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ABSTRACT

The response of two-dimensional frictionless granular material to isotropic cyclic compression is simulated using
an improved version of the Smoothed Particle Hydrodynamics (SPH) method, which includes realistic constitu-
tive model for deformation of individual grains. The study reveals the evolution of mean coordination number
and global pressure over cycles. The probability distribution function (PDF) of contact forces for different com-
pression cycles is also reported. The global pressure at maximum compression shows downward trend for pack-
ing fractions below a certain value. The structural rearrangement that can give rise to such stress relaxation is
studied by mapping relative particle mobilities and quantifying dynamic heterogeneity using a four-point sus-
ceptibility measure. The four-point susceptibility measure reveals length and time scales that can characterize
the dynamics of driven system. Meso-scale structural rearrangement is studied using Falk-Langer measure of af-
fine and non-affine deformation. The affine and non-affine deformations drop to a stable value and oscillates
around it, which suggest that the structure is driving towards a more stable configuration. A negative correlation
is found between the local packing fraction and the non-affine squared displacement. Finally, a complex network
analysis is employed to better understand the structural rearrangement at meso-scale. The average degree and
average clustering coefficient obtained from the complex network analysis show peaks at maximum compres-
sions, but the peak values increase with cycles. The degree per particle is found to be positively correlated with
local packing fraction and negatively correlated with the non-affine squared deformation. An enrichment of
three-cycle population is seen, suggesting it as the most preferred conformation for particles at the meso-scale.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

one presented here, one can study the jamming behavior of the system
under different loading conditions and derive macroscopic model to

Granular materials, such as sand, are collection of discrete macro-
scopic particles which exhibit a wide range of interesting macroscopic
behaviors such as pile formation, fluid-flow like behavior, and fracture.
They are important in many industrial applications such as mining, con-
struction, agriculture, and packing. They also play an important role in
geological processes such as landslide, avalanche, erosion, sedimenta-
tion, and plate tectonics. One particular aspect of granular material is
the phenomenon of jamming where randomly organized system of
particles changes from mechanically unstable states to stable states.
Jamming phenomena are also observed in colloids, foams, and glass
transition in molecular liquids. In most of these cases, the system starts
from an unjammed state and gradually transition to a jammed state.
Sometimes the system undergoes several transitions between jammed
and unjammed states. By careful micromechanical simulations like the
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replicate such behavior.

Simulations of granular materials in the past have revealed impor-
tant aspects in the dynamics of jamming of granular materials. For ex-
ample, Thornton [1] and Suiker et al. [2] studied the stress-strain
response of using Discrete Element Method (DEM). Jia et al. also used
DEM to study effect of particle size and size distribution [3-5]. Tayeb
et al. provided extensive data on the effect of cohesion and van der
Waals using a history dependent contact force model [6]. All these
models have their own ways of idealizing the material properties of
granular particles and their interactions, such as assuming all particles
as viscoelastic or using a linear spring to model contact force, etc.
However, one can make use of the constitutive models that are available
for each individual particle for simulating real granular materials. A
computational method that can provide such convenience and at the
same time allows easy extension to irregular shaped particles is always
a lucrative option for researchers in granular physics.

In this paper the jammed states of two dimensional granular mate-
rials is numerically investigated by subjecting the system to consecutive
compression cycles. The dynamics of near jammed isotropically driven
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Table 1
Material properties.
p (g/cm?) ¢ (x10%* m/s) S G (GPa) E (GPa) r
Lead 11.34 1.19 1.80 5.6 16 2.00
Table 2
Simulation parameters.
Parameters Values
Box size, m x m 0.2942 x 0.2942
Time step 1x1077s
Granular particle numbers 2400
Granular particle radius 3.026 x 10> m
Number of SPH particles per disk 61

SPH Particle radius 3.4868 x 1074 m

granular assemblies has been studied in the past. However, most of
these systems involve shear [7-10], vibration [11,12] or biaxial strain
[13]. In the present study, the granular system is cyclically and
isotropically compressed with small strain steps, starting from a packing
fraction below jamming, to a packing fraction above jamming. The
Smoothed Particle Hydrodynamics (SPH) method is used to simulate
the interaction of granular particles. Each granular particle is made up
of several SPH particles which can accurately account for the stress gen-
erated within each granular particle. In addition, contact forces are cal-
culated using an advanced formulation that accounts for the contact
geometry and force distribution around the contact area. A brief valida-
tion of the simulation method used is also provided in the paper.

2. Methods and physical models

In this paper the granular materials are simulated using the
Smoothed Particle Hydrodynamics (SPH) method [14-17]. The SPH is
a meshless method where the governing equations are solved by
discretizing the two-dimensional granular particles with finite number
of SPH particles that carry individual mass and occupy certain space.
These SPH particles are the mathematical interpolation point them-
selves. The material properties of the SPH particles are calculated from
their relationship with neighboring particles using the kernel function
for interpolation. The mass, momentum and energy conservation equa-
tions come from continuum mechanics model and are given as:

Dp ove
D Poxa (1)
Dv*  100%
DE " p oxF )
De ooy
DI~ p o (3)

where p the density, v* the velocity component, 0® the total stress ten-
sor, and e is the specific internal energy.

The SPH approximation for mass, momentum and energy equation
take the following form [18],
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D—‘;:Zm](vi —vj) ax‘?‘] (4)

Jj=1 i

(a) Time = 0s

(b) Time = 7.5x10s

(c) Time = 12.5x10"s

(d) Time = 17.5x104s

Fig. 1. One full cycle of compression and expansion showing also the force chain networks.

(e) Time = 25x10"s
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Fig. 2. A closer look of the disks and force chains.
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where m is the mass of individual particle and Wj; is the kernel function.
Several different kernel functions have been used in the SPH literature.
The most popular one is the cubic spline function proposed by [19],
which has the following form:

%—R2+%R3 0<R<1
W(Rh) =0y x é(z_R)3 1<R<2 .
0 R>2

where oy is the normalization factor which is 15/7mh? in two-
dimension, h is the smoothing length and R is the distance between par-
ticles i and j normalized as R = r/h. Unlike DEM where the contact forces
are the main simulation variable and stress within particles are un-
known, the SPH solution produces density, velocity, stress, and strain
at each timestep directly. Constitutive models for stress and strain for
actual materials can also be directly implemented in the SPH method.
The SPH method used in this study is improved to include certain
terms in the discretized governing equations to better numerical stabil-
ity. One of those terms is the artificial viscosity term added to the
momentum equation to prevent large unphysical oscillation in the
numerical solution and improve numerical stability. There are several
variations of the form of artificial viscosity exist in the SPH literature.
The one used here is the most popular one proposed by Monaghan
[20]. The artificial stress method proposed by Monaghan [21] and

0.84 0.86 0.88 0.90 0.92 0.94 0.96
Packing fractions

(a)

Grey et al. [22] to remove the problem of tensile instability, which can
occur in SPH, is also used in this study. The velocity smoothing tech-
nique [15] is used to smooth out any unexpected numerical peaks in
the velocity. The smoothed velocities are used to update the position
of the particles, while the unsmoothed velocities are used for time inte-
gration of the momentum equation at the following step.

Interactions between granular particles are modeled by a kinematic
contact algorithm developed by [23] for low velocity impact problem for
SPH. The weak form of the contact force equation is derived using the
virtual work principal and is solved by a penalty method that involves
both a penetration and a penetration rate for two particles in contact.
The relation between contact force and penetration and penetration
rate is obtained using a one-dimensional elastic wave equation [23]. In
order to apply the contact force model, a contact detection technique
is needed to identify the boundary SPH particles. To find the boundary
particles, a color parameter, i; is introduced for each SPH particles. A
particle will be designated as a boundary particle if the summation of
Y; is less than 0.85-0.90 of the original index value [23,24]. Usually
SPH particles are imaginary interpolation points that are used to decom-
pose the simulation domain. Here, the SPH particles are treated like a
real particle and each has a radius that is equal to half the lattice or cen-
ter to center spacing. Two particles are in contact if the center to center
distance between two SPH particles is less than their respective
diameters. To obtain the penetration and penetration rate for two SPH
particles in contact, the curvature of the surface needs to be taken.
One way to obtain the curvature is to calculate the gradient of the
color parameter, {5;. The penetration depth can be found by taking com-
ponent of the center to center distance along the average normal vector
for the two surfaces in contact. The penetration rate is found from the
relative velocity and the average normal vector [23]. The force of contact
is then found from the penetration and penetration rate of the two SPH
particles.

In this paper the Mie-Gruneisen equation for solids [25] is used to
calculate the pressure arising from the deformation of the material.
Table 1 gives the material properties and constants for Mie-Gruneisen
equation of state for lead, which is the material chosen for simulation,
where pyg is the density, c is the speed of sound in the material, E and
G are respectively bulk and shear moduli and S and I' are material pa-
rameters needed to calculate the Mie-Gruneisen equation of state. The
stress rate obtained from the constitutive relation must be invariant
with respect to rigid body rotation when large deformation is involved.
The Jaumann stress rate is adopted for this purpose as,

8 oV R _ oGP (8)
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Fig. 3. (a) Corrected coordination number vs packing fraction for all cycles. (b) Packing fractions change with loading cycles.
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Fig. 4. Probability distribution of the normalized contact forces shown in (a) linear and (b) semi-log scale. The forces are normalized by the mean force. The dashed black line in (b) is added

as a visual guide only.

where R is the rotation rate tensor defined as,

& 1 avﬁ_avv
“2\0xr OxP

and R has the same equation except [3 is replaced by o

At the beginning of simulation 2400 mono-sized disks are placed
within the two-dimensional square box. The box size, disk size and
their material properties are given in Tables 1 and 2. The disks are
placed such that there is no initial contact with the wall of the container
or among the disks. The initial packing fraction for the system is 0.8.
Gravity is neglected in this study. Two sides of the container are kept
stationary while the two other sides are displaced with a linear velocity.
The left and bottom walls move backward and forward with an ampli-
tude of 20 mm in each cycle (see Fig. 1). The time period for the cycle
is 2.5 millisecond. However, each cycle consists of several steps where
the walls are kept stationary to relax the system. The time step used
for the simulation is 0.1 microsecond. The moving walls perform several
compression cycles where the system is quasi-statically compressed or
expanded.

Fig. 2 gives a closer view of the disks and the force chains. Each disk
consists of 61 SPH particles arranged in an optimum packing configura-
tion [26]. The radius of each SPH particle is about 0.35 mm. The walls are
also made of SPH particles. For the case of walls square lattice

o o o
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configuration is used and the lattice spacing is twice that of the SPH
particle radius. Each wall has two layers of SPH particles.

3. Results and discussion

3.1. Coordination number, packing fraction and distribution of contact
forces

For a granular system to reach mechanical equilibrium or “jammed,”
the system needs to satisfy a minimum number of contacts that is the-
oretically related to the degrees of freedom of the system. The isostatic
conjecture [27-33] for frictionless system of N particles in dimension D
states that for mechanical equilibrium there must be at least Z = 2D
contacts on average per particle (since there are NZ/2 independent
forces and DN force balance constraints). However, the average coordi-
nation number from simulation or experiment is usually lower than 2D
due to the presence of rattlers, which are particles that do not contribute
to the force chain. They may have zero or some contacts but those con-
tacts do not add to the mechanical stability of the packing. One way to
identify rattlers is to count their contacts. For this frictionless simulation
case, particles with less than four contacts are defined as rattlers
[34-39]. The corrected coordination number, Cc, which is the ratio of
the total number of contacts of particles with at least 4 contacts and
the number of those particles, shown in Fig. 3 (a), follows perfectly
the isostatic conjecture. The only zero value of Cc is recorded at the

10° ~ PF=0.84
—— PF=0.85
—— PF =0.87

—— PF =0.90

)—vzb

,_.
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Normalized global pressure

10~

0 5 10 15 20 25
Cycles

(b)

Fig. 5. Pressure evolution over the compression cycles with normalized global pressure shown in (a) linear scale for PF = 0.85 and (b) log scale for different PFs.
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Fig. 6. Mobility of the particles (disks) for different cycles. The initial packing fraction of the system is ¢ = 0.8. The time delay T equals (a) 1 cycle (b) 7 cycles and (c) 17 cycles.

beginning when there is no contact. On the other hand, Fig. 3 (b) shows
the nice and regular oscillations of the average packing fraction as the
system is compressed to a maximum value and expanded. Here the sys-
tem is compressed to a maximum value of 0.91.

The distribution of contact forces for different compression cycles is
shown in Fig. 4. Unlike DEM where the force acts at a single point, in SPH
the contact force for a single granular particle is found by integrating
forces on the individual SPH particles over the area of contact. Previous
studies [40] of granular materials have pointed out that the probability
distribution of contact forces decreases exponentially with increase of
contact forces, Fn, above the average value, <Fn>. The data shown in
Fig. 4 for a packing fraction of 0.91, show, this, indeed is the case for
present simulation. A black dashed line is added in Fig. 4 (b) to aid in vi-
sualization. The force distributions for all cycles fall on a nearly straight
line in the semi-logarithmic plot for probability distribution indicating
that the probability distributions of the normalized contact forces follow
nearly an exponential decay, which is consistent with previous studies
[40]. Fig. 4 (a) and (b) also show that the force distributions are nearly
constant for loading cycles.

3.2. Global pressure response
The global pressure on the granular system is computed by first

computing the Cauchy stress tensor for the granular system. The Cauchy
stress is given by [41]:

1
Ojj :—zAreaZ(Fin—F FjX,‘) (]0)

where Area is the area of the confining container; F;, F; are the compo-
nents of the concentrated force F on the boundary that is applied on

the disks at points (x;x;). The summation is taken over all such forces.
Pressure, p, is then the trace of the stress tensor.

Global pressure response of the system shown in Fig. 5 where the
total normalized pressure for a packing fraction of 0.85 is shown in
Fig. 5(a). Fig. 5 (b) indicates pressure, normalized by maximum, for
the most compressed states only for different packing fractions. As can
be seen, the global pressure decreases with compression step. Fig. 5
(b) shows that the global pressure evolves differently for different pack-
ing fractions. For packing fraction of 0.9 the global pressure shows very
little change with change compression steps whereas lower packing
fractions show remarkable change in the global pressure. It can be
noted that for all packing fractions in this study, the system is jammed
during part of each cycle, however, the stress relaxes to a somewhat
lower value. This may be because the cyclic compression of the disks al-
lows the entire structure to slowly rearrange themselves and attain a
state of less global pressure for same packing fraction. The next and sub-
sequent part of this paper focused on finding the origin of this evolution
of the global pressure.

3.3. Bulk structural change and dynamic heterogeneity

The global stress evolution in the granular system can be associated
with bulk structural change within the assembly. If such a bulk rear-
rangement exists, then it is expected to show up in the motion of the
particles tracked over time or cycles. To probe the effect of particle
motion, the mobility of particles is considered; it is defined as the dis-
placement of the particle for a given time delay T (here, time represents
the number of compression cycles), relative to the mean displacement
of all particles. Fig. 6 shows mobilities for three different time delays, T
=1,7=7and 7 = 17, in compression simulation on disks. Particles
with similar mobility are represented by similar colors in Fig. 6.

Counts
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Fig. 7. Histogram of the mobility of the particles (disks) for different cycles. The initial packing fraction of the system is PF = 0.8. The time delay T equals (a) 1 cycle (b) 7 cycles and

(c) 17 cycles.



R. Tayeb et al. / Powder Technology 353 (2019) 84-97

200

Qs (1)

89

— PF=093
—e— PF =0.85
—— PF = 0.87

=— PF =0.89

2001

15
Cycles

(a)

Fig. 8. (a) Qs(7) vs cycles for packing fraction 0.93. (b) y4(7) vs cycles for packing fraction 0.93. (c) Maximum y,4(7) curve for different packing fractions (PF).
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Specifically, the colors correspond to the following fractional changes
relative to all the particles: red, 0.90 4 0.1; yellow, 0.70 4 0.10; green,
0.50 4 0.10; cyan, 0.30 =+ 0.10; and blue, 0.10 4 0.10.

The particle mobility, shown in Fig. 6, reveals that particles with sim-
ilar mobility form large clusters and these clusters or regions grow with
time. This indicates heterogeneous structural change both in time and
space. The dense structure of these clusters suggests small local rear-
rangements of the particles. The number of particles with least mobility
increases with time whereas particles with highest mobility decrease;
however, this change occurs in a collective form which further suggests
local rearrangement of particles. Fig. 7 shows the histogram of the par-
ticles based on their mobility for the given cycles, which also confirms
the above observations.

As an alternative approach to quantifying these heterogeneous dy-
namics, the four-point susceptibility y4(7), which indicates the extent
of temporal correlation of dynamics at any pair of spatial points is stud-
ied [1]:

2a(1) = N[(Q(1) )= (Qs(1)?] (11)
where Qs(7) is defined as
Qu(1) = (1/N) X w(jri(6)=ri(0)]), with

_ 1 if n(©)—ri(0)[<L (12)
W=10 otherwise.

where N is the number of particles, and r;(t) indicates the particle posi-
tions at time t, for a length scale [ (the unit of length scale, [, is the radius
of the disks). The averages are taken over all the particles and over all
starting times. Qs(7), which is referred to as the self-overlap order pa-
rameter, is a measure of particle mobility and is quantified by a length

15
Cycles

(b)

30 10 15 20

Cycles

(c)

20 25 25 30 35

scale . Qs(7) and y4(7) vs cycles are plotted in Fig. 8 (a) and (b), respec-
tively. As can be seen, Qy(7) varies from 1 to 0 as the time delay 7 in-
creases. On the other hand, y4(7) has a maximal point for each length
scale, which basically characterizes a time delay 7, by which the parti-
cles, on average, move more than the length scale .

As seen in Fig. 8 (b), y4(7) is maximum for the characteristic length
scale I = [/20 for a packing fraction of 0.93. The characteristic [ for each
a(7) plot of different packing fractions can be examined and the corre-
sponding maximal 7' can be found. Fig. 8 (c) shows the maximum y,(7)
curve for different packing fractions. The plot suggests that the typical
length scales for [ are just fraction of a particle diameter. Also, the plot
provides a characteristic time scale 7 by which the particles, on average,
move more than the length scale I. The characteristic time scale, 7, is
typically 25 cycles for any packing fractions. Hence the particles can
be considered largely confined. However, their small movement is
enough to modify the force network and relax the system stress.

3.4. Structural deformations in compressed states

The heterogeneous dynamics study in the previous section inspires a
deeper look at the meso-scale structural change that can give rise to
change in global stress. On such an endeavor, the granular system is
probed using Falk-Langer [42] measures of affine and non-affine defor-
mations. A cutoff radius of 2.5d is used for the FL analysis. This typically
includes 10-15 neighboring particles, including the particle of interest.
The deformation of these particles is followed for a time equal to 7 ob-
tained from the previous study.

Unlike FL analysis, the particles displacements are measured with
respect to the center of mass of the assembly within the cutoff radius.
If r;and r/ are the locations of all the particle i with respect to the center
of mass of the assembly for the initial and final steps then a 2 x 2 matrix,
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Fig. 9. Deformation of the particles for different cycles (a) normalized average affine dilation (b) normalized average affine shear strain (c) normalized non-affine mean squared

displacement.
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E' can be obtained from the least-square fit of the equation:
ri=E-r;

(13)

The matrix E is the best-fit linear map that affinely transforms the
particles from the first position to the next one. The matrix E’ can be
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written in terms of a symmetric matrix, F, and a rotational matrix, Ry, as,

E =FRy (14)

From the symmetric matrix, F, the strain matrix can be obtained as,
e=F—I (15)

The affine shear strain and affine deformation can then be obtained
from the eigenvalues (&; and &, where &, > &;) of the local strain matrix,
€

Affine shear strain: 6c=¢,—g (16)
Affine dilation: 2e=¢g&; +&; (17)
Non-affine deformation can be obtained as: Dy,

= <Z(r;—E~r,-)2>% (18)

Fig. 9 represents data for affine and non-affine deformations for dif-
ferent packing fractions over several compression cycles in the granular
system. The deformation data presented are summed over all particles
and normalized by their initial mean value. Both affine and non-affine
deformations fall quickly to a fixed value and fluctuates around it. The
rate of decrease of normalized average affine shear strain is much higher
for lower packing fractions than that for higher packing fractions. This
possibly suggests a much longer relaxation time scale for systems
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Fig. 11. Intensity plots of D2, for various cycles during simulation. The data shown are for packing fraction, & = 0.87. Darker (blue) regions indicate low D%, and brighter (red) regions
indicate high D2,, . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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with higher packing fractions. Similar trend is observed for normalized
average affine dilation. The higher packing fraction of the system allows
the particles to dilate and maintain their deformation. As for the nor-
malized non-affine squared displacement the trend is not so clear. For
packing fraction below 0.89 the graph approaches zero quite rapidly.
However, for higher packing fractions the graph fluctuates around a
mean value suggesting that the non-affine deformation persists
throughout the entire loading cycles.

The affine and non-affine deformations are also correlated, which is
demonstrated in Fig. 10 The graph suggests that there is a monotonic in-
crease in non-affine displacement with affine shear strain. However dif-
ferent packing fraction occupy different areas of the graph with some
overlap. This suggest a relation between systems of different packing
fractions.

The intensity plot of the non-affine mean squared displacement is
shown in Fig. 11 for three different cycles revealing regions with higher
non-affine deformations compared with the rest of the system. At the
beginning of loading cycle, most non-affine deformations occur away
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s PE =0:87
-0.25 —— PF =10.86
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£—-0.35
N E
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Fig. 14. Correlation coefficient for D2, and ¢; at each load cycle for various packing
fractions.

from the moving walls. As the number of compression cycles increases
the non-affine deformations occur more near the wall as indicated by
the dark (blue) region in the intensity plot for higher cycle. Fig. 11 can
be compared with Fig. 6 where the particles are categorized by their
mobility. At the beginning of loading cycle particles near the wall
move with the wall and affine deformation presides over non-affine de-
formation. The particles at the top right corner are forced to rearrange
themselves in a more compact structure, thus more non-affine defor-
mations occur at that region. For higher cycles, the particles at the top
right can do little in terms of structural rearrangement so the non-
affine deformation zone moves down near the walls where particles
with higher mobility still have some room to rearrange themselves
into more compact structures.

3.5. Linking initial micro-structure to plastic rearrangement

The non-affine deformations as discussed in previous section give
rise to plastic rearrangement of the particles in the structure. This plastic
rearrangement causes a change in the global stress response of the sys-
tem. In this section the non-affine deformations of the particles are
studied by relating it to the initial micro-structure. More specifically,
the question addressed in this section is whether one can predict the
global response of the system having prior information about the initial
micro-structure (local packing fraction).

First, to get the local packing fraction, the entire system is
decomposed into Voronoi cells with radical Voronoi tessellation
method. For this purpose, the efficient “pyvoro” software is used devel-
oped by Joe Jordan which is a python extension of “voro++" code de-
veloped by Chris Rycroft [43]. A sample of the Voronoi tessellation is
shown in Fig. 12 (a). The local packing fraction at each loading cycle is
then calculated by the formula,

b =0 (19)

where ¢; is the packing fraction around each particle i, V; is the area of
particle i and V. is the area of the Voronoi cell around particle i. The
local packing fraction field is shown in Fig. 12 (a) where the intensity
of the color in each cell varies according to the relative packing density.
One can immediately recognize from the figure that not all areas have
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Fig. 15. (a) Average degree vs cycles. (b) Average clustering coefficient vs cycles.

the same packing density. There are regions of high and low local pack-
ing fraction. The standard deviation of local packing fraction for differ-
ent global packing fraction is also shown in Fig. 12 (b). The standard
deviation for different cycles is very similar for global packing fraction
0.86 and 0.87 but very different from 0.90. The standard deviation for
all three rises with loading cycles and approaches a maximum value.
As the walls press down on the particles during loading cycle the aver-
age packing fraction of the granular system increases and reaches a
maximum value. However due to particle rearrangement in subsequent
loading cycles the local packing fractions become more diverse as indi-
cates by the increase in standard deviation of the local packing fraction.
However, the increase in diversity is not much for PF = 0.90 as for PF =
0.86 and 0.87. It can be recalled from Fig. 5 (b) that the global pressure
shows negligible relaxation for packing fractions above 0.9. It is worth
studying if there is a correlation between the initial micro-structure or
local packing fraction distribution and the non-affine plastic deforma-
tion of the particles.

Fig. 13 shows three two-dimensional histogram plots of D2, and ¢;
for PF = 0.87 at 3, 7 and 11 load cycles. A white dashed line is drawn in
the plot to help visualize the correlation between the two variables but

8 . . 0.85 0. 095 1.00 870
b

¢ [

is not a best fit of the data. A least-square mean fit is found to be very
sensitive to the higher and lower end values. The plots reveal that the
two quantities, D2, and ¢;, are indeed related. Despite having a signif-
icant dispersity in data, a lower value of ¢; usually means a higher value
of D2, and vice versa.

To further verify the correlation between D2, and ¢;, the Pearson
correlation coefficient, the standard correlation coefficient for two vari-
ables, is calculated for all N = 2400 particles.

S ((Din),—(Diin) ) (= ()

]

) : \/Zi\l:] ((Dﬁ1in>i_<Dﬁ1in>>2 \ 21]11 (¢I_<d)l>)2

where (DZ,); means the non-affine squared deformation for particle i,
and () means average value. No correlation is indicated if the correlation
coefficient is 0 and —1 means perfect negative correlation. The correla-
tion coefficient for all load cycles and for three different packing frac-
tions is shown in Fig. 14. The correlation coefficient increases
somewhat monotonically in negative value after the first load cycle

(20)
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Fig. 16. Density plot of k; and ¢; for different cycles (a) 3 cycles (b) 11 cycles (c) 19 cycles. The dashed white lines are given as a visual guide but are not best fit of the data.
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Fig. 17. (a) Correlation coefficient for k; and ¢; and (b) correlation coefficient for D2, and k; at each load cycle for various packing fractions.

and reaches a maximum of about —0.55. The plot confirms the negative
correlation between D2, and ¢; suggested by Fig. 13. The negative cor-
relation suggests that particles with low local porosity undergo more
non-affine plastic deformation than others. Interestingly, the correlation
coefficients are very similar for different packing fractions. However,
from Fig. 12 (b) itis seen that the standard deviation for packing fraction
0.90 is much lower than that for other packing. At high global packing
fraction the local packing density field is more uniform than for low
global fraction. This allows one to make connection between global
packing fraction and stress relaxation in terms of the non-affine plastic
deformation. For higher packing fractions there are not enough particles
with low local packing density to undergo plastic deformation and
allow the system to relax.

3.6. Contact network analysis

Finally, a contact network analysis is carried out to have a deeper
look on the structural rearrangement of the particles based on their con-
nectivity. In contact network analysis each node of the contact network
represents an individual particle and a contact between two particles is
represented by an edge. The contact network so formed is undirected
and unweighted. The contact networks at the beginning of the compres-
sion cycles show fewer connections and subnetworks and fewer closed
paths compared to the contact network when the system is strongly
jammed. The strongly jammed configuration exhibits many closed

path triangles or cycles. In order to quantify the network some complex
network parameters are defined below.

In an unweighted complex network the degree of a node is the num-
ber of edges adjacent to it, or the number of particles it is in contact with.
It can be calculated from the adjacency matrix:

ki :Za,-j (21)
i

where a;; are elements of the adjacency matrix. An adjacency matrixAis
a matrix whose non-zero elements a;; are such that a; = 1 if nodes or
particles i and j are in contact and zero otherwise. The node degree
can be averaged over all nodes or particles to give a measure of the av-
erage number of contacts per particle. The clustering coefficient gives a
measure of the local connectivity of a node by enumerating the number
of 3-cycle closed paths or triangles associated with it and its contacting
neighbors. It can be calculated from the adjacency matrix as,

. 1
c

('):m Z Qi Ajp Api (22)

jh € Vi)

where k; is the vertex degree defined above and V(i) is the set of neigh-
boring vertices of i. The clustering coefficient ranges from 0 (no
contacting neighbors) to 1 (all particles and their contacting neighbors
are fully connected with each other). Each c(i) is averaged over all

(b)

Fig. 18. (a) Contact network with nodes as particles and edges as contacts at 26 compression cycles. (b) Same network with rattlers removed.
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Fig. 19. (a) Population of 3-cycles, 4-cycles and 5-cycles for PF = 0.90. (b) 3-cycle populations only and (c) 4-cycle populations only for all loading cycles for various PF.

particles to obtain the average clustering coefficient which gives an in-
sight about the number of 3-cycles in the network.

The average degree and average clustering coefficient of the contact
networks as shown in Fig. 15 (a) and (b). Both plots are created by av-
eraging over all particles in a given load step. The average quantities
in both figures show peaks at maximum compression and troughs
when fully unloaded. The average degree gradually increases for all
global packing fractions with the increase in load cycles showing that
the particles are getting more closely packed. For PF = 0.90 the average
degree peaks to about 3.5 which is close to the isostatic limit. For other
packing fractions the peak values are lower. Similar behavior is ob-
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served for average clustering coefficient. Increase in average clustering
coefficient means that there are more 3-cycles in the network, which,
as found by other researchers, increase the number of force chains in
the system [44]. It is also found that the global pressure usually depends
on the maximum normal contact force higher than the average force
[44]. Hence increase in force chains or force bearing particles means
the global pressure can relax for the system.

It would be interesting to investigate if there is a correlation between
the local packing fraction defined in the previous section and the degree
of particles. One can assume that, since higher the connectivity of the
particle higher is its degree, that particles with high degree are situated

(b)

Fig. 20. (a) The boundary particles indicated by color gradient, Ays (b) Pressure distribution of two colliding disks.
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Fig. 21. (a) Total contact force-time histories and (b) average velocity-time history of the two colliding disks.
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in a region with high packing fraction. The density plots of Fig. 16 show,
this, indeed is the case. Again, the white dashed line is not a best fit of
the data but added as a visual guide for the plot. The plots show the re-
lation between the particle degree and local packing fraction for three
different load steps, 3, 11 and 19 load cycles.

To further confirm the correlation, the correlation coefficients
for k; and ¢; are plotted for each cycle and shown in Fig. 17 (a),
which shows that there is a high amount of correlation exists
between the two for all cycles. In the previous section it was shown
that DZ;, and ¢; are negatively correlated and the correlation coeffi-
cient increases with cycles. Fig. 17 (b) shows the correlation
coefficient for D%, and k; for different load cycles. The quantities
D2, and k; are negatively correlated as shown in Fig. 17 (b) which
is not surprising given the fact that k; and ¢; are positively correlated.
Thus, a connection can be made between the Falk-Langer deformation
analysis of Section 3.4 and the complex network analysis of
Section 3.6 in that higher non-affine deformation or plastic rearrange-
ment is usually related to particles with lower degree of connectivity
and local packing fraction.

It is also worth studying the 3-cycle population of the contact net-
work as they are important in stabilizing the contact network. These
cycle structures are found by computing the population of the various
minimal cycles in the contact network. A minimal cycle basis of a
graph is a set containing the shortest cycles based on minimum length
or number of edges. There are several algorithms proposed by other re-
searchers to obtain a minimal cycle basis for a complex network. Here,
the fast and improved algorithm based on Mehlhorn and Michail [45]
is implemented to find the minimal cycle basis for the contact network.
Fig. 18 (a) shows the contact network at 26 compression cycles for PF =
0.90 when the system is strongly jammed. The particles are represented
as nodes and contacts as edges. Fig. 18 (b) shows only the minimal cy-
cles of the same network with the rattlers removed.

According to the clustering coefficient, population of 3-cycles and
other higher order substructures is expected to peak when the system
is in strongly jammed configurations. This is indeed the case as shown
in Fig. 19 (a) where the 3-cycle and 4-cycle structures oscillate through-
out the loading cycles. Only low-order cycles, namely, 3, 4 and 5 cycles
are shown in Fig. 19 (a). Cycles greater than 5 have negligible popula-
tions. As shown in Fig. 19 (a) the population of 4 cycles shows oscilla-
tions but the oscillations are small compared to 3 cycles and the
oscillations of 5 cycles are even smaller. There is a gradual rise in the
3 cycles population throughout the compression cycles at the strongly
jammed state indicated by a rise in the peak values of oscillations. This
means that the granular systems rearrange themselves in a way which
gives rise to more 3-cycles in the network in the jammed state as the
number of compression cycle increases.

Fig. 19 (b) and (c¢) compare the populations of the 3-cycles and 4-
cycles for different global packing fraction. The population of 3-cycles
rises for all packing fractions and higher packing fractions have higher
number of 3-cycles in the network. On the other hand, the populations
of 4-cycles are quite similar for the three packing fractions shown in
Fig. 19 (c) at higher load cycles. Hence, enrichment of 3-cycle popula-
tion can be considered as a marker for successive compressive loading
of a granular system.

4. Conclusion

In this paper, Smooth Particle Hydrodynamics (SPH) method is used
to simulate the cyclic compression of deformable two-dimensional
disks assembly and to study their jamming behavior. The results ob-
tained show that the average coordination number varies with packing
fraction during jamming which conforms to the isostatic conjecture.
Force distribution shows familiar exponential behavior as the average
force on the system is increased. Stress relaxation is seen to
occur after several compression cycles which is marked by a decrease
in global pressure. Structural rearrangement, that can give rise to stress

relaxation, is revealed by grouping of particles with similar relative mo-
bilities and y, measures which also provide a characteristic time scale 7"
for which the particles on average move more than a characteristic
length scale I'. The meso-scale structural deformations are studied by
Falk-Langer analysis. Active regions of non-affine deformations are
found and locations of these regions change over cycles. The local pack-
ing fraction of the granular system is obtained by employing radical
Voronoi tessellation method. The standard deviation of the local pack-
ing fraction is seen to increase with load cycle but at a different rate
for different global packing fraction. This suggests that the local packing
fraction becomes more diverse with increasing compression cycle. For
high global packing fraction the diversity is less pronounced. The corre-
lation coefficient between non-affine squared deformation and local
packing fraction suggests that the two quantities are negatively corre-
lated for both high and low packing. This infers that at high enough
global packing fraction there is not much room for the system to relax
its stress state. Finally, complex network analysis is performed to
study the contact network properties of the system. The average degree
and average clustering coefficient obtained from the complex network
analysis show peaks at maximum compressions, but the peak values in-
crease with cycles. The degree per particle is found to be positively cor-
related with local packing fraction and negatively correlated with the
non-affine squared deformation. An enrichment of 3-cycle population
is observed for all global packing fraction with increase in compression
cycle. Thus the number of 3-cycle population can be considered as an
important parameter to characterize the system behavior in cyclic com-
pression of granular system.

Nomenclature

aj elements of adjacency matrix

A area of contact, m?

Area area of the container, m?

A adjacency matrix

c sound speed, m/s

(i) clustering coefficient of particle i

d diameter of particle, m

D System dimension

Dmin non-affine deformation

e specific internal energy, J/kg

E Elastic modulus, Pa

E' transformation matrix

F symmetry matrix

F; force on particle i, N

Fmax maximum contact force, N

G Shear modulus, Pa

h smoothing length, m

k; degree of a node

l length scale

If characteristic length scale

m mass of particle, kg

N number of particles

p hydrostatic pressure, N/m?

P normal contact force, N

PF packing fraction

Qs self-overlap order parameter

r distance vector, m

T position of particle i
normalized distance

R rotation rate tensor

Ry rotational matrix

s deviatoric stress tensor, N/m?

tmax time for collision, sec

v velocity, m/s

v volume of particle, m>

72 area of Voronoi cell, m?

V; area of particle i, m?
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X distance vector, m
V(i) set of neighboring vertices
w kernel function

Z average per particle contacts

Greek symbols

normalization factor
constant

EOS parameter

contact deformation
maximum deformation
strain matrix

affine shear strain
affine dilation

EOS parameter

angle between normal vectors
penalty parameter
equivalent mass
poisson ratio

artificial viscosity term
density, kg/m>

stress tensor, N/m?
time delay
characteristic time scale
local packing fraction
Xa four-point susceptibility
1] color function
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Appendix A. Validation of sph model using impact of two
identical disks

The above SPH contact model is used to simulate impact of two iden-
tical disks each of radius 50 mm and the number of SPH particle in each
disk is 91. The material is lead whose properties are given in Table 1.
First the contact detection algorithm is tested to see if the boundary par-
ticles can be single out from the inner particles. Fig. 20 (a) shows that
the boundary particles have a much larger color gradient than the par-
ticles inside.

The present results are compared with the Hertz solution for colli-
sion of two cylinders of unit length (plane strain problem). Palmgren's
[46] empirical result, which expresses the relationship between normal
contact force between two cylinders and deformation is given by:

P = K&" (23)

where n = 10/9.

K= 316" EL8° (24)
where

1 _1-1] 1-13

E~E E,

where 6 is the deformation. Applying Newton's 2nd law and Palmgren's
contact force relation, the maximum deformation and maximum force

due to impact can be calculated as:

1

n+1 mT
Smax:< 2 HVOZ)

n 25

I (25)

K
+1 w1
Fmax = K(—EV02>

2 K

where
m;m;

7m,-+mj

The time for collision between two disks or cylinder with unit length
is given as:

. ~ 20max /1
max VO o

d(5/6max)
1—(8/6max) 1"

(26)

Fig. 21 (a) shows the total contact force-time history of the
impacting disks. The maximum contact force obtained from simulation
is 2.30 x 107 N whereas the empirical model gives 2.11 x 10” N. The
total contact duration obtained is 97.50 us as compared to the empirical
result of 95.13 ps.

Fig. 21 (b) shows the average velocity-time history of the two collid-
ing disks. It can be seen that the final rebound velocity is equal to the ini-
tial velocity of 10 m/s. Therefore, the kinetic energy is conserved before
and after the collision.
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