
IAC: On the Feasibility of Utilizing Neural Signals for
Access Control

Md Lutfor Rahman
Computer Science and Engineering
University of California Riverside

mrahm011@ucr.edu

Ajaya Neupane
Computer Science and Engineering
University of California Riverside

ajaya@ucr.edu

Chengyu Song
Computer Science and Engineering
University of California Riverside

csong@cs.ucr.edu

ABSTRACT

Access control is the core security mechanism of an operating sys-

tem (OS). Ideally, the access control system should enforce context

integrity, i.e., an application can only access security and privacy

sensitive resources expected by users. Unfortunately, existing ac-

cess control systems, including the permission systems in modern

OS like iOS and Android, all fail to enforce context integrity thus

allow apps to abuse their permissions. A naive approach to enforce

context integrity is to prompt users every time a sensitive resource

is accessed, but this will quickly lead to habituation. The state-of-

art solutions include (1) user-driven access control, which binds a

prede�ned context to protected GUI elements and (2) predicting

users’ authorization decision based on their previous behaviors and

privacy preferences. However, previous studies have shown that

the �rst approach is vulnerable to attacks (e.g., clickjacking) and

the second approach i challenging to implement as it is di�cult

to infer the context. In this work, we explore the feasibility of a

novel approach to enforce the context integrity—by inferring what

task users want to do under the given context from their neural

signals; then automatically authorizes access to a prede�ned set of

sensitive resources that are necessary for that task. We conducted

a comprehensive user study including 41 participants where we

collected their neural signals when they were performing tasks

that required access to sensitive resources. After preprocessing and

features extraction, we trained machine learning classi�er to infer

what kind of tasks a user wants to perform. The experiment results

show that the classi�er was able to infer the high-level intents like

take a photo with a weighted average precision of 88%.

CCS CONCEPTS

• Security and privacy→ Systems security; Usability in security

and privacy; •Human-centered computing→ Empirical studies

in ubiquitous and mobile computing;

KEYWORDS

brain-computer interface, intent-driven access control, machine

learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC’18, December 3–7,2018, San Juan, PR, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00
https://doi.org/10.1145/3274694.3274713

ACM Reference Format:

Md Lutfor Rahman, Ajaya Neupane, and Chengyu Song. 2018. IAC: On the

Feasibility of Utilizing Neural Signals for Access Control. In Proceedings of

2018 Annual Computer Security Applications Conference (ACSAC’18). ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3274694.3274713

1 INTRODUCTION

Access control is the core security mechanism of an operating sys-

tem (OS). It decides what resources a subject can access and in

what way the access can be performed (e.g., read, write, execute).

Classic access control models include Discretionary Access Control

(DAC), Mandatory Access Control (MAC), Role-based Access Con-

trol, Attribute-based Access Control, etc. An important property of

all these models is that a subject is not the human user, but a pro-

cess/thread that operates on behalf of the human user (i.e., a proxy).

Therefore, the e�ectiveness of these models heavily relies on the

assumption that the software truly operates as the user intended.

This assumption generally held in the early era of computing his-

tory when software was either written by users themselves or by a

trusted authority (e.g., an administrator). However, with the boom

of the software industry, this assumption no longer holds—as users,

we usually do not fully understand what a piece of software truly

does. Consequently, numerous security and privacy issues arise.

For example, ransomware can abuse our credentials to encrypt our

�les and spyware can easily steal our private information.

Modern operating systems like iOS and Android use sandbox and

permission system to mitigate this threat. In these systems, apps

are no longer trusted—by default, they can only access to their own

�les and limited system resources. Accesses to user-owned data and

privacy sensitive sensors are mediated by the permission system

through which user can decide either to allow the accesses or deny

them.While this is a step forward, the problem of these systems (iOS

and Android M+) is that they only ask users to authorize the �rst

access to the protected resources, a.k.a., ask-on-�rst-use (AOFU).

Any subsequent access to the same resource will be automatically

allowed unless users manually revoke the permission. However,

since an app can have di�erent functionalities and the resources

may be used under quite di�erent context, recent research results

have shown that AOFU failed to protect users’ privacy over half of

the time [65].

A straightforward idea to solve this problem is to prompt user

every time a protected resource is about to be accessed. However,

as the number of accessing requests can be huge (e.g., Wijesekera et

al. found that a single app can make tens of hundreds of requests

per day [65]), this approach can easily cause habituation and loose

its e�ectiveness. So, the real challenge is how to reduce the number

of prompts without sacri�cing users’ privacy.

641

ACSAC’18, December 3–7,2018, San Juan, PR, USA M. Rahman et al.

A general idea to solve this challenge is to infer what decision a

user is likely to make thus avoiding redundant prompts [33, 38, 41,

47, 55, 57, 66]. Existing solutions can be divided into two directions.

Solutions in the �rst direction associate GUI gadget with prede�ned

context, then extract user’s authorization from their interactions

with the gadget, a.k.a. user-driven access control [33, 38, 41, 51, 55–

57, 59, 67]. For example, a downloaded �le is allowed to be executed

only if the user has clicked the “Save” button to save it [38]; an email

is allowed to be sent only if the user has clicked the “Send” button

and its content must match what is displayed on screen [33]; and

only when the user clicks the “Camera” button can an app access

the camera device [41, 55, 57]. However, this associating user’s

authorization to GUI gadgets has two major drawbacks. First, there

are many GUI attacks that can mislead the user, such as clickjacking

attacks [30]. For this reason, existing user-driven access control

models have to employ additional steps to prevent such attacks,

e.g., by isolating the gadgets from the application and letting the OS

to render [57]. Secondly and more importantly, not all legitimate

resources accesses are initiated from user interaction [23].

The second direction is to predict users’ authorization decision

based on their privacy preference [37], privacy pro�le [36], or pre-

vious authorization decisions and other behaviors [47, 66]. Because

the decisions are usually context-sensitive, the biggest challenge for

this direction is how to infer the context. Olejnik et al. used 32 raw

features to de�ne a unique context but admitted that they are not

exhaustive [47]. Wijesekera et al. believed that the problem of infer-

ring the exact context in an automated way is likely to be intractable

thus focused on inferring when context has changed [66].

In this study, we explore the feasibility of a new way to in-

fer users’ authorization decisions—by directly inferring their intent

through the brain-computer interface. Our observation is that the

notion of contextual integrity [46] suggests that each unique con-

text will setup a set of corresponding social norms on how users

would expect their privacy information to be used. Whenever the

information is used in ways that defy the users’ expectations, a

privacy violation occurs. Applying this notion to the access control

systems (permission models) implies that we can automate the au-

thorization process by (1) associating each context of an app with

a functionality it appears to perform; (2) associating each function-

ality with a set of expected sensitive resources that are necessary

(i.e.norms); and (3) limiting the requested resources to the expected

set. However, as discussed earlier, the �rst step—inferring func-

tionality from a context is very di�cult. The key idea behind our

approach is that we can actually avoid solving this challenging

problem by utilizing our brain as a “magic” inference engine to

directly output the result: what is the intended functionality the user

wants to perform under the given context. Once we can infer intents

from the user’s brain signals, we can easily follow step (2) and (3)

to make authorization decisions.

As the �rst footprint towards this direction, this work studies

the feasibility of constructing such a decision-making system based

on non-invasive electroencephalography (EEG) headset. Recent

advances of the EEG sensor technology have enabled us to use

consumer-grade headset to capture brain signals that used to be only

available to clinical settings with invasive probes. Utilizing these

EEG sensors, researchers have shown it is possible to recognize

simple mental tasks as well as playing games. In this study, we aim

to explore the feasibility of utilizing these sensors to infer user’s

intent through answering the following research questions:

• Q1: Is it possible to extract high-level intents (e.g., taking a

photo) from the neural signals with a machine learning classi-

�er?

• Q2: Is the accuracy of the classi�er high enough to support

automated authorization?

To answer these questions, we designed and conducted a user

study with 41 participants. Experiment over the collected data

indicates that the answers to the above research questions are

mostly positive. Speci�cally, our classi�er is able to distinguish

four di�erent high-level intents (taking a photo, taking a video,

choosing a photo from the gallery, and cancel) with a weighted

average Precision of 88.34%, while the weighted average Recall is

86.52%, and the weighted average F −measure is 86.92%.

Contributions. In brief, our contributions in this paper are:

• We designed a new intent-driven access control model that

relies on inferring of user’s high-level intents through the

brain-computer interface (BCI).

• We experimentally validated the feasibility of constructing

such a system with consumer-grade EEG headset via a user

study of 41 participants. Our experimental results show the

feasibility of intent-driven access control. To our best knowl-

edge, this is the �rst study of utilizing brain signals to protect

users’ privacy.

The rest of the paper is organized as follows: §2 provides the

background on Electroencephalography (EEG), Event-related po-

tential (ERP), Emotiv Epoc + headset and Brain Computer Interface

(BCI) which are required to understand our study, §3 introduces the

threat model of our new access control design and how it works,

§4 presents the experiments design and experimental procedures,

§5 provides the details of how raw EEG data is processed before

feeding into a machine learning algorithm, §6 empirically answers

the two research questions, §7 discusses the limitations of our ex-

isting design and possible future work, §8 compares our work with

related research, and §9 concludes the paper.

2 BACKGROUND

In this section, we give the background of Electroencephalography

(EEG), event-related potential (ERP), Emotiv Epoc + headset and

Brain Computer Interface (BCI).

EEG. Electroencephalography (EEG) is amonitoring technique that

records the brain’s electrical activities. The recorded EEG data is a

time series data. Voltage �uctuations generated from neurons inside

the brain are captured by electrodes and ampli�ed. The electrodes

are usually placed in a non-invasive way (i.e., attached to the skin

of the head scalp), but they can also be used invasively. For this

study, we used non-invasive EEG sensors.

Event-Related Potentials. Event-related potentials (ERPs) are

small but measurable (with an EEG sensor) voltages changes gen-

erated by the brain in response to a stimulus event. The stimulus

events include a wide range of cognitive, sensory, or motor activ-

ities, such as showing di�erent letters to the participants, or in

our experiments, performing a given task with mobile apps. ERPs

642

ACSAC’18, December 3–7,2018, San Juan, PR, USA M. Rahman et al.

QuickVideo, and VideoCamDirect did not need any account to take

photos or videos.

We instructed participants to browse these apps as they use it in

their real-life (e.g., they might be taking a photo, or writing texts).

However, in this study, we just focus on the participants’ interaction

events related to the following three tasks: (1) taking a photo, (2)

taking video, and (3) select and upload a photo from the gallery.

This experiment has more realistic and ecologically valid settings as

the participants were browsing these popular apps and performing

the common tasks (e.g., take photo, take video and upload photo)

as per their own choice.

4.3 Experimental Procedures

Ethical and Safety Considerations. Our study involved human

subjects, and our experimental and recruiting procedures were

approved by the O�ce of Research Integrity (ORI) at the University

of California, Riverside under UCR IRB-HS 16-210. All participants

were given the option to withdraw from the study at any point of

the time. Devices involved in the study were sanitized after each

session to avoid skin problems (e.g., irritation). The standard best

practices were followed to protect the con�dentiality and privacy

of the participants data. Compensation of $30 was provided to the

participants whether they withdrew or not.

Participants Recruitment. After obtaining the IRB approval, we

recruited a total of 41 healthy participants for our experiments.

Among the 41 participants, 33 participants were for single app

experiment and 8 participants were for multiple app experiment.

Participants were recruited by word of mouth, �yers, and social

media (Facebook) advertising. Informed consent and some non-

personally-identi�able data (gender, age, and major) were obtained

from all participants. Twenty-seven (65.85%) of the participants

were male, and Fourteen (34.15%) were female. The details on the

participants’ demographics are provided in Table 2.

Experiment Setup. The experiment consists a consumer-grade

EEG headset (Emotiv EPOC+), an Android phone (Google Nexus

5X), an experiment app (§4.1), a laptop, and the Emotiv software

package [21]. Participants are asked to use the app on the Android

phonewhile wearing the lightweight EEG headset. The EEG headset

connects to laptop and sends EEG data via a Bluetooth dongle. The

Android phone connects to the laptop via USB. To construct the

ERPs, the Android app records the timestamp of the task. Clocks of

the phone and the laptop are synchronized with network time to

precisely align the event time stamps and the EEG data. EEG data

is recorded using the Emotiv Pure.EEG software.

Testbed. Our testbed is based on Android. To ease the creation of

ERP, in the experiments, we use touch events as the anchor to distin-

guish di�erent ERPs. In particular, we developed a standalone moni-

toring appwhich uses the accessibility service in Android to capture

all the touch events (using the flagRetrieveInteractiveWindows

�ag) [26] and log the timestamps of the events and the target GUI

element. The logged timestamps are then used to synchronize with

the neural signals captured by the BCI device and generate ERPs

corresponding to the touch events. To label ERPs, we manually

label GUI controls with corresponding intents (similar to access

control gadget). If a monitored touch event triggers a labeled GUI

control, we tag the ERP with the corresponding intent.

Figure 5: Experiment setup user is playing android apps

while wearing the Emotiv Epoc+ BCI headset. The sensors

of headset captured neural signals, converted to digital form

and transmitted encrypted data to the neural data collection

computer via USB dongle receiver.

Preparation Phase. The �rst step of the preparation is to inform

participants that their brain signals would be collected while play-

ing our app on our test Android device and will be used to improve

the access control model. Next, we sanitize the electrodes of the

EEG headset and apply gel on them to improve their connectivity

with the skin. Then we set-up the EEG headset by putting it on the

head of the participant. Because the signal-to-noise ratio is lower in

raw EEG data, additional preparation steps are followed to ensure

the quality of the data. First, all experiments were conducted in a

quiet meeting room reserved for one participant only (Figure 5).

Table 2: Participants Demographic Distribution Summary

Gender (%)

Male 65.85

Female 34.15

Age (%)

18-21 years 39.03

22-25 years 24.39

26-29 years 29.26

≥ 30 years 7.32

Background (%)

Computer Science 31.70

Bioengineering 9.74

Biology 4.87

Psychology 7.32

Linguistic 2.44

Business 7.32

Political Science 7.32

Mechanical Engineering 2.44

Economics 7.32

Public Policy 2.44

Anthropology 2.44

Gender and Sexuality 2.44

Toxicology 2.44

Medical Science 2.44

Undeclared 7.32

646

IAC: On the Feasibility of Utilizing Neural Signals for

Access Control ACSAC’18, December 3–7,2018, San Juan, PR, USA

Second, a preprocessing step is carried out on the raw EEG data

to increase their signal-to-noise ratio. During preprocessing, noise

reduction is applied to each of the raw EEG channels. To ensure

all the signals from the electrodes were properly channeled, we

checked the Pure.EEG control panel [21]. With the help of this tool,

we can validate the signal strength of each channel (electrodes).

The color green against the channel in the control panel meant

good strength while black meant no signal.

Task Execution Phase. Before starting the data collection, the

operator verbally instructed to the participants about the proce-

dure of experiments. For the single app experiment, all participants

performed the same set of tasks for 5 sessions, where each session

includes performing all 10 sets of tasks (Figure 4a); so a total num-

ber of 200 actions (trials) were performed by each participant if

without doing any mistake. All sessions were performed on the

same day and in the same room. A break of 2-4 minutes was given

to participant between each session. Users were instructed to stay

calm and relax in the entire session of the experiment. In real life,

participants may not face close to 40 actions within a short time (∼

5 min). However, multiple trials are the fundamental requirement

of most ERP-related study [40, 58]. We conducted this single app

for proving the ground truth of IAC. For multiple app experiments,

participants interacted with 8 popular apps for the entire time of

the experiments. They were instructed to play those apps for ap-

proximately 25 minutes. The operator noti�ed the participants to

stop the browsing after 25 minutes. However, the participants were

allowed to stop the session if they were feeling uneasy or bored.

On average, the session duration for this experiment was 21 min-

utes. After �nished the experiment, if the participant is interested

about our study, we explained the details of our experiment to those

curious participants.

5 DATA PROCESS AND ANALYSIS

Figure 2 depicts the work �ow of our system. First, we acquire

the neural data using the EEG device. Then the raw EEG data is

preprocessed to make it usable for the classi�ers. Next, we apply

Independent Component Analysis (ICA) to recover original signals

from unknown mixtures of sources and extract features using au-

toregressive coe�cients. Finally, we utilize machine learning (ML)

techniques to get the intent.

Raw Data Acquisition. We collected raw EEG data using the

Emotiv Pure.EEG software [21]. We synchronize the EEG data with

actions (i.e., click events received by the app) using calibrated clocks

on the phone and the laptop. Based on the study of Martinovic et

al. [40] and Neupane et al. [44], we epochize the signals with 938 ms

windowwhich starts at 469ms before a touch event and 469ms after

the event. We chose this window size as it provides the best results

during our analyses. Similar to the previous works [40, 44], we also

consider the window before the touch event because participants

know beforehand which action they will perform; so the stimuli

session actually starts before the event is recorded.

Data Preprocessing. Neural activities of human involve a huge

number of neuronal-membrane potentials. EEG records the voltage

change of cerebral tissues and the state of brain function. However,

these signals are weak, non-stationary and nonlinear in nature [6].

For this reason, EEG signals can easily be contaminated by ex-

ternal noises like the frequency of the power supply and noise

generated by the human body, such as eye movements, eye blinks,

cardiac signals, muscles noise, etc. The most signi�cant and com-

mon artifact produced by eye movements and blinks is known as

electrooculogram (EOG). Electromyography (EMG) is another type

of contaminating artifact, which is a measurement of the electrical

activity in muscles as a byproduct of contraction. EMG artifacts

are much more complex than EOG artifacts due to the movement

of muscles, particularly those of the neck, face, and scalp. Both

EMG and EOG seriously degrade the extraction of the EEG sig-

nals and lead to incorrect analyses. Hence they must be removed

from the raw data. Similar to previous work [3, 53], we used the

AAR (Automatic Artifact Removal) toolbox [27], which utilizes the

Blind Source Separation (BSS) algorithm to remove both EOG and

EMG [35]. After removing the EOG and EMG artifacts, we applied

an 8th order Butterworth band pass �lter with a cuto� frequency

of 3-60 Hz to remove all other useless signals. The band pass �lter

keeps signals within the speci�ed frequency range and rejects the

rest. The selected frequency range covers all �ve major frequency

bands in EEG signal, namely delta (0.1 to 4 Hz), theta (4.5 to 8 Hz),

alpha (8.5 to 12 Hz), beta (12.5 to 36 Hz), and gamma (36.5 Hz and

higher) [19]. This preprocessing step extracts quality signals with

good SNR (signal-to-noise-ratio).

ICA. Independent Component Analysis (ICA) is standard method

to recover original signals from known observations where each

observation is an unknown mixture of the original signals. EEG de-

vice has 14 electrodes for receiving the brain signals from di�erent

regions of the brain. Typically, each sensor will receive signals from

a mixture of regions. ICA can be applied to separate independent

sources from a set of simultaneously received signals from di�erent

regions of human brain [31, 32, 64]. In this study, we used ICA to

separate multi-channel EEG data into independent sources.

Feature Extraction. The features from neural signals are ex-

tracted using autoregressive (AR) model. This model is a popular

feature extraction method for biological signals, especially for time

series data [15]. It can estimate the current values x(t) of a time

series from the previous x(t − 1) observations of the same time

series. The current term x(t) of the series can be estimated by a

linear weighted sum of previous term x(t − 1). A generic formula

for representing the time series data (e.g., EEG) is

x(t) =

n’

i=1

αix(t − i) + e(t) (1)

Where αi , is weight which also known as the autoregressive

coe�cients, x(t) is the EEG signal, and n is the order of the model,

indicating the number of previous data points used for estimation.

e(t) is called noise or residual term which is assumed to be Gaussian

white noise. x(t) measured in time period t .

The selection of order in AR is the crucial step for getting a

successful application. We chose AR order six like previous stud-

ies [5, 44, 50]. All these studies used the 128Hz Emotiv EPOC device.

We calculated AR coe�cients using the Yule-Walker method [22].

We consider all 14 channels data for our analysis. Therefore, six AR

coe�cients were obtained for each electrode channel, resulting in

647

ACSAC’18, December 3–7,2018, San Juan, PR, USA M. Rahman et al.

84 (14x6) features for each action of data. The total process of ex-

tracting feature applied all the actions for both of the experiments.

Classi�cation Models and Evaluation Metrics. In this study,

we used random forest (RF) [12] because our extracted features

(autoregressive coe�cients) are suitable for RF algorithms [8, 24].

For implementation, we used the Weka classi�cation software pack-

age [29].

We evaluate IAC using the weighted average of Precision, Recall

and F −Measure . A higher weighted average Precision value indi-

cates less false positives (i.e.incorrectly authorize access to sensitive

data and sensors). A higher weighted average Recall value indicate

less false negatives (i.e.unnecessarily prompt users for authoriza-

tion). The weighted average F −Measure is the weighted average of

Precision and Recall which takes both false positives and false neg-

atives into account and gives the balance of our machine learning

model. Finally, we used k-fold cross validation to validate our re-

sults, where k = 10. This is a broadly used technique for calculating

test accuracy in the classi�cation problem for small sample which

can prevent over�tting. The goal of our study is to train a classi�er

which can be used to predict user’s intent based on features that

extracted using earlier step.

6 FEASIBILITY TEST

In this section, we aim to answer the research questions through

analyzing the data we collected from the two di�erent experiments

described in §4. We start from Q1—is it possible to distinguish the

three high-level intent based on neural signals using machine learning

algorithm.

6.1 Single App Analysis

Recall that our single app experiment includes 5 sessions for each

participant, where each session includes 10 sets of tasks and each

task set includes 4 actions. Therefore, each participant has 50 in-

stances per action (5 sessions x 10 task sets). In total, we have 1650

instances (50 instances x 33 users) per action from all 33 participants

in the single app experiment. We then extracted features from these

instances using the methodology discussed in §5 and labeled the

feature vectors with the following four actions as classes:

• Camera for the task of taking photo action,

• Video for the task of taking video action,

• Gallery for the task of choosing a photo from gallery, and

• Cancel for canceling the pop-up.

Global Model. In this model, we consider dataset of all the users

with all the sessions. We have total 6600 (1650 instances x 4 actions)

ERP events for this model. The experiment results of this model are

shown in Table 3. As shown in the table, the weighted average of

Precision is 70.70%. This implies that our IAC can correctly detect

human intention for 70.70% of time, which is not very good for

automated authorization. The reason behind this relatively low

accuracy is that even for the same task, di�erent people are likely

to have di�erent ERPs patterns, which actually has been used to

build authentication systems [5, 63]. For this reason, we would like

to know how the classi�er performs when only consider actions

belong to the same participant.

Table 3: Classi�cation result of global model.

Metrics

Precision Recall F −Measure

70.70% 70.70% 70.70%

Figure 6: Boxplot of Precision, Recall , and F −measure of indi-

vidual model. The red line indicates the median value and +

symbol indicates the outliers.

Individual Model. In the individual model, we train and test the

model with data from a single user across all sessions of single app

experiment. The results for the individual model are reported in Fig-

ure 6. Overall, the results were much better than when considering

all segments across all participants (i.e., the global model). From

the boxblot, we observed that the median of weighted average of

Precision and Recall are 99.50% and 99.50%, respectively. The me-

dian of weighted average F −measure is 99.50% also. These results

imply that IAC correctly detect human intent for 99.50% of the time.

The results also indicate that IAC works well when the ML model

is trained and tested with a single user and a single app.

6.2 Cross-app Portability Analysis

Through the single app experiment, we partially veri�ed that it

is possible to infer users’ high-level intents based on their brain

signals. In terms of app context, this implies that our classi�er can

distinguish di�erent app contexts. However, since it only involves

one app, the remaining questions is: can the learned model work

across di�erent apps? That is, in terms of app context, we want

to know whether our classi�er can identify similar context from

di�erent apps (i.e., cross-app portability).

We answer this question using the multiple real-world apps

experiment where 8 participants interacted with 8 real world apps

with a duration of 21 minutes on average. However, we had to

discard 3 participants data due to the device error caused data loss.

So we only consider those 5 participants whose data is su�cient.

On average, the 5 participants performed 22 actions for video, 47

actions for camera, and 27 actions for gallery. In total, we have 484

ERPs from 5 users.

Because these 5 participants have not participated in the sin-

gle app experiment, this experiment resembles a more practical

scenario. With this setup, we have two options to bootstrap the

648

IAC: On the Feasibility of Utilizing Neural Signals for

Access Control ACSAC’18, December 3–7,2018, San Juan, PR, USA

Figure 7: How classi�cation metrics varies with the number of

seen intents? The �rst bar represents the Precision, Recall , and

F − measure without adding any new intents from multiple real

world apps experiment to the global model from single app experi-

ment. The second bar represents results with adding new intents to

the global model, The third bar represents the results after adding

two intents to the globalmodel, and so on and so forth.We observed

the upward trends of Precision, Recall , and F −measure with the

addition of more new intents to the global model.

individual model: (1) we can start with an empty model can com-

pletely rely on the feedback loop (in Figure 2) to collect training

data; or (2) we start with a half-baked model and use the feedback

loop to improve it. In this experiment, we chose the second option

as it requires less training and the global model we tested in §6.1

still showed reasonable accuracy.

With Initial Model. We used the global model learned from all

participants in the single app experiment as the initial model (i.e.,

train the model with all data in the single app experiment) and

tested it with all data collected from the multiple app experiments.

The classi�cation results of Precision, Recall , and F −measure of

the initial model are presented in the �rst bar diagram in Figure 7.

From this �gure, we can observe that we can only correctly infer

the user intention with the precision of 43.16%.

Adding Feedback Loop. When we gradually add new training

intents collected from the user when he/she is using real world

apps, the improvement on Precision, Recall , and F −measure are

shown in Figure 7. All newly added intents were from the multiple

app experiment and we have to stop at 5 so we can have enough

data for the testing phase. As we can see, after adding 5 intents

from real world apps, the weighted average Precision improved

from 43.16% to 88.34%, the weighted average Recall improved from

39.82% to 86.52%, and the weighted average F −measure improved

from 38.94% to 86.92%. The results imply that in real world context,

IAC can correctly infer the user intention 86.92% of time by adding

only 5 intents to re-train the ML model. Again, the precision is

expected to continue improving and the only reason we stop at 5 is

due to lack of data.

6.3 Results Analysis

Based on the classi�cation results from above experiments, we

decided to accept our hypothesis. That is, it is possible to identify

high-level intents based on neural signals using a machine learning

algorithm. In terms of app context, our classi�er can both distin-

guish di�erent contexts from the same app and identify similar

contexts from di�erent apps. Hence, the answer to Q1 is positive.

6.4 Authorization Accuracy

In the above analysis, we have shown that it is possible to identify

user’s high-level intent through the brain-computer interface. How-

ever, whether the classi�cation result can be used for automated

access authorization for user-owned sensitive sensors and resources

still faces the question: is it accurate enough (Q2). In this subsection,

we analyze the classi�cation results to answer this question. From

the analysis of multiple app experiment data, we observed that our

classi�er can achieve a weighted average of Precision 88.34% with

the weighted average of F −measure 86.92% for the completely

unknown scenarios. Based on this, we think the answer to Q2 is

positive.

7 DISCUSSION

IAC andContextual Integrity. Access control system is a mecha-

nism to protect user’s privacy. Modern OS, including Android (M+),

iOS, and Windows (8+) uses an ask-on-�rst-use permission system

to guard access to sensitive data and sensors. This approach pro-

vides some context cues but only at the �rst time when the permis-

sion is requested. Researchers have argued that permission should

be requested under the context that matches user’s expectations,

i.e., contextual integrity [46]. IAC enforces contextual integrity in

the way that user would only have an intent in her mind when the

context is relevant to the intent. In other word, if an app violates

contextual integrity, then the user will not express the intent and

IAC will block the access.

Learning Strategy. As demonstrated in §6, the classi�cation accu-

racy can vary based on the learning strategy. Overall, since di�erent

people may exhibit di�erent brain signals evenwhen thinking about

the same thing (which has been used for neural-signal-based au-

thentication); it is preferable to use individual models. However,

bootstrapping such a model require users to go through a calibra-

tion phase. An alternative approach, as used in [66] and our own

experiment, is to use a half-baked model (e.g., the generalized model

learned from all participants in the single app experiment), then per-

sonalized it by adding feedbacks from explicit prompts, especially

for newly installed apps. Once the model has seen enough feedback,

we can start using it to make real authorization decisions. Our mul-

tiple app experiment has partially validated the e�ectiveness of this

strategy.

Limitations. Similar to other previous studies on BCI [40, 45], our

study also has several limitations. First, the study was conducted

in the controlled environment so whether unwanted artifacts like

EOG and EMG can be reliably removed in an uncontrolled environ-

ment is still unclear. However, since this is a common problem for

BCI, we believe future techniques will be able to address it. Second,

despite that our sample set is relatively larger (41 participants) than

previous studies (e.g., 5 participants [5, 49], 9 participants [39], 16

participants [7]) and have diverse demography background, it is

still much smaller than data set in other machine learning appli-

cations, such as computer vision, voice recognition, and natural

649

ACSAC’18, December 3–7,2018, San Juan, PR, USA M. Rahman et al.

language processing. Third, we used only popular apps for testing

our feasibility and the number of apps is only 8. This could be a

bias scenario as participants are more familiar with popular apps.

Finally, our classi�er is likely to be vulnerable to phishing-style

attacks. That is, similar to following our instructions to perform

actions that would allow an app to access protected resources, a

phishing-style attack might also be able to trick users into willing

to perform operations that would compromise the security and

privacy of their data.

Future Work. There are many unexplored areas along this re-

search direction. First, we would like to explore other machine

learning algorithms like deep neural network (DNN) to see if it can

help improve the classi�cation accuracy. Second, we would like to

see if the classi�er can scale to support more types of tasks and

how the accuracy would look like. Third, we would also like to

explore if it is possible to improve the classi�er by including other

behavioral information, such as eye gazing information. Moreover,

although our current design might be vulnerable to phishing-style

attacks, previous study [45] has shown that even though at con-

scious level, users may not realize the di�erence between phishing

and non-phishing websites, their neural signals still di�ers. Based

on this observation, we would like to explore the possibility of de-

fending against phishing-style attacks at brain signal level. Finally,

recent research has shown machine-learning-based classi�ers may

be subject to adversarial examples [28], so might be our classi�er.

However, it is unclear that under our threat model, how attackers

can tamper with the collected EEG data to inject their malicious

perturbations. So we would also like to explore this direction.

8 RELATEDWORK

In this section, we brie�y discuss related work on neural signals

and permission model.

BCI-based security studies. Neural signals have used for user

authentication [17, 34, 43, 63] and identi�cation [52, 68]. Ashby et

al. [5] proposed an EEG-based authentication system using a con-

sumer grade 14-sensor Emotiv Epoc headset. Abdullah et al. [2]

discussed the possibility of the EEG-based biometric system using 4

or fewer electrodes. Chuang et al. [17] developed a user authentica-

tion model using one single-sensor Neurosky headset. Campbell et

al. [14] developed a neurophone which is based upon ERP of brain

signal. They implemented a brain-controlled address book dialing

app, which shows a sequence of photos of contacts from address

book to users. Thorpe et al. [63] suggested pass-thoughts to au-

thenticate users. In their study, they used EEG signal to replace

password typing. The EEG-based authentication system overcomes

the weakness of current authentication protocol which su�ers from

several types of attacks including dictionary attack, password guess-

ing, etc. However, there are some drawbacks to this approach like

non-pervasiveness of EEG equipment and lack of feedback to the

users during the authentication process.

Exposing user’s neural signals to third-party apps via the brain

computer interfaces introduced new security and privacy issues

[11, 25, 40, 44]. Martinovic et al. [40] introduced a side-channel at-

tack which they referred to as ”brain spyware” using commercially

available headset Emotiv EPOC. The authors extracted private infor-

mation like familiar banks, ATMs, PIN digits, and month of birth us-

ing only brain signal. Their work is similar to Guilty-KnowledgeTest

(GKT) [18] where familiar items evoked a di�erent response than

unfamiliar items. In their experiment, users are shown images of

banks, digits, known people images. The users’ ERP responses will

be di�erent for their very known banks as that information stored

their memory beforehand. However, their attack is intrusive and

can be easily detectable as the users may notice the abnormality in

the application when it displays some of their familiar information

sequentially. Frank et al. [25] proposed a subliminal attack in which

attacker can learn relevant private information from the victim at

the levels below his cognitive perception. Bonaci et al. [11] showed

how non-invasive BCI platforms used in games or web navigation,

can be misused to extract user’s private information. Neupane et

al. [44] showed the feasibility of stealing users’ PIN from their brain

signals.

Runtime Permission Models. Requesting access to sensitive

resources at runtime—the moment they will be used provide more

context information thus can help users better understanding the

nature of these requests and make more optimal decisions [23]. The

challenge is how to avoid habituation caused by high frequency of

resource access [65].

User-driven access control. The �rst approach to reduce the num-

ber of prompts is to automatically authorize the requests based on

users’ intent. Existing user-driven access control systems [33, 38,

41, 48, 51, 55, 57] all utilize the same way to infer the intent—by

capturing authentic user interaction with trusted GUI gadgets (i.e.,

access control gadgets), e.g., the “camera” button. Our approach

also tries to infer the intent of an user. However, as we directly infer

the intent from the neural signals, our system is not vulnerable to

GUI attacks [30, 51] thus do not require additional protection for

GUI gadgets. Please note that although we only used user-initiated

actions in our experiment, unlike existing user-driven access con-

trol systems, our approach is not limited to user-initiated events.

Because any external stimulus, including viewing an app’s fore-

ground GUI context can be used to create event-related potentials

(ERPs) and drive our system.

Decision prediction. The second approach is to use machine learn-

ing (ML) to predict users’ privacy decisions [36, 47, 65, 66]. Liuet

al. [36] proposed using user’s answers to a few privacy related

questions to build a personalized privacy pro�le. They then create a

Privacy Assistant that o�er recommendations for future permission

settings based on the pro�le, apps category, requested permission,

and purposes associated with the permission. While they found

that 78.8% of the recommendations were adopted by users, the

biggest limitation is that they used the ask-on-install model so the

recommendations were made without considering context. Recog-

nizing the importance of context integrity, Wijesekera et al. [65]

pioneered the work on predicting user’s privacy decisions based

on the context. In their �rst attempt, they used a one-size-�ts-all

logistic regression model which can provide 40%-60% better ac-

curacy than random guessing. In [66], they further extended this

idea by building a SVM-based classi�er based on when context has

changed and user’s past decisions and behavior. This new approach

650

IAC: On the Feasibility of Utilizing Neural Signals for

Access Control ACSAC’18, December 3–7,2018, San Juan, PR, USA

improved the accuracy to 96.8% across all users. However, the accu-

racy drops to 80% among users who truly make di�erent decisions

based on context. Around the same time, Olejnik et al. [47] also

propose using context information and ML technique to predict

user’s privacy decisions. In this work, they used 32 raw contextual

features (e.g., app name, foreground app, method, time, semantic

location) to train a linear regression model based on users’ previous

decisions under di�erent contexts. The mean correct classi�cation

rate of their model is 80%. Our approach also relies on ML tech-

niques and our learning strategy is very close to [66]. However,

instead of trying to encode context as a set of features to the ML

techniques, we rely on users to interpret the context and aim to

infer what they want to do under the given context.

9 CONCLUSION

In this work, we proposed a new direction to protect user-owned,

security and privacy sensitive sensors and resources—by inferring

user’s intents and use it to automate authorization decisions. As a

�rst step, we studied the feasibility of leveraging the brain-computer

interface to infer the intents. Our experiment with 41 participants

showed that neural signals can be utilized to train a machine learn-

ing classi�er to recognize high-level intents like taking a photo. The

accuracy of the classi�er was also good enough for this security

and privacy sensitive task.

10 ACKNOWLEDGMENT

This research was supported, in part, by NSF award CNS-1718997

and ONR under grant N00014-17-1-2893. The authors like to thank

Yue Duan and Ali Mohammadkhan for their feedback on early

version of this paper. We also acknowledge Sri Shaila G, Ali Dava-

nian, and Sankha Dutta for the proofreading of the �nal version

of this paper. We also extend thanks to the ACSAC’18 anonymous

reviewers for their constructive feedback and comments.

REFERENCES
[1] 2018. Mind-controlled robots: the factories of the future? https://www.youtube.

com/watch?v=wXYvuhH_4Uw. Accessed: 02-10-2018.
[2] Muhammad Kamil Abdullah, Khazaimatol S Subari, Justin Leo Cheang Loong,

and Nurul Nadia Ahmad. 2010. Analysis of e�ective channel placement for an
EEG-based biometric system. In IEEE EMBS Conference, Biomedical Engineering
and Sciences (IECBES).

[3] Mohammad HAlomari, Aya Samaha, and Khaled AlKamha. 2013. Automated clas-
si�cation of L/R hand movement EEG signals using advanced feature extraction
and machine learning. arXiv preprint arXiv:1312.2877 (2013).

[4] Amazon.com, Inc. 2027. Alexa Skill Kit. https://developer.amazon.com/
alexa-skills-kit.

[5] Corey Ashby, Amit Bhatia, Francesco Tenore, and Jacob Vogelstein. 2011. Low-
cost electroencephalogram (eeg) based authentication. In International IEEE/EMBS
Conference on Neural Engineering (NER).

[6] H Aurlien, IO Gjerde, JH Aarseth, G Eldøen, B Karlsen, H Skeidsvoll, and NE
Gilhus. 2004. EEG background activity described by a large computerized data-
base. Clinical Neurophysiology 115, 3 (2004), 665–673.

[7] Louise Barkhuus and Anind K Dey. [n. d.]. Location-based Services for Mobile
Telephony: a Study of Users’ Privacy Concerns. In International Conference on
Human-Computer Interaction.

[8] Maouia Bentlemsan, ET-Tahir Zemouri, Djamel Boucha�ra, Bahia Yahya-Zoubir,
and Karim Ferroudji. 2014. Random forest and �lter bank common spatial pat-
terns for eeg-based motor imagery classi�cation. In International Conference on
Intelligent Systems, Modelling and Simulation (ISMS).

[9] Niels Birbaumer, Nimr Ghanayim, Thilo Hinterberger, Iver Iversen, Boris
Kotchoubey, Andrea Kübler, Juri Perelmouter, Edward Taub, and Herta Flor.
1999. A spelling device for the paralysed. Nature 398, 6725 (1999), 297–298.

[10] Tamara Bonaci, Ryan Calo, and Howard Jay Chizeck. 2014. App stores for the
brain: Privacy & security in Brain-Computer Interfaces. In IEEE International
Symposium on Ethics in Science, Technology and Engineering.

[11] TLBMT Bonaci, J Herron, and HJ Chizeck. 2015. How susceptible is the brain to
the side-channel private information extraction. American Journal of Bioethics,
Neuroscience 6, 4 (2015).

[12] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[13] Ahier Brian. 2017. Neuralink, Facebook, and Kernel Compete on

Direct Brain-Computer Interface. https://www.linkedin.com/pulse/
direct-brain-interface-brian-ahier/. Accessed: 05-10-2017.

[14] Andrew Campbell, Tanzeem Choudhury, Shaohan Hu, Hong Lu, Matthew KMuk-
erjee, Mash�qui Rabbi, and Rajeev DS Raizada. 2010. NeuroPhone: brain-mobile
phone interface using a wireless EEG headset. In ACM SIGCOMM Workshop on
Networking, Systems, and Applications on Mobile Handhelds.

[15] Chris Chat�eld. 2016. The analysis of time series: an introduction. CRC press.
[16] Stephen Chen. 2018. China is mining data directly from workers’ brains on

an industrial scale. http://www.scmp.com/news/china/society/article/2143899/
forget-facebook-leak-china-mining-data-directly-workers-brains. Accessed:
04-30-2018.

[17] John Chuang, Hamilton Nguyen, Charles Wang, and Benjamin Johnson. 2013. I
think, therefore i am: Usability and security of authentication using brainwaves.

[18] National Research Council et al. 2003. The polygraph and lie detection. Committee
to review the scienti�c evidence on the Polygraph. Division of Behavioral and
Social Sciences and Education. Washington, DC: The National Academic Press.
Retrieved 7, 7 (2003), 09.

[19] Jan C de Munck, Sonia I Gonçalves, R Mammoliti, Rob M Heethaar, and FH Lopes
Da Silva. 2009. Interactions between di�erent EEG frequency bands and their
e�ect on alpha–fMRI correlations. Neuroimage 47, 1 (2009), 69–76.

[20] EMOTIV Inc. 2017. Emotiv EEG Headset. https://www.emotiv.com. Accessed:
5-17-2017.

[21] EMOTIV, Inc. 2017. EMOTIV PureEEG Software. https://www.emotiv.com/
product/emotiv-pure-eeg/. Accessed: 5-17-2017.

[22] Gidon Eshel. 2003. The yule walker equations for the AR coe�cients. Internet
resource 2 (2003), 68–73.

[23] Adrienne Porter Felt, Serge Egelman, Matthew Finifter, Devdatta Akhawe, David
Wagner, et al. 2012. How to Ask for Permission.

[24] Luay Fraiwan, Khaldon Lweesy, Natheer Khasawneh, Heinrich Wenz, and Hart-
mut Dickhaus. 2012. Automated sleep stage identi�cation system based on
time–frequency analysis of a single EEG channel and random forest classi�er.
Computer methods and programs in biomedicine 108, 1 (2012), 10–19.

[25] Mario Frank, Ti�any Hwu, Sakshi Jain, Robert Knight, Ivan Martinovic, Prateek
Mittal, Daniele Perito, and Dawn Song. 2013. Subliminal probing for private
information via EEG-based BCI devices. arXiv preprint arXiv:1312.6052 (2013).

[26] Yanick Fratantonio, ChenxiongQian, Simon P Chung, andWenke Lee. 2017. Cloak
and Dagger: From Two Permissions to Complete Control of the UI Feedback
Loop.

[27] Germán Gómez-Herrero, Wim De Clercq, Haroon Anwar, Olga Kara, Karen
Egiazarian, Sabine Van Hu�el, andWim Van Paesschen. 2006. Automatic removal
of ocular artifacts in the EEG without an EOG reference channel. In Signal
Processing Symposium (NORSIG).

[28] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and harnessing adversarial examples. In International Conference on Learning
Representations (ICLR).

[29] Mark Hall, Eibe Frank, Geo�rey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. 2009. The WEKA data mining software: an update. ACM
SIGKDD explorations newsletter 11, 1 (2009), 10–18.

[30] Lin-Shung Huang, Alexander Moshchuk, Helen J Wang, Stuart Schecter, and
Collin Jackson. 2012. Clickjacking: Attacks and Defenses.

[31] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. 2004. Independent component
analysis. Vol. 46. John Wiley & Sons.

[32] Aapo Hyvärinen and Erkki Oja. 2000. Independent component analysis: algo-
rithms and applications. Neural networks 13, 4 (2000), 411–430.

[33] Yeongjin Jang, Simon P Chung, Bryan D Payne, and Wenke Lee. 2014. Gyrus: A
Framework for User-Intent Monitoring of Text-based Networked Applications.

[34] Benjamin Johnson, Thomas Maillart, and John Chuang. 2014. My thoughts are
not your thoughts.

[35] Carrie A Joyce, Irina F Gorodnitsky, and Marta Kutas. 2004. Automatic removal
of eye movement and blink artifacts from EEG data using blind component
separation. Psychophysiology 41, 2 (2004), 313–325.

[36] Bin Liu, Mads Schaarup Andersen, Florian Schaub, HazimAlmuhimedi, SA Zhang,
Norman Sadeh, Alessandro Acquisti, and Yuvraj Agarwal. 2016. Follow my
recommendations: A personalized privacy assistant for mobile app permissions.

[37] Bin Liu, Jialiu Lin, and Norman Sadeh. 2014. Reconciling mobile app privacy and
usability on smartphones: Could user privacy pro�les help?

[38] Long Lu, Vinod Yegneswaran, Phillip Porras, and Wenke Lee. 2010. Blade: an
attack-agnostic approach for preventing drive-by malware infections.

[39] Sebastien Marcel and José del R Millán. 2007. Person authentication using
brainwaves (EEG) and maximum a posteriori model adaptation. IEEE transactions

651

ACSAC’18, December 3–7,2018, San Juan, PR, USA M. Rahman et al.

on pattern analysis and machine intelligence 29, 4 (2007).
[40] Ivan Martinovic, Doug Davies, Mario Frank, Daniele Perito, Tomas Ros, and

Dawn Song. 2012. On the feasibility of side-channel attacks with brain-computer
interfaces. USENIX.

[41] Kristopher Micinski, Daniel Votipka, Rock Stevens, Nikolaos Ko�nas, Michelle L
Mazurek, and Je�rey S Foster. 2017. User Interactions and Permission Use on
Android.

[42] Microsoft. 2017. Cortana Skill Kit. https://developer.microsoft.com/en-us/
windows/projects/campaigns/cortana-skills-kit.

[43] Fabian Monrose and Aviel Rubin. 1997. Authentication via keystroke dynamics.
[44] Ajaya Neupane, Md Lutfor Rahman, and Nitesh Saxena. 2017. Peep: Passively

eavesdropping private input via brainwave signals. In International Conference
on Financial Cryptography and Data Security. Springer, 227–246.

[45] Ajaya Neupane, Md Lutfor Rahman, Nitesh Saxena, and Leanne Hirsh�eld. 2015.
A Multimodal Neuro-Physiological Study of Phishing and Malware Warnings.

[46] Helen Nissenbaum. 2004. Privacy as contextual integrity. Wash. L. Rev. 79 (2004),
119.

[47] Katarzyna Olejnik, Italo Ivan Dacosta Petrocelli, Joana Catarina Soares Machado,
Kévin Huguenin, Mohammad Emtiyaz Khan, and Jean-Pierre Hubaux. 2017.
SmarPer: Context-Aware and Automatic Runtime-Permissions for Mobile De-
vices.

[48] Kaan Onarlioglu, William Robertson, and Engin Kirda. 2016. Overhaul: Input-
Driven Access Control for Better Privacy on Traditional Operating Systems.

[49] Ramaswamy Palaniappan. 2006. Electroencephalogram signals from imagined
activities: A novel biometric identi�er for a small population. In International
Conference on Intelligent Data Engineering and Automated Learning. Springer.

[50] Ramaswamy Palaniappan. 2008. Two-stage biometric authentication method
using thought activity brain waves. International Journal of Neural Systems 18,
01 (2008), 59–66.

[51] Giuseppe Petracca, Ahmad-Atamli Reineh, Yuqiong Sun, Jens Grossklags, and
Trent Jaeger. 2017. Aware: Preventing Abuse of Privacy-Sensitive Sensors via
Operation Bindings.

[52] M Poulos, M Rangoussi, V Chrissikopoulos, and A Evangelou. 1999. Person
identi�cation based on parametric processing of the EEG. In IEEE International
Conference on Electronics, Circuits and Systems.

[53] Md Lutfor Rahman, Sharmistha Bardhan, Ajaya Neupane, Evangelos Papalexakis,
and Chengyu Song. 2018. Learning Tensor-based Representations from Brain-
Computer Interface Data for Cybersecurity. (2018).

[54] Rijin Raju, Chenguang Yang, Chunxu Li, and Angelo Cangelosi. 2016. A video
game design based on Emotiv Neuroheadset. In Advanced Robotics and Mecha-
tronics (ICARM).

[55] Talia Ringer, Dan Grossman, and Franziska Roesner. 2016. AUDACIOUS: User-
Driven Access Control with Unmodi�ed Operating Systems.

[56] Franziska Roesner and Tadayoshi Kohno. 2013. Securing Embedded User Inter-
faces: Android and Beyond.

[57] Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk, Bryan Parno, He-
len J Wang, and Crispin Cowan. 2012. User-driven access control: Rethinking
permission granting in modern operating systems.

[58] Andres F Salazar-Gomez, Joseph DelPreto, Stephanie Gil, Frank H Guenther, and
Daniela Rus. 2017. Correcting robot mistakes in real time using eeg signals. In
IEEE International Conference on Robotics and Automation (ICRA). IEEE.

[59] Marc Stiegler, Alan H Karp, Ka-Ping Yee, Tyler Close, and Mark S Miller. 2006.
Polaris: virus-safe computing for Windows XP. Commun. ACM 49, 9 (2006),
83–88.

[60] Md Sohel Parvez Sumon. 2016. First man with two mind-controlled prosthetic
limbs. Bangladesh Medical Journal 44, 1 (2016), 59–60.

[61] Shravani Sur and VK Sinha. 2009. Event-related potential: An overview. Industrial
psychiatry journal 18, 1 (2009), 70.

[62] Desney Tan and Anton Nijholt. 2010. Brain-computer interfaces and human-
computer interaction. In Brain-Computer Interfaces. Springer, 3–19.

[63] Julie Thorpe, Paul C van Oorschot, and Anil Somayaji. 2005. Pass-thoughts:
authenticating with our minds. InWorkshop on New Security Paradigms.

[64] M Ungureanu, C Bigan, R Strungaru, and V Lazarescu. 2004. Independent com-
ponent analysis applied in biomedical signal processing. Measurement Science
Review 4, 2 (2004), 18.

[65] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge Egelman, David Wag-
ner, and Konstantin Beznosov. 2015. Android Permissions Remysti�ed: A Field
Study on Contextual Integrity.

[66] Primal Wijesekera, Arjun Baokar, Lynn Tsai, Joel Reardon, Serge Egelman, David
Wagner, and Konstantin Beznosov. 2017. The Feasibility of Dynamically Granted
Permissions: Aligning Mobile Privacy with User Preferences.

[67] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X Sean Wang.
2013. Appintent: Analyzing sensitive data transmission in android for privacy
leakage detection.

[68] Qinglin Zhao, Hong Peng, Bin Hu, Quanying Liu, Li Liu, YanBing Qi, and Lanlan
Li. 2010. Improving individual identi�cation in security check with an EEG based
biometric solution. In International Conference on Brain Informatics.

652

	i01-1-mishra
	i01-2-kouwe
	Abstract
	1 Introduction
	2 Background
	2.1 Use-after-free
	2.2 Uninitialized reads
	2.3 Type safety

	3 Threat Model
	4 Overview
	5 Heap
	5.1 Typed memory allocations
	5.2 Wrapper detection and inlining

	6 Stack
	6.1 Guaranteed initialization on the safe stack
	6.2 Typed unsafe stacks

	7 Implementation
	8 Evaluation
	8.1 Security
	8.2 Type detection
	8.3 Wrapper detection and inlining
	8.4 Memory overhead
	8.5 Run-time overhead
	8.6 Firefox case study

	9 Limitations
	10 Related Work
	11 Conclusion
	References

	i01-3-farkhani
	Abstract
	1 Introduction
	2 Background and Problem Definition
	2.1 Control Flow Integrity (CFI)
	2.2 Runtime Type Checking
	2.3 Arity Checking
	2.4 Reuse Attack Protector (RAP)
	2.5 Type Collisions
	2.6 Research Questions

	3 Attack Overview
	3.1 Threat Model
	3.2 Attack Preliminaries
	3.3 Finding Gadgets
	3.4 Constraint Solving

	4 Proof-of-Concept Exploits
	4.1 Nginx Exploit
	4.2 Exim Exploit
	4.3 Summary

	5 Evaluation
	5.1 Type Collisions
	5.2 Gadget Distribution
	5.3 Libc
	5.4 Type Checking vs. Points-to Analysis

	6 Discussion
	6.1 Type Diversification
	6.2 Separate Compilation
	6.3 Mismatch types
	6.4 Support for Assembly Code

	7 Related work
	8 Conclusion
	References

	i01-4-ahmadvand
	Abstract
	1 Introduction
	2 Background & Related work
	2.1 Software integrity protection
	2.2 Nondeterministic code detection

	3 Design
	3.1 Segregation of input data/control-flow dependent instructions
	3.2 Short Range Oblivious Hashing (SROH)
	3.3 Data-Dependent Instructions (DDIs)
	3.4 Intertwined protection

	4 Implementation
	4.1 Protection process
	4.2 Input dependency detection
	4.3 Oblivious hashing (OH)
	4.4 Short Range Oblivious Hashing (SROH)
	4.5 Self-checksumming (SC)
	4.6 Response mechanism

	5 Evaluation
	5.1 Dataset
	5.2 Preparation
	5.3 Coverage
	5.4 Performance analysis
	5.5 Security analysis

	6 Discussion
	6.1 Coverage
	6.2 Implicit protection with OH/SROH
	6.3 Performance

	7 Conclusions
	References
	A A full example of OH+SROH utilization

	i02-1-liu
	Abstract
	1 Introduction
	2 Assumptions and Goals
	3 Related Work
	3.1 Traditional 2FA
	3.2 2FA with Less User-Phone Interactions

	4 Typing-Proof
	4.1 Enrollment and Login
	4.2 Similarity Score
	4.3 Usability Analysis
	4.4 Cost Analysis

	5 Evaluation
	5.1 Data Collection
	5.2 Parameters Configuration
	5.3 False Rejection Rate
	5.4 False Acceptance Rate

	6 Security Analysis
	7 User Study
	7.1 Procedure
	7.2 Usability

	8 Discussion
	9 Conclusion
	References
	A Quantitative Usability Analysis Framework
	B Prototype Implementation
	C System Usability Scale
	D Post-test Questionnaire
	E Comparison Results

	i02-2-mccully
	Abstract
	1 Introduction
	2 Related Work
	2.1 Keystroke dynamics
	2.2 Collaborative editing
	2.3 Identification vs. Authentication

	3 Study: User Identification in Collaboration Services
	3.1 The UB Data Set
	3.2 Log replay data set (LRDS)
	3.3 Feature engineering
	3.4 Random forest classification
	3.5 Model improvements
	3.6 Results

	4 Indirect Typing Biometric Attack
	4.1 Authentication service
	4.2 Forgery attack scenario
	4.3 Creating a forgery
	4.4 TypingDNA Forgery Attack

	5 Discussion
	5.1 Generalizability
	5.2 Practical implications
	5.3 Broader implications

	6 Conclusions
	References

	i02-4-lu
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Online Password Guessing Attacks
	2.2 Defenses against Online Password Attacks
	2.3 Offline Password Attacks

	3 Methodology
	3.1 Modeling Lockout Threshold and Counting Mechanism
	3.2 Black-box Tests

	4 A Measurement Study of Rate Limiting Implementations
	4.1 Experiment Setup
	4.2 Data Collection

	5 Evaluation and Analysis
	5.1 Data Analysis
	5.2 Security Analysis
	5.3 Interesting Observations
	5.4 Recommendations

	6 Limitations and Discussion
	7 Conclusion
	Acknowledgments
	References

	i03-1-copty
	Abstract
	1 Introduction
	2 An extremely abstract OS
	2.1 Implementation details
	2.2 Multiple paths

	3 Malware classification
	3.1 Features
	3.2 Experimental setup
	3.3 Experimental Results

	4 Related work
	4.1 Extreme abstraction
	4.2 Lightweight symbols
	4.3 Malware classification

	5 Future work
	6 Conclusion
	Acknowledgments
	References

	i03-2-machiry
	Abstract
	1 Introduction
	2 Threat Model
	3 Approach Overview
	3.1 Why Loops?
	3.2 Loop Characterization
	3.3 Application Classification

	4 Resilience to Feature-unaware Perturbations
	4.1 Application Transformations
	4.2 CFG Obfuscation
	4.3 Reflection
	4.4 Loop Perturbations

	5 Classification Evaluation
	5.1 Datasets
	5.2 Iterative Pruning Performance
	5.3 Malware Classification Results
	5.4 Importance of Loops and Semantic Labels
	5.5 Resilience to Feature-unaware Perturbations

	6 Discussion
	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

	i03-3-oprea
	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Enterprise Perimeter Defenses
	2.2 Problem definition and adversarial model
	2.3 System Overview
	2.4 Comparison with previous work
	2.5 Ethical considerations

	3 MADE Training
	3.1 Data Filtering and Labeling
	3.2 Feature Extraction
	3.3 Feature Selection
	3.4 Model Selection

	4 Testing and Evaluation
	4.1 MADE Testing
	4.2 Evaluation, Analysis, and Feedback
	4.3 Discussion and Limitations

	5 Related Work
	6 Conclusion
	References

	i03-4-echeverria
	Abstract
	1 Introduction
	2 Related Work
	3 Datasets
	3.1 Bot Datasets
	3.2 Aggregated Bot Dataset
	3.3 User Dataset
	3.4 Botometer Scores

	4 Methodology - The LOBO test
	5 Features for Classification
	5.1 User Features
	5.2 Tweet Features

	6 Experiments
	6.1 Subsampling
	6.2 General Classifiers
	6.3 LOBO Test I - C30K
	6.4 LOBO Test II - C500

	7 Beyond the LOBO test
	7.1 Relatively Stable Results
	7.2 Learning Rate
	7.3 TSNE plot

	8 Discussion
	8.1 Accuracy and Generalization
	8.2 Improvements with small data additions
	8.3 Scalability

	9 Conclusion
	References

	i04-1-tuveri
	Abstract
	1 Introduction
	2 Background
	2.1 SM2: Chinese Cryptography Standards
	2.2 Remote Timing Attacks
	2.3 Cache Timing Attacks
	2.4 EM Analysis
	2.5 SM2 Implementation Attacks: Previous Work

	3 SM2 in OpenSSL
	4 SM2DSA: Remote Timings
	5 SM2DSA: Cache Timings
	5.1 Scalar Multiplication
	5.2 Modular Inversion

	6 SM2PKE: EM Analysis
	7 SCA Mitigations
	7.1 Scalar Multiplication: SCA Mitigations
	7.2 Modular Inversion: SCA Mitigations
	7.3 SCA Mitigations: Evaluation

	8 Conclusion
	Acknowledgments
	References
	A Remote Timings SCA Evaluation: ECDSA

	i04-2-wichelmann
	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Analysis Setup and Targeted Software

	2 Background
	2.1 Dynamic Binary Instrumentation
	2.2 Microarchitectural Leakage
	2.3 Mutual Information Analysis
	2.4 Signing Algorithms

	3 MicroWalk Analysis Technique
	3.1 Leakage Analysis Model
	3.2 Capturing Internal States
	3.3 Preparing State Variables
	3.4 Leakage Analysis
	3.5 Interpretation of MI Score

	4 MicroWalk Framework
	4.1 Investigated Binary
	4.2 Input Generation
	4.3 Trace Generation
	4.4 Trace Preprocessing
	4.5 Leakage Analysis
	4.6 Manual Inspection and Visualization

	5 Case Study I: Intel IPP
	5.1 Applying MicroWalk MI Analysis to IPP
	5.2 Discovered leakages in Intel IPP

	6 Case Study II: Microsoft CNG
	6.1 Applying MicroWalk MI Analysis to CNG
	6.2 Discovered leakages in Microsoft CNG

	7 Related Work
	8 Conclusion
	8.1 Future Work

	References

	i04-3-zhang
	Abstract
	1 Introduction
	2 Background
	2.1 Cache Side-channel Attacks
	2.2 Cache Side-channel Defenses
	2.3 Deep Neural Networks

	3 Methodology Overview
	4 Dataset Construction
	4.1 An Abstract Model
	4.2 Modeling Specific Attacks
	4.3 Modeling Defense Solutions

	5 DNN Training and Inference
	5.1 Dataset Processing
	5.2 Training
	5.3 Inference

	6 Evaluation
	6.1 Attack Strategies
	6.2 Defense Strategies

	7 Methodology Validation
	8 Related Work
	9 Conclusion
	References

	i04-4-liang
	Abstract
	1 Introduction
	2 Problem
	2.1 Side-Channel Attack over Memory Accesses
	2.2 Burdensome Obfuscation of Access Pattern
	2.3 Toward Practically Efficient Obfuscation

	3 Overview
	3.1 Motivation
	3.2 Challenge
	3.3 Methodology

	4 Design
	4.1 Architecture
	4.2 Position Map Compression
	4.3 Position Map Update

	5 Implementation
	6 Evaluation
	6.1 Memory Access Randomness
	6.2 Execution Time
	6.3 Memory Usage

	7 Discussion
	8 Conclusion
	References

	i05-1-junaid
	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivating Example
	2.3 Challenges

	3 StateDroid Overview
	3.1 Architecture
	3.2 Advance Over State-of-the-Art Work

	4 API Call Detector
	4.1 Reengineering Lifecycle Models
	4.2 Deriving Event & Callback Sequences
	4.3 Detecting API Call Sequences

	5 Action Detector
	5.1 Object State Machines
	5.2 API & Action Formalization
	5.3 Generating API Call Sequences
	5.4 Constructing Object State Machines

	6 Attack Detector
	6.1 Action-Effect & Attack Formalization
	6.2 Frame Axioms

	7 Evaluation
	7.1 RQ1: Accuracy of Action Detector
	7.2 RQ2: Accuracy of Attack Detector
	7.3 RQ3: Comparison with Existing Tools
	7.4 RQ4: StateDroid's Performance

	8 Related Work
	9 Discussion
	10 Conclusion
	11 Acknowledgments
	References

	i05-2-allen
	Abstract
	1 Introduction
	2 Rethinking Contextual Awareness
	2.1 Less Effective Contextual Information
	2.2 Case Study: Identifying Informative Context Factors
	2.3 Calling for Lightweight Context Dependencies

	3 PikaDroid
	3.1 Overview
	3.2 Static Analysis Module
	3.3 Learning Module

	4 Implementation
	5 Dataset
	6 Evaluation
	6.1 Effectiveness
	6.2 Comparison with Prior Work
	6.3 Robustness
	6.4 Classification Models
	6.5 Performance

	7 Related work
	8 Conclusion
	9 Acknowledgments
	References

	i05-3-wermke
	Abstract
	1 Introduction
	2 Android Obfuscation Techniques
	3 Detecting ProGuard Obfuscation
	4 Large Scale Obfuscation Analysis
	4.1 Obfuscation Trends

	5 Developer Survey
	5.1 Results and Takeaways

	6 Obfuscation Experiment
	6.1 Results and Takeaways

	7 Discussion
	8 Threats to Validity
	9 Related Work
	10 Conclusion
	References
	A Ethical Considerations
	B Online Survey
	B.1 ProGuard Study - Exit Survey

	i05-4-chau
	Abstract
	1 Introduction
	2 Scope
	2.1 Attack Surfaces
	2.2 Platform and Test Setup
	2.3 Threat Model
	2.4 App Selection

	3 App Weaknesses & Network Attacks
	3.1 Raw Content Transfer In Clear
	3.2 Bootstrap Information Transfer in Clear
	3.3 Raw Content Transfer over TLS
	3.4 Bootstrap Information Transfer over TLS
	3.5 Threats to User Security and Privacy

	4 App Weaknesses & Local Attacks
	4.1 Log File Leakage
	4.2 Raw Content on External Storage
	4.3 Raw Encryption Key on External Storage
	4.4 Raw Content on Internal Storage
	4.5 Raw Encryption Key on Internal Storage
	4.6 Direct Content Source on Internal Storage
	4.7 Client-Side Authorization
	4.8 Raw Encryption Key in Memory

	5 Discussions
	5.1 Responsible Disclosure and Aftermath
	5.2 Possible Countermeasures and Challenges

	6 Related Work
	7 Conclusion
	References
	A APPENDIX
	A.1 Legal and Ethical Matters
	A.2 Table of Apps and CWEs

	i06-1-mani
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology & Experimental Setup
	5 Proxy Availability & Performance
	5.1 Performance
	5.2 Expected vs. Unexpected Content
	5.3 Anonymity

	6 HTML Manipulation
	7 File Manipulation
	7.1 Detailed Findings
	7.2 Network Diversity and Consistency of Malicious Proxies

	8 SSL/TLS Analysis
	9 Comparison With Tor
	10 Ethical considerations
	11 Conclusion
	Acknowledgments
	References
	A Examples of HTTP Proxy Protocols
	B Client locations
	C File Manipulation Infections

	i06-2-ramanathan
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Volumetric Attacks
	2.2 Related Work
	2.3 SENSS vs First-ISP vs Clouds

	3 SENSS
	3.1 Challenges
	3.2 SENSS Architecture
	3.3 ISP Implementation
	3.4 Client Programs
	3.5 Security and Robustness

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 2016 attack on Dyn
	4.3 Effectiveness in Sparse Deployment
	4.4 Comparison of SENSS and Cloud Defenses
	4.5 Delay, Traffic and Message Cost
	4.6 Scalability within an ISP

	5 Conclusion
	6 Acknowledgement
	References

	i06-3-baek
	Abstract
	1 Introduction
	2 Wi-Fi Calling
	2.1 Wi-Fi Calling Architecture
	2.2 Wi-Fi Calling Handshakes

	3 Security in Wi-Fi Calling
	3.1 Privacy of Users
	3.2 Availability of Services
	3.3 Attacks Originating From Victim's UE and Attacker's AP

	4 IMSI Privacy Attack
	4.1 Attack Scenario
	4.2 Attack Setup
	4.3 Results of Attacks
	4.4 Impact and Applicability

	5 DoS Attacks
	5.1 Attack Scenarios
	5.2 Attack Setup
	5.3 Results of Attacks
	5.4 Impact and Applicability

	6 Countermeasures
	6.1 IMSI Privacy Attack Countermeasures
	6.2 DoS Countermeasures

	7 Discussion
	7.1 Trade-off Between Security and Usability
	7.2 Trade-off Between Security and Deployment

	8 Related work
	9 Conclusion
	References

	i06-4-sy
	Abstract
	1 Introduction
	2 Background
	2.1 Session ID Resumption
	2.2 Session Ticket Resumption
	2.3 Session Resumption via Pre-Shared Keys
	2.4 Comparison of Session Resumption Mechanisms

	3 Privacy Problems with TLS Session Resumption
	3.1 Lifetime of Session Resumption Mechanisms
	3.2 Third-Party Tracking via Session Resumption

	4 Data Collection
	4.1 Alexa Top Million Data Set
	4.2 Browser Measurements
	4.3 DNS Data Set

	5 Evaluation
	5.1 Evaluation of Server Configurations
	5.2 Evaluation of Browser Configurations
	5.3 Evaluation of Real-World User Traffic

	6 Countermeasures
	7 Related Work
	8 Conclusion
	References

	i07-1-garmany
	Abstract
	1 Introduction
	2 Model and Assumptions
	2.1 Modern Vulnerability Exploitation

	3 Design
	3.1 Knowledge Base
	3.2 Propagating Control
	3.3 Finding Sinks
	3.4 Program Paths
	3.5 Triggering Input

	4 Implementation Details
	5 Evaluation
	5.1 Exploitation Primitive Trigger (EPT)
	5.2 Fine Tuning

	6 Discussion and Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	Appendices
	A JavaScript Code Corresponding to Running Example
	B SSA-map

	i07-2-rodriguez
	Abstract
	1 Motivation
	2 Problem Statement
	3 Methodology
	3.1 Data Collection
	3.2 Labeling
	3.3 Feature Selection
	3.4 Learning

	4 Evaluation
	4.1 Detection
	4.2 Impact on the Page Loading Time

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References
	A Theoretical Upper Bound for False Positives and Negatives
	B Additional Plots and Tables

	i07-3-xu
	Abstract
	1 Introduction
	2 Problem Statement and Related Work
	2.1 Multi-tab Threat Model
	2.2 Related work

	3 Overview of Multi-tab Attacks
	4 Dynamic Page Split
	4.1 Challenges in Identifying True Split Points
	4.2 BalanceCascade-XGBoost Algorithm

	5 Chunk-Based Page Classification
	5.1 Feature Selection
	5.2 Classifier Design

	6 Experimental Results
	6.1 Experiment Setup
	6.2 Evaluation of Multi-tab] Attacks
	6.3 Evaluation of Page Split
	6.4 Evaluation of Chunk-Based Classification
	6.5 Evaluation with More Than Two Tabs

	7 Conclusion and Future Work
	References
	A The Rest Features in Feature Set
	B Feature Selection

	i07-4-acker
	Abstract
	1 Introduction
	2 Background
	3 Mechanism design
	3.1 Overview
	3.2 Configuration structure
	3.3 Client-side application
	3.4 Misconfiguration

	4 Policy comparison and combination
	4.1 for policy comparison
	4.2 and for policy combination

	5 Prototype implementations
	5.1 Client-side enforcement
	5.2 Server-side manifest handling
	5.3 Automated manifest generation from observed traffic
	5.4 Limitations and considerations

	6 Evaluation
	6.1 Functional evaluation
	6.2 Longitudinal study
	6.3 Performance measurement

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Statistical data

	i08-1-ziegeldorf
	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Scenario and Requirements
	2.2 Analysis of Related Work

	3 Cryptographic Building Blocks
	4 SHIELD Framework
	4.1 Overview of Supervised Classification
	4.2 Secure Building Blocks
	4.3 Implementation and Evaluation Setup

	5 Hyperplane Classifiers
	5.1 Evaluation

	6 Artificial Neural Networks
	6.1 Evaluation

	7 Naive Bayes
	7.1 Evaluation

	8 Hidden Markov Models
	8.1 Evaluation

	9 Outsourcing
	9.1 Evaluation of Outsourcing

	10 Conclusion
	References
	A Detailed Protocols for Secure Building Blocks
	A.1 Max and Argmax
	A.2 Scalar Products
	A.3 Polynomial Approximation of Arbitrary Functions
	A.4 OT-based Evaluation of Discrete Functions
	A.5 Evaluating Gaussians
	A.6 Backtracking

	B Security Discussion
	B.1 Security of the Building Blocks
	B.2 Security of the Classifier Designs

	C Evaluation of Outsourcing for the service provider

	i08-2-kesarwani
	Abstract
	1 Introduction
	2 related work
	3 Problem Framework
	4 Model Extraction Warning
	4.1 Strategy 1: Providing model extraction warnings using information gain metric
	4.2 Strategy 2: Providing model extraction warnings using coverage metric

	5 Experiments
	5.1 Model extraction status for source DT Models
	5.2 Model extraction status for source NN Models

	6 Conclusion and Future Work
	References

	i08-3-fang
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Collaborative Filtering
	2.2 Attacks to Recommender Systems

	3 Problem Formulation
	3.1 Threat Model
	3.2 Attacks as an Optimization Problem

	4 Our Poisoning Attacks
	4.1 Overview
	4.2 Approximating the Optimization Problem
	4.3 Solving the Optimization Problem
	4.4 Generating Rating Scores

	5 Experiments
	5.1 Experimental Setup
	5.2 Attacking Graph-based Systems
	5.3 Transferring to Other Systems

	6 Detecting Fake Users
	7 Conclusion and Future Work
	References

	i08-4-wei
	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Overview
	5 Power Extraction
	5.1 Interference Sources
	5.2 Extraction Methods

	6 Background Detection
	6.1 Intuition
	6.2 Attack Method
	6.3 Evaluation

	7 Image Reconstruction via Power Template
	7.1 Intuition
	7.2 Attack Method
	7.3 Evaluation

	8 Related Work
	9 Conclusion
	A Preliminaries
	A.1 Convolutional Neural Network
	A.2 CNN Accelerator Design
	A.3 Basics on Power Side Channel

	B Discussion and Future Work
	C Attack results on the MNIST dataset
	References

	i09-1-proskurin
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Exception Levels
	2.2 Guest Physical Memory Architecture
	2.3 Debug Exceptions
	2.4 Translation Lookaside Buffer
	2.5 Threat Model

	3 Guest Kernel Monitoring Primitives
	3.1 Implementing Kernel Tap Points
	3.2 Novel Single-Stepping Mechanism
	3.3 Xen altp2m on ARM
	3.4 Splitting the TLBs

	4 Evaluation
	4.1 System Setup
	4.2 DRAKVUF on ARM
	4.3 Performance
	4.4 Effectiveness

	5 Discussion
	5.1 Alternative Tracing Methods
	5.2 Limitations

	6 Related Work
	7 Conclusion
	References

	i09-2-lin
	Abstract
	1 Introduction
	2 Background
	2.1 Linux Container
	2.2 Linux Kernel Security Mechanisms
	2.3 CPU Protection Mechanisms

	3 Attack Dataset Description
	3.1 Exploit Collection
	3.2 Attack Taxonomy
	3.3 Exploit Dataset

	4 Security Evaluation of Container
	4.1 Experiment Setup
	4.2 Result Overview
	4.3 Analysis of Privilege Escalation Attacks
	4.4 A Brief Summary

	5 Defeating Kernel Privilege Escalation Attacks
	5.1 Kernel Privilege Escalation Attack Model
	5.2 Countermeasures
	5.3 Effectiveness and Performance

	6 Discussion on Limitation
	7 Related work
	7.1 Container Security
	7.2 Attack Taxonomy

	8 Conclusion
	Acknowledgments
	References

	i09-3-futagami
	Abstract
	1 Introduction
	2 Out-of-band Remote Management
	3 VSBypass
	3.1 Assumptions and Threat Model
	3.2 Architecture

	4 Implementation
	4.1 Proxy VM
	4.2 I/O Interception
	4.3 Redirection of Virtual Interrupts
	4.4 Sharing VRAM
	4.5 VM Migration

	5 Experiments
	5.1 Eavesdropping on I/O data
	5.2 Performance of a Virtual Serial Console
	5.3 Performance of GUI Remote Access

	6 Related Work
	7 Conclusion
	References

	i09-4-cho
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Architecture and TrustZone
	2.2 Legitimate Channels between the Normal and Secure Worlds
	2.3 ARM Cache Architecture
	2.4 Previous Cache Attacks

	3 Assumptions and Attack Model
	4 Cross-world Covert Channels
	4.1 Prime+Count Overview
	4.2 Prime the Cache
	4.3 Count Using Cache Refill Events
	4.4 A Simple Message Encoding Method
	4.5 Cross-Core Covert Channels

	5 Implementation
	6 Evaluation
	6.1 Effectiveness of Prime+Count
	6.2 Choosing Bucket Ranges
	6.3 Capacity Measurement
	6.4 Image Transfer

	7 Discussion
	7.1 Limitations of Prime+Count
	7.2 Cross-world Covert Channels without Normal World Kernel Privileges
	7.3 Limitations of Our Experiments

	8 Related Work
	9 Conclusion
	References

	i10-1-aviv
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Study Design and Materials
	3.2 Live Simulation Setup and Coordination
	3.3 Procedure
	3.4 Recruitment

	4 Realism and Limitations
	5 Results
	5.1 Comparing Attack Rates Across Video and Live Studies
	5.2 Post-Hoc Participant Feedback

	6 Implications
	7 Conclusions
	References
	A Survey Material
	A.1 Ante Hoc Demographic Questionnaire
	A.2 Post Hoc Participant Strategies Questionnaire Questions
	A.3 Observation Forms
	A.4 Guide/Script for Administering Study

	B Visualization of Authentication
	B.1 Patterns
	B.2 PINs

	i10-2-neupane
	i10-3-wiese
	Abstract
	1 Introduction
	2 Ethical considerations
	3 Threats and Opportunities
	4 Form Factor Survey
	4.1 Materials and Methods
	4.2 Results
	4.3 Discussion
	4.4 Limitations

	5 Field Study
	5.1 Methods
	5.2 Materials

	6 Field Study Results & Discussion
	6.1 Participants and Confidants
	6.2 Recovery Rate
	6.3 Task Durations
	6.4 Security and Trust
	6.5 Sentiments and Token Handling

	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References
	A Form Factor Study Materials
	B Results of form factor survey
	C Questionnaire 1
	D Questionnaire 2
	E Questionnaire for Confidants

	i10-4-farhang
	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Upgrades
	2.2 Software Updates
	2.3 Purchasing New Devices

	3 Methodology
	3.1 Online Survey
	3.2 Measures
	3.3 Study Procedures
	3.4 Participants

	4 Results
	4.1 To Upgrade, or Not to Upgrade?
	4.2 Perceived Usefulness and Satisfaction
	4.3 Measuring Upgrade Cost
	4.4 Security Concerns
	4.5 Free Upgrade and Notification Approach
	4.6 Purchasing New Device

	5 End of Life (EOL) and Security after EOL
	5.1 Security after EOL

	6 Discussion
	6.1 Better Communication to Address Privacy Concerns
	6.2 Better Upgrade Messaging
	6.3 Security and the Need for a Roadmap after EOL
	6.4 Reduce Perceived Cost

	7 Limitations
	8 Conclusion
	References
	A Survey Instrument
	B Code-book
	B.1 Code-book: Not Upgrade
	B.2 Code-book: Upgrade

	i11-1-jain
	Abstract
	1 Introduction
	2 Motivation
	2.1 Evolutionary Fuzzing
	2.2 Motivating Example
	2.3 Lessons learned

	3 Overview
	3.1 Input Execution and Fitness Function
	3.2 DTA and Input Type Inference
	3.3 Type Based Mutation

	4 Input Type Inference
	4.1 In-memory Data Structure Identification for Input Offsets
	4.2 Basic Data Type Identification
	4.3 Array Detection
	4.4 Precise Data Type Identification

	5 Type Inference-assisted Mutation
	5.1 Coverage-oriented Mutation
	5.2 Bug-oriented Mutation

	6 Implementation
	7 Evaluation
	7.1 LAVA-M Dataset
	7.2 MA Dataset
	7.3 Crash Analysis

	8 Related Work
	8.1 Directed Fuzzing Approaches
	8.2 Input Grammar-Based Fuzzing Approaches
	8.3 Evolutionary Fuzzing Approaches

	9 Conclusions
	References
	9.1 Mutation Cycle Algorithm
	9.2 Howard Implementation Details
	9.3 Crash Analysis Details
	9.4 Results on MA dataset for 24hr Run

	i11-2-pang
	Abstract
	1 Introduction
	2 Background
	2.1 C++ Inheritance and Cast Operations
	2.2 Type Confusion
	2.3 Defenses against Type Confusion

	3 Threat Model
	4 Bitype Design and Implementation
	4.1 Overview
	4.2 Safe Encoding Scheme
	4.3 Object Tracing
	4.4 Typecasting Verification
	4.5 Optimization
	4.6 Implementation

	5 Evaluation
	5.1 Coverage
	5.2 Performance Overhead
	5.3 Memory Overhead
	5.4 Compilation Time Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	i11-3-liu
	Abstract
	1 Introduction
	2 Related Work
	2.1 Static Analysis to Detect Concurrency Problems
	2.2 Concurrency Error Detection
	2.3 Logic-Based Methods
	2.4 Fuzz Testing

	3 Case Study of Concurrency Vulnerabilities
	3.1 Real-World Concurrency Vulnerabilities
	3.2 Characteristics of Concurrency Vulnerabilities

	4 Static Analysis
	4.1 Shared Memory Discovery
	4.2 Sensitive Operation Marking
	4.3 Data-flow Merging
	4.4 Vulnerability Categorization
	4.5 Semantic Checking

	5 Thread-Aware Fuzzing
	5.1 Interleaving Exploring Priority
	5.2 Targeted Priority
	5.3 Load Balance

	6 Implementation
	6.1 Implementation of Static Analysis
	6.2 Implementation of Thread-Aware Fuzzing

	7 Evaluation
	7.1 Benchmark Suite
	7.2 Experimental Results
	7.3 Validation of Detected Concurrency Vulnerabilities
	7.4 Analysis of Static Analysis Results
	7.5 Abnormal Time Cost of Static Analysis

	8 Limitations and Future Work
	8.1 Scalability of Static Analysis
	8.2 Capacity of AFL in Exploring Paths
	8.3 Restrictions of Manual Validation
	8.4 Additional Limitations

	9 Conclusion
	References

	i11-4-ye
	Abstract
	1 Introduction
	2 System Architecture
	3 Proposed Method
	3.1 Feature Extraction
	3.2 HIN Constructor
	3.3 snippet2vec: HIN Representation Learning
	3.4 Multi-view Fusion Classifier

	4 Experimental Results and Analysis
	4.1 Experimental Setup
	4.2 snippet2vec based on Different Sets of Meta-path Schemes
	4.3 Comparisons with Different Network Representation Learning Models
	4.4 Comparisons with Traditional Machine Learning Methods
	4.5 Evaluation of Parameter Sensitivity, Scalability, and Stability
	4.6 Case Studies

	5 Related Work
	6 Conclusion
	References

	i12-1-etigowni
	Abstract
	1 Introduction
	2 Background
	2.1 Drone Flight Dynamics
	2.2 Offline Controller Code Verification
	2.3 Limitation of Existing Solutions

	3 Overview
	3.1 Threat Model
	3.2 Crystal Architecture
	3.3 Safety Requirement Definition
	3.4 Predictive Flight Modeling
	3.5 Just-Ahead-of-Time Verification

	4 Drone Physics Modeling
	4.1 Normal Operation Mode Physical Modeling
	4.2 Failure Mode Data-Driven Modeling
	4.3 Full Flight Operation mode

	5 Cyber-Physical Security Modeling
	6 JAT Verification and Recovery
	7 Evaluations
	7.1 Evaluation on 3DR Solo Quadcopter

	8 Related Work
	9 Conclusion
	A Global safety conditions
	B normal Operation Mode Physical Modeling
	Acknowledgments
	References

	i12-2-mujeeb
	i12-3-castellanos
	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Attack points and cyber-to-physical interfaces
	3.2 Attacker profile
	3.3 Modelling a CPS as a Data Flow Graph
	3.4 White-box analysis of controller's source code
	3.5 Extracting graphs from a controller's code
	3.6 Reachability analysis
	3.7 Shortest path analysis and attack diagrams

	4 Implementation
	4.1 The testbed
	4.2 PLC code parser

	5 Evaluation
	5.1 Interactions between attack points and Cy2Phy interfaces
	5.2 Choosing suitable attack points
	5.3 Testing attack points in a real scenario

	6 Discussion
	7 Related work
	8 Conclusions and future work
	References
	A List of components in SWaT
	B Shortest path distance between attack points and Cy2Phy interfaces

	i12-4-schilling
	Abstract
	1 Introduction
	2 State of the Art and Background
	2.1 Threat Model and Attack Vector
	2.2 Error Detection Codes
	2.3 ARM Pointer Authentication

	3 Pointer Protection with Residue Codes
	3.1 Overview
	3.2 Pointer Layout and Residue-Code Selection
	3.3 Pointer Operations

	4 Evolved Memory Access Protection
	4.1 Overview
	4.2 The Linking Approach
	4.3 Memory-Mapped I/O

	5 Architecture
	5.1 New Instructions
	5.2 Hardware
	5.3 Software

	6 Evaluation
	6.1 Future Work

	7 Conclusion
	8 Acknowledgment
	References

	i13-1-wang
	Abstract
	1 Introduction
	2 Motivating Example
	3 System Overview
	4 Design and Implementation
	4.1 Library Call Tracing
	4.2 Lprov Kernel Module
	4.3 Lprov Daemon Process and Log Analysis

	5 Evaluation
	5.1 Performance Overhead
	5.2 Case Study

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Kernel Event Tracing
	A.2 Log Analysis Algorithm
	A.3 Additional Performance Evaluation

	i13-2-deGoer
	Abstract
	1 Introduction
	2 Problem
	2.1 Statement
	2.2 Notations and definitions
	2.3 Scope

	3 Approach
	3.1 Overview
	3.2 Heuristics

	4 Implementation
	4.1 Ground-truth - oracle
	4.2 Naive implementations of call detection
	4.3 Implementation details of iCi

	5 Experiments
	5.1 Methodology
	5.2 Platform
	5.3 General results
	5.4 SPEC CPU2006
	5.5 Influence of the compiler
	5.6 Discussion

	6 Applications
	7 Conclusion
	References

	i13-3-im
	Abstract
	1 Introduction
	2 Background
	2.1 Android security architecture
	2.2 Example: Location services
	2.3 SEAndroid policy rules
	2.4 The complexity of SEAndroid policy

	3 Methodologies
	3.1 The ``box'' metric
	3.2 Git repository analysis
	3.3 Our measurement tool

	4 Measurement Results
	4.1 Boxes vs. rules
	4.2 Number of boxes in a rule
	4.3 Number of rules per box
	4.4 Ratio of rule vs. box changes
	4.5 Summary

	5 An Historical Analysis
	5.1 The ``age'' of rules
	5.2 The increasing policy complexity
	5.3 The effect of multiple branches
	5.4 Case study: Stagefright
	5.5 Contributor comparison

	6 Discussion
	6.1 SEAndroid vs. Smack
	6.2 Android Treble
	6.3 Android for Work

	7 Related work
	8 Conclusion
	9 Acknowledgment
	References

	i13-4-rahman
	Abstract
	1 Introduction
	2 Background
	3 Intent-driven Access Control
	3.1 Threat Model and Assumptions
	3.2 IAC via BCI

	4 Experiment Design
	4.1 Single App Experiment
	4.2 Multiple Apps Experiment
	4.3 Experimental Procedures

	5 Data Process and Analysis
	6 Feasibility Test
	6.1 Single App Analysis
	6.2 Cross-app Portability Analysis
	6.3 Results Analysis
	6.4 Authorization Accuracy

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgment
	References

	i14-1-nikolic
	Abstract
	1 Introduction
	2 Problem
	2.1 Ethereum Smart Contracts
	2.2 Contracts with Trace Vulnerabilities
	2.3 Our Approach

	3 Trace Vulnerabilities
	3.1 EVM Semantics and Traces
	3.2 Safety Violations
	3.3 Liveness Violations

	4 The Algorithm and the Tool
	4.1 Symbolic Analysis
	4.2 Concrete Validation

	5 Evaluation
	5.1 Results
	5.2 Case Studies: True Positives
	5.3 Case Studies: False Positives
	5.4 Summary and Observations

	6 Related Work
	7 Conclusion
	References

	i14-2-torres
	Abstract
	1 Introduction
	2 Background
	2.1 The Ethereum Virtual Machine
	2.2 The Solidity Programming Language
	2.3 Integer Bugs in Ethereum Smart Contracts

	3 Methodology
	3.1 Type Inference
	3.2 Finding Integer Bugs
	3.3 Taint Analysis
	3.4 Identifying Benign Integer Bugs

	4 Osiris
	4.1 Design Overview
	4.2 Implementation

	5 Evaluation
	5.1 Empirical Analysis
	5.2 Detection of Real-World Vulnerabilities

	6 Discussion
	6.1 Causes for Integer Bugs
	6.2 Ways Towards Safe Integer Handling

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Control Flow Graph Example
	B The DAO Hack

	i14-3-greubel
	Abstract
	1 Introduction
	2 Background
	2.1 Tor Bandwidth Measurements
	2.2 Trusted Execution Environments
	2.3 Blockchain and Smart Contracts

	3 System and Adversary Model
	4 Design
	4.1 Entity Communication
	4.2 Relay Registration
	4.3 Bandwidth Measurer Registration
	4.4 Join Measurement Process
	4.5 Bandwidth Measurements
	4.6 Reporting and Aggregating Results
	4.7 Malfunction Detection

	5 Security Analysis
	5.1 Group Compromise
	5.2 Attacks from a malicious Host
	5.3 Attacks from compromised TEEs
	5.4 Attacks on the SC

	6 Implementation
	6.1 Smart Contract
	6.2 Bandwidth Measurement Script
	6.3 Bandwidth Measurement Host

	7 Evaluation
	7.1 Measurement script
	7.2 Smart Contract

	8 Related Work
	9 Conclusion and Future Work
	References
	A Intel SGX Details
	B Tor Speedracer Measurements
	C Smart Contract Implementation
	D Measurement Data

	i14-4-tran
	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Preliminaries
	2.2 Threat Model
	2.3 Scope, Assumptions, and Limitations

	3 Obscuro
	3.1 Solution Overview
	3.2 Obscuro Protocol
	3.3 Indirect Participation Mechanism
	3.4 Detection of Malicious Blockchain Forks
	3.5 Collecting Deposits

	4 Security Analysis
	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Discussion
	6.1 Recipient of the Mixing Fees
	6.2 Multiple Obscuro Instances

	7 Related Work
	7.1 Existing Bitcoin Mixer Solutions
	7.2 Privacy Improvements in other Cryptocurrencies
	7.3 TEE for Cryptocurrency Applications

	8 Conclusion
	9 Acknowledgments
	References
	A Structure of the Deposit Transaction

	i15-1-continella
	Abstract
	1 Introduction
	2 Background
	2.1 Amazon S3
	2.2 Threats

	3 Methodology
	3.1 Enumeration & Data Collection
	3.2 Security Analysis

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Enumeration & Data Collection
	4.3 Scanning Results
	4.4 Vulnerable Websites

	5 Mitigation
	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

	i15-2-demoulin
	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Strawman solutions
	2.2 DeDoS solution

	3 DeDoS Design
	3.1 Minimum splittable units
	3.2 Inter-MSU communication
	3.3 Routing tables
	3.4 DeDoS runtime API
	3.5 Support for existing applications

	4 Resource Allocation
	4.1 Machine-local scheduling
	4.2 Initial MSU assignment
	4.3 Cloning and merging

	5 Implementation
	5.1 Overview
	5.2 DeDoS local runtime

	6 Case Studies
	7 Evaluation
	7.1 Overheads
	7.2 Attack mitigation

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

	i16-1-blanchard
	Abstract
	1 Introduction
	2 Method
	2.1 Word choice
	2.2 Protocol
	2.3 Design choices

	3 Demographic information
	3.1 Participant selection
	3.2 Recruitment of volunteers
	3.3 Statistics

	4 Results
	4.1 Word selection
	4.2 Memorization
	4.3 Guessing

	5 Statistical modelling
	5.1 Strategies and entropy
	5.2 Semantic aspects

	6 Limitations
	6.1 Ecological validity
	6.2 Short-term and long-term memory
	6.3 Free choice of words

	7 Discussion
	8 Conclusion
	References

	i16-2-mayer
	Abstract
	1 Introduction
	2 Related Work
	3 Development of the Awareness-Raising Material
	3.1 First Iteration - Based on Literature
	3.2 Second Iteration - Incorporation of Structured Expert Feedback
	3.3 Third Iteration - Visual Elements and Lay-User Feedback

	4 User Study Methodology
	4.1 Hypotheses
	4.2 Procedure
	4.3 Questionnaires
	4.4 Analysis

	5 Results – Pre-Treatment and Post-Treatment Questionnaires
	5.1 Assessment of Scenarios
	5.2 Password Security Ratings
	5.3 Qualitative Results

	6 Results – Retention Questionnaires
	6.1 Assessment of Scenarios
	6.2 Password Security Ratings

	7 Discussion
	7.1 Improvements Derived from the User Study
	7.2 Limitations

	8 Conclusion
	References
	A.1 Introductory Sections
	A.2 Attacks
	A.3 Technologies to Protect User Credentials

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

