
IAC: On the Feasibility of Utilizing Neural Signals for
Access Control

Md Lutfor Rahman
Computer Science and Engineering
University of California Riverside

mrahm011@ucr.edu

Ajaya Neupane
Computer Science and Engineering
University of California Riverside

ajaya@ucr.edu

Chengyu Song
Computer Science and Engineering
University of California Riverside

csong@cs.ucr.edu

ABSTRACT

Access control is the core security mechanism of an operating sys-

tem (OS). Ideally, the access control system should enforce context

integrity, i.e., an application can only access security and privacy

sensitive resources expected by users. Unfortunately, existing ac-

cess control systems, including the permission systems in modern

OS like iOS and Android, all fail to enforce context integrity thus

allow apps to abuse their permissions. A naive approach to enforce

context integrity is to prompt users every time a sensitive resource

is accessed, but this will quickly lead to habituation. The state-of-

art solutions include (1) user-driven access control, which binds a

prede�ned context to protected GUI elements and (2) predicting

users’ authorization decision based on their previous behaviors and

privacy preferences. However, previous studies have shown that

the �rst approach is vulnerable to attacks (e.g., clickjacking) and

the second approach i challenging to implement as it is di�cult

to infer the context. In this work, we explore the feasibility of a

novel approach to enforce the context integrity—by inferring what

task users want to do under the given context from their neural

signals; then automatically authorizes access to a prede�ned set of

sensitive resources that are necessary for that task. We conducted

a comprehensive user study including 41 participants where we

collected their neural signals when they were performing tasks

that required access to sensitive resources. After preprocessing and

features extraction, we trained machine learning classi�er to infer

what kind of tasks a user wants to perform. The experiment results

show that the classi�er was able to infer the high-level intents like

take a photo with a weighted average precision of 88%.
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1 INTRODUCTION

Access control is the core security mechanism of an operating sys-

tem (OS). It decides what resources a subject can access and in

what way the access can be performed (e.g., read, write, execute).

Classic access control models include Discretionary Access Control

(DAC), Mandatory Access Control (MAC), Role-based Access Con-

trol, Attribute-based Access Control, etc. An important property of

all these models is that a subject is not the human user, but a pro-

cess/thread that operates on behalf of the human user (i.e., a proxy).

Therefore, the e�ectiveness of these models heavily relies on the

assumption that the software truly operates as the user intended.

This assumption generally held in the early era of computing his-

tory when software was either written by users themselves or by a

trusted authority (e.g., an administrator). However, with the boom

of the software industry, this assumption no longer holds—as users,

we usually do not fully understand what a piece of software truly

does. Consequently, numerous security and privacy issues arise.

For example, ransomware can abuse our credentials to encrypt our

�les and spyware can easily steal our private information.

Modern operating systems like iOS and Android use sandbox and

permission system to mitigate this threat. In these systems, apps

are no longer trusted—by default, they can only access to their own

�les and limited system resources. Accesses to user-owned data and

privacy sensitive sensors are mediated by the permission system

through which user can decide either to allow the accesses or deny

them.While this is a step forward, the problem of these systems (iOS

and Android M+) is that they only ask users to authorize the �rst

access to the protected resources, a.k.a., ask-on-�rst-use (AOFU).

Any subsequent access to the same resource will be automatically

allowed unless users manually revoke the permission. However,

since an app can have di�erent functionalities and the resources

may be used under quite di�erent context, recent research results

have shown that AOFU failed to protect users’ privacy over half of

the time [65].

A straightforward idea to solve this problem is to prompt user

every time a protected resource is about to be accessed. However,

as the number of accessing requests can be huge (e.g., Wijesekera et

al. found that a single app can make tens of hundreds of requests

per day [65]), this approach can easily cause habituation and loose

its e�ectiveness. So, the real challenge is how to reduce the number

of prompts without sacri�cing users’ privacy.
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A general idea to solve this challenge is to infer what decision a

user is likely to make thus avoiding redundant prompts [33, 38, 41,

47, 55, 57, 66]. Existing solutions can be divided into two directions.

Solutions in the �rst direction associate GUI gadget with prede�ned

context, then extract user’s authorization from their interactions

with the gadget, a.k.a. user-driven access control [33, 38, 41, 51, 55–

57, 59, 67]. For example, a downloaded �le is allowed to be executed

only if the user has clicked the “Save” button to save it [38]; an email

is allowed to be sent only if the user has clicked the “Send” button

and its content must match what is displayed on screen [33]; and

only when the user clicks the “Camera” button can an app access

the camera device [41, 55, 57]. However, this associating user’s

authorization to GUI gadgets has two major drawbacks. First, there

are many GUI attacks that can mislead the user, such as clickjacking

attacks [30]. For this reason, existing user-driven access control

models have to employ additional steps to prevent such attacks,

e.g., by isolating the gadgets from the application and letting the OS

to render [57]. Secondly and more importantly, not all legitimate

resources accesses are initiated from user interaction [23].

The second direction is to predict users’ authorization decision

based on their privacy preference [37], privacy pro�le [36], or pre-

vious authorization decisions and other behaviors [47, 66]. Because

the decisions are usually context-sensitive, the biggest challenge for

this direction is how to infer the context. Olejnik et al. used 32 raw

features to de�ne a unique context but admitted that they are not

exhaustive [47]. Wijesekera et al. believed that the problem of infer-

ring the exact context in an automated way is likely to be intractable

thus focused on inferring when context has changed [66].

In this study, we explore the feasibility of a new way to in-

fer users’ authorization decisions—by directly inferring their intent

through the brain-computer interface. Our observation is that the

notion of contextual integrity [46] suggests that each unique con-

text will setup a set of corresponding social norms on how users

would expect their privacy information to be used. Whenever the

information is used in ways that defy the users’ expectations, a

privacy violation occurs. Applying this notion to the access control

systems (permission models) implies that we can automate the au-

thorization process by (1) associating each context of an app with

a functionality it appears to perform; (2) associating each function-

ality with a set of expected sensitive resources that are necessary

(i.e.norms); and (3) limiting the requested resources to the expected

set. However, as discussed earlier, the �rst step—inferring func-

tionality from a context is very di�cult. The key idea behind our

approach is that we can actually avoid solving this challenging

problem by utilizing our brain as a “magic” inference engine to

directly output the result: what is the intended functionality the user

wants to perform under the given context. Once we can infer intents

from the user’s brain signals, we can easily follow step (2) and (3)

to make authorization decisions.

As the �rst footprint towards this direction, this work studies

the feasibility of constructing such a decision-making system based

on non-invasive electroencephalography (EEG) headset. Recent

advances of the EEG sensor technology have enabled us to use

consumer-grade headset to capture brain signals that used to be only

available to clinical settings with invasive probes. Utilizing these

EEG sensors, researchers have shown it is possible to recognize

simple mental tasks as well as playing games. In this study, we aim

to explore the feasibility of utilizing these sensors to infer user’s

intent through answering the following research questions:

• Q1: Is it possible to extract high-level intents (e.g., taking a

photo) from the neural signals with a machine learning classi-

�er?

• Q2: Is the accuracy of the classi�er high enough to support

automated authorization?

To answer these questions, we designed and conducted a user

study with 41 participants. Experiment over the collected data

indicates that the answers to the above research questions are

mostly positive. Speci�cally, our classi�er is able to distinguish

four di�erent high-level intents (taking a photo, taking a video,

choosing a photo from the gallery, and cancel) with a weighted

average Precision of 88.34%, while the weighted average Recall is

86.52%, and the weighted average F −measure is 86.92%.

Contributions. In brief, our contributions in this paper are:

• We designed a new intent-driven access control model that

relies on inferring of user’s high-level intents through the

brain-computer interface (BCI).

• We experimentally validated the feasibility of constructing

such a system with consumer-grade EEG headset via a user

study of 41 participants. Our experimental results show the

feasibility of intent-driven access control. To our best knowl-

edge, this is the �rst study of utilizing brain signals to protect

users’ privacy.

The rest of the paper is organized as follows: §2 provides the

background on Electroencephalography (EEG), Event-related po-

tential (ERP), Emotiv Epoc + headset and Brain Computer Interface

(BCI) which are required to understand our study, §3 introduces the

threat model of our new access control design and how it works,

§4 presents the experiments design and experimental procedures,

§5 provides the details of how raw EEG data is processed before

feeding into a machine learning algorithm, §6 empirically answers

the two research questions, §7 discusses the limitations of our ex-

isting design and possible future work, §8 compares our work with

related research, and §9 concludes the paper.

2 BACKGROUND

In this section, we give the background of Electroencephalography

(EEG), event-related potential (ERP), Emotiv Epoc + headset and

Brain Computer Interface (BCI).

EEG. Electroencephalography (EEG) is amonitoring technique that

records the brain’s electrical activities. The recorded EEG data is a

time series data. Voltage �uctuations generated from neurons inside

the brain are captured by electrodes and ampli�ed. The electrodes

are usually placed in a non-invasive way (i.e., attached to the skin

of the head scalp), but they can also be used invasively. For this

study, we used non-invasive EEG sensors.

Event-Related Potentials. Event-related potentials (ERPs) are

small but measurable (with an EEG sensor) voltages changes gen-

erated by the brain in response to a stimulus event. The stimulus

events include a wide range of cognitive, sensory, or motor activ-

ities, such as showing di�erent letters to the participants, or in

our experiments, performing a given task with mobile apps. ERPs
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QuickVideo, and VideoCamDirect did not need any account to take

photos or videos.

We instructed participants to browse these apps as they use it in

their real-life (e.g., they might be taking a photo, or writing texts).

However, in this study, we just focus on the participants’ interaction

events related to the following three tasks: (1) taking a photo, (2)

taking video, and (3) select and upload a photo from the gallery.

This experiment has more realistic and ecologically valid settings as

the participants were browsing these popular apps and performing

the common tasks (e.g., take photo, take video and upload photo)

as per their own choice.

4.3 Experimental Procedures

Ethical and Safety Considerations. Our study involved human

subjects, and our experimental and recruiting procedures were

approved by the O�ce of Research Integrity (ORI) at the University

of California, Riverside under UCR IRB-HS 16-210. All participants

were given the option to withdraw from the study at any point of

the time. Devices involved in the study were sanitized after each

session to avoid skin problems (e.g., irritation). The standard best

practices were followed to protect the con�dentiality and privacy

of the participants data. Compensation of $30 was provided to the

participants whether they withdrew or not.

Participants Recruitment. After obtaining the IRB approval, we

recruited a total of 41 healthy participants for our experiments.

Among the 41 participants, 33 participants were for single app

experiment and 8 participants were for multiple app experiment.

Participants were recruited by word of mouth, �yers, and social

media (Facebook) advertising. Informed consent and some non-

personally-identi�able data (gender, age, and major) were obtained

from all participants. Twenty-seven (65.85%) of the participants

were male, and Fourteen (34.15%) were female. The details on the

participants’ demographics are provided in Table 2.

Experiment Setup. The experiment consists a consumer-grade

EEG headset (Emotiv EPOC+), an Android phone (Google Nexus

5X), an experiment app (§4.1), a laptop, and the Emotiv software

package [21]. Participants are asked to use the app on the Android

phonewhile wearing the lightweight EEG headset. The EEG headset

connects to laptop and sends EEG data via a Bluetooth dongle. The

Android phone connects to the laptop via USB. To construct the

ERPs, the Android app records the timestamp of the task. Clocks of

the phone and the laptop are synchronized with network time to

precisely align the event time stamps and the EEG data. EEG data

is recorded using the Emotiv Pure.EEG software.

Testbed. Our testbed is based on Android. To ease the creation of

ERP, in the experiments, we use touch events as the anchor to distin-

guish di�erent ERPs. In particular, we developed a standalone moni-

toring appwhich uses the accessibility service in Android to capture

all the touch events (using the flagRetrieveInteractiveWindows

�ag) [26] and log the timestamps of the events and the target GUI

element. The logged timestamps are then used to synchronize with

the neural signals captured by the BCI device and generate ERPs

corresponding to the touch events. To label ERPs, we manually

label GUI controls with corresponding intents (similar to access

control gadget). If a monitored touch event triggers a labeled GUI

control, we tag the ERP with the corresponding intent.

Figure 5: Experiment setup user is playing android apps

while wearing the Emotiv Epoc+ BCI headset. The sensors

of headset captured neural signals, converted to digital form

and transmitted encrypted data to the neural data collection

computer via USB dongle receiver.

Preparation Phase. The �rst step of the preparation is to inform

participants that their brain signals would be collected while play-

ing our app on our test Android device and will be used to improve

the access control model. Next, we sanitize the electrodes of the

EEG headset and apply gel on them to improve their connectivity

with the skin. Then we set-up the EEG headset by putting it on the

head of the participant. Because the signal-to-noise ratio is lower in

raw EEG data, additional preparation steps are followed to ensure

the quality of the data. First, all experiments were conducted in a

quiet meeting room reserved for one participant only (Figure 5).

Table 2: Participants Demographic Distribution Summary

Gender (%)

Male 65.85

Female 34.15

Age (%)

18-21 years 39.03

22-25 years 24.39

26-29 years 29.26

≥ 30 years 7.32

Background (%)

Computer Science 31.70

Bioengineering 9.74

Biology 4.87

Psychology 7.32

Linguistic 2.44

Business 7.32

Political Science 7.32

Mechanical Engineering 2.44

Economics 7.32

Public Policy 2.44

Anthropology 2.44

Gender and Sexuality 2.44

Toxicology 2.44

Medical Science 2.44

Undeclared 7.32
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Second, a preprocessing step is carried out on the raw EEG data

to increase their signal-to-noise ratio. During preprocessing, noise

reduction is applied to each of the raw EEG channels. To ensure

all the signals from the electrodes were properly channeled, we

checked the Pure.EEG control panel [21]. With the help of this tool,

we can validate the signal strength of each channel (electrodes).

The color green against the channel in the control panel meant

good strength while black meant no signal.

Task Execution Phase. Before starting the data collection, the

operator verbally instructed to the participants about the proce-

dure of experiments. For the single app experiment, all participants

performed the same set of tasks for 5 sessions, where each session

includes performing all 10 sets of tasks (Figure 4a); so a total num-

ber of 200 actions (trials) were performed by each participant if

without doing any mistake. All sessions were performed on the

same day and in the same room. A break of 2-4 minutes was given

to participant between each session. Users were instructed to stay

calm and relax in the entire session of the experiment. In real life,

participants may not face close to 40 actions within a short time (∼

5 min). However, multiple trials are the fundamental requirement

of most ERP-related study [40, 58]. We conducted this single app

for proving the ground truth of IAC. For multiple app experiments,

participants interacted with 8 popular apps for the entire time of

the experiments. They were instructed to play those apps for ap-

proximately 25 minutes. The operator noti�ed the participants to

stop the browsing after 25 minutes. However, the participants were

allowed to stop the session if they were feeling uneasy or bored.

On average, the session duration for this experiment was 21 min-

utes. After �nished the experiment, if the participant is interested

about our study, we explained the details of our experiment to those

curious participants.

5 DATA PROCESS AND ANALYSIS

Figure 2 depicts the work �ow of our system. First, we acquire

the neural data using the EEG device. Then the raw EEG data is

preprocessed to make it usable for the classi�ers. Next, we apply

Independent Component Analysis (ICA) to recover original signals

from unknown mixtures of sources and extract features using au-

toregressive coe�cients. Finally, we utilize machine learning (ML)

techniques to get the intent.

Raw Data Acquisition. We collected raw EEG data using the

Emotiv Pure.EEG software [21]. We synchronize the EEG data with

actions (i.e., click events received by the app) using calibrated clocks

on the phone and the laptop. Based on the study of Martinovic et

al. [40] and Neupane et al. [44], we epochize the signals with 938 ms

windowwhich starts at 469ms before a touch event and 469ms after

the event. We chose this window size as it provides the best results

during our analyses. Similar to the previous works [40, 44], we also

consider the window before the touch event because participants

know beforehand which action they will perform; so the stimuli

session actually starts before the event is recorded.

Data Preprocessing. Neural activities of human involve a huge

number of neuronal-membrane potentials. EEG records the voltage

change of cerebral tissues and the state of brain function. However,

these signals are weak, non-stationary and nonlinear in nature [6].

For this reason, EEG signals can easily be contaminated by ex-

ternal noises like the frequency of the power supply and noise

generated by the human body, such as eye movements, eye blinks,

cardiac signals, muscles noise, etc. The most signi�cant and com-

mon artifact produced by eye movements and blinks is known as

electrooculogram (EOG). Electromyography (EMG) is another type

of contaminating artifact, which is a measurement of the electrical

activity in muscles as a byproduct of contraction. EMG artifacts

are much more complex than EOG artifacts due to the movement

of muscles, particularly those of the neck, face, and scalp. Both

EMG and EOG seriously degrade the extraction of the EEG sig-

nals and lead to incorrect analyses. Hence they must be removed

from the raw data. Similar to previous work [3, 53], we used the

AAR (Automatic Artifact Removal) toolbox [27], which utilizes the

Blind Source Separation (BSS) algorithm to remove both EOG and

EMG [35]. After removing the EOG and EMG artifacts, we applied

an 8th order Butterworth band pass �lter with a cuto� frequency

of 3-60 Hz to remove all other useless signals. The band pass �lter

keeps signals within the speci�ed frequency range and rejects the

rest. The selected frequency range covers all �ve major frequency

bands in EEG signal, namely delta (0.1 to 4 Hz), theta (4.5 to 8 Hz),

alpha (8.5 to 12 Hz), beta (12.5 to 36 Hz), and gamma (36.5 Hz and

higher) [19]. This preprocessing step extracts quality signals with

good SNR (signal-to-noise-ratio).

ICA. Independent Component Analysis (ICA) is standard method

to recover original signals from known observations where each

observation is an unknown mixture of the original signals. EEG de-

vice has 14 electrodes for receiving the brain signals from di�erent

regions of the brain. Typically, each sensor will receive signals from

a mixture of regions. ICA can be applied to separate independent

sources from a set of simultaneously received signals from di�erent

regions of human brain [31, 32, 64]. In this study, we used ICA to

separate multi-channel EEG data into independent sources.

Feature Extraction. The features from neural signals are ex-

tracted using autoregressive (AR) model. This model is a popular

feature extraction method for biological signals, especially for time

series data [15]. It can estimate the current values x(t) of a time

series from the previous x(t − 1) observations of the same time

series. The current term x(t) of the series can be estimated by a

linear weighted sum of previous term x(t − 1). A generic formula

for representing the time series data (e.g., EEG) is

x(t) =

n’

i=1

αix(t − i) + e(t) (1)

Where αi , is weight which also known as the autoregressive

coe�cients, x(t) is the EEG signal, and n is the order of the model,

indicating the number of previous data points used for estimation.

e(t) is called noise or residual term which is assumed to be Gaussian

white noise. x(t) measured in time period t .

The selection of order in AR is the crucial step for getting a

successful application. We chose AR order six like previous stud-

ies [5, 44, 50]. All these studies used the 128Hz Emotiv EPOC device.

We calculated AR coe�cients using the Yule-Walker method [22].

We consider all 14 channels data for our analysis. Therefore, six AR

coe�cients were obtained for each electrode channel, resulting in
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84 (14x6) features for each action of data. The total process of ex-

tracting feature applied all the actions for both of the experiments.

Classi�cation Models and Evaluation Metrics. In this study,

we used random forest (RF) [12] because our extracted features

(autoregressive coe�cients) are suitable for RF algorithms [8, 24].

For implementation, we used the Weka classi�cation software pack-

age [29].

We evaluate IAC using the weighted average of Precision, Recall

and F −Measure . A higher weighted average Precision value indi-

cates less false positives (i.e.incorrectly authorize access to sensitive

data and sensors). A higher weighted average Recall value indicate

less false negatives (i.e.unnecessarily prompt users for authoriza-

tion). The weighted average F −Measure is the weighted average of

Precision and Recall which takes both false positives and false neg-

atives into account and gives the balance of our machine learning

model. Finally, we used k-fold cross validation to validate our re-

sults, where k = 10. This is a broadly used technique for calculating

test accuracy in the classi�cation problem for small sample which

can prevent over�tting. The goal of our study is to train a classi�er

which can be used to predict user’s intent based on features that

extracted using earlier step.

6 FEASIBILITY TEST

In this section, we aim to answer the research questions through

analyzing the data we collected from the two di�erent experiments

described in §4. We start from Q1—is it possible to distinguish the

three high-level intent based on neural signals using machine learning

algorithm.

6.1 Single App Analysis

Recall that our single app experiment includes 5 sessions for each

participant, where each session includes 10 sets of tasks and each

task set includes 4 actions. Therefore, each participant has 50 in-

stances per action (5 sessions x 10 task sets). In total, we have 1650

instances (50 instances x 33 users) per action from all 33 participants

in the single app experiment. We then extracted features from these

instances using the methodology discussed in §5 and labeled the

feature vectors with the following four actions as classes:

• Camera for the task of taking photo action,

• Video for the task of taking video action,

• Gallery for the task of choosing a photo from gallery, and

• Cancel for canceling the pop-up.

Global Model. In this model, we consider dataset of all the users

with all the sessions. We have total 6600 (1650 instances x 4 actions)

ERP events for this model. The experiment results of this model are

shown in Table 3. As shown in the table, the weighted average of

Precision is 70.70%. This implies that our IAC can correctly detect

human intention for 70.70% of time, which is not very good for

automated authorization. The reason behind this relatively low

accuracy is that even for the same task, di�erent people are likely

to have di�erent ERPs patterns, which actually has been used to

build authentication systems [5, 63]. For this reason, we would like

to know how the classi�er performs when only consider actions

belong to the same participant.

Table 3: Classi�cation result of global model.

Metrics

Precision Recall F −Measure

70.70% 70.70% 70.70%

Figure 6: Boxplot of Precision, Recall , and F −measure of indi-

vidual model. The red line indicates the median value and +

symbol indicates the outliers.

Individual Model. In the individual model, we train and test the

model with data from a single user across all sessions of single app

experiment. The results for the individual model are reported in Fig-

ure 6. Overall, the results were much better than when considering

all segments across all participants (i.e., the global model). From

the boxblot, we observed that the median of weighted average of

Precision and Recall are 99.50% and 99.50%, respectively. The me-

dian of weighted average F −measure is 99.50% also. These results

imply that IAC correctly detect human intent for 99.50% of the time.

The results also indicate that IAC works well when the ML model

is trained and tested with a single user and a single app.

6.2 Cross-app Portability Analysis

Through the single app experiment, we partially veri�ed that it

is possible to infer users’ high-level intents based on their brain

signals. In terms of app context, this implies that our classi�er can

distinguish di�erent app contexts. However, since it only involves

one app, the remaining questions is: can the learned model work

across di�erent apps? That is, in terms of app context, we want

to know whether our classi�er can identify similar context from

di�erent apps (i.e., cross-app portability).

We answer this question using the multiple real-world apps

experiment where 8 participants interacted with 8 real world apps

with a duration of 21 minutes on average. However, we had to

discard 3 participants data due to the device error caused data loss.

So we only consider those 5 participants whose data is su�cient.

On average, the 5 participants performed 22 actions for video, 47

actions for camera, and 27 actions for gallery. In total, we have 484

ERPs from 5 users.

Because these 5 participants have not participated in the sin-

gle app experiment, this experiment resembles a more practical

scenario. With this setup, we have two options to bootstrap the
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Figure 7: How classi�cation metrics varies with the number of

seen intents? The �rst bar represents the Precision, Recall , and

F − measure without adding any new intents from multiple real

world apps experiment to the global model from single app experi-

ment. The second bar represents results with adding new intents to

the global model, The third bar represents the results after adding

two intents to the globalmodel, and so on and so forth.We observed

the upward trends of Precision, Recall , and F −measure with the

addition of more new intents to the global model.

individual model: (1) we can start with an empty model can com-

pletely rely on the feedback loop (in Figure 2) to collect training

data; or (2) we start with a half-baked model and use the feedback

loop to improve it. In this experiment, we chose the second option

as it requires less training and the global model we tested in §6.1

still showed reasonable accuracy.

With Initial Model. We used the global model learned from all

participants in the single app experiment as the initial model (i.e.,

train the model with all data in the single app experiment) and

tested it with all data collected from the multiple app experiments.

The classi�cation results of Precision, Recall , and F −measure of

the initial model are presented in the �rst bar diagram in Figure 7.

From this �gure, we can observe that we can only correctly infer

the user intention with the precision of 43.16%.

Adding Feedback Loop. When we gradually add new training

intents collected from the user when he/she is using real world

apps, the improvement on Precision, Recall , and F −measure are

shown in Figure 7. All newly added intents were from the multiple

app experiment and we have to stop at 5 so we can have enough

data for the testing phase. As we can see, after adding 5 intents

from real world apps, the weighted average Precision improved

from 43.16% to 88.34%, the weighted average Recall improved from

39.82% to 86.52%, and the weighted average F −measure improved

from 38.94% to 86.92%. The results imply that in real world context,

IAC can correctly infer the user intention 86.92% of time by adding

only 5 intents to re-train the ML model. Again, the precision is

expected to continue improving and the only reason we stop at 5 is

due to lack of data.

6.3 Results Analysis

Based on the classi�cation results from above experiments, we

decided to accept our hypothesis. That is, it is possible to identify

high-level intents based on neural signals using a machine learning

algorithm. In terms of app context, our classi�er can both distin-

guish di�erent contexts from the same app and identify similar

contexts from di�erent apps. Hence, the answer to Q1 is positive.

6.4 Authorization Accuracy

In the above analysis, we have shown that it is possible to identify

user’s high-level intent through the brain-computer interface. How-

ever, whether the classi�cation result can be used for automated

access authorization for user-owned sensitive sensors and resources

still faces the question: is it accurate enough (Q2). In this subsection,

we analyze the classi�cation results to answer this question. From

the analysis of multiple app experiment data, we observed that our

classi�er can achieve a weighted average of Precision 88.34% with

the weighted average of F −measure 86.92% for the completely

unknown scenarios. Based on this, we think the answer to Q2 is

positive.

7 DISCUSSION

IAC andContextual Integrity. Access control system is a mecha-

nism to protect user’s privacy. Modern OS, including Android (M+),

iOS, and Windows (8+) uses an ask-on-�rst-use permission system

to guard access to sensitive data and sensors. This approach pro-

vides some context cues but only at the �rst time when the permis-

sion is requested. Researchers have argued that permission should

be requested under the context that matches user’s expectations,

i.e., contextual integrity [46]. IAC enforces contextual integrity in

the way that user would only have an intent in her mind when the

context is relevant to the intent. In other word, if an app violates

contextual integrity, then the user will not express the intent and

IAC will block the access.

Learning Strategy. As demonstrated in §6, the classi�cation accu-

racy can vary based on the learning strategy. Overall, since di�erent

people may exhibit di�erent brain signals evenwhen thinking about

the same thing (which has been used for neural-signal-based au-

thentication); it is preferable to use individual models. However,

bootstrapping such a model require users to go through a calibra-

tion phase. An alternative approach, as used in [66] and our own

experiment, is to use a half-baked model (e.g., the generalized model

learned from all participants in the single app experiment), then per-

sonalized it by adding feedbacks from explicit prompts, especially

for newly installed apps. Once the model has seen enough feedback,

we can start using it to make real authorization decisions. Our mul-

tiple app experiment has partially validated the e�ectiveness of this

strategy.

Limitations. Similar to other previous studies on BCI [40, 45], our

study also has several limitations. First, the study was conducted

in the controlled environment so whether unwanted artifacts like

EOG and EMG can be reliably removed in an uncontrolled environ-

ment is still unclear. However, since this is a common problem for

BCI, we believe future techniques will be able to address it. Second,

despite that our sample set is relatively larger (41 participants) than

previous studies (e.g., 5 participants [5, 49], 9 participants [39], 16

participants [7]) and have diverse demography background, it is

still much smaller than data set in other machine learning appli-

cations, such as computer vision, voice recognition, and natural
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language processing. Third, we used only popular apps for testing

our feasibility and the number of apps is only 8. This could be a

bias scenario as participants are more familiar with popular apps.

Finally, our classi�er is likely to be vulnerable to phishing-style

attacks. That is, similar to following our instructions to perform

actions that would allow an app to access protected resources, a

phishing-style attack might also be able to trick users into willing

to perform operations that would compromise the security and

privacy of their data.

Future Work. There are many unexplored areas along this re-

search direction. First, we would like to explore other machine

learning algorithms like deep neural network (DNN) to see if it can

help improve the classi�cation accuracy. Second, we would like to

see if the classi�er can scale to support more types of tasks and

how the accuracy would look like. Third, we would also like to

explore if it is possible to improve the classi�er by including other

behavioral information, such as eye gazing information. Moreover,

although our current design might be vulnerable to phishing-style

attacks, previous study [45] has shown that even though at con-

scious level, users may not realize the di�erence between phishing

and non-phishing websites, their neural signals still di�ers. Based

on this observation, we would like to explore the possibility of de-

fending against phishing-style attacks at brain signal level. Finally,

recent research has shown machine-learning-based classi�ers may

be subject to adversarial examples [28], so might be our classi�er.

However, it is unclear that under our threat model, how attackers

can tamper with the collected EEG data to inject their malicious

perturbations. So we would also like to explore this direction.

8 RELATEDWORK

In this section, we brie�y discuss related work on neural signals

and permission model.

BCI-based security studies. Neural signals have used for user

authentication [17, 34, 43, 63] and identi�cation [52, 68]. Ashby et

al. [5] proposed an EEG-based authentication system using a con-

sumer grade 14-sensor Emotiv Epoc headset. Abdullah et al. [2]

discussed the possibility of the EEG-based biometric system using 4

or fewer electrodes. Chuang et al. [17] developed a user authentica-

tion model using one single-sensor Neurosky headset. Campbell et

al. [14] developed a neurophone which is based upon ERP of brain

signal. They implemented a brain-controlled address book dialing

app, which shows a sequence of photos of contacts from address

book to users. Thorpe et al. [63] suggested pass-thoughts to au-

thenticate users. In their study, they used EEG signal to replace

password typing. The EEG-based authentication system overcomes

the weakness of current authentication protocol which su�ers from

several types of attacks including dictionary attack, password guess-

ing, etc. However, there are some drawbacks to this approach like

non-pervasiveness of EEG equipment and lack of feedback to the

users during the authentication process.

Exposing user’s neural signals to third-party apps via the brain

computer interfaces introduced new security and privacy issues

[11, 25, 40, 44]. Martinovic et al. [40] introduced a side-channel at-

tack which they referred to as ”brain spyware” using commercially

available headset Emotiv EPOC. The authors extracted private infor-

mation like familiar banks, ATMs, PIN digits, and month of birth us-

ing only brain signal. Their work is similar to Guilty-KnowledgeTest

(GKT) [18] where familiar items evoked a di�erent response than

unfamiliar items. In their experiment, users are shown images of

banks, digits, known people images. The users’ ERP responses will

be di�erent for their very known banks as that information stored

their memory beforehand. However, their attack is intrusive and

can be easily detectable as the users may notice the abnormality in

the application when it displays some of their familiar information

sequentially. Frank et al. [25] proposed a subliminal attack in which

attacker can learn relevant private information from the victim at

the levels below his cognitive perception. Bonaci et al. [11] showed

how non-invasive BCI platforms used in games or web navigation,

can be misused to extract user’s private information. Neupane et

al. [44] showed the feasibility of stealing users’ PIN from their brain

signals.

Runtime Permission Models. Requesting access to sensitive

resources at runtime—the moment they will be used provide more

context information thus can help users better understanding the

nature of these requests and make more optimal decisions [23]. The

challenge is how to avoid habituation caused by high frequency of

resource access [65].

User-driven access control. The �rst approach to reduce the num-

ber of prompts is to automatically authorize the requests based on

users’ intent. Existing user-driven access control systems [33, 38,

41, 48, 51, 55, 57] all utilize the same way to infer the intent—by

capturing authentic user interaction with trusted GUI gadgets (i.e.,

access control gadgets), e.g., the “camera” button. Our approach

also tries to infer the intent of an user. However, as we directly infer

the intent from the neural signals, our system is not vulnerable to

GUI attacks [30, 51] thus do not require additional protection for

GUI gadgets. Please note that although we only used user-initiated

actions in our experiment, unlike existing user-driven access con-

trol systems, our approach is not limited to user-initiated events.

Because any external stimulus, including viewing an app’s fore-

ground GUI context can be used to create event-related potentials

(ERPs) and drive our system.

Decision prediction. The second approach is to use machine learn-

ing (ML) to predict users’ privacy decisions [36, 47, 65, 66]. Liuet

al. [36] proposed using user’s answers to a few privacy related

questions to build a personalized privacy pro�le. They then create a

Privacy Assistant that o�er recommendations for future permission

settings based on the pro�le, apps category, requested permission,

and purposes associated with the permission. While they found

that 78.8% of the recommendations were adopted by users, the

biggest limitation is that they used the ask-on-install model so the

recommendations were made without considering context. Recog-

nizing the importance of context integrity, Wijesekera et al. [65]

pioneered the work on predicting user’s privacy decisions based

on the context. In their �rst attempt, they used a one-size-�ts-all

logistic regression model which can provide 40%-60% better ac-

curacy than random guessing. In [66], they further extended this

idea by building a SVM-based classi�er based on when context has

changed and user’s past decisions and behavior. This new approach
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improved the accuracy to 96.8% across all users. However, the accu-

racy drops to 80% among users who truly make di�erent decisions

based on context. Around the same time, Olejnik et al. [47] also

propose using context information and ML technique to predict

user’s privacy decisions. In this work, they used 32 raw contextual

features (e.g., app name, foreground app, method, time, semantic

location) to train a linear regression model based on users’ previous

decisions under di�erent contexts. The mean correct classi�cation

rate of their model is 80%. Our approach also relies on ML tech-

niques and our learning strategy is very close to [66]. However,

instead of trying to encode context as a set of features to the ML

techniques, we rely on users to interpret the context and aim to

infer what they want to do under the given context.

9 CONCLUSION

In this work, we proposed a new direction to protect user-owned,

security and privacy sensitive sensors and resources—by inferring

user’s intents and use it to automate authorization decisions. As a

�rst step, we studied the feasibility of leveraging the brain-computer

interface to infer the intents. Our experiment with 41 participants

showed that neural signals can be utilized to train a machine learn-

ing classi�er to recognize high-level intents like taking a photo. The

accuracy of the classi�er was also good enough for this security

and privacy sensitive task.
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