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Abstract

Fast and accurate integration of geodesics in Kerr spacetimes is an important tool in modeling the orbits of stars
and the transport of radiation in the vicinities of black holes. Most existing integration algorithms employ Boyer—
Lindquist (BL) coordinates, which have coordinate singularities at the event horizon and along the poles. Handling
the singularities requires special numerical treatment in these regions, often slows down the calculations, and may
lead to inaccurate geodesics. We present here a new general-purpose geodesic integrator, GRay2, that overcomes
these issues by employing the Cartesian form of Kerr—Schild (KS) coordinates. By performing particular
mathematical manipulations of the geodesic equations and several optimizations, we develop an implementation of
the Cartesian KS coordinates that outperforms calculations that use the seemingly simpler equations in BL
coordinates. We also employ the OpenCL framework, which allows GRay2 to run on multicore CPUs as well as
on a wide range of graphics processing units hardware accelerators, making the algorithm more versatile. We
report numerous convergence tests and benchmark results for GRay?2 for both time-like (particle) and null (photon)

https://doi.org/10.3847/1538-4357 /aadfe5

CrossMark

geodesics.

Key words: methods: numerical — gravitation — black hole physics

1. Introduction

Integrating geodesics of particles and photons in the
spacetimes of Kerr black holes is an important aspect of
theoretical modeling of various astrophysical phenomena, from
the orbits of stars and compact objects around supermassive
black holes (see, e.g., Alexander 2017) to the transport of
radiation through their accretion flows (see, e.g., Yuan &
Narayan 2014). Fast geodesic integrators are also critical in
fitting data of, e.g., stars in orbit around the black hole in the
center of the Milky Way (Boehle et al. 2016; Gillessen et al.
2017), rotationally broadened fluorescence lines from accreting
black holes in the X-rays (Miller 2007), or interferometric data
taken with the Event Horizon Telescope that aims to take the
first image of supermassive black holes with horizon scale
resolution (see, e.g., Doeleman et al. 2008, 2012).

Calculations of test-particle orbits (time-like geodesics)
around black holes have been traditionally done in a post-
Newtonian approximation, focusing on N-body effects (see,
e.g., Brem et al. 2014; Hamers et al. 2014, for recent work), or
by solving simultaneously for the dynamical spacetime of the
cluster of particles (see Shapiro & Teukolsky 1992, and
references therein). More recently, fast algorithms have been
developed that follow the orbits of test particles in stationary
black-hole spacetimes, with no approximations (Yang & Wang
2014; Zhang et al. 2015).

Integrations of null geodesics (ray tracing) in Kerr space-
times can be traced back to Bardeen (1973), Cunningham
(1975), and Luminet (1979), where the images of accretion
disks and the outlines of the shadows of Schwarzschild and
extreme Kerr black holes were first obtained. More recently,
methods of combining polarized radiative transfer with ray
tracing (see, e.g., Broderick & Blandford 2003, 2004; Gammie
& Leung 2012; Younsi et al. 2012; Schnittman & Krolik 2013)
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as well as a variety of open source algorithms for fast radiative
transfer calculations have been developed (see, e.g., Dexter &
Agol 2009; Dolence et al. 2009; Chan et al. 2013; Yang &
Wang 2013; Pu et al. 2016; Dexter 2016).

In an earlier article, we described GRay (Chan et al. 2013), the
first publicly available numerical algorithm that made explicit use
of general-purpose computing on graphics processing units
(GPU) for ray tracing in relativistic spacetimes. GRay uses the
high computational horsepower of GPUs to speed up this
computationally intensive problem. It achieved 1-2 orders of
magnitude speed up compared to traditional CPU-base algorithms
and allowed us to generate large, high-cadence simulations of the
observable properties of accreting black holes (Chan
et al. 2015b, 2015a; Psaltis et al. 2015; Ball et al. 2016; Kim
et al. 2016; Medeiros et al. 2018, 2017).

Even though GRay is very fast and efficient, it uses a
standard physical setup of the ray tracing problem as well as
numerical methods that have a number of limitations. For
example, like most of the other algorithms, GRay employs the
Boyer-Lindquist (BL) coordinates to take advantage of the
symmetry of the Kerr spacetime, which greatly simplifies the
derivation and evaluation of the Christoffel symbols. However,
the various coordinate singularities in the BL coordinates cause
numerical difficulties. Moreover, as in many other algorithms,
GRay uses the so-called fast-light approximation (see, how-
ever, Dolence et al. 2009). This means that, when solving the
radiative transfer equation along each ray, the fluid is assumed
to be time independent, or equivalently, the speed of each
photon is taken to be effectively infinite. This approximation
greatly simplifies the algorithms because only a single snapshot
of the underlying matter through which radiation propagates is
needed in the radiative transfer calculation at each time step.
However, this assumption affects the time variability properties
of the simulations at the fastest timescales near the black hole
horizons (Dolence et al. 2009), which will be important in
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interpreting the upcoming observations with the Event Horizon
Telescope (Kim et al. 2016; Medeiros et al. 2018, 2017).

In order to overcome these difficulties, we describe here
GRay2, a new open source, hardware accelerated, geodesic
integration algorithm.® We improve the geodesic integration in
GRay?2 by switching to the “Cartesian” form of Kerr—Schild
(KS) coordinates, overcoming all coordinate singularities and
increasing the overall accuracy of the calculations. We also
switch to OpenCL, which allows GRay2 to run on multicore
CPUs as well as on a wide range of hardware accelerators,
making the algorithm more versatile. Finally, GRay2 can
handle both time-like (test-particle) and null (photon) geode-
sics, making it applicable to calculations of both stellar orbits
and radiative transfer.

In the next section, we discuss the limitations of using the
BL coordinates and derive an optimized form of geodesic
equations in the Cartesian KS coordinates. In Section 2.2, we
provide the details of using coordinate time instead of the affine
parameter to integrate the geodesic equations. In Section 2.3,
we summarize the implementation details of GRay2. In
Section 3, we perform a convergence study using unstable
spherical photon orbits and stable particle orbits. In Section 4,
we report benchmark results of GRay2 running on a wide
range of CPUs and GPUs and demonstrate that GPUs can be up
to two orders of magnitude faster than a single CPU core and
that integrating in Cartesian KS coordinates can outperform
integrating in BL coordinates. Finally, we summarize our
findings in Section 5.

2. The GRay2 Algorithm
2.1. Implementation of the Cartesian KS Coordinates

Letting M and a be the mass and s7pin parameter of a Kerr
black hole, the BL line element reads

L) 2
dﬂ::_(l—-ZNM)dfz——fﬁgﬁngﬁd@df%—é%d%

0? 0?

+ 0% dV? + (/;2 +a* + M)sm%dﬁ, (1)
4

where 02 = 4> + a*cos*¥ and A = > — 2M+ + a®. The
oblate spheroidal nature of the BL coordinates introduces
coordinate singularities along the poles, in addition to the
coordinate singularities at the event horizons. When integrating
geodesics numerically, these coordinate singularities can cause
significant difficulties. Although there exist algorithms to
overcome these difficulties (see, e.g., the method introduced
by Chan et al. 2013), the poles can still cause numerical
problems, such as slowing down the calculations, leading to
inaccurate geodesics, and even crashing the algorithms for
extreme cases such as computing a face-on image of a black
hole accretion disk at inclination i = 0°.

In GRay2, we resolve the coordinate singularities by
employing the Cartesian form of the KS coordinates. In
component notation, with Greek indices ranging from 0 to 3,

S The source code of GRay? is version controlled using git and available on
GitHub: https://github.com/luxsrc/gray. All plots in this paper can be
reproduced using the Jupyter Notebooks inside the tools/ directory.

7 We use script symbols (¢, #, 9, ¢) to denote the BL coordinates. Standard
italic symbols (¢, r, 8, ¢) and (¢, x, y, 7) are reserved for the spherical polar and
Cartesian forms of the KS coordinates.
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the metric is
8ap = NMap + 1, 15, (2
where 1,5 = diag(—1, 1, 1, 1) is the Minkowski metric,
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and r is defined implicitly by

(see, e.g., Visser 2007; Alcubierre 2008). Its Cartesian nature
not only completely avoids the coordinate singularities along
the poles but also requires no special treatment in the integrator.
This is an advantage for implementing numerical integrators on
modern hardware accelerators, such as GPUs, because these
massive parallel stream processors use the Single-Instruction
Multiple-Data paradigm, which are inefficient in handling
branch instructions (i.e., conditional statements).

Besides the poles, both the spherical and Cartesian KS
coordinates are also horizon-penetrating—there is no coordi-
nate singularity at the event horizons. We can, in principle,
integrate geodesics through the event horizon into the interior
of the black hole. In fact, this property makes the spherical
polar form of KS coordinates the default choice for many
GRMHD codes (see, e.g., Gammie et al. 2003; Nagataki 2009;
Sadowski et al. 2013; Ryan et al. 2015; White et al. 2016), as
no special boundary treatment is required at the horizons.

Given that all the elements are nonzero in the Cartesian KS
metric, this may seem at first to be a computationally very
expensive coordinate system to work with. A rough operation
count goes as follows. For the BL coordinates, there are 5
independent, nonzero elements in the metric, 10 independent
elements in the metric derivative tensor g, and 20
independent Christoffel symbols. In contrast, in the Cartesian
KS coordinates, we need to compute all 10 independent metric
elements. The metric is time independent but does not use any
spatial symmetry, resulting in 30 independent elements in the
metric derivative tensor. Since the metric derivative tensor
tends to be the most complicated part of the calculation, this
suggests that the computation of the 40 Christoffel symbols in
the KS coordinates requires roughly 3 times more operations
than in the BL coordinates. Therefore, we expect solving the
geodesic equations in the Cartesian KS coordinates to be at
least 3 times more expensive than in the BL coordinates.

For each geodesic, we need to solve all four second-order
ordinary differential equations, if we integrate with respect to
the affine parameter \. Comparing to the methods that use the
Killing vectors (see, e.g., Psaltis & Johannsen 2012; Chan
et al. 2013), this is a

2 x (8 variables)
2 x (6 variables) + (1 constant)

—1=123% ©6)

increase in the bandwidth requirement. Nevertheless, as we will
show in our benchmarks, geodesic integration is in general
compute-bounded, meaning that the performance is limited by
the speed of the computation and not by the speed of transferring
data. Alternatively, we can also integrate the geodesic equations
with respect to the coordinate time ¢ (see Section 2.2). This way,
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the number of dynamic variables reduces to six, which is the
same as for GRay (Chan et al. 2013).

One of the important improvements in GRay?2 is that, by a
series of mathematical manipulations and regrouping, we
significantly reduce the operation-count of the geodesic equations
in the Cartesian KS coordinates. Let A be the affine parameter and
X* = dx"/d\. Our manipulations start by realizing that, although
the Christoffel symbols I' 5 provide an elegant form of writing
the geodesic equations

it = —Thx0x0, €)

it is actually more efficient to go back a step and write the
equations in terms of the metric derivative tensor as

Xt = _Eglry(gua,ﬁ + 88,0 — gaﬁ,u)x i ®)

v

:_g; gz/aﬂxaxﬂ + %glwgaﬁ,yxuxa‘ (9)
We can combine the first two terms in Equation (8) because the
product of an anti-symmetric tensor and a symmetric tensor
vanishes—there is no need to explicitly symmetrize o and 3 for
8vap from a computational point of view. Furthermore,
Equation (9) can be written as follows by replacing the indices
v — 8 — a — -y for the first term and v — o — 3 — ~y for
the second term

, 1 )
P —— (glzﬂxn, _ Eg/mxd)gﬂﬂ,/,nxﬁ" (10)

For each geodesic, x* depend only on A. Although we still need
to evaluate all 30 independent nonzero elements of gg,,, We
can store their results into the 12 nonzero elements the term
outside the parenthesis in the above equation and reuse them in
the summation of each p. Therefore, even in this general form
without specifying a metric, the geodesic equations are in fact
simpler than how they look, at least in terms of operation count.

Next, by substituting the definition of the Cartesian KS
metric (2) into Equation (10), we obtain

it = —(77“/’)&“ — %nwx*’)xﬂ,a + FI* 11)

with
F= f(lﬁxa - %laxﬁ)x{,,a. (12)
In the above equations, the Minkowski metric n*" effectively
picks out different components of the derivative tensor and

applies different signs. Hence, we can split the equations and
optimize them further as

i#0 = X%y, — F, (13)
. 1 .
it = —x“(x - Ex“’i) + FI'. (14)

In the above equation, Latin indices range from 1 to 3. Note that
the positions of the indices 0 and i do not match on the two sides
of the above equations. This is not an error; Equations (13) and
(14) are no longer tensor equations.

In the above new form, the right hand sides (RHS) of the
geodesic equations in the Cartesian KS coordinates have only
~65% more floating-point operations than in the BL coordinates.
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This is less than half of the operations compared to our rough
estimate. Furthermore, the evaluation of the RHS uses many
matrix-vector products, which are optimized in modern hardware.
Indeed, as we show below, our benchmarks (Tables 2 and 3)
show that using the Cartesian KS on discrete GPUs can
outperform its BL counterpart.

2.2. Coordinate Time Integration

In order to efficiently overcome the fast-light approximation,
we need to control the integration of a geodesic to a targeted
time according to the GRMHD simulations, which are usually
performed in the spherical KS coordinates (see, e.g., Gammie
et al. 2003; Sadowski et al. 2013). This minimizes both the data
reading and memory overhead by requiring only sequential
reading with at most two snapshots in memory. In addition, we
can take advantage of the fact that GPUs have special purpose
hardware for accelerating interpolation, which makes accessing
GRMHD simulations essentially free of overhead.

In GRay2, we develop two classes of methods to integrate
the geodesic equations to a target KS coordinate time: (i) by
directly integrating the geodesics with respect to the KS
coordinate time and (ii) by applying different root finders to the
numerical solutions to match the targeted time.® In this section,
we will limit our discussion to method (i) and derive the
geodesic equations in terms of the KS coordinate time. Again,
these equations are used in GRay2 mainly to overcome the
fast-light approximation. Although they also reduce the
required bandwidth of the geodesic integrator, the performance
impact is very minor.

Letting v* =dx"/dt and using the chain rule, it is
straightforward to derive the geodesic equations in the
following form

L —TY vevf 4 TO yayhyl, (15)
dt ‘ ‘

Note that we only consider the spatial components of the
geodesic equations. The time component dv®/dt = 0 is trivial
and consistent with the spatial part of the equations (see, e.g.,
Will 1993). Substituting the definition of the Christoffel
symbols, we get

v 1 .
dt = _Eglw(gua,ﬂ + 8B, gozﬂ,u)vavﬁ’ (16)

where g’ = g — vig%. Equations (16) and (8) have the same

form. Hence, the optimizations we carried out in the last section
are still applicable; Equation (16) can be optimized to the
generic form

dvi _ _(g/iﬁvd _

1 lia 3) y
fapf 0 V. 17
It ) 8 gﬂﬂ,,a ( )

8 These two methods are not mutually exclusive. In principle, we can

combine them to integrate with respect to one coordinate and match a target
value in another coordinate or variable. This may be useful for performing, e.g.,
Monte Carlo scattering simulations.
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Figure 1. Screenshot of GRay?2 in its interactive mode, which allows a user to
integrate and visualize the photon positions in real time. For this particular
calculation, we set up a grid of photons originating at a large distance from a
black hole with a spin of 0.999. This grid is deformed as it passes near the
black hole event horizon. Some of the photons, shown in pink here, are trapped
near the horizon. Some others, shown in green and blue, are deflected at large
angles.

Finally, substituting the definition of the Cartesian KS metric,
we obtain

v —v”(v,-,a - lva,,') + Fl
dt 2
— (Vo0 — F)V. (18)

The first two terms in the RHS of the above equation (i.e.,
first line) match the RHS of Equation (14), while the last term
(i.e., second line) matches the RHS of Equation (13). This is
expected and in fact shows that integrating with respect to the
affine parameter and coordinate time have the same computa-
tional complexity. Therefore, because numerically integrating
geodesics is compute-bounded, the choice between integrating
with respect to the affine parameter or with respect to the
coordinate time will depend on the application of GRay2 and
not on the detailed performance of each method. If one cares
only about calculating the shapes of geodesics, then using
coordinate time will reduce the number of variables and save
some bandwidth as shown by Equation (6). If, on the other
hand, the radiative transfer equation needs to be integrated
along a geodesic, then using the affine parameter will §ive the
gravitational redshift with no additional computations.

2.3. Additional Implementation Improvements

In addition to the improvements in the coordinate system and
numerical scheme, we have made a number of additional
implementation improvements in GRay2. One of them is the
adoption of OpenCL, an open standard for parallel program-
ming,'” for executing massively parallel jobs on heterogeneous
platforms. Without any modification of the source code,
GRay?2 runs on multicore CPUs as well as accelerators such

°  Note that we can use the constant of motion v, to solve for v° from v'. In

such a case, however, v®v,, can no longer be used to monitor the accuracy of
the integration.

10 OpenCL was originally developed by Apple Inc., and currently maintained
by the nonprofit Khronos Group as an open standard. See https://www.
khronos.org/opencl.
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Table 1
Parameters for the Convergence Study with Null Geodesics around an Extreme
Kerr Black Hole with a = M

Label r/M /M o/M? max(| cos 9]) A¢
A? 1.8 1.36 12.8304 0.9387 12.0334
B 2 1 16 0.9717 10.8428
C 1+42 0 223137 1 3.1761
D 1+ 43 -1 25.8564 0.9819 —3.7138
E 3 -2 27 0.9352 —4.0728
F 1+2V2 -6 9.6274 0.4634 —4.7450
Note.

4 The spherical photon orbit passes through the ergosphere.

as GPUs, Intel Xeon Phi, and potentially Field-Programmable
Gate Arrays.

Another significant change is the adoption of the high
performance computing (HPC) framework lux (C. K. Chan
2017, in preparation) for software portability and run time
optimizations. With 1ux, the algorithms in GRay?2 are broken
down into very small modules, with multiple implementations
for each of them. This allows the users to easily construct an
appropriate compilation of modules that are specific to each
application. In addition, 1ux benchmarks the algorithms at run
time and allows GRay?2 to automatically migrate to the most
efficient algorithm. Finally, 1ux allows GRay2 to use all
hardware resources on a single computing node. It even
automatically balances the work load across the CPU cores and
accelerators.

A typical application of GRay2 is to render millions of
synthetic images of accretion flows onto black holes based on
the output of GRMHD simulations, for different model
parameters, such as electron number density scale and the
electron-to-ion temperature ratio (see, e.g., Chan et al. 2015a,
2015b). The physical quantities of the GRMHD simulations are
usually defined on a spherical (KS or BL) grid. To integrate the
radiative transfer equation along each ray in this case, a
coordinate transformation between the photon Cartesian KS
coordinates and the fluid spherical KS coordinates is needed,
just as with other ray tracing codes that utilize BL coordinates.
Although it is possible to transform the fluid variables into
Cartesian KS coordinates, it is much easier to do the opposite
and transform the photon coordinates and momenta into
spherical KS coordinates. In addition, because accessing the
fluid quantities is a standard interpolation process and we can
take advantage of the hardware accelerated linear interpolation
supported by modern GPUs.

Because a single mock image takes only a few seconds to
render, there is no need to consider inter-node communication.
Instead, millions of GRay?2 jobs can be submitted at the same
time and each job runs in parallel, independently from each
other. With this “embarrassingly parallelizable” user case in
mind, OpenCL and lux allows GRay?2 to run on a wide range
of hardware and platforms. For example, one can compute part
of the jobs on an Apple desktop, part of the jobs on a local HPC
cluster with GPUs, part of the jobs in a supercomputing center
with Xeon Phi, and the rest of the jobs in commercial clouds
such as the Amazon Web Services. This flexibility allows us to
report benchmarks for the implementation of (i) different forms
of the equations, (ii) different data structures, and (iii) different
precisions in Section 4.
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Figure 2. Representative unstable spherical photon orbits around a black hole with ¢ = M used in our convergence study. (All panels) Blue lines are the photon orbits;
black solid circles are the (physical) singularities; and red dashed circles mark the radii of the spherical orbits on the equatorial planes. All orbits start by moving
upward from the positive x sides of the red dashed circles. (Top left) The orbit for Test A, which passes the ergosphere multiple times. Since the orbit is unstable, the
small truncation and round off errors in the integrator seed the physical instability as expected and the photon eventually leaves the r = 1.8 M sphere and flies to
infinity. (Top right) The orbit for Test C. This is the special case where the photon exactly passes through the poles. See Figure 3 for a zoomed-in view of the north
polar region. (Bottom left) The orbit for Test E. The negative photon angular momentum cancels out the frame dragging effect exactly on the equator. (Bottom right)
The orbit for Test F. The initial angular momentum of the photon is negative enough that, unlike the other tests, the photon moves in the negative ¢ direction.

Figure 1 shows a screenshot of GRay2 in its interactive
mode, which allows for the simultaneous integration and
visualization of geodesics in a black-hole spacetime.

3. Convergence Tests

In this section, we perform a number of tests with GRay2,
in situations that resemble expected realistic applications. By
default, GRay2 uses the classic fourth-order Runge—Kutta
scheme, which is very robust and provides fast (fourth-order)
convergence rates. We are interested here in its long-term
behavior in the Cartesian KS coordinates (see, e.g., Springel
2005, for an explanation on the importance of long-term
behaviors of integrators). Typical gravitational deflection types

of tests are not useful for this purpose because, in the Cartesian
KS coordinates, the geodesic equations are trivial at large radii.
In such cases, even though we could make the spatial interval
of a geodesic arbitrarily long, the numerical error would still be
dominated by a short segment of the geodesic near the black
hole. This does not help to monitor the long-term behavior of
the integrators. Instead, we employ in our convergence tests
closed, albeit often unstable, photon and particle orbits that can
be integrated for long times.

3.1. Unstable Spherical Photon Orbits

Motivated by the interactive visualization by Stein (2016),
we designed a set of tests using the unstable spherical photon
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orbits of Teo (2003). These orbits are nontrivial and are
excellent for observing the long-term behavior of the
integrators. While their instability may seem like a problem
at first, it makes the numerical errors accumulate (and grow)
instead of canceling out and ensures that the worst numerical
scenario is explored in our tests.

Teo (2003) showed that any spherical orbits must lie
between the radii of the prograde and retrograde circular
equatorial orbits,

I = 2M{1 + cos[% cosl(—lzl—l)]}, (19)
h= ZM{I + cos[—cos 1 lal } (20)

which satisfy the inequalities M < r, < 3M < 1, < 4M.
Therefore, our test orbits will be very close to the black hole
—an ideal place to probe the performance of the integrators.
Although no spherical orbits can pass the event horizon, some
of them can pass the ergosphere,

=M + VM? — a?cos?. 21

Note that we use the spherical KS coordinates r and 6 in the
above equations because they are equal to the BL coordinates 2
and .

Table 1 lists the parameters we use for our convergence
study. The first column shows the labels of the tests. We
consider only the extreme Kerr black hole, a = M, and vary the
radii of the spherical orbits, which are listed in the second
column. We can then compute the normalized angular
momentum & and the normalized Carter’s constant Q to
initialize the orbits according to Equations (11b) in Teo (2003).
The equations are reproduced here for completeness,

3 3Mr? + a*r + a*M

o=-" , 22
a(r — M) 22)

3(r — 6Mr? + 9M?*r — 4a2M)
0= 20— MY (23)

For each test case, we also list, in the last two columns, the
theoretical maximum altitude, max (] cos 6]), that the orbit can
reach and the theoretical change in the azimuthal angle, A¢,
within one complete polar oscillation.'' Although the spherical
KS angle ¢ is different from the BL angle ¢, their difference
depends only on r. Hence, A¢ = ¢y — ¢p and Ap = ¢, — ¢,
are equal to each other for the same spherical orbit.

Figure 2 shows a representative set of unstable spherical
photon orbits that we used. For all panels, the blue lines are the
photon orbits; the black solid circles are the (physical)
singularities; and the red dashed circles mark the radii of the
spherical orbits on the equatorial planes. All orbits start by
moving upward from the positive x sides of the red dashed
circles.

The top left panel shows Test A. In this case, the radius of
the orbit is small enough and the polar momentum is large
enough that the orbit oscillates in and out across the
ergosphere, which GRay?2 in Cartesian KS has no problem
handling. Note that, since the orbit is unstable and we do not

! The values in the last column of Table 1 are obtained by numerically
integrating the definition of A¢, i.e., Equation (17), in Teo (2003).
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Figure 3. Zoomed-in view of the north pole of Test A in the top left panel of
Figure 2. The solid circles are the actual steps of the fourth-order Runge—Kutta
integrator with step size A\ = 1/1024 and the color lines simply join them
together for readability. The first pass is the blue line from the top right, the
second pass is the orange line from bottom left, etc.

put any constraints on the integrator in GRay2, the small
truncation and round off errors in the integrator seed the
physical instability as expected and the photon eventually
leaves the r = 1.8 M sphere and flies to infinity, as we show in
the right panel of Figure 4.

The top right panel shows Test C, for which the whole orbit
is now outside the ergosphere. Although the photon does not
have any angular momentum in this case (® = 0), the orbit is
tilted on the equatorial plane because of frame dragging. Also,
this is the special case for which the photon exactly passes the
poles multiple times at x = y = 0 and z ~ +2.41. In Figure 3,
we zoom into the north polar region of Test C. The solid circles
are the actual steps of the fourth-order Runge—Kutta integrator
with step size AX = 1/1024 and the colored lines simply join
them together for clarity. The first pass is the blue line from
lower left; the second pass is the orange line from top right, etc.
Again, the integrator has no problem handling the pole because
there is no coordinate singularity in the Cartesian KS
coordinates.

In the bottom left panel, we plot the unstable spherical
photon orbit for Test E. Although the photon angular
momentum is negative, it cancels out the frame dragging
effect exactly on the equatorial plane so the photon moves
vertically when it passes the equator. In the bottom right panel,
we plot the photon orbit for Test F. This time, the initial
angular momentum is negative enough that the photon finally
moves in the negative ¢ direction.

In Figure 4, we plot two of the error indicators for Test A.
The left panel shows the time evolution of u? = u,u®. It is a
constant of motion and should remain zero for photons. In
GRay?2, because we integrate the geodesic equations without
explicitly using any constants of motion, u” is, in principle,
unconstrained in the numerical integration. Therefore, its value
is a good measure of the numerical errors. We use nine
different step sizes in this test, covering the range A\ = 1/4,
1/8, ..., 1/512, and 1/1024, which are labeled on the left panel.
For all step sizes, u” is initially of order 10™'® and increases
approximately linearly until the numerical solutions blow up.
This agrees with the expectation that the truncation and round
off errors behave as a random walk on u“. Clearly, a smaller
step size leads to smaller u? and, hence, smaller error.
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Figure 4. (Left) The time evolution of u? = u,u® for Test A. We use nine different step sizes in this test, namely, A\ = 1/4, 1/8, ..., 1/512, and 1/1024, which are
labeled in the left panel. For all step sizes, «” is initially of order 10~ '® and increases approximately linearly until the numerical solutions blow up. (Right) The change
of the radius of the photon orbit as a function of A. There is an exponential growth in Ar that corresponds to the physical instability of these orbits. The color coding of

the curves follows that of the left panel.

To understand why the numerical solutions blow up, we plot
the changes of the radius of the photon orbit as a function of A
in the right panel. Recalling that the tests are for unstable
spherical photon orbits, |Ar| = |r(A) — r(0)] should grow
exponentially, with an initial amplitude proportional to the
perturbation—or to the numerical errors in our case—of the
orbits. The coloring of the curves is identical to the left panel,
namely, blue is for AX = 1/4, orange is for A\ = 1/8, etc.
All the curves grow as expected and blow up at around
|Ar| ~ 1. This is not a coincidence. In fact, for all orbits except
the gray and yellow ones, the photons approach the physical
singularities as they depart from their spherical orbits. When
they get very close to the singularities, the fixed time steps fail
to integrate the geodesics, resulting in significant jumps in both
u? and Ar. For the gray and yellow curves, the photons actually
move away from the singularities as they depart from the
spherical orbits. Therefore, although the photons approach
infinity (linearly), u* always remains small.

In Figure 5, we summarize the convergence properties of our
algorithm as quantified by the integral of motion u*. We plot
max(|u?]) for 0 < X\ < 64 for all six test problems. For each
test problem, we change A\ in the range 1/4, 1/8, 1/16, ..., to
1/1024. As Figure 4 already showed, the errors decrease as we
use smaller step sizes and GRay2 converges at fourth order—
an expected result because of the fourth-order Runge—Kutta
scheme we are using.

For a more detailed test of the geodesics, in the left panel of
Figure 6, we unfold the photon orbits in the azimuthal direction
and plot the coordinate z as a function of ¢. To avoid overlap
between the oscillatory curves, we plot the orbits only for
Tests B and D. The photon in Test B has positive angular
momentum, hence it moves toward positive ¢. In the same
figure, the photon in Test D has a small negative angular
momentum. Although its overall orbit points toward negative
¢, the photon changes its direction near the equator because of
the stronger frame dragging effect there.

The peak values of the z-coordinate in the left panel of
Figure 6 can be -calculated analytically, are given in
Equation (8) in Teo (2003), and are listed in the sixth column
of our Table 1. We can use these as a second convergence test
of GRay2. (Note that, for convenience, we plot in the
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Figure 5. Results of the convergence study using the integral of motion .
Here, we plot max(u?) for 0 < A < 64 for the six test problems we performed,
as a function of the step A\ in the affine parameter. GRay2 converges at fourth
order as it used the fourth-order Runge—Kutta scheme. The amplitude of the
error decreases as r increases except for Test E. This is an artifact of the
oscillatory behavior of uz, in this test, shown in the inset.

following figures the maximum cosine of the polar angle,
i.e., max]| cos 6|, instead of the maximum z—coordinate of each
photon orbit). The numerical values at the local maxima
depend strongly on the resolution because of the sampling
effect. This is illustrated in the right panel of Figure 6, where
we zoom into the first peak of Model B as a function of the
affine parameter \ with different step sizes. The solid circles
are the actual steps of the fourth-order Runge—Kutta scheme. It
is clear that the circles are offset from the locations of the
peaks. To overcome this sampling effect in polluting our
convergence test, we fit a quadratic equation to the largest three
points for each resolution. The curves in the right panel of
Figure 6 correspond to these quadratic equations. From the
plot, even the red curve with AN =1/32 is visually
indistinguishable from the more accurate curves at this scale.
Only at AX = 1/16, the green curve starts to deviate from the
more accurate curves. We compute the differences between the
peak values of the fitted quadratic equations and the analytical
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Figure 6. (Left) Unfolded photon orbits in a cylindrical coordinate projection. The vertical axis is the Cartesian z in the Kerr—Schild coordinates. The horizontal axis is
the unfolded azimuthal angle ¢ in the Kerr—Schild coordinates. We only plot two representative curves here for Tests B and D. (Right) Zoom-in view of the first peak
of Model B as a function of the affine parameter A with different step sizes. The solid circles are the actual output of the GRay2. For each step size, we fit a quadratic
equation to the largest three circles. The quadratic equations are then plotted as the different curves here. The color scheme of the solid circles and the curves matches

those of Figure 4.

values. The results are plotted in Figure 7, which shows again a
fourth-order convergence rate for all the tests.

Our final convergence test uses another result from Teo
(2003), who derived the equation to integrate the change in
azimuth for one complete oscillation in latitude. Although there
is still a sampling effect due to the change of step size, its
resolution is much simpler. We simply use linear interpolation
to obtain the root of z(¢) at the first complete cycle and subtract
the initial coordinate ¢ from it. This numerical value is then
compared with the numerical integration of Equation (17) in
Teo (2003). The final result is plotted in Figure 8, which again
shows a fourth-order convergence rate for all the tests.

3.2. Stable Circular Particle Orbits

Since GRay2 makes no specific assumption about geodesics,
it can integrate orbits for massive test particles, i.e., time-like
geodesics, without any modification of the integrator. As a
second set of convergence tests, we integrate stable, nearly
circular orbits at different radii around a black hole with a spin
ofa=1.

Nearly circular orbits in general relativity precess because of
the deviation of the effective gravitational potential from the
Newtonian 1/r form. One can describe completely their motion
along the three polar coordinates using three independent
oscillatory frequencies, one azimuthal (the orbital frequency
), one radial (the radial epicyclic frequency k), and one
vertical (the vertical epicyclic frequency €2,). The radial
epicyclic frequency vanishes at the location of the innermost
stable circular orbit and becomes imaginary inside that radius.
In the same region, the vertical epicyclic frequency is
significantly smaller than the orbital frequency. All three
frequencies for a nearly circular orbit can be calculated
analytically (see, e.g., Silbergleit & Wagoner 2008).

In order to force a small precession of the orbital plane of a
test particle, we introduce a small vertical velocity, v, = 10*12,
to the initial conditions that would otherwise lead to a circular
orbit. We then use the numerical orbit to calculate the vertical
epicyclic frequency (as measured by an observer at infinity)
and compare it to the analytic expression. In order to avoid the
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Figure 7. Results of the convergence study using the maximum polar angles a
photon reaches during its orbit. The plot is similar to Figure 5. It shows that the
difference between the fitted peak value of the numerical solution converges to
the analytical one at the expected fourth order.

numerical effects described in the previous section, we perform
linear interpolations between the calculated points in z(r) and
measure the time interval between successive maxima.

In Figure 9, we overplot the numerical measurement from
GRay?2 on the analytic expression, as a function of the radius of
the orbit in BL coordinates. The numerical and analytical
results are indistinguishable. The difference between the
numerical and analytical results is less than 10~'3 for r > 1.5
as shown in the inset. For all other convergence properties
related to the test-particle orbits, we found no appreciable
difference with the results shown earlier for the null geodesics.

4. Profiling and Benchmarks

In Section 2.1, we reduced the operation count of the
geodesic equations in the Cartesian KS coordinates by a series
of mathematical manipulations. This suggests that, theoreti-
cally, solving this optimized form of geodesic equations is not
much more expensive than in the BL coordinates. In this
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Figure 9. Vertical epicyclic frequency as a function of orbital radius. We use
GRay?2 to integrate a nearly circular time-like geodesics around a black hole of
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vertical oscillation and precession. We then compare the numerical vertical
epicyclic frequencies (orange circles) with its analytical expression (blue solid
line). The difference between the analytical and numerical solutions at a radius
r > 1.5 is less than 10~ '3, as shown in the inset.

section, we look at the actual benchmarks on different devices
to support our assertions.

The most direct method to compare the performances of the
geodesic equations in the Cartesian KS and BL forms is to look
at the elapsed time for a single fourth-order Runge—Kutta time
step of a single ray, which contains four evaluations of the RHS
of the geodesic equations. However, modern accelerators such
as GPUs are effectively vector processors. They are only
efficient when a large number of threads are executed in
parallel. In addition, these accelerators are not general purpose
devices. Driving them requires a host—usually a full power
CPU—to compile the kernels and send instructions and data to
the devices. These overheads can sometimes be quite
significant compared to the computations.

We design our benchmarks to reduce the impacts of the
above factors. Following the approach found in a typical
application, we use GRay2 to integrate backward null
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geodesics from an image at an initial radius r = 1024 M
toward a black hole of spin a = 0.999 M. The integration is
performed by executing the same OpenCL kernel ~64 times,
until all photons pass by or are close enough to the event
horizon, or escape to distances larger than the initial radius. The
kernel performs host-to-device communication once right after
it starts the fourth-order Runge—Kutta methods with fixed step
size 1024 times. It also performs device-to-host communica-
tions once more just before it ends. We measure the elapsed
time between the instants when the kernel starts and ends.
Typically, the elapsed time is reduced a bit after the first few
kernel executions due to instruction loading and caching and
then saturates toward a steady value.

Because the performance of GPUs is sensitive to how the
computations are grouped and distributed to different sub-
processors (for CPUs they are called “cores”; for nVidia GPUs
they care called “multiprocessors”), in order to measure the
peak performance, we repeat the above process with five
different resolutions of images: 64 x 64, 128 x 128,
256 x 256, 512 x 512, and 1024 x 1024, and allow lux’s
run time performance tuning algorithm to choose the optimal
workgroup size. We compute the elapsed time of a single step
for each ray by dividing the shortest measured time by 1024
and the total number of rays.

We list the benchmark results in Table 2. The first three
columns are the precision, the coordinate system, and the data-
order used in GRay2, respectively. The numbers in all other
columns are in nanoseconds. The fourth column is for a
mobile/laptop four-core CPU and the fifth column is for two
eight-core server CPUs (i.e., 16 cores in total). The sixth
column is for an Intel integrated graphics chip. The seventh—
eleventh columns are for different nVidia GPUs.

All the tested processors, except Intel HD4000, support both
single and double precisions. For nVidia’s Tesla M2090, our
workstation failed to compile GRay2’s OpenCL kernel—this
may be due to the limitation of the driver or a bug in the
OpenCL implementation. For CPUs, the performance of single
precision is only slightly (or a factor of a few) faster than for
double precision. For the mobile and consumer graphics chips
GT650M and GTX780, single precision is significantly faster
—up to a factor of ~28—than double precision. This is no
surprise. Single precision operations are good enough for
computer graphics and gaming applications. Hence, a large
number of transistors on these consumer graphics chips are
used to perform single precision operations only. For the HPC
specific GPU Tesla K20X and high-end graphics cards nVidia
Titan Black, the performance difference between single and
double precisions is less dramatic.

For single precision, integrating in the KS coordinates is
slightly more expensive than in the BL coordinates but the
difference is usually less than ~70% (except for K20X). This
supports our estimate in Section 2.1 that integrating in KS
coordinates has roughly 65% more operations compared to
integrating in BL coordinates. For double precision, it is
interesting to note that, for most GPUs (except GTX780), KS
integration is actually faster than BL integration by up to
~40%. There are two main reasons for this. First, BL
coordinates require evaluations of trigonometric functions,
which are expensive in double precision. Second, the equations
in KS are highly symmetric, which allows the compiler to
optimize them by hardware-accelerated vector instructions.
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Table 2
Benchmark Results for Integration of Null Geodesics®

Precision Coordinates Data Order i7-3720QM" E5-2650 x 2° HD4000 GT650M M2090 K20X GTX780 Titan Black
Single BL AoS? 43.1 6.07 2.99 2.49 0.597 0.223 0.174 0.167
Single BL SOA® 49.4 6.01 2.98 2.89 0.597 0.219 0.170 0.175
Single KS AoS 57.5 6.27 4.53 2.69 0.995 0.420 0.311 0.297
Single KS SoA 54.8 6.20 4.55 2.31 0.995 0.422 0.315 0.309
Double BL AoS 55.4 16.6 70.6 3.90 6.44 1.65
Double BL SoA 56.7 16.2 80.6 3.90 6.44 1.66
Double KS AoS 66.0 17.4 59.1 241 6.95 1.15
Double KS SoA 63.1 17.5 59.0 2.40 6.96 1.15
Notes.
4 The elapsed time per single fourth-order Runge—Kutta time step of a single ray in nanoseconds. Smaller values are better.
b i7-3720QM is a four-core mobile CPU.
€ E5-2650 is an eight-core server CPU and there are two CPUs per node on the E1 Gato supercomputer at the University of Arizona.
d Array-of-Structures.
¢ Structure-of-Arrays.
Table 3

Benchmarks Results for Null Geodesics®
Precision Coordinates Data Order i7-3720QM ES-2650 x 2 HD4000 GT650M M2090 K20X GTX780 Titan Black
Single BL AoS 2.25 16.0 3255 39.0 163 436 558 582
Single BL SoA 1.95 16.0 323 333 161 439 566 549
Single KS AoS 1.74 16.0 222 373 101 239 323 338
Single KS SoA 1.81 16.0 21.8 429 99.7 235 315 321
Double BL AoS 4.79 16.0 3.76 68.1 41.2 161
Double BL SoA 4.57 16.0 3.22 66.5 40.3 156
Double KS AoS 422 16.0 4.71 116 40.1 242
Double KS SoA 4.44 16.0 4.75 117 40.2 243
Note.

# Same benchmark results as in Table 2 but in terms of speed up using a single core of E5-2650 as the baseline. Because there are two E5-2650 CPUs per node on
El Gato, we define its speedup to 16. All other values are scaled accordingly. Unlike Table 2, larger values are better.

Finally, there is no significant difference between the two
different approaches to ordering the structures and arrays for
these benchmarks. This is just an indication that our bench-
marks successfully overcome memory access overhead and are
able to reveal the actual computation performance.

In order to more easily read off the performance gain, we
convert the elapsed time in Table 2 to speedups in Table 3.
Larger numbers mean higher speedups. We use a single core of
the E5-2650 CPU as our baseline. Hence, two E5-2650 CPUs
give us 16 cores in the fifth column. For single precision, most
of the GPUs are 100-600 times faster than a single E5-2650
core. For double precision, although the speedups are not as
large, the HPC specific Tesla K20X and high-end graphics
cards nVidia Titan Black are still two orders of magnitude
faster than a single E5-2650 core.

5. Summary

In this paper, we presented GRay2, a new open source,
hardware-accelerated, general relativistic integrator for time-
like and null geodesics. By using the Cartesian form of KS
coordinates, integration in GRayZ2 avoids all coordinate
singularities at the pole and at the horizon that are present in
BL coordinates. Using a rearranged form of the geodesic
equations (see Equations (13) and (14)) makes the integrator in
Cartesian KS coordinates as efficient as in BL coordinates. In
addition, by using the OpenCL standard and the HPC
framework lux, GRay2 runs optimally on a wide range of
software platforms and hardware devices.

10

We carefully examined the properties of the numerical
algorithm and showed that, for a number of different problems
with known analytic solutions, it converges at the expected
rate. We also report extensive performance benchmarks and
show the significant (1-2 orders of magnitude) improvement in
the efficiency of GRay2 when it is run on GPU architectures.

This algorithm is optimally suited for massively parallel
integration of geodesics. It can be utilized for computing the
transport of radiation through black hole accretion flows, the
evolution of a cluster of particles in the vicinity of a black hole,
or even direct particle or gyrokinetic simulations of plasmas in
Kerr spacetimes.
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