IAC: On the Feasibility of Utilizing Neural Signals for
Access Control

Md Lutfor Rahman
Computer Science and Engineering
University of California Riverside
mrahm011@ucr.edu

ABSTRACT

Access control is the core security mechanism of an operating sys-
tem (OS). Ideally, the access control system should enforce context
integrity, i.e., an application can only access security and privacy
sensitive resources expected by users. Unfortunately, existing ac-
cess control systems, including the permission systems in modern
OS like i0S and Android, all fail to enforce context integrity thus
allow apps to abuse their permissions. A naive approach to enforce
context integrity is to prompt users every time a sensitive resource
is accessed, but this will quickly lead to habituation. The state-of-
art solutions include (1) user-driven access control, which binds a
predefined context to protected GUI elements and (2) predicting
users’ authorization decision based on their previous behaviors and
privacy preferences. However, previous studies have shown that
the first approach is vulnerable to attacks (e.g., clickjacking) and
the second approach i challenging to implement as it is difficult
to infer the context. In this work, we explore the feasibility of a
novel approach to enforce the context integrity—by inferring what
task users want to do under the given context from their neural
signals; then automatically authorizes access to a predefined set of
sensitive resources that are necessary for that task. We conducted
a comprehensive user study including 41 participants where we
collected their neural signals when they were performing tasks
that required access to sensitive resources. After preprocessing and
features extraction, we trained machine learning classifier to infer
what kind of tasks a user wants to perform. The experiment results
show that the classifier was able to infer the high-level intents like
take a photo with a weighted average precision of 88%.

CCS CONCEPTS

« Security and privacy — Systems security; Usability in security
and privacy; Human-centered computing — Empirical studies
in ubiquitous and mobile computing;

KEYWORDS

brain-computer interface, intent-driven access control, machine
learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC’18, December 3-7,2018, San Juan, PR, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6569-7/18/12...$15.00
https://doi.org/10.1145/3274694.3274713

Ajaya Neupane
Computer Science and Engineering
University of California Riverside
ajaya@ucr.edu

641

Chengyu Song
Computer Science and Engineering
University of California Riverside
csong@cs.ucr.edu

ACM Reference Format:

Md Lutfor Rahman, Ajaya Neupane, and Chengyu Song. 2018. IAC: On the
Feasibility of Utilizing Neural Signals for Access Control. In Proceedings of
2018 Annual Computer Security Applications Conference (ACSAC’18). ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3274694.3274713

1 INTRODUCTION

Access control is the core security mechanism of an operating sys-
tem (OS). It decides what resources a subject can access and in
what way the access can be performed (e.g., read, write, execute).
Classic access control models include Discretionary Access Control
(DAC), Mandatory Access Control (MAC), Role-based Access Con-
trol, Attribute-based Access Control, etc. An important property of
all these models is that a subject is not the human user, but a pro-
cess/thread that operates on behalf of the human user (i.e., a proxy).
Therefore, the effectiveness of these models heavily relies on the
assumption that the software truly operates as the user intended.
This assumption generally held in the early era of computing his-
tory when software was either written by users themselves or by a
trusted authority (e.g., an administrator). However, with the boom
of the software industry, this assumption no longer holds—as users,
we usually do not fully understand what a piece of software truly
does. Consequently, numerous security and privacy issues arise.
For example, ransomware can abuse our credentials to encrypt our
files and spyware can easily steal our private information.

Modern operating systems like iOS and Android use sandbox and
permission system to mitigate this threat. In these systems, apps
are no longer trusted—by default, they can only access to their own
files and limited system resources. Accesses to user-owned data and
privacy sensitive sensors are mediated by the permission system
through which user can decide either to allow the accesses or deny
them. While this is a step forward, the problem of these systems (iOS
and Android M+) is that they only ask users to authorize the first
access to the protected resources, a.k.a., ask-on-first-use (AOFU).
Any subsequent access to the same resource will be automatically
allowed unless users manually revoke the permission. However,
since an app can have different functionalities and the resources
may be used under quite different context, recent research results
have shown that AOFU failed to protect users’ privacy over half of
the time [65].

A straightforward idea to solve this problem is to prompt user
every time a protected resource is about to be accessed. However,
as the number of accessing requests can be huge (e.g., Wijesekera et
al. found that a single app can make tens of hundreds of requests
per day [65]), this approach can easily cause habituation and loose
its effectiveness. So, the real challenge is how to reduce the number
of prompts without sacrificing users’ privacy.

ACSAC’18, December 3-7,2018, San Juan, PR, USA

A general idea to solve this challenge is to infer what decision a
user is likely to make thus avoiding redundant prompts [33, 38, 41,
47,55, 57, 66]. Existing solutions can be divided into two directions.
Solutions in the first direction associate GUI gadget with predefined
context, then extract user’s authorization from their interactions
with the gadget, a.k.a. user-driven access control [33, 38, 41, 51, 55—
57,59, 67]. For example, a downloaded file is allowed to be executed
only if the user has clicked the “Save” button to save it [38]; an email
is allowed to be sent only if the user has clicked the “Send” button
and its content must match what is displayed on screen [33]; and
only when the user clicks the “Camera” button can an app access
the camera device [41, 55, 57]. However, this associating user’s
authorization to GUI gadgets has two major drawbacks. First, there
are many GUI attacks that can mislead the user, such as clickjacking
attacks [30]. For this reason, existing user-driven access control
models have to employ additional steps to prevent such attacks,
e.g., by isolating the gadgets from the application and letting the OS
to render [57]. Secondly and more importantly, not all legitimate
resources accesses are initiated from user interaction [23].

The second direction is to predict users’ authorization decision
based on their privacy preference [37], privacy profile [36], or pre-
vious authorization decisions and other behaviors [47, 66]. Because
the decisions are usually context-sensitive, the biggest challenge for
this direction is how to infer the context. Olejnik et al. used 32 raw
features to define a unique context but admitted that they are not
exhaustive [47]. Wijesekera et al. believed that the problem of infer-
ring the exact context in an automated way is likely to be intractable
thus focused on inferring when context has changed [66].

In this study, we explore the feasibility of a new way to in-
fer users’ authorization decisions—by directly inferring their intent
through the brain-computer interface. Our observation is that the
notion of contextual integrity [46] suggests that each unique con-
text will setup a set of corresponding social norms on how users
would expect their privacy information to be used. Whenever the
information is used in ways that defy the users’ expectations, a
privacy violation occurs. Applying this notion to the access control
systems (permission models) implies that we can automate the au-
thorization process by (1) associating each context of an app with
a functionality it appears to perform; (2) associating each function-
ality with a set of expected sensitive resources that are necessary
(i.enorms); and (3) limiting the requested resources to the expected
set. However, as discussed earlier, the first step—inferring func-
tionality from a context is very difficult. The key idea behind our
approach is that we can actually avoid solving this challenging
problem by utilizing our brain as a “magic” inference engine to
directly output the result: what is the intended functionality the user
wants to perform under the given context. Once we can infer intents
from the user’s brain signals, we can easily follow step (2) and (3)
to make authorization decisions.

As the first footprint towards this direction, this work studies
the feasibility of constructing such a decision-making system based
on non-invasive electroencephalography (EEG) headset. Recent
advances of the EEG sensor technology have enabled us to use
consumer-grade headset to capture brain signals that used to be only
available to clinical settings with invasive probes. Utilizing these
EEG sensors, researchers have shown it is possible to recognize
simple mental tasks as well as playing games. In this study, we aim

642

M. Rahman et al.

to explore the feasibility of utilizing these sensors to infer user’s
intent through answering the following research questions:

e Q1: Is it possible to extract high-level intents (e.g., taking a
photo) from the neural signals with a machine learning classi-
fier?

e Q2: Is the accuracy of the classifier high enough to support
automated authorization?

To answer these questions, we designed and conducted a user
study with 41 participants. Experiment over the collected data
indicates that the answers to the above research questions are
mostly positive. Specifically, our classifier is able to distinguish
four different high-level intents (taking a photo, taking a video,
choosing a photo from the gallery, and cancel) with a weighted
average Precision of 88.34%, while the weighted average Recall is
86.52%, and the weighted average F — measure is 86.92%.

Contributions. In brief, our contributions in this paper are:

e We designed a new intent-driven access control model that
relies on inferring of user’s high-level intents through the
brain-computer interface (BCI).

e We experimentally validated the feasibility of constructing
such a system with consumer-grade EEG headset via a user
study of 41 participants. Our experimental results show the
feasibility of intent-driven access control. To our best knowl-
edge, this is the first study of utilizing brain signals to protect
users’ privacy.

The rest of the paper is organized as follows: §2 provides the
background on Electroencephalography (EEG), Event-related po-
tential (ERP), Emotiv Epoc + headset and Brain Computer Interface
(BCI) which are required to understand our study, §3 introduces the
threat model of our new access control design and how it works,
§4 presents the experiments design and experimental procedures,
§5 provides the details of how raw EEG data is processed before
feeding into a machine learning algorithm, §6 empirically answers
the two research questions, §7 discusses the limitations of our ex-
isting design and possible future work, §8 compares our work with
related research, and §9 concludes the paper.

2 BACKGROUND

In this section, we give the background of Electroencephalography
(EEG), event-related potential (ERP), Emotiv Epoc + headset and
Brain Computer Interface (BCI).

EEG. Electroencephalography (EEG) is a monitoring technique that
records the brain’s electrical activities. The recorded EEG data is a
time series data. Voltage fluctuations generated from neurons inside
the brain are captured by electrodes and amplified. The electrodes
are usually placed in a non-invasive way (i.e., attached to the skin
of the head scalp), but they can also be used invasively. For this
study, we used non-invasive EEG sensors.

Event-Related Potentials. Event-related potentials (ERPs) are
small but measurable (with an EEG sensor) voltages changes gen-
erated by the brain in response to a stimulus event. The stimulus
events include a wide range of cognitive, sensory, or motor activ-
ities, such as showing different letters to the participants, or in
our experiments, performing a given task with mobile apps. ERPs

IAC: On the Feasibility of Utilizing Neural Signals for
Access Control

Figure 1: A 14-channel Emotiv Epoc+ headset used to collect
data in this study (left) and electrode positions on the head-
set (right).

are time-locked to the stimulus, i.e., given stimuli, an EEG voltage
change is always expected in a known time frame. Because the volt-
age changes are small, ERPs are calculated by averaging multiple
trials of the time-locked EEG samples. This procedure will filter
out the background EEG noise and extract ERPs. The resulting ERP
waveforms consist of a sequence of positive and negative voltage
deflections, which are called components. So far, researchers have
discovered more than a dozen ERP components [61]. Among them,
the most well-studied ERP component is P300 or P3 wave.

Emotiv EPOC+ Headset. The Emotiv EPOC+ wireless headset
(Figure 1) [20] is a consumer-grade EEG device that is widely used
in gaming and entertainment industry. It allows gamers to control
computer game based on their thoughts or facial expression [54].
We used this device in our study because it is significantly less ex-
pensive than other clinical-grade EEG devices and is more portable.
For this reason, it is also widely used in research projects [40, 44].
The headset consists 14 data collecting electrodes (AF3, AF42, F3,
F4, F7, F8, FC5, FC6, O1, 02, P7, P8, and T7, T8) and two reference
electrodes (CMS/DRL). The electrodes are placed according to the
International 10-20 system (Figure 1).

Getting good quality signal from the Emotiv headset requires
pressing the two references for 5s or more before data collection.
The Emotiv headset collects EEG data at 128 sample per second !.
The captured EEG signals are then converted to digital form. The
digital data are then processed and transmitted as encrypted data
to the stimuli computer via USB dongle receiver. This proprietary
USB dongle communicates with Emotiv headset in 2.4 GHz fre-
quency. Emotiv also provides companion software for its device.
EmoEngine is a software component for post-processing data. This
software exposes data to BCI applications via the Emotiv Applica-
tion Programming Interface (Emotiv API). Pure.EEG is a software
component for data collection, which is used in this study. Pure.EEG
collects data from the Emotiv device independently via the USB
dongle and can upload data to the cloud and download from the
cloud recorded sessions.

BCI. Brain-Computer Interface (BCI) is a new type of user interface
where our neural signals are interpreted into machine understand-
able commands. Here, it converts brainwaves into digital commands

! The device internally collected data at a frequency of 2048 Hz, then down-sampled
to 128 Hz before sending it to the computer.

643

ACSAC’18, December 3-7,2018, San Juan, PR, USA

which instruct machine to conduct various tasks. For example, re-
searchers have shown it is possible to use BCI to allow patients
who suffer from neurological diseases like locked-in syndrome to
spell words and move computer cursors [9, 62] or allow patients to
move a prosthesis [60]. With BCI, instead of using physical interac-
tions human can use mind interaction. In our study, we choose this
interface as it can directly reveal the user’s intent thus is resistant
to some perception manipulation attacks (e.g., clickjacking [30]).

3 INTENT-DRIVEN ACCESS CONTROL

In this section, we introduce how our new access model would
work. We start with the threat model and assumptions. Then we
show how to realize the model with BCI.

3.1 Threat Model and Assumptions

We make following assumptions for constructing a BCI-based in-
tent inference engine and use it to authorize access to user-owned
sensitive resources and sensors. We assume the OS is trusted. At-
tacks that exploit OS vulnerabilities to gain illegal access to the
protected resources and sensors are out-of-scope. We also assume
the OS already employs a permission model that considers con-
text integrity (e.g., an ask-on-every-use model). Our goal is not
to replace the existing access control system, but to make it more
user-friendly.

We assume our adversary is skilled application developer aim-
ing to gain access to the user-owned resources/sensors without
user’s consent and abuse such access. Attackers are allowed to
launch UI attacks (e.g., clickjacking) to mislead users. With one
exception, to correctly identify which app the user is interacting
with, the OS should not allow transparent overlay [26]. We consider
phishing-style attacks (e.g., explicitly instructing users to perform
sensitive operations) and side-channel attacks (that leak protected
information) out-of-scope.

Regarding access to the raw EEG data, we envision a restricted
programming model. Specifically, existing platforms like Emotiv
expose raw EEG data to any applications build against their APIs.
This programming model has been proven to be vulnerable to
side-channel attacks that can infer user’s sensitive and private in-
formation [10, 25, 40, 44]. To prevent such attacks, we assume a pro-
gramming model that is similar to the voice assistants [4, 42]. That
is, the raw EEG data is exclusively accessed by a trusted module,
which will interpret the data and translate into app understandable
events. We assume our inference engine to be part of this module
and is implemented correctly. We also do not consider physical
attacks against the EEG sensors.

3.2 JAC via BCI

Our BCI-based intent-driven access control system works similarly
to the systems proposed in [47, 66]. In particular, the baseline access
control system will prompt the user to authorize every access to
protected resources. The goal of IAC is to minimize the number
of the prompts by checking whether the access is intended by the
user. Specifically, a legitimate access to protected resource should
be (1) initiated by user’s intent to perform a certain task under the

ACSAC’18, December 3-7,2018, San Juan, PR, USA

Train

M. Rahman et al.

Feature
Extraction

®

Raw Data
Acquisition

®

Preprocessing

Test

©)

Feedback Eoop
v
Decision “NO Execution
ML Model == Confidence Prompt User Device

® ® | Yes ® @

Figure 2: Overview of IAC’s Architecture. IAC will @) continuously monitor the brain signals using the EEG sensor and user
interaction with the system. Upon an input event, IAC will create an ERP, (2) preprocess the raw EEG data to get purer signals,
) extract feature vector from the purified signals, @ feed the extracted features to a ML model to infer the user’s intent. In
step), if the ML gives enough decision confidence, IAC will directly (7) authorize access to protected resources. Otherwise, it
will 6) prompt users to authorize the access and improve the ML model with the feedback loop.

presented app context? and (2) within the expected set of necessary
resources for that task. Therefore we can create intent-based access
control mechanism based on ERPs and use them as the inputs to a
machine learning classifier. The data flow diagram for IAC is given
in Figure 2.

@) 1ac

Allow Instagram to access Camera
on your device?

Take photo [] Take video

ALLOW DENY

Figure 3: Example permission request. Compare to existing
permission request, the biggest difference is IAC also asks
for intended task (e.g., taking a photo).

To train the classifier, we use user’s explicit answers to the ask-
on-every-use prompt as the ground truth. However, instead of just
asking the user to authorize the access, IAC will also list a set
of tasks that rely the requested resource for user to choose (e.g.,
Figure 3). If the access is authorized, we label the ERP with the task
user has chosen; otherwise the event is discarded.

During the normal operations, the OS will continuously monitor
neural signals through the BCI device as well as user’s interaction
with the system to create and cache most recent ERPs. ERPs are
bound to the app to which the input event is delivered (e.g., the
most foreground app at that moment) and will expire after a context
switch. This prevents one app from “stealing” another app’s ERP.
Upon an application’s request to access a protected resource (e.g.,
camera), the access control system will retrieve the most recent
ERP. The ERP will then be fed into the trained classifier to infer
whether the user intended to perform a task that requires access
to that resource. If so, permission is automatically granted to that
request; if the intended task does not require the permission or
the confidence of the classification result is not high enough, IAC
will fall back to prompt the user to make the decision. The ground
truth collected from the prompt window is then to update the ML
model. As demonstrated in previous works [47, 66] and our own
experiment, this feedback is important for fine tuning the ML model
to improve the precision of the prediction.

2 Note that unlike access control gadget, we do not require the intent to be expressed
through certain interactions with the app’s GUL

644

Applicable Scenarios. Apparently, using BCI-based access con-
trol for existing systems like desktop and mobile devices is imprac-
tical; users need to wear the device all the time. However, this field
is advancing fast and companies like Facebook and Neuralink are
laying out projects to decode users’ intents into machine readable
commands to scroll menus, select items, launch applications, and
manipulate objects [13]. BCI has also been used in manufacturing
to control machines [1, 58] or to monitor workers’ mental status in
order to avoid over-stressing [16]. With the rapid progress in neural
imaging and signal processing, in not so distant future, BCI-based
applications can be far beyond gaming and entertainment. Hence,
we believe BCI could become ubiquitous and a practical way to
interact with digital systems and our IAC be easily integrated into
such systems to protect users’ privacy.

4 EXPERIMENT DESIGN

The goal of our experiment is to study the feasibility of inferring
user’s high-level intents through the brain-computer interface (BCI)
and use user’s intents to authorize access to protected resources.
More specifically, we want to assess whether the event-related
potentials (ERPs) recorded using a consumer-based EEG headset
could be used to infer three types of high-level common tasks: (1)
taking a photo, (2) taking a video, and (3) pick a photo from library.
The hypothesis to be tested is:

HypoTHEsIs. Visual and mental processing of each unique inten-
tion has distinguishable patterns in event-related potentials that can
be extracted with a supervised machine learning algorithm.

4.1 Single App Experiment

We designed a special Android app (Figure 4) to test our hypothe-
sis. This app consists of three steps. The main activity (Figure 4a)
contains 10 TASK buttons to start 10 sets of tasks. The tasks are
randomized in each set. Before starting each session, participants
will click the START button to begin logging all the click events into
a text file. In each session, participants are asked to go through all
10 sets of tasks. Clicking on each TASK button will lead to the task
option screen (Figure 4b and Figure 4c). Here participants are asked
to perform 4 actions. When an action is finished, participants will
return to the same task option screen and continue to the next task
until all 4 actions are done. Then they move on to the next task
set. When all 10 sets of tasks are completed, participants will click
the STOP button to stop the session and take a break before starting

IAC: On the Feasibility of Utilizing Neural Signals for
Access Control

START

Choose Options

TASK1 TASK2 1. Take Photo

TASK3 TASK4 2. Take Video

TASK5 TASK6 3. Choose From Gallery

TASKS 4. Cancel

TASK9 TASK10

(a) Main activity (b) Task options 1

ACSAC’18, December 3-7,2018, San Juan, PR, USA

sTOP

S

Choose Options ?E
1. Cancel TASK1 | TASK2
2. Take Photo TASK3 TASK4
3. Take Video TASKS TASK6
4. Choose From Gallery TASK7 TASKS
TASKY TASK10
(c) Task options 2 (d) Task activity

Figure 4: Android app for data collection.

another session. Among these 4 tasks, three involve accessing user-
owned privacy sensitive sensors (camera and microphone) and files
(photo gallery). The order of these four tasks is different between
different task sets. Details of the 4 tasks are listed below.

e Take Photo (Photo) Clicking this button will send a
MediaStore.ACTION_IMAGE_CAPTURE intent, to start the camera
app. As the name suggests, participants are then asked to take
a photo of a target object (e.g., a pen Figure 4d) with the camera
app. This task requires access to the camera device.

e Take Video. (Video) Similar to taking a photo, clicking this
button will send a MediaStore.ACTION_VIDEO_CAPTURE intent
and invoke the camera app. Participants are then asked to take
a short video of the target object. The differences from taking
a photo are (1) taking a video will access both the camera and
the microphone device and (2) accessing to both devices are
continuous.

e Choose from Gallery. (Gallery) Clicking this button will
send an Intent.ACTION_GET_CONTENT intent with image/* type.
Participants are then asked to pick the photo of the target object
(e.g., a pen) from the photo gallery of the Android device. To
make sure the photo is always available, we do not use this
task as the first option of the first task set. This task requires
access to the privacy-sensitive files.

e Cancel. Cancel is a unique task, it does not perform partic-
ularly interesting operations or access any privacy-sensitive
resources. Its sole purpose is to ask the participants to click a
button on the touchscreen of the phone.

Alternative Explanations. An important part of this experiment
design is to rule out a few alternative explanations (AE). Specifically,
as our experiment involves asking participants to perform a task
using the smartphone, we want to rule out the possibility that
what we captured from the neural signals is not the user’s intent to
perform the given task but

o AE1: The intent to interact with the phone (e.g., click a button).

645

e AE2: The intent to click a specific position of the touch screen
(e.g., a button at a fixed position).

o AE3: The reaction of seeing similar pictures.

We added the Cancel task so if AE1 is true, we will not be able
to distinguish the Cancel task from the rest tasks. We randomize
the order of the tasks on the options activity so if AE2 is true,
we will not be able to distinguish between randomized tasks. We
deliberately choose three visually similar tasks so if AE3 is true, we
will not be able to distinguish between these tasks that involve the
same photo.

Table 1: The list of Apps used in testing phase: we test the
performance of the model built on the neural data collected
from the in-house android app in correctly identifying the
intention of the users when they interact with these real

apps.

App Name Actions
Facebook Messenger | Photo, Gallery
Google Hangouts | Photo, Gallery
WhatsApp Photo, Gallery
Instagram Photo, Gallery
Camera Photo, Video
VideoCamDirect Video
QuickVideo Video
SnapChat Gallery

4.2 Multiple Apps Experiment

For testing the “portability” of the learned model (i.e., the model
can identify the same intent across different apps and contexts), we
designed a second experiment with eight popular real-world apps
(Table 1). All of them have more than 500k downloads in the Google
Play Store. We created testing accounts for WhatsApp, Hangouts,
Messenger, Snapchat and Instagram. The other three apps Camera,

ACSAC’18, December 3-7,2018, San Juan, PR, USA

QuickVideo, and VideoCamDirect did not need any account to take
photos or videos.

We instructed participants to browse these apps as they use it in
their real-life (e.g., they might be taking a photo, or writing texts).
However, in this study, we just focus on the participants’ interaction
events related to the following three tasks: (1) taking a photo, (2)
taking video, and (3) select and upload a photo from the gallery.
This experiment has more realistic and ecologically valid settings as
the participants were browsing these popular apps and performing
the common tasks (e.g., take photo, take video and upload photo)
as per their own choice.

4.3 Experimental Procedures

Ethical and Safety Considerations. Our study involved human
subjects, and our experimental and recruiting procedures were
approved by the Office of Research Integrity (ORI) at the University
of California, Riverside under UCR IRB-HS 16-210. All participants
were given the option to withdraw from the study at any point of
the time. Devices involved in the study were sanitized after each
session to avoid skin problems (e.g., irritation). The standard best
practices were followed to protect the confidentiality and privacy
of the participants data. Compensation of $30 was provided to the
participants whether they withdrew or not.

Participants Recruitment. After obtaining the IRB approval, we
recruited a total of 41 healthy participants for our experiments.
Among the 41 participants, 33 participants were for single app
experiment and 8 participants were for multiple app experiment.
Participants were recruited by word of mouth, flyers, and social
media (Facebook) advertising. Informed consent and some non-
personally-identifiable data (gender, age, and major) were obtained
from all participants. Twenty-seven (65.85%) of the participants
were male, and Fourteen (34.15%) were female. The details on the
participants’ demographics are provided in Table 2.

Experiment Setup. The experiment consists a consumer-grade
EEG headset (Emotiv EPOC+), an Android phone (Google Nexus
5X), an experiment app (§4.1), a laptop, and the Emotiv software
package [21]. Participants are asked to use the app on the Android
phone while wearing the lightweight EEG headset. The EEG headset
connects to laptop and sends EEG data via a Bluetooth dongle. The
Android phone connects to the laptop via USB. To construct the
ERPs, the Android app records the timestamp of the task. Clocks of
the phone and the laptop are synchronized with network time to
precisely align the event time stamps and the EEG data. EEG data
is recorded using the Emotiv Pure EEG software.

Testbed. Our testbed is based on Android. To ease the creation of
ERP, in the experiments, we use touch events as the anchor to distin-
guish different ERPs. In particular, we developed a standalone moni-
toring app which uses the accessibility service in Android to capture
all the touch events (using the flagRetrieveInteractiveWindows
flag) [26] and log the timestamps of the events and the target GUI
element. The logged timestamps are then used to synchronize with
the neural signals captured by the BCI device and generate ERPs
corresponding to the touch events. To label ERPs, we manually
label GUI controls with corresponding intents (similar to access
control gadget). If a monitored touch event triggers a labeled GUI
control, we tag the ERP with the corresponding intent.

646

et al.

Figure 5: Experiment setup user is playing android apps
while wearing the Emotiv Epoc+ BCI headset. The sensors
of headset captured neural signals, converted to digital form
and transmitted encrypted data to the neural data collection
computer via USB dongle receiver.

Preparation Phase. The first step of the preparation is to inform
participants that their brain signals would be collected while play-
ing our app on our test Android device and will be used to improve
the access control model. Next, we sanitize the electrodes of the
EEG headset and apply gel on them to improve their connectivity
with the skin. Then we set-up the EEG headset by putting it on the
head of the participant. Because the signal-to-noise ratio is lower in
raw EEG data, additional preparation steps are followed to ensure
the quality of the data. First, all experiments were conducted in a
quiet meeting room reserved for one participant only (Figure 5).

Table 2: Participants Demographic Distribution Summary

Gender (%)
Male 65.85
Female 34.15
Age (%)

18-21 years 39.03
22-25 years 24.39
26-29 years 29.26
> 30 years 7.32

Background (%)
Computer Science 31.70
Bioengineering 9.74
Biology 4.87
Psychology 7.32
Linguistic 2.44
Business 7.32
Political Science 7.32
Mechanical Engineering | 2.44
Economics 7.32
Public Policy 244
Anthropology 2.44
Gender and Sexuality 2.44
Toxicology 244
Medical Science 2.44
Undeclared 7.32

IAC: On the Feasibility of Utilizing Neural Signals for
Access Control

Second, a preprocessing step is carried out on the raw EEG data
to increase their signal-to-noise ratio. During preprocessing, noise
reduction is applied to each of the raw EEG channels. To ensure
all the signals from the electrodes were properly channeled, we
checked the Pure.EEG control panel [21]. With the help of this tool,
we can validate the signal strength of each channel (electrodes).
The color green against the channel in the control panel meant
good strength while black meant no signal.

Task Execution Phase. Before starting the data collection, the
operator verbally instructed to the participants about the proce-
dure of experiments. For the single app experiment, all participants
performed the same set of tasks for 5 sessions, where each session
includes performing all 10 sets of tasks (Figure 4a); so a total num-
ber of 200 actions (trials) were performed by each participant if
without doing any mistake. All sessions were performed on the
same day and in the same room. A break of 2-4 minutes was given
to participant between each session. Users were instructed to stay
calm and relax in the entire session of the experiment. In real life,
participants may not face close to 40 actions within a short time (~
5 min). However, multiple trials are the fundamental requirement
of most ERP-related study [40, 58]. We conducted this single app
for proving the ground truth of IAC. For multiple app experiments,
participants interacted with 8 popular apps for the entire time of
the experiments. They were instructed to play those apps for ap-
proximately 25 minutes. The operator notified the participants to
stop the browsing after 25 minutes. However, the participants were
allowed to stop the session if they were feeling uneasy or bored.
On average, the session duration for this experiment was 21 min-
utes. After finished the experiment, if the participant is interested
about our study, we explained the details of our experiment to those
curious participants.

5 DATA PROCESS AND ANALYSIS

Figure 2 depicts the work flow of our system. First, we acquire
the neural data using the EEG device. Then the raw EEG data is
preprocessed to make it usable for the classifiers. Next, we apply
Independent Component Analysis (ICA) to recover original signals
from unknown mixtures of sources and extract features using au-
toregressive coefficients. Finally, we utilize machine learning (ML)
techniques to get the intent.

Raw Data Acquisition. We collected raw EEG data using the
Emotiv Pure.EEG software [21]. We synchronize the EEG data with
actions (i.e., click events received by the app) using calibrated clocks
on the phone and the laptop. Based on the study of Martinovic et
al. [40] and Neupane et al. [44], we epochize the signals with 938 ms
window which starts at 469 ms before a touch event and 469 ms after
the event. We chose this window size as it provides the best results
during our analyses. Similar to the previous works [40, 44], we also
consider the window before the touch event because participants
know beforehand which action they will perform; so the stimuli
session actually starts before the event is recorded.

Data Preprocessing. Neural activities of human involve a huge
number of neuronal-membrane potentials. EEG records the voltage
change of cerebral tissues and the state of brain function. However,
these signals are weak, non-stationary and nonlinear in nature [6].

647

ACSAC’18, December 3-7,2018, San Juan, PR, USA

For this reason, EEG signals can easily be contaminated by ex-
ternal noises like the frequency of the power supply and noise
generated by the human body, such as eye movements, eye blinks,
cardiac signals, muscles noise, etc. The most significant and com-
mon artifact produced by eye movements and blinks is known as
electrooculogram (EOG). Electromyography (EMG) is another type
of contaminating artifact, which is a measurement of the electrical
activity in muscles as a byproduct of contraction. EMG artifacts
are much more complex than EOG artifacts due to the movement
of muscles, particularly those of the neck, face, and scalp. Both
EMG and EOG seriously degrade the extraction of the EEG sig-
nals and lead to incorrect analyses. Hence they must be removed
from the raw data. Similar to previous work [3, 53], we used the
AAR (Automatic Artifact Removal) toolbox [27], which utilizes the
Blind Source Separation (BSS) algorithm to remove both EOG and
EMG [35]. After removing the EOG and EMG artifacts, we applied
an 8th order Butterworth band pass filter with a cutoff frequency
of 3-60 Hz to remove all other useless signals. The band pass filter
keeps signals within the specified frequency range and rejects the
rest. The selected frequency range covers all five major frequency
bands in EEG signal, namely delta (0.1 to 4 Hz), theta (4.5 to 8 Hz),
alpha (8.5 to 12 Hz), beta (12.5 to 36 Hz), and gamma (36.5 Hz and
higher) [19]. This preprocessing step extracts quality signals with
good SNR (signal-to-noise-ratio).

ICA. Independent Component Analysis (ICA) is standard method
to recover original signals from known observations where each
observation is an unknown mixture of the original signals. EEG de-
vice has 14 electrodes for receiving the brain signals from different
regions of the brain. Typically, each sensor will receive signals from
a mixture of regions. ICA can be applied to separate independent
sources from a set of simultaneously received signals from different
regions of human brain [31, 32, 64]. In this study, we used ICA to
separate multi-channel EEG data into independent sources.

Feature Extraction. The features from neural signals are ex-
tracted using autoregressive (AR) model. This model is a popular
feature extraction method for biological signals, especially for time
series data [15]. It can estimate the current values x(t) of a time
series from the previous x(¢ — 1) observations of the same time
series. The current term x(t) of the series can be estimated by a
linear weighted sum of previous term x(¢ — 1). A generic formula
for representing the time series data (e.g., EEG) is

x(t) = Z aix(t — i) +e(t) 1)
i=1

Where «;, is weight which also known as the autoregressive
coefficients, x(t) is the EEG signal, and n is the order of the model,
indicating the number of previous data points used for estimation.
e(t) is called noise or residual term which is assumed to be Gaussian
white noise. x(t) measured in time period ¢.

The selection of order in AR is the crucial step for getting a
successful application. We chose AR order six like previous stud-
ies [5, 44, 50]. All these studies used the 128Hz Emotiv EPOC device.
We calculated AR coefficients using the Yule-Walker method [22].
We consider all 14 channels data for our analysis. Therefore, six AR
coefficients were obtained for each electrode channel, resulting in

ACSAC’18, December 3-7,2018, San Juan, PR, USA

84 (14x6) features for each action of data. The total process of ex-
tracting feature applied all the actions for both of the experiments.

Classification Models and Evaluation Metrics. In this study,
we used random forest (RF) [12] because our extracted features
(autoregressive coefficients) are suitable for RF algorithms [8, 24].
For implementation, we used the Weka classification software pack-
age [29].

We evaluate IAC using the weighted average of Precision, Recall
and F — Measure. A higher weighted average Precision value indi-
cates less false positives (i.e.incorrectly authorize access to sensitive
data and sensors). A higher weighted average Recall value indicate
less false negatives (i.e.unnecessarily prompt users for authoriza-
tion). The weighted average F — Measure is the weighted average of
Precision and Recall which takes both false positives and false neg-
atives into account and gives the balance of our machine learning
model. Finally, we used k-fold cross validation to validate our re-
sults, where k = 10. This is a broadly used technique for calculating
test accuracy in the classification problem for small sample which
can prevent overfitting. The goal of our study is to train a classifier
which can be used to predict user’s intent based on features that
extracted using earlier step.

6 FEASIBILITY TEST

In this section, we aim to answer the research questions through
analyzing the data we collected from the two different experiments
described in §4. We start from Q1—is it possible to distinguish the
three high-level intent based on neural signals using machine learning
algorithm.

6.1 Single App Analysis

Recall that our single app experiment includes 5 sessions for each
participant, where each session includes 10 sets of tasks and each
task set includes 4 actions. Therefore, each participant has 50 in-
stances per action (5 sessions x 10 task sets). In total, we have 1650
instances (50 instances x 33 users) per action from all 33 participants
in the single app experiment. We then extracted features from these
instances using the methodology discussed in §5 and labeled the
feature vectors with the following four actions as classes:

o Camera for the task of taking photo action,

o Video for the task of taking video action,

o Gallery for the task of choosing a photo from gallery, and
o Cancel for canceling the pop-up.

Global Model. In this model, we consider dataset of all the users
with all the sessions. We have total 6600 (1650 instances x 4 actions)
ERP events for this model. The experiment results of this model are
shown in Table 3. As shown in the table, the weighted average of
Precision is 70.70%. This implies that our IAC can correctly detect
human intention for 70.70% of time, which is not very good for
automated authorization. The reason behind this relatively low
accuracy is that even for the same task, different people are likely
to have different ERPs patterns, which actually has been used to
build authentication systems [5, 63]. For this reason, we would like
to know how the classifier performs when only consider actions
belong to the same participant.

648

M. Rahman et al.

Table 3: Classification result of global model.

Metrics
Precision | Recall | F — Measure
70.70% 70.70% 70.70%
100 /> b /> \W i <
% Ha | o
o ! ‘
S o6 ‘ ‘
< i 1
o] + - - s
@
= 94
[=)]
K}
=
90 # + 5
Precision Recall F-measure

Figure 6: Boxplot of Precision, Recall, and F — measure of indi-
vidual model. The red line indicates the median value and +
symbol indicates the outliers.

Individual Model. In the individual model, we train and test the
model with data from a single user across all sessions of single app
experiment. The results for the individual model are reported in Fig-
ure 6. Overall, the results were much better than when considering
all segments across all participants (i.e., the global model). From
the boxblot, we observed that the median of weighted average of
Precision and Recall are 99.50% and 99.50%, respectively. The me-
dian of weighted average F — measure is 99.50% also. These results
imply that IAC correctly detect human intent for 99.50% of the time.
The results also indicate that IAC works well when the ML model
is trained and tested with a single user and a single app.

6.2 Cross-app Portability Analysis

Through the single app experiment, we partially verified that it
is possible to infer users’ high-level intents based on their brain
signals. In terms of app context, this implies that our classifier can
distinguish different app contexts. However, since it only involves
one app, the remaining questions is: can the learned model work
across different apps? That is, in terms of app context, we want
to know whether our classifier can identify similar context from
different apps (i.e., cross-app portability).

We answer this question using the multiple real-world apps
experiment where 8 participants interacted with 8 real world apps
with a duration of 21 minutes on average. However, we had to
discard 3 participants data due to the device error caused data loss.
So we only consider those 5 participants whose data is sufficient.
On average, the 5 participants performed 22 actions for video, 47
actions for camera, and 27 actions for gallery. In total, we have 484
ERPs from 5 users.

Because these 5 participants have not participated in the sin-
gle app experiment, this experiment resembles a more practical
scenario. With this setup, we have two options to bootstrap the

IAC: On the Feasibility of Utilizing Neural Signals for
Access Control

’

. Il Precision -

X0.8} I Recall

o) [IF-measure

o

©

© 0.6+ .

>

<C

304

<

2

202]
0

0 1 2 3 4

Number of seen intent
Figure 7: How classification metrics varies with the number of
seen intents? The first bar represents the Precision, Recall, and
F — measure without adding any new intents from multiple real
world apps experiment to the global model from single app experi-
ment. The second bar represents results with adding new intents to
the global model, The third bar represents the results after adding
two intents to the global model, and so on and so forth. We observed
the upward trends of Precision, Recall, and F — measure with the
addition of more new intents to the global model.

individual model: (1) we can start with an empty model can com-
pletely rely on the feedback loop (in Figure 2) to collect training
data; or (2) we start with a half-baked model and use the feedback
loop to improve it. In this experiment, we chose the second option
as it requires less training and the global model we tested in §6.1
still showed reasonable accuracy.

With Initial Model. We used the global model learned from all
participants in the single app experiment as the initial model (i.e.,
train the model with all data in the single app experiment) and
tested it with all data collected from the multiple app experiments.
The classification results of Precision, Recall, and F — measure of
the initial model are presented in the first bar diagram in Figure 7.
From this figure, we can observe that we can only correctly infer
the user intention with the precision of 43.16%.

Adding Feedback Loop. When we gradually add new training
intents collected from the user when he/she is using real world
apps, the improvement on Precision, Recall, and F — measure are
shown in Figure 7. All newly added intents were from the multiple
app experiment and we have to stop at 5 so we can have enough
data for the testing phase. As we can see, after adding 5 intents
from real world apps, the weighted average Precision improved
from 43.16% to 88.34%, the weighted average Recall improved from
39.82% to 86.52%, and the weighted average F — measure improved
from 38.94% to 86.92%. The results imply that in real world context,
IAC can correctly infer the user intention 86.92% of time by adding
only 5 intents to re-train the ML model. Again, the precision is
expected to continue improving and the only reason we stop at 5 is
due to lack of data.

6.3 Results Analysis

Based on the classification results from above experiments, we
decided to accept our hypothesis. That is, it is possible to identify

649

ACSAC’18, December 3-7,2018, San Juan, PR, USA

high-level intents based on neural signals using a machine learning
algorithm. In terms of app context, our classifier can both distin-
guish different contexts from the same app and identify similar
contexts from different apps. Hence, the answer to Q1 is positive.

6.4 Authorization Accuracy

In the above analysis, we have shown that it is possible to identify
user’s high-level intent through the brain-computer interface. How-
ever, whether the classification result can be used for automated
access authorization for user-owned sensitive sensors and resources
still faces the question: is it accurate enough (Q2). In this subsection,
we analyze the classification results to answer this question. From
the analysis of multiple app experiment data, we observed that our
classifier can achieve a weighted average of Precision 88.34% with
the weighted average of F — measure 86.92% for the completely
unknown scenarios. Based on this, we think the answer to Q2 is
positive.

7 DISCUSSION

IAC and Contextual Integrity. Access control system is a mecha-
nism to protect user’s privacy. Modern OS, including Android (M+),
i0S, and Windows (8+) uses an ask-on-first-use permission system
to guard access to sensitive data and sensors. This approach pro-
vides some context cues but only at the first time when the permis-
sion is requested. Researchers have argued that permission should
be requested under the context that matches user’s expectations,
i.e., contextual integrity [46]. IAC enforces contextual integrity in
the way that user would only have an intent in her mind when the
context is relevant to the intent. In other word, if an app violates
contextual integrity, then the user will not express the intent and
TAC will block the access.

Learning Strategy. As demonstrated in §6, the classification accu-
racy can vary based on the learning strategy. Overall, since different
people may exhibit different brain signals even when thinking about
the same thing (which has been used for neural-signal-based au-
thentication); it is preferable to use individual models. However,
bootstrapping such a model require users to go through a calibra-
tion phase. An alternative approach, as used in [66] and our own
experiment, is to use a half-baked model (e.g., the generalized model
learned from all participants in the single app experiment), then per-
sonalized it by adding feedbacks from explicit prompts, especially
for newly installed apps. Once the model has seen enough feedback,
we can start using it to make real authorization decisions. Our mul-
tiple app experiment has partially validated the effectiveness of this
strategy.

Limitations. Similar to other previous studies on BCI [40, 45], our
study also has several limitations. First, the study was conducted
in the controlled environment so whether unwanted artifacts like
EOG and EMG can be reliably removed in an uncontrolled environ-
ment is still unclear. However, since this is a common problem for
BCI, we believe future techniques will be able to address it. Second,
despite that our sample set is relatively larger (41 participants) than
previous studies (e.g., 5 participants [5, 49], 9 participants [39], 16
participants [7]) and have diverse demography background, it is
still much smaller than data set in other machine learning appli-
cations, such as computer vision, voice recognition, and natural

ACSAC’18, December 3-7,2018, San Juan, PR, USA

language processing. Third, we used only popular apps for testing
our feasibility and the number of apps is only 8. This could be a
bias scenario as participants are more familiar with popular apps.
Finally, our classifier is likely to be vulnerable to phishing-style
attacks. That is, similar to following our instructions to perform
actions that would allow an app to access protected resources, a
phishing-style attack might also be able to trick users into willing
to perform operations that would compromise the security and
privacy of their data.

Future Work. There are many unexplored areas along this re-
search direction. First, we would like to explore other machine
learning algorithms like deep neural network (DNN) to see if it can
help improve the classification accuracy. Second, we would like to
see if the classifier can scale to support more types of tasks and
how the accuracy would look like. Third, we would also like to
explore if it is possible to improve the classifier by including other
behavioral information, such as eye gazing information. Moreover,
although our current design might be vulnerable to phishing-style
attacks, previous study [45] has shown that even though at con-
scious level, users may not realize the difference between phishing
and non-phishing websites, their neural signals still differs. Based
on this observation, we would like to explore the possibility of de-
fending against phishing-style attacks at brain signal level. Finally,
recent research has shown machine-learning-based classifiers may
be subject to adversarial examples [28], so might be our classifier.
However, it is unclear that under our threat model, how attackers
can tamper with the collected EEG data to inject their malicious
perturbations. So we would also like to explore this direction.

8 RELATED WORK

In this section, we briefly discuss related work on neural signals
and permission model.

BClI-based security studies. Neural signals have used for user
authentication [17, 34, 43, 63] and identification [52, 68]. Ashby et
al. [5] proposed an EEG-based authentication system using a con-
sumer grade 14-sensor Emotiv Epoc headset. Abdullah et al. [2]
discussed the possibility of the EEG-based biometric system using 4
or fewer electrodes. Chuang et al. [17] developed a user authentica-
tion model using one single-sensor Neurosky headset. Campbell et
al. [14] developed a neurophone which is based upon ERP of brain
signal. They implemented a brain-controlled address book dialing
app, which shows a sequence of photos of contacts from address
book to users. Thorpe et al. [63] suggested pass-thoughts to au-
thenticate users. In their study, they used EEG signal to replace
password typing. The EEG-based authentication system overcomes
the weakness of current authentication protocol which suffers from
several types of attacks including dictionary attack, password guess-
ing, etc. However, there are some drawbacks to this approach like
non-pervasiveness of EEG equipment and lack of feedback to the
users during the authentication process.

Exposing user’s neural signals to third-party apps via the brain
computer interfaces introduced new security and privacy issues
[11, 25, 40, 44]. Martinovic et al. [40] introduced a side-channel at-
tack which they referred to as “brain spyware” using commercially

650

M. Rahman et al.

available headset Emotiv EPOC. The authors extracted private infor-
mation like familiar banks, ATMs, PIN digits, and month of birth us-
ing only brain signal. Their work is similar to Guilty-KnowledgeTest
(GKT) [18] where familiar items evoked a different response than
unfamiliar items. In their experiment, users are shown images of
banks, digits, known people images. The users’ ERP responses will
be different for their very known banks as that information stored
their memory beforehand. However, their attack is intrusive and
can be easily detectable as the users may notice the abnormality in
the application when it displays some of their familiar information
sequentially. Frank et al. [25] proposed a subliminal attack in which
attacker can learn relevant private information from the victim at
the levels below his cognitive perception. Bonaci et al. [11] showed
how non-invasive BCI platforms used in games or web navigation,
can be misused to extract user’s private information. Neupane et
al. [44] showed the feasibility of stealing users’ PIN from their brain
signals.

Runtime Permission Models. Requesting access to sensitive
resources at runtime—the moment they will be used provide more
context information thus can help users better understanding the
nature of these requests and make more optimal decisions [23]. The
challenge is how to avoid habituation caused by high frequency of
resource access [65].

User-driven access control. The first approach to reduce the num-
ber of prompts is to automatically authorize the requests based on
users’ intent. Existing user-driven access control systems [33, 38,
41, 48, 51, 55, 57] all utilize the same way to infer the intent—by
capturing authentic user interaction with trusted GUI gadgets (i.e.,
access control gadgets), e.g., the “camera” button. Our approach
also tries to infer the intent of an user. However, as we directly infer
the intent from the neural signals, our system is not vulnerable to
GUI attacks [30, 51] thus do not require additional protection for
GUI gadgets. Please note that although we only used user-initiated
actions in our experiment, unlike existing user-driven access con-
trol systems, our approach is not limited to user-initiated events.
Because any external stimulus, including viewing an app’s fore-
ground GUI context can be used to create event-related potentials
(ERPs) and drive our system.

Decision prediction. The second approach is to use machine learn-
ing (ML) to predict users’ privacy decisions [36, 47, 65, 66]. Liuet
al. [36] proposed using user’s answers to a few privacy related
questions to build a personalized privacy profile. They then create a
Privacy Assistant that offer recommendations for future permission
settings based on the profile, apps category, requested permission,
and purposes associated with the permission. While they found
that 78.8% of the recommendations were adopted by users, the
biggest limitation is that they used the ask-on-install model so the
recommendations were made without considering context. Recog-
nizing the importance of context integrity, Wijesekera et al. [65]
pioneered the work on predicting user’s privacy decisions based
on the context. In their first attempt, they used a one-size-fits-all
logistic regression model which can provide 40%-60% better ac-
curacy than random guessing. In [66], they further extended this
idea by building a SVM-based classifier based on when context has
changed and user’s past decisions and behavior. This new approach

IAC: On the Feasibility of Utilizing Neural Signals for
Access Control

improved the accuracy to 96.8% across all users. However, the accu-
racy drops to 80% among users who truly make different decisions
based on context. Around the same time, Olejnik et al. [47] also
propose using context information and ML technique to predict
user’s privacy decisions. In this work, they used 32 raw contextual
features (e.g., app name, foreground app, method, time, semantic
location) to train a linear regression model based on users’ previous
decisions under different contexts. The mean correct classification
rate of their model is 80%. Our approach also relies on ML tech-
niques and our learning strategy is very close to [66]. However,
instead of trying to encode context as a set of features to the ML
techniques, we rely on users to interpret the context and aim to
infer what they want to do under the given context.

9 CONCLUSION

In this work, we proposed a new direction to protect user-owned,
security and privacy sensitive sensors and resources—by inferring
user’s intents and use it to automate authorization decisions. As a
first step, we studied the feasibility of leveraging the brain-computer
interface to infer the intents. Our experiment with 41 participants
showed that neural signals can be utilized to train a machine learn-
ing classifier to recognize high-level intents like taking a photo. The
accuracy of the classifier was also good enough for this security
and privacy sensitive task.

10 ACKNOWLEDGMENT

This research was supported, in part, by NSF award CNS-1718997
and ONR under grant N00014-17-1-2893. The authors like to thank
Yue Duan and Ali Mohammadkhan for their feedback on early
version of this paper. We also acknowledge Sri Shaila G, Ali Dava-
nian, and Sankha Dutta for the proofreading of the final version
of this paper. We also extend thanks to the ACSAC’18 anonymous
reviewers for their constructive feedback and comments.

REFERENCES

[1] 2018. Mind-controlled robots: the factories of the future? https://www.youtube.
com/watch?v=wXYvuhH_4Uw. Accessed: 02-10-2018.

Muhammad Kamil Abdullah, Khazaimatol S Subari, Justin Leo Cheang Loong,
and Nurul Nadia Ahmad. 2010. Analysis of effective channel placement for an
EEG-based biometric system. In IEEE EMBS Conference, Biomedical Engineering
and Sciences (IECBES).

Mohammad H Alomari, Aya Samaha, and Khaled AlKamha. 2013. Automated clas-
sification of L/R hand movement EEG signals using advanced feature extraction
and machine learning. arXiv preprint arXiv:1312.2877 (2013).

Amazon.com, Inc. 2027. Alexa Skill Kit. https://developer.amazon.com/
alexa-skills-kit.

Corey Ashby, Amit Bhatia, Francesco Tenore, and Jacob Vogelstein. 2011. Low-
cost electroencephalogram (eeg) based authentication. In International IEEE/EMBS
Conference on Neural Engineering (NER).

H Aurlien, IO Gjerde, JH Aarseth, G Eldgen, B Karlsen, H Skeidsvoll, and NE
Gilhus. 2004. EEG background activity described by a large computerized data-
base. Clinical Neurophysiology 115, 3 (2004), 665-673.

Louise Barkhuus and Anind K Dey. [n. d.]. Location-based Services for Mobile
Telephony: a Study of Users’ Privacy Concerns. In International Conference on
Human-Computer Interaction.

Maouia Bentlemsan, ET-Tahir Zemouri, Djamel Bouchaffra, Bahia Yahya-Zoubir,
and Karim Ferroudji. 2014. Random forest and filter bank common spatial pat-
terns for eeg-based motor imagery classification. In International Conference on
Intelligent Systems, Modelling and Simulation (ISMS).

Niels Birbaumer, Nimr Ghanayim, Thilo Hinterberger, Iver Iversen, Boris
Kotchoubey, Andrea Kiibler, Juri Perelmouter, Edward Taub, and Herta Flor.
1999. A spelling device for the paralysed. Nature 398, 6725 (1999), 297-298.

(2]

651

[10

[11]

[u—
)

[19

[20

[21

[22]

I
&

[24

[25

[26

[27

™
&,

[29

(30]
(31]
(32]

[33

&
=

[35

[36

(37

[38

[39

ACSAC’18, December 3-7,2018, San Juan, PR, USA

Tamara Bonaci, Ryan Calo, and Howard Jay Chizeck. 2014. App stores for the
brain: Privacy & security in Brain-Computer Interfaces. In IEEE International
Symposium on Ethics in Science, Technology and Engineering.

TLBMT Bonaci,] Herron, and HJ Chizeck. 2015. How susceptible is the brain to
the side-channel private information extraction. American Journal of Bioethics,
Neuroscience 6, 4 (2015).

Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5-32.

Ahier Brian. 2017. Neuralink, Facebook, and Kernel Compete on
Direct Brain-Computer Interface. https://www.linkedin.com/pulse/
direct-brain-interface-brian-ahier/. Accessed: 05-10-2017.

Andrew Campbell, Tanzeem Choudhury, Shaohan Hu, Hong Lu, Matthew K Muk-
erjee, Mashfiqui Rabbi, and Rajeev DS Raizada. 2010. NeuroPhone: brain-mobile
phone interface using a wireless EEG headset. In ACM SIGCOMM Workshop on
Networking, Systems, and Applications on Mobile Handhelds.

Chris Chatfield. 2016. The analysis of time series: an introduction. CRC press.
Stephen Chen. 2018. China is mining data directly from workers’ brains on
an industrial scale. http://www.scmp.com/news/china/society/article/2143899/
forget-facebook-leak-china-mining-data-directly-workers-brains. Accessed:
04-30-2018.

John Chuang, Hamilton Nguyen, Charles Wang, and Benjamin Johnson. 2013. I
think, therefore i am: Usability and security of authentication using brainwaves.
National Research Council et al. 2003. The polygraph and lie detection. Committee
to review the scientific evidence on the Polygraph. Division of Behavioral and
Social Sciences and Education. Washington, DC: The National Academic Press.
Retrieved 7,7 (2003), 09.

Jan C de Munck, Sonia I Gongalves, R Mammoliti, Rob M Heethaar, and FH Lopes
Da Silva. 2009. Interactions between different EEG frequency bands and their
effect on alpha—fMRI correlations. Neuroimage 47, 1 (2009), 69-76.

EMOTIV Inc. 2017. Emotiv EEG Headset. https://www.emotiv.com. Accessed:
5-17-2017.

EMOTIV, Inc. 2017. EMOTIV PureEEG Software. https://www.emotiv.com/
product/emotiv-pure-eeg/. Accessed: 5-17-2017.

Gidon Eshel. 2003. The yule walker equations for the AR coefficients. Internet
resource 2 (2003), 68-73.

Adrienne Porter Felt, Serge Egelman, Matthew Finifter, Devdatta Akhawe, David
Wagner, et al. 2012. How to Ask for Permission.

Luay Fraiwan, Khaldon Lweesy, Natheer Khasawneh, Heinrich Wenz, and Hart-
mut Dickhaus. 2012. Automated sleep stage identification system based on
time-frequency analysis of a single EEG channel and random forest classifier.
Computer methods and programs in biomedicine 108, 1 (2012), 10-19.

Mario Frank, Tiffany Hwu, Sakshi Jain, Robert Knight, Ivan Martinovic, Prateek
Mittal, Daniele Perito, and Dawn Song. 2013. Subliminal probing for private
information via EEG-based BCI devices. arXiv preprint arXiv:1312.6052 (2013).
Yanick Fratantonio, Chenxiong Qian, Simon P Chung, and Wenke Lee. 2017. Cloak
and Dagger: From Two Permissions to Complete Control of the UI Feedback
Loop.

German Goémez-Herrero, Wim De Clercq, Haroon Anwar, Olga Kara, Karen
Egiazarian, Sabine Van Huffel, and Wim Van Paesschen. 2006. Automatic removal
of ocular artifacts in the EEG without an EOG reference channel. In Signal
Processing Symposium (NORSIG).

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and harnessing adversarial examples. In International Conference on Learning
Representations (ICLR).

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Jan H Witten. 2009. The WEKA data mining software: an update. ACM
SIGKDD explorations newsletter 11, 1 (2009), 10-18.

Lin-Shung Huang, Alexander Moshchuk, Helen] Wang, Stuart Schecter, and
Collin Jackson. 2012. Clickjacking: Attacks and Defenses.

Aapo Hyvirinen, Juha Karhunen, and Erkki Oja. 2004. Independent component
analysis. Vol. 46. John Wiley & Sons.

Aapo Hyvirinen and Erkki Oja. 2000. Independent component analysis: algo-
rithms and applications. Neural networks 13, 4 (2000), 411-430.

Yeongjin Jang, Simon P Chung, Bryan D Payne, and Wenke Lee. 2014. Gyrus: A
Framework for User-Intent Monitoring of Text-based Networked Applications.
Benjamin Johnson, Thomas Maillart, and John Chuang. 2014. My thoughts are
not your thoughts.

Carrie A Joyce, Irina F Gorodnitsky, and Marta Kutas. 2004. Automatic removal
of eye movement and blink artifacts from EEG data using blind component
separation. Psychophysiology 41, 2 (2004), 313-325.

Bin Liu, Mads Schaarup Andersen, Florian Schaub, Hazim Almuhimedi, SA Zhang,
Norman Sadeh, Alessandro Acquisti, and Yuvraj Agarwal. 2016. Follow my
recommendations: A personalized privacy assistant for mobile app permissions.
Bin Liu, Jialiu Lin, and Norman Sadeh. 2014. Reconciling mobile app privacy and
usability on smartphones: Could user privacy profiles help?

Long Lu, Vinod Yegneswaran, Phillip Porras, and Wenke Lee. 2010. Blade: an
attack-agnostic approach for preventing drive-by malware infections.
Sebastien Marcel and José del R Millan. 2007. Person authentication using
brainwaves (EEG) and maximum a posteriori model adaptation. IEEE transactions

ACSAC’18, December 3-7,2018, San Juan, PR, USA M. Rahman et al.

on pattern analysis and machine intelligence 29, 4 (2007).

[40] Ivan Martinovic, Doug Davies, Mario Frank, Daniele Perito, Tomas Ros, and
Dawn Song. 2012. On the feasibility of side-channel attacks with brain-computer
interfaces. USENIX.

[41] Kristopher Micinski, Daniel Votipka, Rock Stevens, Nikolaos Kofinas, Michelle L
Mazurek, and Jeffrey S Foster. 2017. User Interactions and Permission Use on
Android.

[42] Microsoft. 2017. Cortana Skill Kit. https://developer.microsoft.com/en-us/
windows/projects/campaigns/cortana- skills-kit.

[43] Fabian Monrose and Aviel Rubin. 1997. Authentication via keystroke dynamics.

[44] Ajaya Neupane, Md Lutfor Rahman, and Nitesh Saxena. 2017. Peep: Passively
eavesdropping private input via brainwave signals. In International Conference
on Financial Cryptography and Data Security. Springer, 227-246.

Ajaya Neupane, Md Lutfor Rahman, Nitesh Saxena, and Leanne Hirshfield. 2015.

A Multimodal Neuro-Physiological Study of Phishing and Malware Warnings.

[46] Helen Nissenbaum. 2004. Privacy as contextual integrity. Wash. L. Rev. 79 (2004),

119.

Katarzyna Olejnik, Italo Ivan Dacosta Petrocelli, Joana Catarina Soares Machado,

Kévin Huguenin, Mohammad Emtiyaz Khan, and Jean-Pierre Hubaux. 2017.

SmarPer: Context-Aware and Automatic Runtime-Permissions for Mobile De-

vices.

[48] Kaan Onarlioglu, William Robertson, and Engin Kirda. 2016. Overhaul: Input-

Driven Access Control for Better Privacy on Traditional Operating Systems.

Ramaswamy Palaniappan. 2006. Electroencephalogram signals from imagined

activities: A novel biometric identifier for a small population. In International

Conference on Intelligent Data Engineering and Automated Learning. Springer.

[50] Ramaswamy Palaniappan. 2008. Two-stage biometric authentication method
using thought activity brain waves. International Journal of Neural Systems 18,
01 (2008), 59-66.

[51] Giuseppe Petracca, Ahmad-Atamli Reineh, Yuqiong Sun, Jens Grossklags, and

Trent Jaeger. 2017. Aware: Preventing Abuse of Privacy-Sensitive Sensors via

Operation Bindings.

M Poulos, M Rangoussi, V Chrissikopoulos, and A Evangelou. 1999. Person

identification based on parametric processing of the EEG. In IEEE International

Conference on Electronics, Circuits and Systems.

Md Lutfor Rahman, Sharmistha Bardhan, Ajaya Neupane, Evangelos Papalexakis,

and Chengyu Song. 2018. Learning Tensor-based Representations from Brain-

Computer Interface Data for Cybersecurity. (2018).

Rijin Raju, Chenguang Yang, Chunxu Li, and Angelo Cangelosi. 2016. A video

game design based on Emotiv Neuroheadset. In Advanced Robotics and Mecha-

tronics (ICARM).

Talia Ringer, Dan Grossman, and Franziska Roesner. 2016. AUDACIOUS: User-

Driven Access Control with Unmodified Operating Systems.

Franziska Roesner and Tadayoshi Kohno. 2013. Securing Embedded User Inter-

faces: Android and Beyond.

[57] Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk, Bryan Parno, He-
len J Wang, and Crispin Cowan. 2012. User-driven access control: Rethinking
permission granting in modern operating systems.

[58] Andres F Salazar-Gomez, Joseph DelPreto, Stephanie Gil, Frank H Guenther, and

Daniela Rus. 2017. Correcting robot mistakes in real time using eeg signals. In

IEEE International Conference on Robotics and Automation (ICRA). IEEE.

Marec Stiegler, Alan H Karp, Ka-Ping Yee, Tyler Close, and Mark S Miller. 2006.

Polaris: virus-safe computing for Windows XP. Commun. ACM 49, 9 (2006),

83-88.

[60] Md Sohel Parvez Sumon. 2016. First man with two mind-controlled prosthetic

limbs. Bangladesh Medical Journal 44, 1 (2016), 59-60.

Shravani Sur and VK Sinha. 2009. Event-related potential: An overview. Industrial

psychiatry journal 18, 1 (2009), 70.

[62] Desney Tan and Anton Nijholt. 2010. Brain-computer interfaces and human-

computer interaction. In Brain-Computer Interfaces. Springer, 3—-19.

Julie Thorpe, Paul C van Oorschot, and Anil Somayaji. 2005. Pass-thoughts:

authenticating with our minds. In Workshop on New Security Paradigms.

[64] M Ungureanu, C Bigan, R Strungaru, and V Lazarescu. 2004. Independent com-

ponent analysis applied in biomedical signal processing. Measurement Science

Review 4, 2 (2004), 18.

Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge Egelman, David Wag-

ner, and Konstantin Beznosov. 2015. Android Permissions Remystified: A Field

Study on Contextual Integrity.

[66] Primal Wijesekera, Arjun Baokar, Lynn Tsai, Joel Reardon, Serge Egelman, David
Wagner, and Konstantin Beznosov. 2017. The Feasibility of Dynamically Granted
Permissions: Aligning Mobile Privacy with User Preferences.

[45

[47

[49

[52

[53

(54

[55

(56

[59

(61

[63

o
&

[67] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X Sean Wang.
2013. Appintent: Analyzing sensitive data transmission in android for privacy
leakage detection.

[68] Qinglin Zhao, Hong Peng, Bin Hu, Quanying Liu, Li Liu, YanBing Qi, and Lanlan

Li. 2010. Improving individual identification in security check with an EEG based
biometric solution. In International Conference on Brain Informatics.

652

	i01-1-mishra
	i01-2-kouwe
	Abstract
	1 Introduction
	2 Background
	2.1 Use-after-free
	2.2 Uninitialized reads
	2.3 Type safety

	3 Threat Model
	4 Overview
	5 Heap
	5.1 Typed memory allocations
	5.2 Wrapper detection and inlining

	6 Stack
	6.1 Guaranteed initialization on the safe stack
	6.2 Typed unsafe stacks

	7 Implementation
	8 Evaluation
	8.1 Security
	8.2 Type detection
	8.3 Wrapper detection and inlining
	8.4 Memory overhead
	8.5 Run-time overhead
	8.6 Firefox case study

	9 Limitations
	10 Related Work
	11 Conclusion
	References

	i01-3-farkhani
	Abstract
	1 Introduction
	2 Background and Problem Definition
	2.1 Control Flow Integrity (CFI)
	2.2 Runtime Type Checking
	2.3 Arity Checking
	2.4 Reuse Attack Protector (RAP)
	2.5 Type Collisions
	2.6 Research Questions

	3 Attack Overview
	3.1 Threat Model
	3.2 Attack Preliminaries
	3.3 Finding Gadgets
	3.4 Constraint Solving

	4 Proof-of-Concept Exploits
	4.1 Nginx Exploit
	4.2 Exim Exploit
	4.3 Summary

	5 Evaluation
	5.1 Type Collisions
	5.2 Gadget Distribution
	5.3 Libc
	5.4 Type Checking vs. Points-to Analysis

	6 Discussion
	6.1 Type Diversification
	6.2 Separate Compilation
	6.3 Mismatch types
	6.4 Support for Assembly Code

	7 Related work
	8 Conclusion
	References

	i01-4-ahmadvand
	Abstract
	1 Introduction
	2 Background & Related work
	2.1 Software integrity protection
	2.2 Nondeterministic code detection

	3 Design
	3.1 Segregation of input data/control-flow dependent instructions
	3.2 Short Range Oblivious Hashing (SROH)
	3.3 Data-Dependent Instructions (DDIs)
	3.4 Intertwined protection

	4 Implementation
	4.1 Protection process
	4.2 Input dependency detection
	4.3 Oblivious hashing (OH)
	4.4 Short Range Oblivious Hashing (SROH)
	4.5 Self-checksumming (SC)
	4.6 Response mechanism

	5 Evaluation
	5.1 Dataset
	5.2 Preparation
	5.3 Coverage
	5.4 Performance analysis
	5.5 Security analysis

	6 Discussion
	6.1 Coverage
	6.2 Implicit protection with OH/SROH
	6.3 Performance

	7 Conclusions
	References
	A A full example of OH+SROH utilization

	i02-1-liu
	Abstract
	1 Introduction
	2 Assumptions and Goals
	3 Related Work
	3.1 Traditional 2FA
	3.2 2FA with Less User-Phone Interactions

	4 Typing-Proof
	4.1 Enrollment and Login
	4.2 Similarity Score
	4.3 Usability Analysis
	4.4 Cost Analysis

	5 Evaluation
	5.1 Data Collection
	5.2 Parameters Configuration
	5.3 False Rejection Rate
	5.4 False Acceptance Rate

	6 Security Analysis
	7 User Study
	7.1 Procedure
	7.2 Usability

	8 Discussion
	9 Conclusion
	References
	A Quantitative Usability Analysis Framework
	B Prototype Implementation
	C System Usability Scale
	D Post-test Questionnaire
	E Comparison Results

	i02-2-mccully
	Abstract
	1 Introduction
	2 Related Work
	2.1 Keystroke dynamics
	2.2 Collaborative editing
	2.3 Identification vs. Authentication

	3 Study: User Identification in Collaboration Services
	3.1 The UB Data Set
	3.2 Log replay data set (LRDS)
	3.3 Feature engineering
	3.4 Random forest classification
	3.5 Model improvements
	3.6 Results

	4 Indirect Typing Biometric Attack
	4.1 Authentication service
	4.2 Forgery attack scenario
	4.3 Creating a forgery
	4.4 TypingDNA Forgery Attack

	5 Discussion
	5.1 Generalizability
	5.2 Practical implications
	5.3 Broader implications

	6 Conclusions
	References

	i02-4-lu
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Online Password Guessing Attacks
	2.2 Defenses against Online Password Attacks
	2.3 Offline Password Attacks

	3 Methodology
	3.1 Modeling Lockout Threshold and Counting Mechanism
	3.2 Black-box Tests

	4 A Measurement Study of Rate Limiting Implementations
	4.1 Experiment Setup
	4.2 Data Collection

	5 Evaluation and Analysis
	5.1 Data Analysis
	5.2 Security Analysis
	5.3 Interesting Observations
	5.4 Recommendations

	6 Limitations and Discussion
	7 Conclusion
	Acknowledgments
	References

	i03-1-copty
	Abstract
	1 Introduction
	2 An extremely abstract OS
	2.1 Implementation details
	2.2 Multiple paths

	3 Malware classification
	3.1 Features
	3.2 Experimental setup
	3.3 Experimental Results

	4 Related work
	4.1 Extreme abstraction
	4.2 Lightweight symbols
	4.3 Malware classification

	5 Future work
	6 Conclusion
	Acknowledgments
	References

	i03-2-machiry
	Abstract
	1 Introduction
	2 Threat Model
	3 Approach Overview
	3.1 Why Loops?
	3.2 Loop Characterization
	3.3 Application Classification

	4 Resilience to Feature-unaware Perturbations
	4.1 Application Transformations
	4.2 CFG Obfuscation
	4.3 Reflection
	4.4 Loop Perturbations

	5 Classification Evaluation
	5.1 Datasets
	5.2 Iterative Pruning Performance
	5.3 Malware Classification Results
	5.4 Importance of Loops and Semantic Labels
	5.5 Resilience to Feature-unaware Perturbations

	6 Discussion
	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

	i03-3-oprea
	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Enterprise Perimeter Defenses
	2.2 Problem definition and adversarial model
	2.3 System Overview
	2.4 Comparison with previous work
	2.5 Ethical considerations

	3 MADE Training
	3.1 Data Filtering and Labeling
	3.2 Feature Extraction
	3.3 Feature Selection
	3.4 Model Selection

	4 Testing and Evaluation
	4.1 MADE Testing
	4.2 Evaluation, Analysis, and Feedback
	4.3 Discussion and Limitations

	5 Related Work
	6 Conclusion
	References

	i03-4-echeverria
	Abstract
	1 Introduction
	2 Related Work
	3 Datasets
	3.1 Bot Datasets
	3.2 Aggregated Bot Dataset
	3.3 User Dataset
	3.4 Botometer Scores

	4 Methodology - The LOBO test
	5 Features for Classification
	5.1 User Features
	5.2 Tweet Features

	6 Experiments
	6.1 Subsampling
	6.2 General Classifiers
	6.3 LOBO Test I - C30K
	6.4 LOBO Test II - C500

	7 Beyond the LOBO test
	7.1 Relatively Stable Results
	7.2 Learning Rate
	7.3 TSNE plot

	8 Discussion
	8.1 Accuracy and Generalization
	8.2 Improvements with small data additions
	8.3 Scalability

	9 Conclusion
	References

	i04-1-tuveri
	Abstract
	1 Introduction
	2 Background
	2.1 SM2: Chinese Cryptography Standards
	2.2 Remote Timing Attacks
	2.3 Cache Timing Attacks
	2.4 EM Analysis
	2.5 SM2 Implementation Attacks: Previous Work

	3 SM2 in OpenSSL
	4 SM2DSA: Remote Timings
	5 SM2DSA: Cache Timings
	5.1 Scalar Multiplication
	5.2 Modular Inversion

	6 SM2PKE: EM Analysis
	7 SCA Mitigations
	7.1 Scalar Multiplication: SCA Mitigations
	7.2 Modular Inversion: SCA Mitigations
	7.3 SCA Mitigations: Evaluation

	8 Conclusion
	Acknowledgments
	References
	A Remote Timings SCA Evaluation: ECDSA

	i04-2-wichelmann
	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Analysis Setup and Targeted Software

	2 Background
	2.1 Dynamic Binary Instrumentation
	2.2 Microarchitectural Leakage
	2.3 Mutual Information Analysis
	2.4 Signing Algorithms

	3 MicroWalk Analysis Technique
	3.1 Leakage Analysis Model
	3.2 Capturing Internal States
	3.3 Preparing State Variables
	3.4 Leakage Analysis
	3.5 Interpretation of MI Score

	4 MicroWalk Framework
	4.1 Investigated Binary
	4.2 Input Generation
	4.3 Trace Generation
	4.4 Trace Preprocessing
	4.5 Leakage Analysis
	4.6 Manual Inspection and Visualization

	5 Case Study I: Intel IPP
	5.1 Applying MicroWalk MI Analysis to IPP
	5.2 Discovered leakages in Intel IPP

	6 Case Study II: Microsoft CNG
	6.1 Applying MicroWalk MI Analysis to CNG
	6.2 Discovered leakages in Microsoft CNG

	7 Related Work
	8 Conclusion
	8.1 Future Work

	References

	i04-3-zhang
	Abstract
	1 Introduction
	2 Background
	2.1 Cache Side-channel Attacks
	2.2 Cache Side-channel Defenses
	2.3 Deep Neural Networks

	3 Methodology Overview
	4 Dataset Construction
	4.1 An Abstract Model
	4.2 Modeling Specific Attacks
	4.3 Modeling Defense Solutions

	5 DNN Training and Inference
	5.1 Dataset Processing
	5.2 Training
	5.3 Inference

	6 Evaluation
	6.1 Attack Strategies
	6.2 Defense Strategies

	7 Methodology Validation
	8 Related Work
	9 Conclusion
	References

	i04-4-liang
	Abstract
	1 Introduction
	2 Problem
	2.1 Side-Channel Attack over Memory Accesses
	2.2 Burdensome Obfuscation of Access Pattern
	2.3 Toward Practically Efficient Obfuscation

	3 Overview
	3.1 Motivation
	3.2 Challenge
	3.3 Methodology

	4 Design
	4.1 Architecture
	4.2 Position Map Compression
	4.3 Position Map Update

	5 Implementation
	6 Evaluation
	6.1 Memory Access Randomness
	6.2 Execution Time
	6.3 Memory Usage

	7 Discussion
	8 Conclusion
	References

	i05-1-junaid
	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivating Example
	2.3 Challenges

	3 StateDroid Overview
	3.1 Architecture
	3.2 Advance Over State-of-the-Art Work

	4 API Call Detector
	4.1 Reengineering Lifecycle Models
	4.2 Deriving Event & Callback Sequences
	4.3 Detecting API Call Sequences

	5 Action Detector
	5.1 Object State Machines
	5.2 API & Action Formalization
	5.3 Generating API Call Sequences
	5.4 Constructing Object State Machines

	6 Attack Detector
	6.1 Action-Effect & Attack Formalization
	6.2 Frame Axioms

	7 Evaluation
	7.1 RQ1: Accuracy of Action Detector
	7.2 RQ2: Accuracy of Attack Detector
	7.3 RQ3: Comparison with Existing Tools
	7.4 RQ4: StateDroid's Performance

	8 Related Work
	9 Discussion
	10 Conclusion
	11 Acknowledgments
	References

	i05-2-allen
	Abstract
	1 Introduction
	2 Rethinking Contextual Awareness
	2.1 Less Effective Contextual Information
	2.2 Case Study: Identifying Informative Context Factors
	2.3 Calling for Lightweight Context Dependencies

	3 PikaDroid
	3.1 Overview
	3.2 Static Analysis Module
	3.3 Learning Module

	4 Implementation
	5 Dataset
	6 Evaluation
	6.1 Effectiveness
	6.2 Comparison with Prior Work
	6.3 Robustness
	6.4 Classification Models
	6.5 Performance

	7 Related work
	8 Conclusion
	9 Acknowledgments
	References

	i05-3-wermke
	Abstract
	1 Introduction
	2 Android Obfuscation Techniques
	3 Detecting ProGuard Obfuscation
	4 Large Scale Obfuscation Analysis
	4.1 Obfuscation Trends

	5 Developer Survey
	5.1 Results and Takeaways

	6 Obfuscation Experiment
	6.1 Results and Takeaways

	7 Discussion
	8 Threats to Validity
	9 Related Work
	10 Conclusion
	References
	A Ethical Considerations
	B Online Survey
	B.1 ProGuard Study - Exit Survey

	i05-4-chau
	Abstract
	1 Introduction
	2 Scope
	2.1 Attack Surfaces
	2.2 Platform and Test Setup
	2.3 Threat Model
	2.4 App Selection

	3 App Weaknesses & Network Attacks
	3.1 Raw Content Transfer In Clear
	3.2 Bootstrap Information Transfer in Clear
	3.3 Raw Content Transfer over TLS
	3.4 Bootstrap Information Transfer over TLS
	3.5 Threats to User Security and Privacy

	4 App Weaknesses & Local Attacks
	4.1 Log File Leakage
	4.2 Raw Content on External Storage
	4.3 Raw Encryption Key on External Storage
	4.4 Raw Content on Internal Storage
	4.5 Raw Encryption Key on Internal Storage
	4.6 Direct Content Source on Internal Storage
	4.7 Client-Side Authorization
	4.8 Raw Encryption Key in Memory

	5 Discussions
	5.1 Responsible Disclosure and Aftermath
	5.2 Possible Countermeasures and Challenges

	6 Related Work
	7 Conclusion
	References
	A APPENDIX
	A.1 Legal and Ethical Matters
	A.2 Table of Apps and CWEs

	i06-1-mani
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology & Experimental Setup
	5 Proxy Availability & Performance
	5.1 Performance
	5.2 Expected vs. Unexpected Content
	5.3 Anonymity

	6 HTML Manipulation
	7 File Manipulation
	7.1 Detailed Findings
	7.2 Network Diversity and Consistency of Malicious Proxies

	8 SSL/TLS Analysis
	9 Comparison With Tor
	10 Ethical considerations
	11 Conclusion
	Acknowledgments
	References
	A Examples of HTTP Proxy Protocols
	B Client locations
	C File Manipulation Infections

	i06-2-ramanathan
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Volumetric Attacks
	2.2 Related Work
	2.3 SENSS vs First-ISP vs Clouds

	3 SENSS
	3.1 Challenges
	3.2 SENSS Architecture
	3.3 ISP Implementation
	3.4 Client Programs
	3.5 Security and Robustness

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 2016 attack on Dyn
	4.3 Effectiveness in Sparse Deployment
	4.4 Comparison of SENSS and Cloud Defenses
	4.5 Delay, Traffic and Message Cost
	4.6 Scalability within an ISP

	5 Conclusion
	6 Acknowledgement
	References

	i06-3-baek
	Abstract
	1 Introduction
	2 Wi-Fi Calling
	2.1 Wi-Fi Calling Architecture
	2.2 Wi-Fi Calling Handshakes

	3 Security in Wi-Fi Calling
	3.1 Privacy of Users
	3.2 Availability of Services
	3.3 Attacks Originating From Victim's UE and Attacker's AP

	4 IMSI Privacy Attack
	4.1 Attack Scenario
	4.2 Attack Setup
	4.3 Results of Attacks
	4.4 Impact and Applicability

	5 DoS Attacks
	5.1 Attack Scenarios
	5.2 Attack Setup
	5.3 Results of Attacks
	5.4 Impact and Applicability

	6 Countermeasures
	6.1 IMSI Privacy Attack Countermeasures
	6.2 DoS Countermeasures

	7 Discussion
	7.1 Trade-off Between Security and Usability
	7.2 Trade-off Between Security and Deployment

	8 Related work
	9 Conclusion
	References

	i06-4-sy
	Abstract
	1 Introduction
	2 Background
	2.1 Session ID Resumption
	2.2 Session Ticket Resumption
	2.3 Session Resumption via Pre-Shared Keys
	2.4 Comparison of Session Resumption Mechanisms

	3 Privacy Problems with TLS Session Resumption
	3.1 Lifetime of Session Resumption Mechanisms
	3.2 Third-Party Tracking via Session Resumption

	4 Data Collection
	4.1 Alexa Top Million Data Set
	4.2 Browser Measurements
	4.3 DNS Data Set

	5 Evaluation
	5.1 Evaluation of Server Configurations
	5.2 Evaluation of Browser Configurations
	5.3 Evaluation of Real-World User Traffic

	6 Countermeasures
	7 Related Work
	8 Conclusion
	References

	i07-1-garmany
	Abstract
	1 Introduction
	2 Model and Assumptions
	2.1 Modern Vulnerability Exploitation

	3 Design
	3.1 Knowledge Base
	3.2 Propagating Control
	3.3 Finding Sinks
	3.4 Program Paths
	3.5 Triggering Input

	4 Implementation Details
	5 Evaluation
	5.1 Exploitation Primitive Trigger (EPT)
	5.2 Fine Tuning

	6 Discussion and Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	Appendices
	A JavaScript Code Corresponding to Running Example
	B SSA-map

	i07-2-rodriguez
	Abstract
	1 Motivation
	2 Problem Statement
	3 Methodology
	3.1 Data Collection
	3.2 Labeling
	3.3 Feature Selection
	3.4 Learning

	4 Evaluation
	4.1 Detection
	4.2 Impact on the Page Loading Time

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References
	A Theoretical Upper Bound for False Positives and Negatives
	B Additional Plots and Tables

	i07-3-xu
	Abstract
	1 Introduction
	2 Problem Statement and Related Work
	2.1 Multi-tab Threat Model
	2.2 Related work

	3 Overview of Multi-tab Attacks
	4 Dynamic Page Split
	4.1 Challenges in Identifying True Split Points
	4.2 BalanceCascade-XGBoost Algorithm

	5 Chunk-Based Page Classification
	5.1 Feature Selection
	5.2 Classifier Design

	6 Experimental Results
	6.1 Experiment Setup
	6.2 Evaluation of Multi-tab] Attacks
	6.3 Evaluation of Page Split
	6.4 Evaluation of Chunk-Based Classification
	6.5 Evaluation with More Than Two Tabs

	7 Conclusion and Future Work
	References
	A The Rest Features in Feature Set
	B Feature Selection

	i07-4-acker
	Abstract
	1 Introduction
	2 Background
	3 Mechanism design
	3.1 Overview
	3.2 Configuration structure
	3.3 Client-side application
	3.4 Misconfiguration

	4 Policy comparison and combination
	4.1 for policy comparison
	4.2 and for policy combination

	5 Prototype implementations
	5.1 Client-side enforcement
	5.2 Server-side manifest handling
	5.3 Automated manifest generation from observed traffic
	5.4 Limitations and considerations

	6 Evaluation
	6.1 Functional evaluation
	6.2 Longitudinal study
	6.3 Performance measurement

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Statistical data

	i08-1-ziegeldorf
	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Scenario and Requirements
	2.2 Analysis of Related Work

	3 Cryptographic Building Blocks
	4 SHIELD Framework
	4.1 Overview of Supervised Classification
	4.2 Secure Building Blocks
	4.3 Implementation and Evaluation Setup

	5 Hyperplane Classifiers
	5.1 Evaluation

	6 Artificial Neural Networks
	6.1 Evaluation

	7 Naive Bayes
	7.1 Evaluation

	8 Hidden Markov Models
	8.1 Evaluation

	9 Outsourcing
	9.1 Evaluation of Outsourcing

	10 Conclusion
	References
	A Detailed Protocols for Secure Building Blocks
	A.1 Max and Argmax
	A.2 Scalar Products
	A.3 Polynomial Approximation of Arbitrary Functions
	A.4 OT-based Evaluation of Discrete Functions
	A.5 Evaluating Gaussians
	A.6 Backtracking

	B Security Discussion
	B.1 Security of the Building Blocks
	B.2 Security of the Classifier Designs

	C Evaluation of Outsourcing for the service provider

	i08-2-kesarwani
	Abstract
	1 Introduction
	2 related work
	3 Problem Framework
	4 Model Extraction Warning
	4.1 Strategy 1: Providing model extraction warnings using information gain metric
	4.2 Strategy 2: Providing model extraction warnings using coverage metric

	5 Experiments
	5.1 Model extraction status for source DT Models
	5.2 Model extraction status for source NN Models

	6 Conclusion and Future Work
	References

	i08-3-fang
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Collaborative Filtering
	2.2 Attacks to Recommender Systems

	3 Problem Formulation
	3.1 Threat Model
	3.2 Attacks as an Optimization Problem

	4 Our Poisoning Attacks
	4.1 Overview
	4.2 Approximating the Optimization Problem
	4.3 Solving the Optimization Problem
	4.4 Generating Rating Scores

	5 Experiments
	5.1 Experimental Setup
	5.2 Attacking Graph-based Systems
	5.3 Transferring to Other Systems

	6 Detecting Fake Users
	7 Conclusion and Future Work
	References

	i08-4-wei
	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Overview
	5 Power Extraction
	5.1 Interference Sources
	5.2 Extraction Methods

	6 Background Detection
	6.1 Intuition
	6.2 Attack Method
	6.3 Evaluation

	7 Image Reconstruction via Power Template
	7.1 Intuition
	7.2 Attack Method
	7.3 Evaluation

	8 Related Work
	9 Conclusion
	A Preliminaries
	A.1 Convolutional Neural Network
	A.2 CNN Accelerator Design
	A.3 Basics on Power Side Channel

	B Discussion and Future Work
	C Attack results on the MNIST dataset
	References

	i09-1-proskurin
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Exception Levels
	2.2 Guest Physical Memory Architecture
	2.3 Debug Exceptions
	2.4 Translation Lookaside Buffer
	2.5 Threat Model

	3 Guest Kernel Monitoring Primitives
	3.1 Implementing Kernel Tap Points
	3.2 Novel Single-Stepping Mechanism
	3.3 Xen altp2m on ARM
	3.4 Splitting the TLBs

	4 Evaluation
	4.1 System Setup
	4.2 DRAKVUF on ARM
	4.3 Performance
	4.4 Effectiveness

	5 Discussion
	5.1 Alternative Tracing Methods
	5.2 Limitations

	6 Related Work
	7 Conclusion
	References

	i09-2-lin
	Abstract
	1 Introduction
	2 Background
	2.1 Linux Container
	2.2 Linux Kernel Security Mechanisms
	2.3 CPU Protection Mechanisms

	3 Attack Dataset Description
	3.1 Exploit Collection
	3.2 Attack Taxonomy
	3.3 Exploit Dataset

	4 Security Evaluation of Container
	4.1 Experiment Setup
	4.2 Result Overview
	4.3 Analysis of Privilege Escalation Attacks
	4.4 A Brief Summary

	5 Defeating Kernel Privilege Escalation Attacks
	5.1 Kernel Privilege Escalation Attack Model
	5.2 Countermeasures
	5.3 Effectiveness and Performance

	6 Discussion on Limitation
	7 Related work
	7.1 Container Security
	7.2 Attack Taxonomy

	8 Conclusion
	Acknowledgments
	References

	i09-3-futagami
	Abstract
	1 Introduction
	2 Out-of-band Remote Management
	3 VSBypass
	3.1 Assumptions and Threat Model
	3.2 Architecture

	4 Implementation
	4.1 Proxy VM
	4.2 I/O Interception
	4.3 Redirection of Virtual Interrupts
	4.4 Sharing VRAM
	4.5 VM Migration

	5 Experiments
	5.1 Eavesdropping on I/O data
	5.2 Performance of a Virtual Serial Console
	5.3 Performance of GUI Remote Access

	6 Related Work
	7 Conclusion
	References

	i09-4-cho
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Architecture and TrustZone
	2.2 Legitimate Channels between the Normal and Secure Worlds
	2.3 ARM Cache Architecture
	2.4 Previous Cache Attacks

	3 Assumptions and Attack Model
	4 Cross-world Covert Channels
	4.1 Prime+Count Overview
	4.2 Prime the Cache
	4.3 Count Using Cache Refill Events
	4.4 A Simple Message Encoding Method
	4.5 Cross-Core Covert Channels

	5 Implementation
	6 Evaluation
	6.1 Effectiveness of Prime+Count
	6.2 Choosing Bucket Ranges
	6.3 Capacity Measurement
	6.4 Image Transfer

	7 Discussion
	7.1 Limitations of Prime+Count
	7.2 Cross-world Covert Channels without Normal World Kernel Privileges
	7.3 Limitations of Our Experiments

	8 Related Work
	9 Conclusion
	References

	i10-1-aviv
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Study Design and Materials
	3.2 Live Simulation Setup and Coordination
	3.3 Procedure
	3.4 Recruitment

	4 Realism and Limitations
	5 Results
	5.1 Comparing Attack Rates Across Video and Live Studies
	5.2 Post-Hoc Participant Feedback

	6 Implications
	7 Conclusions
	References
	A Survey Material
	A.1 Ante Hoc Demographic Questionnaire
	A.2 Post Hoc Participant Strategies Questionnaire Questions
	A.3 Observation Forms
	A.4 Guide/Script for Administering Study

	B Visualization of Authentication
	B.1 Patterns
	B.2 PINs

	i10-2-neupane
	i10-3-wiese
	Abstract
	1 Introduction
	2 Ethical considerations
	3 Threats and Opportunities
	4 Form Factor Survey
	4.1 Materials and Methods
	4.2 Results
	4.3 Discussion
	4.4 Limitations

	5 Field Study
	5.1 Methods
	5.2 Materials

	6 Field Study Results & Discussion
	6.1 Participants and Confidants
	6.2 Recovery Rate
	6.3 Task Durations
	6.4 Security and Trust
	6.5 Sentiments and Token Handling

	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References
	A Form Factor Study Materials
	B Results of form factor survey
	C Questionnaire 1
	D Questionnaire 2
	E Questionnaire for Confidants

	i10-4-farhang
	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Upgrades
	2.2 Software Updates
	2.3 Purchasing New Devices

	3 Methodology
	3.1 Online Survey
	3.2 Measures
	3.3 Study Procedures
	3.4 Participants

	4 Results
	4.1 To Upgrade, or Not to Upgrade?
	4.2 Perceived Usefulness and Satisfaction
	4.3 Measuring Upgrade Cost
	4.4 Security Concerns
	4.5 Free Upgrade and Notification Approach
	4.6 Purchasing New Device

	5 End of Life (EOL) and Security after EOL
	5.1 Security after EOL

	6 Discussion
	6.1 Better Communication to Address Privacy Concerns
	6.2 Better Upgrade Messaging
	6.3 Security and the Need for a Roadmap after EOL
	6.4 Reduce Perceived Cost

	7 Limitations
	8 Conclusion
	References
	A Survey Instrument
	B Code-book
	B.1 Code-book: Not Upgrade
	B.2 Code-book: Upgrade

	i11-1-jain
	Abstract
	1 Introduction
	2 Motivation
	2.1 Evolutionary Fuzzing
	2.2 Motivating Example
	2.3 Lessons learned

	3 Overview
	3.1 Input Execution and Fitness Function
	3.2 DTA and Input Type Inference
	3.3 Type Based Mutation

	4 Input Type Inference
	4.1 In-memory Data Structure Identification for Input Offsets
	4.2 Basic Data Type Identification
	4.3 Array Detection
	4.4 Precise Data Type Identification

	5 Type Inference-assisted Mutation
	5.1 Coverage-oriented Mutation
	5.2 Bug-oriented Mutation

	6 Implementation
	7 Evaluation
	7.1 LAVA-M Dataset
	7.2 MA Dataset
	7.3 Crash Analysis

	8 Related Work
	8.1 Directed Fuzzing Approaches
	8.2 Input Grammar-Based Fuzzing Approaches
	8.3 Evolutionary Fuzzing Approaches

	9 Conclusions
	References
	9.1 Mutation Cycle Algorithm
	9.2 Howard Implementation Details
	9.3 Crash Analysis Details
	9.4 Results on MA dataset for 24hr Run

	i11-2-pang
	Abstract
	1 Introduction
	2 Background
	2.1 C++ Inheritance and Cast Operations
	2.2 Type Confusion
	2.3 Defenses against Type Confusion

	3 Threat Model
	4 Bitype Design and Implementation
	4.1 Overview
	4.2 Safe Encoding Scheme
	4.3 Object Tracing
	4.4 Typecasting Verification
	4.5 Optimization
	4.6 Implementation

	5 Evaluation
	5.1 Coverage
	5.2 Performance Overhead
	5.3 Memory Overhead
	5.4 Compilation Time Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	i11-3-liu
	Abstract
	1 Introduction
	2 Related Work
	2.1 Static Analysis to Detect Concurrency Problems
	2.2 Concurrency Error Detection
	2.3 Logic-Based Methods
	2.4 Fuzz Testing

	3 Case Study of Concurrency Vulnerabilities
	3.1 Real-World Concurrency Vulnerabilities
	3.2 Characteristics of Concurrency Vulnerabilities

	4 Static Analysis
	4.1 Shared Memory Discovery
	4.2 Sensitive Operation Marking
	4.3 Data-flow Merging
	4.4 Vulnerability Categorization
	4.5 Semantic Checking

	5 Thread-Aware Fuzzing
	5.1 Interleaving Exploring Priority
	5.2 Targeted Priority
	5.3 Load Balance

	6 Implementation
	6.1 Implementation of Static Analysis
	6.2 Implementation of Thread-Aware Fuzzing

	7 Evaluation
	7.1 Benchmark Suite
	7.2 Experimental Results
	7.3 Validation of Detected Concurrency Vulnerabilities
	7.4 Analysis of Static Analysis Results
	7.5 Abnormal Time Cost of Static Analysis

	8 Limitations and Future Work
	8.1 Scalability of Static Analysis
	8.2 Capacity of AFL in Exploring Paths
	8.3 Restrictions of Manual Validation
	8.4 Additional Limitations

	9 Conclusion
	References

	i11-4-ye
	Abstract
	1 Introduction
	2 System Architecture
	3 Proposed Method
	3.1 Feature Extraction
	3.2 HIN Constructor
	3.3 snippet2vec: HIN Representation Learning
	3.4 Multi-view Fusion Classifier

	4 Experimental Results and Analysis
	4.1 Experimental Setup
	4.2 snippet2vec based on Different Sets of Meta-path Schemes
	4.3 Comparisons with Different Network Representation Learning Models
	4.4 Comparisons with Traditional Machine Learning Methods
	4.5 Evaluation of Parameter Sensitivity, Scalability, and Stability
	4.6 Case Studies

	5 Related Work
	6 Conclusion
	References

	i12-1-etigowni
	Abstract
	1 Introduction
	2 Background
	2.1 Drone Flight Dynamics
	2.2 Offline Controller Code Verification
	2.3 Limitation of Existing Solutions

	3 Overview
	3.1 Threat Model
	3.2 Crystal Architecture
	3.3 Safety Requirement Definition
	3.4 Predictive Flight Modeling
	3.5 Just-Ahead-of-Time Verification

	4 Drone Physics Modeling
	4.1 Normal Operation Mode Physical Modeling
	4.2 Failure Mode Data-Driven Modeling
	4.3 Full Flight Operation mode

	5 Cyber-Physical Security Modeling
	6 JAT Verification and Recovery
	7 Evaluations
	7.1 Evaluation on 3DR Solo Quadcopter

	8 Related Work
	9 Conclusion
	A Global safety conditions
	B normal Operation Mode Physical Modeling
	Acknowledgments
	References

	i12-2-mujeeb
	i12-3-castellanos
	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Attack points and cyber-to-physical interfaces
	3.2 Attacker profile
	3.3 Modelling a CPS as a Data Flow Graph
	3.4 White-box analysis of controller's source code
	3.5 Extracting graphs from a controller's code
	3.6 Reachability analysis
	3.7 Shortest path analysis and attack diagrams

	4 Implementation
	4.1 The testbed
	4.2 PLC code parser

	5 Evaluation
	5.1 Interactions between attack points and Cy2Phy interfaces
	5.2 Choosing suitable attack points
	5.3 Testing attack points in a real scenario

	6 Discussion
	7 Related work
	8 Conclusions and future work
	References
	A List of components in SWaT
	B Shortest path distance between attack points and Cy2Phy interfaces

	i12-4-schilling
	Abstract
	1 Introduction
	2 State of the Art and Background
	2.1 Threat Model and Attack Vector
	2.2 Error Detection Codes
	2.3 ARM Pointer Authentication

	3 Pointer Protection with Residue Codes
	3.1 Overview
	3.2 Pointer Layout and Residue-Code Selection
	3.3 Pointer Operations

	4 Evolved Memory Access Protection
	4.1 Overview
	4.2 The Linking Approach
	4.3 Memory-Mapped I/O

	5 Architecture
	5.1 New Instructions
	5.2 Hardware
	5.3 Software

	6 Evaluation
	6.1 Future Work

	7 Conclusion
	8 Acknowledgment
	References

	i13-1-wang
	Abstract
	1 Introduction
	2 Motivating Example
	3 System Overview
	4 Design and Implementation
	4.1 Library Call Tracing
	4.2 Lprov Kernel Module
	4.3 Lprov Daemon Process and Log Analysis

	5 Evaluation
	5.1 Performance Overhead
	5.2 Case Study

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Kernel Event Tracing
	A.2 Log Analysis Algorithm
	A.3 Additional Performance Evaluation

	i13-2-deGoer
	Abstract
	1 Introduction
	2 Problem
	2.1 Statement
	2.2 Notations and definitions
	2.3 Scope

	3 Approach
	3.1 Overview
	3.2 Heuristics

	4 Implementation
	4.1 Ground-truth - oracle
	4.2 Naive implementations of call detection
	4.3 Implementation details of iCi

	5 Experiments
	5.1 Methodology
	5.2 Platform
	5.3 General results
	5.4 SPEC CPU2006
	5.5 Influence of the compiler
	5.6 Discussion

	6 Applications
	7 Conclusion
	References

	i13-3-im
	Abstract
	1 Introduction
	2 Background
	2.1 Android security architecture
	2.2 Example: Location services
	2.3 SEAndroid policy rules
	2.4 The complexity of SEAndroid policy

	3 Methodologies
	3.1 The ``box'' metric
	3.2 Git repository analysis
	3.3 Our measurement tool

	4 Measurement Results
	4.1 Boxes vs. rules
	4.2 Number of boxes in a rule
	4.3 Number of rules per box
	4.4 Ratio of rule vs. box changes
	4.5 Summary

	5 An Historical Analysis
	5.1 The ``age'' of rules
	5.2 The increasing policy complexity
	5.3 The effect of multiple branches
	5.4 Case study: Stagefright
	5.5 Contributor comparison

	6 Discussion
	6.1 SEAndroid vs. Smack
	6.2 Android Treble
	6.3 Android for Work

	7 Related work
	8 Conclusion
	9 Acknowledgment
	References

	i13-4-rahman
	Abstract
	1 Introduction
	2 Background
	3 Intent-driven Access Control
	3.1 Threat Model and Assumptions
	3.2 IAC via BCI

	4 Experiment Design
	4.1 Single App Experiment
	4.2 Multiple Apps Experiment
	4.3 Experimental Procedures

	5 Data Process and Analysis
	6 Feasibility Test
	6.1 Single App Analysis
	6.2 Cross-app Portability Analysis
	6.3 Results Analysis
	6.4 Authorization Accuracy

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgment
	References

	i14-1-nikolic
	Abstract
	1 Introduction
	2 Problem
	2.1 Ethereum Smart Contracts
	2.2 Contracts with Trace Vulnerabilities
	2.3 Our Approach

	3 Trace Vulnerabilities
	3.1 EVM Semantics and Traces
	3.2 Safety Violations
	3.3 Liveness Violations

	4 The Algorithm and the Tool
	4.1 Symbolic Analysis
	4.2 Concrete Validation

	5 Evaluation
	5.1 Results
	5.2 Case Studies: True Positives
	5.3 Case Studies: False Positives
	5.4 Summary and Observations

	6 Related Work
	7 Conclusion
	References

	i14-2-torres
	Abstract
	1 Introduction
	2 Background
	2.1 The Ethereum Virtual Machine
	2.2 The Solidity Programming Language
	2.3 Integer Bugs in Ethereum Smart Contracts

	3 Methodology
	3.1 Type Inference
	3.2 Finding Integer Bugs
	3.3 Taint Analysis
	3.4 Identifying Benign Integer Bugs

	4 Osiris
	4.1 Design Overview
	4.2 Implementation

	5 Evaluation
	5.1 Empirical Analysis
	5.2 Detection of Real-World Vulnerabilities

	6 Discussion
	6.1 Causes for Integer Bugs
	6.2 Ways Towards Safe Integer Handling

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Control Flow Graph Example
	B The DAO Hack

	i14-3-greubel
	Abstract
	1 Introduction
	2 Background
	2.1 Tor Bandwidth Measurements
	2.2 Trusted Execution Environments
	2.3 Blockchain and Smart Contracts

	3 System and Adversary Model
	4 Design
	4.1 Entity Communication
	4.2 Relay Registration
	4.3 Bandwidth Measurer Registration
	4.4 Join Measurement Process
	4.5 Bandwidth Measurements
	4.6 Reporting and Aggregating Results
	4.7 Malfunction Detection

	5 Security Analysis
	5.1 Group Compromise
	5.2 Attacks from a malicious Host
	5.3 Attacks from compromised TEEs
	5.4 Attacks on the SC

	6 Implementation
	6.1 Smart Contract
	6.2 Bandwidth Measurement Script
	6.3 Bandwidth Measurement Host

	7 Evaluation
	7.1 Measurement script
	7.2 Smart Contract

	8 Related Work
	9 Conclusion and Future Work
	References
	A Intel SGX Details
	B Tor Speedracer Measurements
	C Smart Contract Implementation
	D Measurement Data

	i14-4-tran
	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Preliminaries
	2.2 Threat Model
	2.3 Scope, Assumptions, and Limitations

	3 Obscuro
	3.1 Solution Overview
	3.2 Obscuro Protocol
	3.3 Indirect Participation Mechanism
	3.4 Detection of Malicious Blockchain Forks
	3.5 Collecting Deposits

	4 Security Analysis
	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Discussion
	6.1 Recipient of the Mixing Fees
	6.2 Multiple Obscuro Instances

	7 Related Work
	7.1 Existing Bitcoin Mixer Solutions
	7.2 Privacy Improvements in other Cryptocurrencies
	7.3 TEE for Cryptocurrency Applications

	8 Conclusion
	9 Acknowledgments
	References
	A Structure of the Deposit Transaction

	i15-1-continella
	Abstract
	1 Introduction
	2 Background
	2.1 Amazon S3
	2.2 Threats

	3 Methodology
	3.1 Enumeration & Data Collection
	3.2 Security Analysis

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Enumeration & Data Collection
	4.3 Scanning Results
	4.4 Vulnerable Websites

	5 Mitigation
	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

	i15-2-demoulin
	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Strawman solutions
	2.2 DeDoS solution

	3 DeDoS Design
	3.1 Minimum splittable units
	3.2 Inter-MSU communication
	3.3 Routing tables
	3.4 DeDoS runtime API
	3.5 Support for existing applications

	4 Resource Allocation
	4.1 Machine-local scheduling
	4.2 Initial MSU assignment
	4.3 Cloning and merging

	5 Implementation
	5.1 Overview
	5.2 DeDoS local runtime

	6 Case Studies
	7 Evaluation
	7.1 Overheads
	7.2 Attack mitigation

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

	i16-1-blanchard
	Abstract
	1 Introduction
	2 Method
	2.1 Word choice
	2.2 Protocol
	2.3 Design choices

	3 Demographic information
	3.1 Participant selection
	3.2 Recruitment of volunteers
	3.3 Statistics

	4 Results
	4.1 Word selection
	4.2 Memorization
	4.3 Guessing

	5 Statistical modelling
	5.1 Strategies and entropy
	5.2 Semantic aspects

	6 Limitations
	6.1 Ecological validity
	6.2 Short-term and long-term memory
	6.3 Free choice of words

	7 Discussion
	8 Conclusion
	References

	i16-2-mayer
	Abstract
	1 Introduction
	2 Related Work
	3 Development of the Awareness-Raising Material
	3.1 First Iteration - Based on Literature
	3.2 Second Iteration - Incorporation of Structured Expert Feedback
	3.3 Third Iteration - Visual Elements and Lay-User Feedback

	4 User Study Methodology
	4.1 Hypotheses
	4.2 Procedure
	4.3 Questionnaires
	4.4 Analysis

	5 Results – Pre-Treatment and Post-Treatment Questionnaires
	5.1 Assessment of Scenarios
	5.2 Password Security Ratings
	5.3 Qualitative Results

	6 Results – Retention Questionnaires
	6.1 Assessment of Scenarios
	6.2 Password Security Ratings

	7 Discussion
	7.1 Improvements Derived from the User Study
	7.2 Limitations

	8 Conclusion
	References
	A.1 Introductory Sections
	A.2 Attacks
	A.3 Technologies to Protect User Credentials

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

