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Abstract—Low Power Wide Area Networks (LPWANS) are an
excellent fit to city-scale IoT applications becuase of their long
range and a battery life of several years, and a data rate of
25-50kbps, which is sufficient to carry IoT traffic. However,
a practical limitation of a LPWAN-based real-time wireless
network is the duty-cycle limit imposed on the sub-1GHz band by
the FCC. In this paper, we overcome this challenge by proposing
the first duty-cycle-aware wireless link scheduling algorithm for
real-time LPWANSs that considers the urgency of the packets as
well as the availability of the wireless channels. The proposed
algorithm is implemented in a five-node, wide-area outdoor
test-bed in multiple real-world scenarios. Simulation results are
provided to quantify its performance under different settings (e.g.
larger networks, variety of workloads, and multiple baselines).
In both real-world deployments and simulations, the proposed
algorithm outperforms standard scheduling algorithms in terms
of link schedulability, deadline misses, and buffer size.

I. INTRODUCTION

The concepts of smart cities and smart communities have
started to become a reality in this age of the Internet of
Things (IoT). In the midst of this IoT revolution, recently,
low power wide area networking (LPWAN) technologies [1]-
[4] have become very popular, as they are an excellent fit to
the IoT data traffic that are generated and consumed by many
smart city applications. For instance, if we think of city-scale
IoT applications like smart metering, environment monitoring,
road traffic monitoring, facility management, smart parking,
street lighting, vehicle tracking, waste management, precision
agriculture, and home automation, we observe that the basic
communication requirements in these applications include a
long radio range (i.e. several hundred meters of range), low
power (i.e. an extended battery-life of several months or
years), and low bandwidth (i.e. a data rate of few kbps). Thus,
low power WANSs are being considered as the enablers of city-
scale IoT.

Among different choices of low power WANs, we study
one of the most popular technologies of today, which is called
the LoRa WAN [2]. LoRa has so far been mainly adopted by
the European countries, although recently, over 100 cities in
the USA have begun to deploy city-wide LoRa networks [5].
LoRa has an advertised radio range of up to 9 miles (in line-of-
sight), a data rate of up to 50kbps, and a battery life of around
10 years. While these properties make LoRa perfect for IoT
applications, unfortunately, there is a regulatory constraint on
its duty-cycle, which does not allow a device to send data
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packets at will. A device in a LoRa network must wait for a
certain period after each successful transmission. In EU, LoRa
has a strict duty-cycle limit of 1%, and in the USA, the duty-
cycle is configured by the network administrator.

For instance, when the duty-cycle limit is 1%, a device that
has recently used a specific wireless channel for 10ms has
to wait for another 990ms for that channel to be available to
it again. The device, however, can send packets over other
available channels, and other devices can send their packets
over that channel, as long as the duty-cycle constraint on any
channel, for any device is not violated. In other words, duty-
cycle constraint applies to each (device, channel) pair.

Although we study a specific network protocol in this paper,
the duty-cycle constraint in LPWANS is not a protocol specific
one, rather it is band specific. From the fundamentals of
wireless communication, the higher the frequency band is,
the shorter is its the communication range. Hence, for long
range wireless communications, bands below 1 GHz are used.
Because of the long radio range, a large number of devices (in
a large geographic area) compete for the same frequencies, and
their transmissions are more susceptible to collision. Hence,
duty-cycle limits are imposed by the authority (or an admin)
to ensure fair access to the air for all devices.

We consider the duty-cycle limit as a challenge in designing
real-time IoT systems where a large number of connected
devices have to send data wirelessly to a central gateway
over a long distance in real-time, i.e. within an application-
specific deadline. Examples of such real-time wide-area IoT
applications include monitoring vehicles in smart cities for de-
tecting and predicting traffic congestion, smart parking, early
detection of wildfire and volcanic eruption, monitoring with
swarm of nano drones. All these applications require a certain
level of guarantee on real-time wireless communication.

The generic problem of scheduling wireless transmissions
dates back to decades [6]-[8]. Theoretical analysis as well
as results from practical deployments have been published
on various categories of real-time wireless networks such as
ad-hoc and sensor networks [9], [10] and WiFi [11]. The
problem we study in this paper has similarity to several of
these works that consider single-hop network topology [12],
time division multiple access (TDMA)-based link scheduling
approaches [13], [14], use of laxity to schedule packets [15],
and channel selection [16]. However, ours is the first work



that brings an additional pragmatic issue in real-time wireless
link scheduling algorithms, which is the duty-cycle-awareness.
Note that, although the term ‘duty-cycle’ is commonly used in
the wireless sensor network community to refer to the sleep-
vs-awake ratio of a node, the duty-cycle in the LPWAN context
is tied to both a node and a specific channel. Therefore, we are
required to design a solution to a new class of link scheduling
problems where both the packet and the channel need to be
scheduled judiciously.

When compared to classical real-time scheduling problems,
the problem at hand is analogous to scheduling tasks in a
multiprocessor system, where a specific processor becomes
unavailable to a specific task (but not necessarily to other
tasks) for a specific duration after an instance of it has been ex-
ecuted. We propose a simple yet effective scheduling strategy
for this scheduling problem by introducing a new metric that
dynamically scores each processor with respect to a given task
and the task’s remaining waiting time for that processor due
to the duty-cycle limit. We name this new metric: ‘gravity’. At
each scheduling step, a task (a wireless link) having the least
laxity [17] is scheduled on a processor (channel), which is
determined by a duty-cycle-aware maximum gravity processor
(channel) selection algorithm.

In order to demonstrate the performance of our proposed
scheduling algorithm, we implement a complete system—
consisting of five low-power LoRa nodes, a LoRa gateway,
and a server in the cloud. We deploy this network in the
city of Chapel Hill, NC. Our system is up and running since
September 1, 2017, and the packets sent from the nodes
can be viewed at [18]. Each node periodically generates a
packet and follows an offline-generated transmission schedule
(according to our duty-cycle-aware scheduling algorithm) to
send the packets to the gateway. The gateway forwards the
packets to the server over the Internet. We also have developed
a Java-based simulation software that generates the schedule
for a given a workload description. We use this software to
simulate the workload to analyze its schedulability as well as
to generate the schedule when the workload is schedulable.

We evaluate the real-time performance of the network in an
outdoor and an indoor setup. Although LPWANS are meant for
outdoors, we wanted to see its performance in indoor scenarios
as well, so that we can compare the two. Besides the real
deployments, we also have conducted multiple simulations to
quantify the real-time performance of the proposed algorithm
for large scale networks and for different real-time workloads.

The contribution of this paper are the following:

eWe demonstrate the effect of duty-cycle on the real-
time performance of LPWAN:S, illustrate the need for scoring
communication channels, and propose a new metric called the
‘gravity’ to score channels dynamically.

eWe propose the first wireless transmission link scheduling
algorithm called Duty-cyle aware Least Laxity First (D-LLF)
that explicitly handles the duty-cycle constraints in LPWANS.
The time-complexity of this offline algorithm is O(J? log J).

eWe develop a complete system consisting of a five-node
LoRa network and deploy the network in two real world sce-

narios. We also conduct simulation-based experiments under
different settings (e.g. larger networks, variety of workloads,
and multiple baselines). In both real-world deployments and
simulations, the proposed scheduling algorithm has outper-
formed all the baselines in terms of link schedulability, dead-
line misses, and buffer size.

eWe have open-sourced the software for the LoRa nodes
and the simulator. They are accessible from here [18].

II. BACKGROUND
A. Overview of LoORaWAN

LoRa [2] stands for ‘Long Range’. It defines the physical
layer of an emerging network technology that offers low
data rate wireless communication over long distances, while
consuming very little power. For example, LoRa radios have
a battery lifetime of around 10 years, a communication range
of up to 9 miles (line-of-sight) and 0.6 miles(non line-of-
sight), and a data rate of 27kbps—50kbps. Because of these
properties, LoRa has gained a lot of attention in the Internet
of Things (IoT) applications where battery operated devices
require access to the Internet but are physically located miles
apart from an Internet gateway.
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Fig. 1. LoRaWAN Network Architecture.

LoRaWAN is a specification for Low Power Wide Area
Network (LPWAN) that defines the system architecture and
network protocols for LoRa capable devices. LoRaWAN net-
works are organized as a star of stars topology as shown in
Figure 1. Four types of entities are present in a LoRaWAN.
The sensor nodes or end nodes send data packets to a LoRa
capable gateway. A single LoRa gateway is able to cover
an entire city (hundreds of square kilometers). Gateways are
connected to a network server over a backhaul network such
as 4G or Ethernet. Network servers are connected to an
application server via TCP/IP. Users can access the data from
application servers on any device with an Internet access such
as smartphones or personal computers.

B. LoRa Physical Layer Properties

LoRa physical layer handles the lower level details of wire-
less communication. LoRa operates in 433, 868 or 915MHz
ISM bands. Key properties of this layer are as follows:

e Chirp Spread Spectrum (CSS) Modulation: The LoRa
physical layer uses a special type of spread spectrum mod-
ulation technique where information bits are encoded as
frequency chirps (frequency varying sinusoidal pulses) [19].
The use of chirps improves its robustness against interference,
Doppler effect, and multipaths [20]. Each symbol is encoded
with 25 chirps, where SF is called the spreading factor [21]
and takes a value between 7 to 12.



o Time-On-Air: The Time-on-Air of a packet, T, is the
duration for transmitting a LoRa packet. It is expressed as a
function of the number of symbols per packet ng, chirp time
T., and spreading factor SF' as: T, = ng X 29F < T,

Since the communication bandwidth and time-resolution are
inversely related (BW = 1/T.), we can use their relationship
to express the above equation as: T, = ns X %

o Duty-Cycle Limit: The duty-cycle is defined as the frac-
tion of time an end-device keeps the channel occupied for
communication. To reduce collisions as well as to increase
the fairness of channel use by different transmitters, there is
a limit on the maximum duty-cycle for an end-device. For
example, European FCC allows a maximum duty-cycle of
1% for EU 868 end-devices [22]. Therefore, if an end-device
uses a channel to transmit a frame, the limit on duty-cycle
restricts it to transmit on the same channel again until after a
period of silence. The device, however, can use other available
channels (as long as the duty-cycle limits on those channels are
maintained, of course). Formally, given the duty-cycle limit d,
an end-device must not transmit anything on the most recently
used channel for a minimum off-period, 75y

Torp = Ta (%—1) (1)

Note that, if there are 8 channels and the duty-cycle is
limited to 1%, then the duty-cycle per channel is 1/8%. For
example, if an end-device transmits on a channel for 1 second,
the channel will be unavailable for it for the next 799 seconds.

C. LoRa MAC Layer Properties

LoRa MAC layer determines how multiple end-devices
access the wireless media to communicate with the gateways.
Key properties of LoRa MAC layer are as follows:

e Sub-bands and Channels: LoRa operates on a specific
range of frequencies (an ISM band). Each band is divided into
multiple sub-bands, and each sub-band is further divided into a
number of channels. For example, in the USA, LoRa operates
on the 915MHz ISM band that contains the frequencies
between 902-928MHz. This band is divided into eight sub-
bands, and each sub-band contains 10 channels (eight 125KHz
downlink channels, one 500 KHz downlink channel, and one
500KHz uplink channel).

o Interference: Each gateway in a LoRa network listens on a
particular sub-band. When two end-device communicates with
the same gateway, at the same time, at the same channel, and
using the same spreading factor, they will cause interference
and their packets will collide.

e Device Classes: LoRaWAN defines three classes of de-
vices: class A, class B, and class C, in order to meet the
demands of different types of applications. Class A devices
use ALOHA [23] protocol for an uplink packet transmission,
followed by two short downlink receive windows. In this
paper, we consider only the class A devices which are low
power and suitable for IoT applications.

e Pure and Slotted ALOHA: ALOHA is a MAC layer
protocol that allows a node to send data whenever it is ready.
Because there is no coordination among different transmitting

nodes, ALOHA vyields a high rate of collisions. An increase in
the number of devices on the network causes more collision.

Slotted ALOHA introduces the concept of time-slots and
allows a node to send a packet only at the beginning of a
time-slot. It eliminates partial collisions (i.e. collisions in the
middle of a packet transmission) but the medium access is
still not controlled. Collision occurs whenever more than one
end device become ready with a packet to transmit. Due to
the lack of coordination or a packet transmission schedule,
the real-time performance of both pure and slotted ALOHA
is extremely poor.

IT11. PROBLEM FORMULATION

In LoRaWAN, a set of end-devices or nodes talk to a specific
gateway in a single-hop network by forming a star topology.
Similarly, multiple gateways form another star topology cen-
tering a network server. In this paper, our focus is on the real-
time communication issues in a LoRa network, i.e. the network
formed by the end-nodes and the gateways. Ensuring the end-
to-end real-time guarantee between an end-device and a data
consumer like the smartphone in Figure 1 is a completely
different problem as it involves multiple types of intermediate
networks and devices, and is out of the scope of this paper.
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Fig. 2. Nodes and gateways in a LoRa network form a bipartite graph where
links {L;} exist only between a gateway {M; } and a node {N;}.

Communication networks are typically modeled using
graphs where nodes represent communicating entities and
edges represent communication links. In a LoRa network, we
have two types of communication entities— the end-devices
and the gateways. Information flows only between an end-
device and a gateway. Since no two gateways or no two
end-devices communicate between themselves, we model a
LoRa network as a bipartite graph, G = (M, N, E), where
M = {M;,M,,...,M,} represents the set of n gateways,
N = {N1,No,..., Ny} represents the set of k nodes, and
the set of edges F = {e;;} denotes all communication links
between M and N. An edge e;; = (IV;, M;) exists only if
there is a reliable communication link between a node N; and
a gateway M.

We consider k¥ communication links, L = {L;, Lo, ..., Ly}
between N and M. Because LoRa is a single-hop star network,
the links L are similar to the edges E of the network graph in
this context, but with the difference that links have additional
properties. For each link L; = (N;, M;,T;, A;, D;), a packet
is generated at the node NN; periodically at every 7; unit of
time, and is destined to reach the gateway M on or before
the deadline D;. The time-on-air for a packet transmission for
L; is A;. We consider the spreading factor to be constant for
all links. We denote the kth packet generated at link L; by
T;k- The generation of each packet at a node creates the need
for a link to be scheduled for transmission. Hence, scheduling
a link is similar to scheduling a fask in real-time systems, and
like jobs are defined as invocations of tasks, transmission of
a packet can be thought of as activation of a link.



We denote the set of m channels as C = {C1,Cs,...,Cp}.
In an ideal world where there is an infinite number of available
communication channels and there is no limit on the duty-
cycle, each link would require exactly 1 time-slot. So, in
practice, since we are limited to a fixed number of channels,
two links cannot be scheduled on the same channel at the
same time slot (unless they are so far apart that they are out
of each others interference range). Furthermore, because of the
duty-cycle constraint, a node cannot transmit packets even if
the channel is free. Hence, the end-to-end latency of a packet
depends on the duration a node has to wait in order to meet
these constraints before it can transmit a packet. We express
the end-to-end latency of a link by d = (f — r + 1), where
f and r denote the time slots in which a packet is generated
and gets scheduled, respectively.

When a link L; uses a channel C; for its kth packet
transmission 7;x, and the time-on-air for this packet is A;, the
link can not use C; for the next t,ss(L;, Cj, A;, o) slots. The
value of to5;(L;, C;, A;, 0) is calculated using the Equation 1.

Given a set of links L = {(NN;,M;,T;, A;,D;)}, duty-
cycle limit 4, and the number of channels m, our objec-
tive is to /slchedule the links such that, d; < D,;, and
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IV. MOTIVATION

Traditional real-time scheduling algorithms have been used
in scheduling data transmissions in both wired and wireless
networks [14], [15], [24]. However, these algorithms do not
take a duty-cycle constraint into their consideration. The duty-
cycle constraint in LPWANs makes the problem of scheduling
packet transmissions in a wireless network unique. Duty-cycle
forces an end-node to migrate from one channel to another
after using the channel for a fixed amount of time that is
regulated by the FCC [25]. In a multiprocessor scheduling
scenario, this is analogous to a scheduling problem where a
processor becomes unavailable to a task for a certain period,
after the processor has been used by the task recently.

TABLE I
EXAMPLE: TWO LINKS AND THEIR PARAMETERS.

Release Time  Time-On-Air  Deadline  Period
Link ‘ R; A; D; T;
Ly 0 2 3 5
Lo ‘ 0 4 5 5

For example, lets consider a network with two end-devices
Ni and Ns, and one gateway G7. Two links L, and Lo are
generating packets periodically at N; and N,. Table I lists
their release times (R;), time-on-air (4;), deadlines (D;), and
periods (7;). We assume that there are two channels C; and
Cs to which links can be scheduled for packet transmission.
Moreover, we impose a duty-cycle limit of 40%, so that a
channel becomes unavailable for L and Lo for 3 and 6 time-
slots, respectively, after it has been used by a link.

Now, let us simulate the scheduling steps for an arbitrary
scheduling algorithm.

e At time-slot 0, both L; and Lo generate their first packet.
Both channels C; and (3 are available to the links. The

packet transmission of L, 711 uses channel C; and packet
transmission of L, 701 uses channel Cs. In Figure 3a we
show that due to the duty-cycle limit, L; and Lo can not
use Cq and Cy until the 2 4+ 3 = 5th and the 4 + 6 = 10th
time slot, respectively. Therefore, tof¢(L1,C1, A1,0) = 3 and
toff(LQ, Csy, Ao, (T) = 6.

e At time-slot 5, both L; and Lo generate their second
packet 712 and T92. Both packets have the same laxity of 1.
Suppose, 112 chooses channel C7, which is currently available
to it. Because traditional scheduling algorithms do not impose
any restriction on channel/processor selection, this choice is
arbitrary (we discuss the other selection option in the next
bullet point). However, o5 can not use channel Cy for its
transmission at this moment, as Cy is unavailable to Lo until
time-slot 10. At time slot 7, C; becomes available to L2, and
Too can use it for transmission. However, from Figure 3b, we
see that 795 still misses the deadline.

e At time-slot 5, we have another option, which is shown
in Figure 3c. Suppose, 712 chooses channel Cs this time,
as it is also available to it at time-slot 5. Given this, 799
can use channel C; for its transmission, which is available
and does not restrict 7o at that moment due to duty cycle
limit. Therefore, by using C}, 792 makes the deadline. It
is evident from the above example that Ly would not have
missed deadline if L used C; for its second transmission 7q2.
Therefore, unlike traditional scheduling algorithm, we need
to have some mechanism to choose a right channel from the
available ones. We need to force Lq select C'y at time slot 5,
to make the links schedulable. To enable this, we propose a
scoring-based channel selection algorithm.

The goal of the algorithm is to let a link select its channel in
a way that the selection helps other links to avoid the channels
that are unavailable to them. In other words, when a link has
multiple channels to choose from, it should choose the one
that hurts the other links the least. To implement this, we
score each channel based on the number of time-slots they
are unavailable due to the last successful transmission of a
link on it. We call this the ‘gravity’ of a channel.

V. SCHEDULING ALGORITHM
A. Defining Channel Gravity

The gravity is a dynamic property of a channel. Gravity is
defined by the maximum unavailability of a channel over all
links. At each time-slot, a node gets to use the channel that
has the highest gravity among all the available channels at that
moment. The intuition behind this scoring is that the channel
that is unavailable to other links for the longest period should
be selected to the next packet transmission so that other links
can use the remaining channels when needed. The value of
gravity is updated at each time-slot. After a channel C; has
been used by a link L;, the gravity of that channel G,.(C}) is
updated using the following equation:

G;(C1,0) =0 2)

Go(Cy,t) = maX{G,.(Ci t—1) - 1,t0ff(Lj,ci,Aj,a)}
J
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Fig. 3. (a) Link 1 (L1) and Link 2 (L2) releases their first transmissions at time slot 0. Due to duty-cycle limit L; and Lo can not use Cy and C9 until the
2 4+ 3 = 5th and the 4 + 6 = 10th time slot, respectively. (b) At time slot 5, the second transmission 722 of L2 can not use either of C; or Cs. Eventually,
T92 misses deadline. (c) The second transmission 712 of L1 uses Cs. So, At time slot 5, the second transmission 722 of Lo is able to use C7 and does not
miss its deadline. (d) C’s gravity is updated at time slot 2, G.(C1,2) = 3 after being used by L; for its transmission. Likewise, C2’s gravity is set after

being used by La, G (C2,4) = 6.
B. An Example

We revisit the example from section I'V but this time we also
demonstrate the role of gravity. At time-slot 0, the gravity of
each channel is set to zero. At time-slot 2, link L, finishes its
first transmission 777 over channel C;. As mentioned earlier,
tofr(L1,C1, A1, 0) = 3. Therefore, at time-slot 2, the gravity
of C is updated to G,(C1,2) = max{0, 3} = 3. Likewise, at
time slot 4, after the end of transmission 791, the gravity of
Cy is updated to G, (C2,4) = max{0,6} = 6.

After each time-slot, the gravity of all channels is decre-
mented. At time slot 5, G,.(C1,5) = 0 and G,.(Cs,5) = 5.
Since our proposed scheduling algorithm picks the channel
with the maximum gravity, L; will choose Cs for its second
transmission 719, as opposed to Cy. This enables Lo to choose
(1 for its second transmission, which is our desired schedule.

C. Duty-Cyle Aware Least Laxity First(D-LLF)

The proposed duty-cycle-aware link scheduling algorithm
(D-LLF) works in two steps. Since two transmissions cannot
use the same channel at the same time-slot, at each time-slot,
the following two steps are applied repeatedly until there is
no channel that can be used in that time-slot.

e Packet Selection: In the first step, among all ready-to-
go packets, the one with the least laxity [17] is selected
for transmission. In case of a tie, the packet having the
earliest deadline is selected. For further ties, we choose the
transmission arbitrarily [15].

e Channel Selection: In the second step, among all available
channels for the selected link, the one with the highest gravity
is selected for transmission. After using the channel, the
gravity is updated according to Equation 2.

Due to space limitations, the pseudo code and complexity
analysis of the algorithm is shown in in Appendix A

VI. SYSTEM DEVELOPMENT

This section provides some highlights from our implemen-
tation of the LoRa network that we feel would be helpful
to anyone who wants to replicate the complete system. Fig-
ure 4(a) shows a photo of the main elements of our setup.

A. Developing the LoRa Nodes

We develop LoRa nodes in our lab by interfacing a LoRa
radio shield [26] with an Arduino Uno [27] that hosts an
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Fig. 4. (a) A LoRa Node is connected with a clock and battery. A Gateway is
placed beside the node. (b) A LoRa node communicates with gateway using
LoRa protocol. The gateway relays the node’s message to access point via
Ethernet. The access point connects with server using internet.

ATmega328P microcontroller. The radio shield internally uses
a transceiver SX1272/73 [28] which is controlled from the
Arduino using a modified software library [29]. Each node
is powered by a 10,000mAh USB power bank. The internal
16MHz quartz crystal of Arduino Uno is unreliable for time
synchronization as the clock drifts over time. Hence, to time
synchronize all the nodes in our network, we interface an
external real-time clock [30] with the Arduino board. This
real-time clock has no overhead on a LoRa node’s battery-
life as it is powered by its own battery and draws minimal
current (110-300 pA) to enjoy a lifetime of several months
at continuous operation. Both the modified library and our
customized application are written in C. Our source code is
open and accessible online from here [18].

B. Configuring the Gateway

We use a Multitech Conduit device [31] as the gateway.
This is a configurable Internet gateway for industrial IoT
applications where LoRa is used for the local wireless network.
The gateway listens to one sub-band at a time, and therefore,
a gateway can listen to eight channels simultaneously.

To configure the Gateway, first we connect it to a computer
via the Ethernet port. We set the gateway as a DHCP network
via WAN. Finally, we connect it to a WiFi access point via
Ethernet. In order to program it, we connect a computer to
the same access point and remotely log in to the gateway via
secure shell ssh. To enable the packet forwarder, we run a
script which also logs the packet information on the device.
The setup is shown in Figure 4(b).



VII. REAL-WORLD DEPLOYMENT

We setup a LoRa network consisting of five LoRa nodes
and a gateway, and conduct experiments in two real-world
scenarios — an outdoor and an indoor scenario.

A. Testbeds and Workload

We setup a five-node outdoor LoRa network in the city
of Chapel Hill. The positions of the nodes are shown on a
map in the Appendix B. Two residential areas, separated by
a highway, are chosen to place the nodes. We position the
gateway in the balcony on the first floor of a two storied
building. We placed the gateway inside the building as it is
powered from an electric outlet. The nodes are placed around
the gateway within a radius of 220m and are powered by
USB power banks. Note that although the maximum reported
range of LoRa in non-line-of-sight scenario in the literature
is 863m [32], we obtain a shorter range than this to ensure
reliable communication. Prior to choosing the exact locations
of the nodes, we perform a day long survey to measure
signal strengths and the reliability of the communication links
at various locations in the test area. Finally, we select the
locations where we observe the least packet drops and that
are at a reasonably long distance from the gateway. For the
LoRa network, a moderate spreading factor of 9 and a code
rate of 4/5 were chosen to have a bandwidth of ~125KHz.

For the indoor test-bed, we place the nodes and the gate-
way inside the Computer Science building at the UNC. The
gateway is placed on the second floor of the building. Two
of the nodes N; and N, are placed on the same floor, but in
different rooms. N3, N4, and N5 were placed on the ground,
the first, and the third floor, respectively. Figure 6 and 7 in
Appendix B show the positions of the nodes and the gateway
for both indoor and outdoor test-beds.

We send one-byte payloads from four of the nodes and
five-byte payloads from a node. We send different sizes of
payloads to see its effect on our algorithm. Given the A;
and t,ry for one-byte payloads, we set the period of each
node to (A; + t,rr). We empirically determine that this is
the minimum period to obtain schedulable links. To stress-test
our algorithm, we set the deadlines of all the nodes to their
time-on-air. We run the whole experiment for both least laxity
first (LLF) and our duty-cycle-aware algorithm (D-LLF) for a
duration of twenty hyper-periods [33].

B. Experimental Results

In order to compare the real-time performance of our
proposed approach (D-LLF) with the baseline least laxity
first (LLF), we count the number of packets that missed the
deadline. In Figure 5a, we report the percentage of packets
dropped as well as the percentage of packets that actually
missed the deadline for both algorithms, for outdoor and
indoor scenarios.

In the outdoor scenario, proposed D-LLF outperforms LLF.
When links are scheduled using D-LLF, no packet misses
the deadline, whereas, for the regular LLF, the percentage
of packets missing deadline is 9.23%. . We observe about

4.62 — 6.15%% packets were dropped, which is typical in a
LPWAN. In the indoor scenario, no packet missed the deadline
in case of the D-LLF, but in case of the LLF, 9.23% of the total
packets missed the deadline. We observe about 1.54% —4.62%
deadline misses due to packet drops, which is less than what
we observed in the outdoor scenario. In both cases, D-LLF
outperforms LLF as it chooses channels based on gravity and
thus is able to mitigate the effect of duty-cycle limit.

VIII. SIMULATION EXPERIMENTS

This section provides some additional simulation-driven
experiments that provides more insight on our algorithm.

A. Simulation Setup

We compare our proposed scheduling algorithm’s (D-
LLF) performance with 5 baseline scheduling algorithms:
1) Least Laxity First (LLF) [17], 2) Earliest Deadline First
(EDF) [34], 3) Deadline Monotonic (DM) [34], 4) Rate
Monotonic (RM) [34] scheduling, and 5) ALOHA. ALOHA
always failed to find a feasible schedule in our simulation.
Therefore, we do not report its performance in the results.

We use three comparison metrics: 1) schedulability ratio (i.e.
ratios of schedules for which an algorithm finds a feasible
solution), 2) deadline miss ratio (i.e. percentage of packets
that miss the deadline for all links), and 3) buffer size (i.e. the
maximum number of packets buffered at each node).

To simulate a LoRa network, we randomly choose a spread-
ing factor from 7 to 12 for the links. This does not have
any effect on the performance of our algorithm as we define
gravity based on duty-cycle, but it affects other algorithms.
Since IoT devices send data in small chunks, we randomly
choose 1-5 byte sized packets for each link. We assume a
duty-cycle constraint of § = 1% to calculate Tj,;; of a link
for a channel. To generate schedulable links, we set the period
to the minimum 75 ¢ + time on air among all links. This
is an empirically obtained lower bound on the period to get
the maximum schedualibility for all algorithms. We set the
deadline to time-on-air multiplied by «, which is a random
number between 1 and 5. As the value of o gets lower, the
scenario becomes harder to schedule.The first transmission of
all links are released at the same time slot (time slot zero).

All the simulations are performed on a 2013 MacBook Air
having an Intel Core i5 dual-core processor and 4GB DDR3
RAM. The simulation software is written in Java.

B. Simulation Results

o (Figure 5b) We compare the schedulability ratio of all five
algorithms by varying the number of links to schedule from
8 to 40. We start from 8 as we assume 8 channels and for
more than 40 channels, the performance of all algorithms drop
significantly. Ten different link sets were generated for each
test case. In Figure 5b we observe that the proposed D-LLF
outperforms all four baselines for any number of links. For 8
links, D-LLF achieves a schedulability ratio of 1, whereas the
baseline algorithms achieve 0.6. Since we keep the number
of channels fixed, with an increased number of links, the
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Fig. 5. (a) D-LLF finds a feasible schedule for both outdoor and indoor scenario. The baseline LLF does not find a feasible schedule, and as a result, 9.23%
packets miss their deadlines. We observe typical packet drops in both cases. (b) D-LLF has better schedulability ratio with varying number of links. (¢) D-LLF
performs better than baseline algorithms with different number of number of channels. (d) D-LLF has better schedulability ratio with deadline being equal to
execution time under different periods. (¢) D-LLF has least maximum percentage of packets missing deadline for different periods among all algorithms. (f)

D-LLF has the lowest maximum buffer size for different periods.

schedulability ratio drops for all algorithms, because more
links are contending for limited number of channels . Yet,
the proposed D-LLF outperforms the baselines by scheduling
20% — 40% more link-sets on average. Note that the baseline
algorithms achieve similar results when the deadline is too
large, and therefore, the duty-cycle limit practically has no
effect.

o (Figure 5c) We vary the number of channels to see its
effect on different algorithms. We use ten link-sets in this sim-
ulation, where each set has 40 links. In Figure 5c we observe
that when the number of channels is 8, D-LLF achieves a
schedulability ratio of 0.4, whereas the baselines achieve a
maximum of 0.3. As the number of channels increase, the
scheduling task becomes easier and the baseline algorithms
catch up with the D-LLF. However, with 40 channels, D-
LLF achieves a schedulability ratio of 1, whereas the baselines
achieve a maximum of 0.8.

o (Figure 5d) We evaluate the performance of all al-
gorithms for a tight scenario where we set the deadline
to the execution time or time-on-air (« = 1). We use
ten link-sets, each having 8 links. We use three different
periods: T1 = min(Toss) + time-on-air(T'OA), T2 =
2T'1/number-of-channels(#Ch), and T3 = 0.572. We
choose T'1 in the same way as earlier simulations. To make the
workload harder to schedule, we set 17’2 and 1'3 such that each
link has to use all the channels more frequently. In Figure 5d
we observe that D-LLF outperforms the baselines by a large
margin. D-LLF achieves a schedulabity ratio of 1 for both 7'1
and 72. On the other hand, LLF has the best schedulability
ratio among the baselines, and achieves 0.5 and 0.4 for 7'1 and
T2, respectively. For, T'3 D-LLFS$ schedulability ratio drops to
0.4, which is still twice of LLF’s.

e (Figure 5e) For the same scenario as in Figure 5d, we

report the maximum percentage of packets that miss the
deadline as a metric in Figure 5e. We observe that D-LLF
achieves 0 deadline miss for both 71 and 72. For T3, D-
LLF’s maximum deadline miss is 1.55%. On the other hand,
LLF has the least maximum deadline miss of 4.85% among
the baselines for 7'3.

o (Figure 5f) We compare the maximum buffer size of a
node for different algorithms in Figure 5f. D-LLF results in
a maximum buffer size of 1, 1, and 81, for T'1, T2, and T'3,
respectively. LLF has the smallest maximum buffer size among
the baseline algorithms. For 71, T'2 and 7'3, LLF§ maximum
buffer size reaches 1, 41 and 166, respectively, which is up
to 41X larger than D-LLF. Since D-LLF is able to schedule
more transmissions, it requires a lower buffer size than others.

IX. RELATED WORK

Scheduling in wireless communication has been studied
by many. [6] introduced a topology dependent transmission
scheduling. [7], [35], [36] proposed distributed scheduling
algorithms in wireless networks. [37] leverages wireless com-
munication to achieve sub-nanosecond level clock synchro-
nization. [38] analyzes time sensitive network protocols of
IEEE 802.1 for their suitability to real-time communica-
tion. [39] proposes a dynamic network scheduling solution to
minimize errors in a wireless control system. [40] proposes an
algorithm that minimizes the buffer space for target priority-
aware network. [9], [41] used schedulability algorithms to min-
imize power consumption. However, none of these algorithms
explicitly deal with duty-cycle constraints.

[11], [13], [14], [24] proposed time-division multiple ac-
cess (TDMA) based scheduling algorithms for single channel
wireless communication. In this paper, we are dealing with
TDMA based multi-channel wireless communication network
where selecting the channel is one of the challenges.



Multi-channel wireless communication scheduling has been
explored in [12], [15], [16], [33], [42]. However, they do
not assume any constraints on the duty cycle. We tackle the
duty cycle constraint provided by LoRa network protocol.This
constraint decreases the efficiency of the wireless network.

A few works have been done considering duty cycle con-
straint in wireless system. [10], [43]-[45] consider wireless
networks with duty-cycle limit imposed on nodes. Here, nodes
can not send or sense continuously, rather, they have to
maintain a duty-cycle limit to reduce energy consumption. In
this paper, the duty-cycle limit is imposed on a (node, channel)
pair rather than only on the node.

In real time multi-processor scheduling [46]-[48] processor
affinity has been considered such that there is a restriction on
the migrations of any task to a specified subset of processors.
We take inspirations from these multiprossesor scheduling
works but solve our constrained wireless network problem
differently.

X. CONCLUSION

We present the first duty-cycle-aware wireless link schedul-
ing algorithm for LPWAN. We demonstrate the effect of duty-
cycle on real-time link scheduling, illustrate the need for
scoring wireless channels, and propose a scheduling algorithm
that considers both the laxity of a packet and the availability of
the channels. We implement a complete system by deploying
a long-range LPWAN network in the city of Chapel Hill, NC.
We evaluate the performance of the proposed algorithm in
multiple real testbeds as well as with simulations.
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APPENDIX A
ALGORITHM

The pseudo code and complexity analysis of our proposed
algorithm D-LLF is presented in this section.

Algorithm 1: D-LLF Scheduling Algorithm

Input : {7;;} < All packets to transmit.
m < Total number of channels.

o < Duty-cycle limit.

Output: s[1...7[0...m — 1] // schedule

1 s < 1 // initialize time slot

2 75 < {7k} // unscheduled transmission

3 Set All Channel gravity to 0

4 while 7, # ¢ do

5 Released(s) + set of released transmissions at slot s
6 Reduce all channel gravity by 1 if greater than 0
7 80Tt grauity (ch)

8 80Tt 1agity (Released(s))

9 for each T;peReleased(s) do

10 if 7;. misses deadline then

1 | return unschedulable

12 end

13 for c € ch do

14 if channelAvailable(T;i, c) = true then
15 Ss]lc] < Tik

16 Ts = Ts — Tik

17 Gr(e,s+A;) = Max(Gr(c,s — 1+

Ai) — 1, toj'j'(Lz', C, Ai7 CT))

18 break

19 end
20 end
21 end
22 s+ s+1
23 end

A. Pseudocode

Algorithm 1 shows the pseudocode of the scheduling algo-
rithm. We call this D-LLF. It takes a set of packets to transmit
{7k}, total number of channels m, and the duty-cycle o as
inputs, and outputs a 2D scheduling table S specifying which
packet is scheduled in which channel at each time-slot.

In lines 1 to 3, we initialize time-slot to 1, set all un-
scheduled transmissions at time-slot 1 and set all of channels’
gravity to 0. In line 5, we get all the released transmissions at
time-slot s. Line 6 decreases the gravity of all channels if it
is greater than O at that time slot.

In line 7, the function sortgrqvity(ch) sorts the chan-
nels in the descending order of their gravity. In line 8,
s0Ttiagity (Released(s)) sorts the released transmissions in an
ascending order of laxity of the transmissions.

In line 10 to 12, if any of the transmissions misses the
deadline, we declare the workload as unschedulable. We
select the channel for a transmission in line 13 to 20. While
selecting a channel for a ready transmission, the function

channel Available(T;,c) in line 14, returns a boolean to
indicate the availability of channel c to transmission 7;;. This
function checks two things: a) if channel c is being used by
any other transmission, and b) if 7;; is restricted from using
channel ¢ due to the duty-cycle limit. If both of these cases are
false, the function returns true, otherwise, it returns false. We
update the gravity of a channel in line 17. Note that the gravity
is updated at the end of a transmission. Therefore, instead of
updating the gravity at time-slot s, we update it at time-slot
s + A;. Finally, in line 22, we move to the next time-slot.

B. Complexity Analysis

An upper bound of the released transmissions at any time
slot is O(J), where J is the total number of packet trans-
missions to schedule. The sorting of channels and released
transmissions take O(C'log C) and O(J logJ), respectively.
Here, C is the number of channels. Finding available channels
for each released transmission is O(JC'). Hence, the total time
complexity of our algorithm is O(J(C log C+J log J)+JC).
Since the number of channels is constant for a given network,
the overall time complexity of the algorithm is O(J%log.J).

APPENDIX B
TESTBED SETUP

The position of the LoRa nodes and gateway for the outdoor
test-bed is shown in figure 6. The nodes are represented with
blue markers and the gateway is represented with red star. We
also report the distance and received signal strength(RSSI) of
the packets for the links associated with the nodes. In figure 7
we show the position of the nodes and gateways for the indoor
test-bed. The floor map of all the floors along with the location
of the devices are reported in the figure.
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Fig. 6. Placement of the nodes and the gateway in the real-world experiment
(Outdoor Scenario).
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Fig. 7. Placement of the nodes and the gateway in the real-world experiment (Indoor Scenario).
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