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ABSTRACT: A new thermal isomerization of polyynes is 
described. Benzyne intermediates substituted by a C(RR’)OR’’ 
substituent adjacent to one of the benzyne sp-hybridized 
carbons give rise to products in which the OR’’ moiety has 
migrated to the proximal benzyne carbon.  This process likely 
proceeds via sequential formation of multiple reactive 
intermediates: an initial thermally generated benzyne, a 
strained benzoxetenonium ion, and an o-quinone methide. As 
some examples demonstrate, the overall transformation can be 
quite efficient. The mechanism of this novel reaction is further 
supported by experiments and DFT calculations. 

Quinone methides (QMs) are reactive intermediates of interest 
from the perspectives of preparative, mechanistic, and structural 
organic chemistry as well as their roles in chemical biology (e.g., 
biosynthetic pathways, prodrug cleavage, and electrophilic capture 
of biological nucleophiles). 1  QMs are often generated by 
eliminative processes of phenol derivatives or by photochemical 
reactions (including reversible generation in photochromic 
molecules). Besides these two methods, benzyne, itself a versatile 
reactive intermediate, can also generate o-QMs by reaction with the 
C=O p-bond in carbonyl-containing functional groups (Figure 
1a). 2  For example, Yoshida and co-workers demonstrated a 
coupling reaction of two arynes with aldehydes to give 9-
arylxanthene derivatives through QM intermediates. They, as well 
as Miyabe’s group, have also reported insertion reactions of arynes 
into formamide to afford coumarin derivatives following in situ 
trapping of the o-QM by esters, nitriles, and ketones. 

We now report a reaction (Figure 1b) that represents an 
alternative mechanistic paradigm for producing o-QMs in which a 
thermally generated benzyne derivative bearing a benzylic ether 
group can produce a four-membered benzoxetenonium 1,3-
zwitterion (middle structure in the brackets in Figure 1b) by an 
intramolecular nucleophilic attack to the strained aryne bond. 
Electrocyclic ring-opening of the oxetene ring 3  affords an O-
substituted o-QM intermediate, and a subsequent hydrogen atom 
migration gives a formal C–O bond insertion product. In this 
process, the steric bulk of the R1 group is crucial, possibly 
facilitating passage through the strained four-membered ring 
transition state geometry that leads to the strained four-membered 
zwitterion.4 Indeed, when R1 is a hydrogen, the reaction proceeds 
through other pathways. 5  The highly substituted benzyne 

intermediate is accessed conveniently from a triyne precursor via a 
cycloisomerization event, namely, the hexadehydro-Diels−Alder 
(HDDA) reaction,6 and therefore, the overall cascade is essentially 
a net thermal isomerization of the triyne. 

Figure 1. Generation of o-quinone methides via benzynes. 
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Chart 1. The major products (2a-h) isolated from reactions of 
triyne precursors 1a-h.a 

 
aYields are for isolated, purified (SiO2) material. 

The first time we encountered this unusual transformation was 
upon heating the ynone substrate 1a. The fluorenone derivative 2a 
was produced in excellent yield (Chart 1). We proposed a 
mechanism to account for this outcome, which is shown in Figure 
2. Initially, triyne 1a undergoes a HDDA reaction to generate 
benzyne 3, which is trapped by the pendant benzylic silyl ether to 
give the benzoxetenonium species 4. Silyl migration to the anionic 
carbon in this zwitterion (a retro-Brook-like rearrangement) could 
occur at this stage, although the stereoelectronic features for that 
process appear to be much more favorable following ring-opening 
to the O-silylated o-QM 5. Moreover, that electrocyclic opening 
itself might be expected to be quite rapid because it is accompanied 
by delocalization of the cationic portion of the zwitterion (cf. the 
computed TS2 in Figure 3, which suggests that this process is 
barrierless). A [1,5]-hydrogen atom shift in the neutral QM7 6 
yields the o-silylated phenol 7. We presumed that under the 
reaction conditions for this experiment (150 °C, 14 h), this species 
had rearranged (see later discussion) to the observed product 2a. 
Similar thermal Brook rearrangements of o-silylated phenols have 
been reported.8 Due to the size of each of the two substituents at 

the termini of triyne 1 (blue and red colors), the ease of these 
HDDA cycloisomerizations—necessarily the rate-limiting step in 
each case—required more elevated temperatures to form the 
benzyne compared to analogous ynone-triyne substrates. 9 The 
transformation was shown to be general, as evidenced by the 
examples of substrates 1b-h leading to 2b-h. Propargylic 
substitution other than geminal dimethyl in 1 is tolerated (cf. 2d–
e). The R2 group can be alkyl in addition to a silyl substituent (2f). 
When it is acetyl (cf. 1h), two products, 2h and 2h’, were observed. 
The latter could arise by either an intermolecular transfer or an 
intramolecular, Fries-like process.   

 
Figure 2. A proposed mechanism for the conversion of 1a to 2a.  

DFT calculations [SMD(PhCl)/B3LYP-D3BJ/6-
311+G**//B3LYP/6-31G*, Figure 3] were used to further explore 
the mechanistic thinking laid out in Figure 2. A slightly simplified 
and symmetrized [e.g., TMS instead of TBS and an ester linker (cf. 
8a, later)] set of structures was used. The HDDA-produced 
benzyne A is seen to cyclize to the benzoxetenonium ion B with a 
very low barrier (TS1, 3.5 kcal·mol-1), although this strained species 
is 1.7 kcal·mol-1 higher in free energy than the benzyne. This 
proceeds by way of an extremely facile, indeed, barrierless, 
electrocyclic ring-opening to afford the more stable zwitterion C. 
Subsequent retro-Brook reaction within the zwitterion C results in 
formation of the o-QM D via another low-barrier process (TS3, 
∆G≠ = 4.0 kcal·mol-1). A 1,5-hydrogen atom shift in o-QM 004 
gives the phenol E via TS4 (∆G≠ = 10.2 kcal·mol-1). The keto 
tautomer F is seen to be less stable than the phenol by only 12.3 
kcal•mol-1, although we do not know the specifics of the mediator 
that is promoting this symmetry-forbidden 1,3-hydrogen atom 
migration. By contrast, processes like the 1,3-silyl migration of F to 
the silyl ether product G are known to be symmetry allowed and 
concerted (cf. TS5, ∆G≠ = 21.2 kcal·mol-1).10 Finally, note that 
when the R group attached to the oxonium ion is not a silyl 
substituent (e.g., Et in 2f), Et migration is not observed. Instead, a 
protonation/deprotonation sequence via the benzylic carbenium 
ion H is presumed to lead to products like I (i.e., 2f). 
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Figure 3. Computed  energy  profile (See Figure  S1  in Supporting 
Information for more details).    

To address the question of whether the transformation of 1 to 2 
is tolerant of triyne precursors containing other types of linkers, we 
examined  the  HDDA  substrates 8a–d  (Chart  2).  Once  again  we 
observed  that  the  benzyne  formation  step  in  these  substrates  is 
slower  than expected  based  on analogous triynes that  we  have 
previously  studied having the  same  linker  but a less  bulky 
substituent  (CH2R)  on  the  terminal  diyne.9 The trapping 
nucleophile  is  not  limited  to oxygen. The  tertiary  amino group in 
substrate 8b migrated to  give 9b in  an  analogous  fashion to  the 
reaction of the ethoxylated analog (cf. 1f to 2f), now by accessing a 
four-membered benzazetene species. In the case of 8c, the silylated 
phenol product 9c was formed cleanly (cf. 2h’). We do not have a 
good  explanation for the  reluctance  of this  compound  to undergo 
the  Brook  rearrangement  (it  remained  intact  even  following 
recording of the melting point (= 235–237 °C). 

Chart  2.  The  major  products  (9a-d)  isolated  from triyne 
precursors 7a-d.a 

 

aYields are for isolated, purified (SiO2) material. bDCB was the reaction 
solvent; 9b was  the  major  compound  seen  in  the  crude  product 
mixture (1H NMR analysis).  cChloroform was the reaction solvent. 

1H NMR spectroscopy was used to  monitor  the progress  of  the 
reaction of 1a (Figure 4a). The consumption of 1a proceed with a 
half-life that is estimated to be 47 min at 150 °C in chlorobenzene. 
As a comparison, the cyclization half-life of another ynone substrate 
with the same linker structure is ca. 5 h at 80 °C.9 Intriguingly, at an 
early  stage (30  min) of  conversion, we  observed quite  clean the 
formation  of phenol 7. As  the reaction  proceeded (60  and  110 
min),  the  signal of  silyl  ether 2a started  to  appear  and  increase. 
Eventually  (350  min),  most  of 7 was isomerized to the 
thermodynamically more  stable constitutional isomer 2a.  This 
NMR  study clearly  suggests that  phenol 7 indeed  is  a  metastable 
intermediate,  the  initially  formed  product  arising  from 
rearomatization  of  the o-QM 6,  which  then  undergoes 
rearrangement to 2a.8 

 

Figure 4. 1H NMR  monitoring and  crossover  experiment. a1,3,5-
Trimethoxybenzene was used as an internal standard (IS) to monitor 
the  conversion  of 1a;  the  indicated  %conversions  were  measured  by 
integration of a unique aromatic resonance for 1a vs. the IS. 

Finally,  to  rule  out  the  possibility  of  a  bimolecular  silyl  or alkyl 
group transfer, we carried out a crossover experiment using triynes 
8a and 10,  whose  cyclization  half-lives  are  comparable.  No 
evidence  of either  of  the  two  possible crossover  products was 
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observed after full consumption of both 8a and 10 (Figure 4b). 
This supports the mechanism in which an intramolecular retro-
Brook rearrangement of 5 produces o-QM 6 (Figure 2).  

In conclusion, we have shown that certain polyyne substrates can 
efficiently undergo a tandem thermal isomerization via an o-QM 
intermediate. This represents a new pathway of formation of this 
class of intermediate. The scope of the reaction was briefly 
demonstrated (Charts 1–2), and a plausible mechanistic pathway 
was proposed (Figure 2). Furthermore, DFT calculations and 
mechanistic studies provided additional support of the proposed 
mechanism (Figure 3–4). This represents another example of the 
HDDA reaction serving as a platform to support fundamentally 
new types of reactivity. 
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