), which
is an indirect measurement of the power of a baseband signal,
to estimate the multipath profile. As we see in equation 5,
the baseband signal has both amplitude and phase. Unfortu-
nately, available BLE sniffers (e.g., ubertooth) are unable to
extract both amplitude and phase information of a baseband
signal. In our approach, we use a coarse information (i.e.,
RSSI) in estimating the multipath profile. Thus, we loose
phase information in our multipath profile estimation for
BLE signal. With the phase accumulation information of
different paths, one could estimate the travel time of a signal.

Limitations of Ubertooth. We have used BLE sniffer (Uber-
tooth One) to implement our access points for simplicity of
implementation. However, being a low cost sniffer, Ubertooth
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One has some limitations. Due to the clock drift of the system,
it fails to stay time synchronized with the BLE peripheral
and central. Thus it experiences time shift while hopping
and results in missing hops and packets [12]. However, this
is an implementation issue and can be solved by either using
more powerful BLE sniffers or creating wide-area IoT service
utilizing BLE devices at the edge [47].

9 CONCLUSION

In this paper, we address the ranging of BLE peripheral de-
vices under a practical constraint of not modifying them
in any ways. We leverage the frequency hopping mecha-
nism, modulation-demodulation technique and empty con-
trol packet transmission of BLE protocols to solve the ranging
problem using multipath profiling. The approach is invariant
to the environment and the types of the peripheral devices.
Along with providing theoretical formation of our approach,
we evaluate our ranging solution, and determine the time
needed to perform multipath profiling and the effect of the
presence of other wireless signals.
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