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Prethermalization has been extensively studied in systems close to integrability. We propose
a more general, yet conceptually simpler, setup for this phenomenon. We consider a—possibly
nonintegrable—reference dynamics, weakly perturbed so that the perturbation breaks at least one
conservation law of the reference dynamics. We argue then that the evolution of the system pro-
ceeds via intermediate (generalized) equilibrium states of the reference dynamics. The motion on
the manifold of equilibrium states is governed by an autonomous equation, flowing towards global
equilibrium in a time of order g−2, where g is the perturbation strength. We also describe the
leading correction to the time-dependent reference equilibrium state, which is, in general, of order
g. The theory is well confirmed in numerical calculations of model Hamiltonians, for which we use
a numerical linked cluster expansion and full exact diagonalization.

I. INTRODUCTION

Prethermalization [1] has emerged over the past decade
as an interesting and ubiquitous phenomenon in the dy-
namics of ultracold quantum gases in one-dimensional
geometries [2–6]. In general, it refers to a separation of
timescales: Some systems far from equilibrium quickly
relax to long-lived (non)thermal states (not true thermal
equilibrium states) on short timescales, before eventually
relaxing to the expected true thermal equilibrium states
on much longer timescales.
There are some general instances of this phenomenon

that are well understood, analytically and numerically.
A first example is quenches in isolated noninteracting
(integrable) systems, in which interactions (integrability-
breaking perturbations) of strength g are turned on [7–
15]. By dephasing, observables quickly settle to quasis-
teady states that are well described by generalized Gibbs
ensembles (GGEs) [16–20] of the noninteracting systems.
The observables then relax to the thermal equilibrium
values (thermalize) in a much longer timescale ∝ g−2,
as predicted by kinetic Boltzmann-like equations. The
latter can be derived applying time-dependent perturba-
tion theory to the GGEs [21, 22] and, physically, describe
the effects of collisions between (quasi)particles. It was
recently shown numerically that weakly breaking integra-
bility in strongly interacting integrable systems also re-
sults in thermalization rates ∝ g2 [23]. A second example
is isolated weakly interacting driven systems, for which
GGEs and kinetic Boltzmann-like equations are also rel-
evant [24, 25]. A third example is periodically driven sys-
tems at high frequency. In general, they quickly reach a
time-periodic state that can be identified as a Gibbs state
corresponding to an effective Hamiltonian, before relax-
ing to the thermal (infinite-temperature [26, 27]) state in
a timescale that is exponentially long in the frequency of
the drive [28–33].
In this work, we argue that the first two examples

above are instances of a more universal phenomenon, a
phenomenon that occurs whenever an equilibrating dy-

namics (to a thermal- or GGE-like state) is weakly per-
turbed so that, at least, one of the conserved quantities in
the original dynamics is no longer conserved in the weakly
perturbed dynamics. A similar point of view was put
forward in Refs. [34, 35] for open quantum systems. We
first present this conclusion in a loose manner in Sec. II,
and then, in Secs. III and IV, we develop a systematic
treatment of weakly perturbed systems in which a con-
servation law is broken. The remainder of the paper is
dedicated to demonstrating, in the context of numerical
experiments, the validity and accuracy of this systematic
treatment. Section V, in which we introduce the mod-
els, quenches, observables, etc, is the preamble to the
numerical experiments, which are reported in Sec. VI.
A summary and discussion of our results is presented in
Sec. VII, while the Appendices report details of our an-
alytical and numerical calculations.

II. PREAMBLE

Setup.—We consider isolated extended quantum sys-
tems that are translationally invariant. For the sake of
concreteness, one can think of chains with L � 1 sites.
We have a pair of Hamiltonians Ĥ0 and Ĥ, in which the
latter includes the former plus a weak perturbation

Ĥ = Ĥ0 + gV̂ , (1)

where g is small. We assume that the (reference) Hamil-

tonian Ĥ0 has a conservation law, say Q̂, which is not
shared by Ĥ, namely, [Ĥ0, Q̂] = 0 but [V̂ , Q̂] 6= 0. We

are interested in cases in which Ĥ0, Q̂, Ĥ, and V̂ are
extensive operators. In order to take the thermodynamic
limit, it is helpful to deal with the intensive counterparts

of those operators: ĥ0 = Ĥ0/L, q̂ = Q̂/L, ĥ = Ĥ/L, etc.

In our numerical calculations, Q̂ (q̂) is the total number
of particles (the filling), or, in the spin language, the total
magnetization (the site magnetization).
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Assumption of fast equilibration.—We consider cases
in which the dynamics generated by Ĥ0, even when the
system is far from equilibrium, results in fast equilibra-
tion. Namely, we assume that, for experimentally rele-
vant translational-invariant initial states ρ̂I , observables
converge within a time τ∗ to the predictions of an ensem-
ble (e.g., microcanonical) of statistical mechanics ρ̂e0,q,

with (e0, q) = (〈ĥ0〉ρ̂I
, 〈q̂〉ρ̂I

). The restriction “exper-
imentally relevant” is put to avoid cases in which the
initial state is a macroscopic superposition of states at
different densities (e0, q) (see Ref. [36] for a discussion
of this issue in the context of quantum quenches). The
restriction to translation-invariant states is used to avoid
having leading effects in the equilibration dynamics that
are L dependent, e.g., particle or energy transport, which
would complicate the picture.
Initial prethermalization.—Even though there is no

standard perturbation theory around a genuinely inter-
acting Ĥ0, it is reasonable to assume that the effect of the
perturbation is small at times τ � 1/g, in the sense that,
for such times, one can meaningfully approximate the dy-
namics under Ĥ by the reference dynamics generated by
Ĥ0. Therefore, by the assumption of fast equilibration,
one should observe a fast initial relaxation of observables
toward the predictions of ρ̂e0,q. The latter state can be
very different from the thermal equilibrium ensemble ρ̂e
associated to Ĥ. ρ̂e0,q differs from ρ̂e by the fact that q is
an additional constraint [of course, it also differs because

e0 is the energy density of Ĥ0 and not that of Ĥ, but
that difference is only O(g)].
Thermalization rate.—To determine how fast the true

equilibrium is approached, let us start from ρ̂e0,q and look

at the change in 〈Q̂(τ)〉e0,q. We do this perturbatively:

〈Q̂(τ)〉e0,q = 〈Q̂〉e0,q + igτ〈[V̂ , Q̂]〉e0,q +O(g2ττ∗L) (2)

where we use that [Ĥ0, Q̂] = [Ĥ0, ρ̂e0,q] = 0. The precise
error estimate O(·) will only be argued for later. The
important point to be highlighted from Eq. (2) is that

the leading order correction to 〈Q̂〉e0,q vanishes because

〈[V̂ , Q̂]〉e0,q = 0, by the cyclic property of the trace and

the fact that [Q̂, ρ̂e0,q] = 0. This suggests that the ther-
malization rate is ∝ g2. Indeed, carrying out the expan-
sion one order further, we recognize Fermi’s golden rule.
Finally, if we had replaced Q̂ by a general observable Ô,
the first order term does not vanish. It results in a uni-
versal deviation of 〈Ô〉 in the instantaneous state from
that of ρ̂e0,q.

III. SLOW DYNAMICS OF APPROXIMATELY
CONSERVED QUANTITIES

In this section, we present a derivation of an approx-
imate autonomous equation governing the dynamics of
the densities (e0, q). This is Eq. (23), or, at a more
abstract level, Eq. (21). Our derivation is not mathe-
matically rigorous, it uses physical assumptions and goes

substantially beyond the heuristics presented above. Its
validity and accuracy are confirmed by numerical calcu-
lations in Sec. VI.

A. Slow variables

We identify the densities (e0, q) as slow variables. To
set up a controlled derivation, we need a projection map
from states ρ̂ to (e0, q). It turns out, however, that it is
more natural to start with a projection P from ρ̂ to a
probability distribution p on (e0, q). Indeed, each such p
can be lifted to a ρ̂ by

ρ̂p =

∫

de0dq p(e0, q)ρ̂e0,q, (3)

and the physically most natural case is, of course, when
p(e0, q) is a Dirac delta distribution δ(e0 − e∗0)δ(q − q∗);
cf. the discussion on “experimentally relevant states” in
Sec. II. To construct the map P, a natural approach is
to measure Ĥ0 and Q̂:

pρ̂(e0, q) ∝ Tr
[

ρ̂ P (Ĥ0 ≈ e0L)P (Q̂ ≈ qL)
]

, (4)

where P (Ĥ0 ≈ e0L) is a spectral projection of Ĥ0 on the
interval [e0L− δE , e0L+ δE ] with a resolution δE that is
much larger than the level spacing, but smaller than any
relevant energy scale (like, e.g., the energy per site). For

P (Q̂ ≈ qL), we can simply take the projection of Q̂ on
the eigenvalue closest to qL. Then we can set

P ρ̂ =

∫

de0dq pρ̂(e0, q)ρ̂e0,q, (5)

where “
∫

de0dq” represents a sum with the aforemen-
tioned resolution. We define P̄ = 1 − P, and note that
both P, P̄ are projectors, namely, P2 = P and P̄2 = P̄.
A warning is in order, despite the fact that P ρ̂ and P̄ ρ̂
encode all the information about the microscopic distri-
butions of E0 and Q (whose widths are expected to be
subextensive in E0 and Q [36]), all that information is
not needed and our analysis does not allow one to keep
track of it in time. Our results only depend on, and keep
track of, the distribution of densities p(e0, q).
The above definition of the projection P is motivated

by ensembles of statistical mechanics, which are expected
to describe many-body quantum systems after equilibra-
tion. An equivalent definition can be motivated purely
from quantum mechanics. If one takes ρ̂ and evolves it
under the unitary evolution dictated by Ĥ0, observables
equilibrate to the predictions of the so-called diagonal
ensemble ρ̂DE [22]:

ρ̂DE =
∑

E0

(〈E0|ρ̂|E0〉)|E0〉〈E0|, (6)

where |E0〉 are the eigenkets Ĥ0 and Q̂, and we have as-
sumed that either there are no degeneracies in the many-
body energy spectrum or that, if present, they are unim-
portant. This is generically the case in interacting many-
body quantum systems [22].
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The map ρ̂ → ρ̂DE is a projection as well; let us call
it PDE. It provides an alternative path to identifying
the slow variables. This is the case because, in recent
years, we have come to realize that the ensembles defined
by P ρ̂ and PDEρ̂ are equivalent when it comes to their
predictions for observables (few-body or local operators)
in large systems. This is a consequence of eigenstate
thermalization for nonintegrable (quantum chaotic) sys-
tems [36–38], and generalized eigenstate thermalization
for integrable systems [17, 20, 39–41]. Hence, it does not
really matter whether one uses the projection P or PDE,
so we do not actively distinguish between them in most
of our analytical derivations. In our numerical calcula-
tions we use PDE, as ρ̂DE can be calculated exactly in the
same way for nonintegrable and integrable systems. P,
on the other hand, demands that one identifies before-
hand the relevant conserved quantities (not necessary for
PDE). Keeping all this is mind, in what follows we do
not actively distinguish between nonintegrable systems,
for which the number of conserved quantities in the ther-
modynamic limit is O(1), from integrable systems, for
which the number of conserved quantities in the thermo-
dynamic limit is infinite.

B. Mori-Zwanzig approach

Let us introduce the Liouville superoperator L =
−i[Ĥ, ·]. Then, following Mori-Zwanzig [42, 43], see Ap-
pendix A, the theory of linear ordinary differential equa-
tions gives us the following rewriting of the P-projected
Liouville equation ∂τ ρ̂(τ) = Lρ̂(τ):

∂τP ρ̂(τ) = PLP ρ̂(τ) (7)

+

∫ τ

0

dsPLesP̄LLP ρ̂(τ − s) + PLeτP̄LP̄ ρ̂I ,

where ρ̂I ≡ ρ̂(τ = 0), and we use that the projector
P is time independent. To bring some structure to this
equation, we now split

L = L0 + L1, with L0 = −i[Ĥ0, ·],L1 = −ig[V̂ , ·], (8)

and note the properties

L0P = PL0 = 0, PL1P = 0. (9)

They follow from elementary considerations. This allows
one to recast the above equation of motion as

∂τP ρ̂(τ) =

∫ τ

0

dsAsP ρ̂(τ − s) + Yτ P̄ ρ̂I , (10)

where we introduce

As = PL1e
s(L0+P̄L1)L1P and Yτ = PL1e

τ(L0+P̄L1)P̄.
(11)

The object As represents a memory kernel. For com-
pleteness, we also report the expression for P̄ ρ̂(τ) (see
Appendix A):

P̄ ρ̂(τ) = eτP̄LP̄ ρ̂I +

∫ τ

0

dsP̄esP̄LLP ρ̂(τ − s). (12)

It should be stressed that all the previous equations are
exact, and, hence, they are not particularly useful. In the
next section, we make some motivated approximations.

C. Equilibration

Our only assumption is that the dynamics generated
by Ĥ0 results in fast equilibration of observables to the
equilibrium state that is characterized by the expecta-
tion value of Ĥ0, E0 = Tr(ρ̂IĤ0), and of Q̂, Q = Tr(ρ̂IQ̂).
Once again, we stress that we do not distinguish between
nonintegrable reference Hamiltonians Ĥ0, for which ob-
servables equilibrate to the thermal predictions (ther-
malize [22]), from integrable reference Hamiltonians, for
which observables equilibrate to the GGE predictions
(exhibit generalized thermalization [17]). For our pur-
poses, it does not matter whether equilibration is towards
a traditional ensemble of statistical mechanics or towards
a GGE: in both cases it means that, for generic (few-

body) observables Ô and initial states ρ̂I ,

|Tr[ρ̂IÔ0(τ)]− Tr[ρ̂e0,qÔ]|

|Tr[ρ̂e0,qÔ]|
=: f(τ) → 0, (13)

where Ô0(τ) = eiτĤ0Ôe−iτĤ0 . We define an equilibra-
tion timescale τ∗(ε), which is understood as the time τ
at which f(τ) ≈ ε for some small dimensionless ε. By
fast equilibration, we mean that τ∗(ε) ∼ O(1) in the rel-
evant time units of the problem. In Sec. VI, numerical
simulations of a translationally invariant one-dimensional
Hamiltonian indeed show that, in times that are O(1) in
the relevant timescale, observables reach values that are
very close to the predictions of ρ̂e0,q.
We do not expect ε to be arbitrarily small because,

even if the Hamiltonian and the initial state are trans-
lational invariant, the unavoidable coupling to hydro-
dynamic modes in interacting systems renders the ap-
proach of local observables to equilibrium polynomial,
f(τ) ∝ τ−d/2, as argued in Ref. [44] on the basis of fluc-
tuating hydrodynamics. In such a case, one expects

τ∗(ε) ≈ ε−2/d. (14)

Our numerical results suggest that, for the models and
observables studied, hydrodynamics tails may set in when
ε is very small, at times that are beyond the reach of our
numerical calculations.
The way τ∗ enters our analysis is that we approximate,

for any ρ̂,

eτL0 ρ̂ ≈ PeτL0 ρ̂, whenever τ > τ∗, (15)

accepting an error O(ε). This approximation amounts to
assuming that the system has equilibrated after a time τ∗

with respect to the dynamics generated by Ĥ0. Hence, at
time τ∗, we replace the density matrix of the system by
ρ̂e0,q. Of course, the usual caveats typical of irreversibil-
ity apply: this replacement can only be correct when
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dealing with local or few-body observables Ô, or sums
thereof, not for (special) many-body operators such as

the spectral projectors of Ĥ0 [22].

D. Born approximation

We can now state our main assumption as a weak cou-
pling condition, namely,

gτ∗ � 1. (16)

To see this assumption at work, let us expand the expo-
nential es(L0+P̄L1) in the definition of As in Eq. (11)

As = PL1e
sL0L1P (17)

+

∫ s

0

ds1PL1e
(s−s1)L0P̄L1e

s1L0L1P + · · · .

Note that, for example, the first term on the rhs
could also be written as PL1P̄esL0P̄L1P or even
PL1P̄esP̄L0P̄ P̄L1P, which makes apparent that the in-
termediate evolution acts on the fast degrees of freedom.
In order for this expansion in powers of g to be meaning-
ful, one needs to make sure that the series above can be
resummed such that it is linear in L. For example, since
every L1 carries a factor L, it appears that the first and
second terms in the equation above are of order L2 and
L3, respectively. However, one can write these terms as
sums of [and integrals over (e0, q)] truncated correlation

functions 〈V̂0(s)V̂ 〉ce0,q and 〈V̂0(s)V̂0(s1)V̂ 〉ce0,q; see, e.g.,
the remark following Eq. (B4). These truncated correla-
tion functions are of order L due to clustering properties
of the (e0, q) equilibrium ensembles. In higher orders,
such considerations become more complicated and we re-
fer the interested reader to mathematical work establish-
ing a meaningful expansion [45, 46]. Assuming that one
recovers the linearity in L to all orders, for any τ ≥ τ∗,

∫ τ

0

dsAs =

∫ τ

0

dsPL1e
sL0L1P +O(g3τ∗2L), (18)

where the first term is O(g2Lτ∗). One then sees that the
expansion is meaningful if

g3τ∗2L � g2τ∗L, (19)

which is, of course, equivalent to Eq. (16).

E. Markov approximation

The discussion above has shown that the lowest order
approximation to

∫∞

0
dsAs, namely,

K =

∫ ∞

0

dsPL1e
sL0L1P, (20)

is O(g2τ∗L), with the factor L originating from the spa-
tial sum in L1. The physical meaning of this factor is

that the quantities that change smoothly in time are the
densities (e0, q) rather than (E0, Q) themselves, or, al-
ternatively, local observables. We then see that the su-
peroperator K is O(g2τ∗), and this is the rate at which
ρ̂ changes. Recalling that the time integral defining K
reaches its τ = ∞ value at τ ≈ τ∗ leads to the conclu-
sion that, in Eq. (10), we can approximate P ρ̂(τ − s) by
P ρ̂(τ), making an error O(g2τ∗2) (which is small by our
weak-coupling assumption gτ∗ � 1). A further simplifi-
cation occurs by observing that Yτ is proportional to g,
and vanishes fast as τ ≥ τ∗, so one might set Yτ = 0
for times τ ≥ τ∗. If we make these two approximations,
then the equation of motion [Eq. (10)] reads

∂τP ρ̂(τ) = KP ρ̂(τ), τ � τ∗. (21)

A conservative look at the validity of Eq. (21), in par-
ticular to the approximation Yτ = 0, shows that one
should trust Eq. (21) only for times τ � τtr (where the
subindex tr stands for transient) and τtr is determined by
g2τ∗ � gf(τtr), as follows by comparing the magnitude
of the two terms in Eq. (10).

F. Autonomous equation

The meaning of Eq. (21), in which K is a superoperator
acting on density matrices, is simplified by the presence of
P. As mentioned before, P projects onto distributions of
densities p(e0, q), and so Eq. (21) is actually an evolution
equation on such p. It is easier, and more natural, to
guess the form of this evolution equation than to derive
it from the formula above, so we will do the former here
and relegate the latter to Appendix B.

Given ρ̂e0,q, we need to find the rate of change of (e0, q).
The natural path is to use Fermi’s golden rule, within
which e0 does not change in time. Having a single eigen-
ket |E0〉 in mind, the rate of change of q, called the “drift”
d, is given by

d(E0) = 2πg2
∫

dE
0
δ(E0−E

0
)
Q

E
0 −QE0

L
|〈E0|V̂ |E

0
〉|2,

(22)

where QE0 = 〈E0|Q̂|E0〉, the integral is understood as a

sum, and the delta function δ(E0−E
0
) selects an interval

of energies with a width smaller than any relevant energy
scale but much larger than the level spacing. In principle,
one should average d(E0) over E0, with the distribution
provided by statistical mechanics ρ̂e0,q, or by quantum
mechanics, i.e., the diagonal ensemble ρ̂DE. However,
once again because of eigenstate thermalization (or its
generalized version for integrable systems), we expect the
average to be unnecessary for large L. Hence, the drift
d = d(e0, q) does not depend on |E0〉 but only on (e0, q).

Even though V̂ = O(L), the drift d(e0, q) is O(1) because
of decay of spatial correlations, see Appendix B. We then
obtain the autonomous equation

∂τq(τ) = d[e0(τ), q(τ)], ∂τe0(τ) = 0. (23)
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The corresponding evolution equation for the distribu-
tions pτ (e0, q) is then

∂τpτ (e0, q) = −d[e0, q]∂qpτ (e0, q), (24)

which lifts naturally to an evolution on P ρ̂. The station-
ary solution of Eq. (23) as τ → ∞ is denoted by (e0, q

∗),
where q∗ = q∗(e0) is determined by

d[e0, q
∗(e0)] = 0. (25)

Within Fermi’s golden rule [Eq. (22)], this is recognized
as a detailed balance condition, indicating that q∗(e0) is
the equilibrium value of q given e0. In other words, q∗ is
determined by maximizing the entropy at fixed e0 and,
hence, the resulting ensemble ρ̂e0,q∗ is equivalent to one
in which no constraint on q̂ is imposed:

ρ̂e0,q∗ ≈ ρ̂e0 . (26)

This also shows that the asymptotic state ρ̂e0,q∗ is close

to the global equilibrium state ρ̂e for which 〈ĥ〉 = e =
e0 + O(g). In Sec. IV, we quantify the O(g) difference
between ρ̂e0,q∗ and ρ̂e.

G. Corrections

In principle, our scheme allows one to compute higher-
order corrections in g to the autonomous Eqs. (21)
and (23). In particular, one can expand As in a power
series in terms of order (gτ∗)nL, n ≥ 1, with the terms
for n = 1 and 2 given in Sec. IIID. Integrating over s, one
then gets a series for K, and hence for the drift coefficient
d[e0, q]. It is, however, far from obvious that such cor-
rections are useful, as (i) we have made approximations
at several points, not only in truncating As, but also,
e.g., replacing P ρ̂(τ − s) for s ≤ τ∗ by P ρ̂(τ), and (ii) a
not-so-fast decay of f(τ) would imply that the Yτ term
in Eq. (10) remains potentially important at long times,
obscuring any precise corrections to the Markovian part.
Rigorous work in the context of open quantum sys-

tems [45–47] implies that one can meaningfully compute
corrections, but only when

∫∞

0
dτ |f(τ)| < ∞.

IV. DYNAMICS OF LOCAL OBSERVABLES

So far, we have focused on the evolution of the qua-
siconserved quantity Q̂, which we found to be described
by the autonomous Eq. (23). We now turn our attention
to more general observables. Our main finding is that
their time-dependent expectation values are described by
a “deformed equilibrium ensemble,” with an O(g) differ-
ence from ρ̂e0,q(τ). This deviation has a universal form.

A. Correction to P ρ̂(τ)

At first sight, the evolution of generic observables is
slaved by the evolution of the slow variables (e0, q). In-

deed, the general picture is that the evolution of the den-
sity matrix ρ̂(τ) takes place in the space of equilibrium
density matrices ρ̂e0,q(τ), leading to the prediction

Tr[ρ̂(τ)Ô] ≈ Tr[ÔP ρ̂(τ)] = 〈Ô〉e0,q(τ). (27)

In the last equality, we assumed that p(e0, q) is concen-
trated at a single value. Yet, strictly speaking, the pre-
vious section dealt with P ρ̂(τ), rather than with ρ̂(τ),
so Eq. (27) is in need of a justification. To provide it,
we return to the formalism in Sec. III B, and write [see
Eq. (12)]

ρ̂(τ) = P ρ̂(τ) + P̄ ρ̂(τ) (28)

= P ρ̂(τ) + eτP̄LP̄ ρ̂I +

∫ τ

0

dsP̄esP̄LLP ρ̂(τ − s).

The first term in Eq. (28) is dominant for large τ ≥ τtr.
It amounts to the approximation resulting in Eq. (27).
The second term in the last line of Eq. (28) is transient,
decaying as gf(τ), as discussed also in Sec. III E. The
third term is the correction we are interested in. Let
us write it explicitly, when paired with an observable
Ô, namely,

∫ τ

0
dsTr[ÔP̄esP̄LLP ρ̂(τ − s)]. By expanding

esP̄L in powers of g, we get the leading contribution
∫ τ

0
dsTr[ÔP̄esL0LP ρ̂(τ − s)]

= ig

∫ τ

0

dsTr{[V̂0(−s), Ô]P ρ̂(τ − s)}. (29)

One can further simplify this expression by approximat-
ing P ρ̂(τ − s) by P ρ̂(τ), justified by the reasoning in
Sec. III E, and by again assuming that the distribution
p(e0, q), corresponding to P ρ̂(τ), is concentrated at a sin-
gle density [e0, q(τ)]. Then the last line in Eq. (29) reads

ig

∫ ∞

0

ds〈[V̂0(−s), Ô]〉e0,q(τ). (30)

By the assumption of fast equilibration at s ≈ τ∗, this
expression is O(gτ∗); i.e., it is a small correction to

〈Ô〉e0,q(τ). Even though it is subleading, this correction
has a universal form, as we explain in the next section.
Finally, note that Eq. (30), obtained following a naive
first-order perturbation theory, was already written in
Sec. II for Q̂ [see Eq. (2)]. In that case, the s-independent
integrand vanishes identically.

B. Susceptibility

To understand the correction in Eq. (30), consider the
equilibrium ensemble ρ̂e0,q∗ with (e0, q

∗) the τ → ∞ solu-
tion of Eq. (23), or, alternatively, with q∗ determined by
maximizing the entropy at fixed e0. The ensemble ρ̂e0,q∗
is a small perturbation of the real equilibrium ensemble

ρ̂e corresponding to Ĥ, with 〈ĥ〉ρ̂e
= 〈ĥ〉ρ̂e0,q∗

+O(g). We
can relate these two ensembles by linear response theory.
Indeed, we can imagine starting with ρ̂e0,q∗ at τ = 0, and
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switching on the perturbation gV̂ . The system will then
evolve precisely to ρ̂e, and the change in the expecta-
tion value of observables Ô should be described by linear
response theory. In particular, the stationary change is
described by the zero-frequency response coefficient (also
known as the susceptibility), which is exactly Eq. (30).

This discussion should also clarify how thermalization
with respect to Ĥ is reconciled with our treatment, which
is based on equilibration with respect to Ĥ0. The global
equilibrium state ρ̂e is obtained as a universal correction
to the state ρ̂e0,q∗ .

C. Deformed equilibrium ensembles from Fermi’s
golden rule

In Sec. IVA, we use the last term in Eq. (28) to derive
the O(g) correction to observables in ρ̂(τ) from their ex-
pectation values in ρ̂e0,q(τ). Here, we point out that this
is also what the autonomous Eq. (23) dictates.
Let us compute the time derivative of q(τ):

∂τq(τ) = Tr[q̂Lρ̂(τ)] = Tr[q̂L1ρ̂(τ)], (31)

where, in the last equality, we use that [Ĥ0, Q̂] = 0. Pre-
viously, we evaluated this time derivative in a different
way: we approximated ρ̂(τ) by ρ̂e0,q(τ) [assuming, again,
that p(e0, q) is a Dirac delta function] and we arrived at

∂τq(τ) = Tr[q̂Kρ̂e0,q(τ)]. (32)

This is a more abstract rendering of the autonomous
Eq. (23). At this point, one can ask which form of ρ̂(τ)
would reconcile Eqs. (31) and (32). By the cyclic prop-
erty of the trace, and using that [q̂, ρ̂e0,q(τ)] = 0, we note
that Eq. (31) does not depend on the leading contribu-
tion ρ̂e0,q(τ) to ρ̂(τ). It depends only on the correction
term. We then see that Eq. (31) reduces to Eq. (32) if
we choose the correction term to be

∫ ∞

0

dsP̄esL0L1ρ̂e0,q(τ), (33)

which is the correction we used in Sec. IVA to derive
Eq. (30). A spectacular corollary of this reasoning is the
observation that, if ρ̂(τ) were exactly commuting with q̂,
then the rate of change vanishes, i.e., ∂τq(τ) = 0.

V. MODELS, QUENCHES, AND OBSERVABLES

In the rest of the paper, we test the previous ideas
and analytical results in numerical experiments. We fo-
cus on the dynamics of nonintegrable models of strongly
interacting hard-core bosons in one-dimensional lattices
(which can be mapped onto spin-1/2 Hamiltonians). We
study the effects of breaking particle-number conserva-
tion [the U(1) symmetry in the spin models].

A. Models

Quantum dynamics are studied under time-
independent Hamiltonians Ĥα of the form

Ĥα = Ĥ0 + gαV̂α, (34)

where the reference Hamiltonian Ĥ0, which we take to be
nonintegrable, commutes with the total particle-number
operator N̂ , [Ĥ0, N̂ ] = 0. The perturbations, gαV̂α, do

not commute with N̂ , [V̂α, N̂ ] 6= 0.

We take Ĥ0 to be the t-V -t′-V ′ Hamiltonian for hard-
core bosons in 1D lattices [48, 49], with nearest (next-
nearest) neighbor hopping t (t′) and interaction V (V ′):

Ĥ0 =
∑

i

[

−t
(

b̂†i b̂i+1 +H.c.
)

− t′
(

b̂†i b̂i+2 +H.c.
)

(35)

+V

(

n̂i −
1

2

)(

n̂i+1 −
1

2

)

+ V ′

(

n̂i −
1

2

)(

n̂i+2 −
1

2

)]

,

where b̂†i (b̂i) is the hard-core boson creation (annihi-

lation) operator and n̂i = b̂†i b̂i is the number operator

at site i. When t′ = V ′ = 0, Ĥ0 is integrable (in the
spin language, it is the Hamiltonian of the spin-1/2 XXZ
chain) [50]. Here, we focus on cases in which t′ = V ′ 6= 0,

so that Ĥ0 is nonintegrable [48, 49].

We consider two perturbations gαV̂α, with α = 1, 2.
The first one is

g1V̂1 = g1
∑

i

[

b̂i +
1

2

(

b̂ib̂i+1 − b̂†i b̂i+1

)

+H.c.

]

. (36)

It will be important later that the presence of nearest
neighbor hopping terms in V̂1 make 〈E0

i |V̂1|E
0
i 〉 6= 0 for

typical eigenkets |E0
i 〉 of Ĥ0.

The second perturbation we consider is

g2V̂2 = g2
∑

i

(

b̂i +
1

2
b̂ib̂i+1 +H.c.

)

. (37)

This perturbation only contains terms that change the
particle number. Hence, 〈E0

i |V̂2|E
0
i 〉 = 0 for all eigenkets

|E0
i 〉 of Ĥ0 and N̂ .

B. Initial states and description after equilibration

We study the quantum dynamics of initial states ρ̂I
that are far from equilibrium with respect to both Ĥ0

and Ĥα. This is achieved by choosing ρ̂I to be thermal
equilibrium states of initial Hamiltonians ĤI , such that
[ĤI , Ĥα] 6= 0 and [ĤI , Ĥ0] 6= 0. Dynamics are gener-
ated by quantum quenches in which, at time τ = 0, one
suddenly changes ĤI → Ĥα and lets the system evolve
unitarily. We consider systems that are translationally
invariant before and after the quench.
The time-evolving density matrix after the quench can

be written as ρ̂(τ) = e−iĤατ ρ̂Ie
iĤατ . We are interested in
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the dynamics of observables Ô, whose expectation values

are given by O(τ) = Tr
[

ρ̂(τ)Ô
]

. At long times, one

expects observables to equilibrate at the values predicted
by the diagonal ensemble (DE), ODE = Tr[ρ̂DEÔ], where

ρ̂DE = limτ ′→∞(1/τ ′)
∫ τ ′

0
dτ ρ̂(τ) is the density matrix of

the diagonal ensemble [36]. When written in the basis of

eigenkets |Eα
i 〉 of Ĥα, ρ̂DE takes the form

ρ̂DE =
∑

i

(〈Eα
i |ρ̂I |E

α
i 〉) |E

α
i 〉〈E

α
i |. (38)

For nonintegrable (quantum chaotic) systems, because
of eigenstate thermalization [36–38], one expects the pre-
dictions of the diagonal ensemble to match those of tradi-
tional statistical mechanics ensembles; namely, we expect
observables to thermalize [22]. For the t-V -t′-V ′ Hamilto-
nian for hard-core bosons in 1D lattices, eigenstate ther-
malization and thermalization were studied in Ref. [48],
while quantum chaos was studied in Ref. [49]. This means
that, in our systems, we can also describe observables af-
ter equilibration by means of the grand canonical ensem-
ble (GE) characterized by a temperature T , and, when
particle number is a conserved quantity, by a chemical
potential µ. The grand canonical ensemble density ma-
trices have the form

ρ̂GE =



























e−Ĥα/T

Tr[e−Ĥα/T ]
when gα 6= 0

e−(Ĥα+µN̂)/T

Tr[e−(Ĥα+µN̂)/T ]
when gα = 0.

(39)

When gα 6= 0, T is fixed by the (conserved) energy of
the time-evolving state,

Tr[ρ̂GEĤα] = Tr[ρ̂IĤα]. (40)

When gα = 0, T and µ are determined by the (conserved)
energy [Eq. (40)] and by the (conserved) particle number
in the time-evolving state,

Tr[ρ̂GEN̂ ] = Tr[ρ̂IN̂ ]. (41)

Because of particle-hole symmetry in the Hamiltonians
Ĥα, when gα 6= 0 (namely, in the absence of particle-
number conservation), our systems after equilibration are
always at half filling irrespective of the initial filling nI .
We consider initial fillings nI 6= 1/2, which means that
the filling must change during the dynamics when gα 6= 0.

From our analysis in the previous sections, we expect
that, for small values of gα, the dynamics of generic ob-
servables follow a two-step process towards thermaliza-
tion: (i) fast relaxation driven by Ĥ0 (prethermal dy-
namics) and (ii) slower, nearly exponential, relaxation to
the thermal equilibrium predictions (thermalization dy-
namics). At long times, close to thermal equilibrium,
hydrodynamics may become dominant and algebraic re-
laxation is expected to take place [44]. That regime is
not resolved in this work.

As discussed in Sec. IV, the near-exponential dynamics
following prethermalization can be described by project-
ing ρ̂(τ) in the basis of the eigenkets of Ĥ0, up to an O(g)
correction. This projected state is a diagonal ensemble
of Ĥ0, whose density matrix [see Eq. (6)] we denote as

ρ̂0(τ) ≡ PDρ̂(τ) =
∑

i

(

〈E0
i |ρ̂(τ)|E

0
i 〉
)

|E0
i 〉〈E

0
i |, (42)

where |E0
i 〉 are the eigenkets of Ĥ0.

C. Numerical linked cluster expansion (NLCE)

In what follows, we use the numerical linked cluster
expansion (NLCE) approach introduced in Ref. [23] (see
Refs. [51, 52] for NLCE studies in two dimensions) to
study the quantum dynamics of various observables in
our translationally invariant 1D systems in the thermo-
dynamic limit.
NLCEs were originally introduced to study systems in

thermal equilibrium [53], and allow one to obtain the
expectation value of extensive observables per site (O =
O/L), in the thermodynamic limit (L → ∞), as sums
over the contributions of the connected clusters that can
be embedded in the lattice. Given the connected clusters
c, which can be embedded in the lattice in M(c) ways
per site and have weights WO(c), one obtains O in the
following way

O =
∑

c

M(c)×WO(c). (43)

WO(c) is computed, for each cluster c, from the expecta-

tion value of the observable Ô in the cluster (Oc) using
the inclusion exclusion principle:

WO(c) = Oc −
∑

s⊂c

WO(s), (44)

where the sum is over all connected subclusters of c.
For the smallest cluster, WO(c) = Oc. For each cluster,

Oc = Tr[ρ̂cÔ], where ρ̂c is the density matrix of the rele-
vant ensemble in the cluster. In NLCEs, Oc is calculated
exactly numerically using full exact diagonalization.
In our calculations, the density matrix of the initial

state in each cluster ρ̂cI is taken to be the grand canoni-
cal density matrix set by the initial Hamiltonian in each
cluster Ĥc

I (our initial states are in thermal equilibrium

with respect to ĤI). In all quenches, we take ĤI to be the

t-t′-V -V ′ model in Eq. (35). Since [Ĥc
I , N̂

c] = 0, where

N̂ c is the total particle number operator in the cluster,

ρ̂cI =
e−(Ĥc

I+µIN̂
c)/TI

Tr[e−(Ĥc
I
+µIN̂c)/TI ]

. (45)

Also, since Ĥc
I is particle-hole symmetric, we need µI 6= 0

in order to have initial states with filling nI 6= 1/2.
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To calculate the time evolution of the expectation val-
ues of the observables O(τ), where τ denotes the time
after the quench, the density matrix of each cluster is
evolved with the Hamiltonian after the quench Ĥc

α,

ρ̂c(τ) =
(

e−iĤc
ατ

)

ρ̂cI

(

eiĤ
c
ατ

)

, (46)

and the NLCE calculation is carried out as usual [23].
Our Hamiltonians after the quench have the form in
Eq. (34). Similarly, in order to obtain NLCE results
after the quench for the diagonal ensemble, the grand
canonical ensemble, and in the projected basis of Ĥ0, we
use ρ̂cDE, ρ̂

c
GE, and ρ̂c0(τ) from Eqs. (38), (39), and (42),

respectively, for each cluster c.
NLCEs have been used to study quenches in the t-t′-

V -V ′ model [Eq. (35)] to understand the dynamics [23],
and the description of observables after equilibration [54],
at the integrable point t′ = V ′ = 0 and away from it
t′ = V ′ 6= 0. The presence of next-nearest neighbor hop-
pings and interactions makes it possible to have different
building blocks to construct the clusters in the NLCE.
In Ref. [55], it was shown that maximally connected
clusters—built adding contiguous sites and all possible
bonds, starting from one site—are optimal for studying
quenches in this model. Here, as in Refs. [23, 54], we use
that NLCE in our calculations (there is only one max-
imally connected cluster with a given number of sites).
The number of sites in the largest cluster considered de-
fines the order of NLCE, and we denote the value of an
observableO(τ) evaluated with NLCE to order l asOl(τ).

D. Observables

We study three observables which have properties that
make them qualitatively distinct in the context of dynam-
ics and description after equilibration.
The first observable is the total particle number,

N(τ) = Tr[ρ̂(τ)N̂ ], (47)

whose value per site, the particle filling, is denoted as
n(τ). This is a conserved quantity with respect to the

reference Hamiltonian Ĥ0; i.e., it only changes during
dynamics under Ĥα after the quench if gα 6= 0.

The second observable is the one-body nearest neigh-
bor correlation,

K(τ) = Tr[ρ̂(τ)K̂], (48)

whose value per site is denoted as k(τ), where

K̂ =
∑

i

(

b̂†i b̂i+1 + b̂†i+1b̂i

)

. (49)

k(τ) is a local observable, closely related to the kinetic
energy per site. It changes during the dynamics indepen-
dently of whether N̂ is conserved or not.

The third observable is the distribution function,

Mk(τ) = Tr[ρ̂(τ)M̂k], (50)

whose value per site is the momentum distribution func-
tion, denoted asmk(τ). M̂k is the unnormalized (to make
each k component extensive) Fourier transform of the
one-body density matrix, given by

M̂k =
∑

j,j′

eik(j−j′)b̂†j b̂j′ . (51)

mk(τ) is a nonlocal one-body observable that changes

during the dynamics independently of whether N̂ is con-
served or not. This observable is of particular interest be-
cause it is regularly measured (using time-of-flight expan-
sion) in experiments with ultracold quantum gases [56].
mk(τ) was the observable used in Ref. [2] to show lack
of thermalization in 1D Bose gases with contact inter-
actions, and in Ref. [6] to study prethermalization and
thermalization 1D Bose gases with dipolar interactions.

E. Parameters used in the calculations

The initial state is taken to be a thermal equilibrium
state at temperature TI = 10 and chemical potential
µI = 2 (similar results are obtained for other values of

TI , not too low, and µI), for an initial Hamiltonian ĤI

with nearest and next-nearest neighbor coupling param-
eters tI = 0.5, VI = 1.5, and t′I = V ′

I = 0.7. After the

quench, Ĥα has coupling parameters t = V = 1 (these set
the energy scale in our calculations), t′ = V ′ = 0.7, and
gα ∈ (0, 0.12). For these parameters after the quench,

Ĥ0 [48, 49] and Ĥα are quantum chaotic and the system
thermalizes for all values of gα (see Ref. [23] for a NLCE
study of the quench dynamics when gα = 0).
For n(τ) and k(τ), we carry out the NLCE up to

the 17th order for quenches with gα 6= 0 (the largest
Hamiltonian sector that needs to be diagonalized has
65 792 states after exploiting reflection symmetry), and,
thanks to particle number conservation, up to the 19th
order for quenches with gα = 0 (the dimension of the
largest Hamiltonian sector that needs to be diagonalized
is 46 252). For mk(τ), the NLCE is carried out to one or-
der lower than for n(τ) and k(τ), namely, up to the 16th
order for gα 6= 0 and up to the 18th order for gα = 0.
This is because of the overhead generated by the calcu-
lation of the dynamics of all the matrix elements of the
one-body density matrix [see Eqs. (50) and (51)].

VI. NUMERICAL RESULTS

A. Dynamics of the particle filling

In Fig. 1(a), we show the evolution of the particle filling

under Ĥ1 for three values of g1. Results are shown for
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FIG. 1. Dynamics of the particle filling after quantum quenches ĤI → Ĥ1. (a) Dynamics of the particle filling n(τ) and (b)
dynamics of the “distance” to equilibrium δDE

l [n(τ)]; see Eq. (52). NLCE results are shown for l = 17 [NLCE-17, see legend in
(a)] and l = 16 (NLCE-16, dotted lines). Straight lines in (b) depict fits to the results for l = 17 in the interval τ ∈ [1, 16] and
to exponential functions ∝ exp[−ΓNLCE

17 (g1) τ ]. (c) Thermalization rates ΓNLCE(g1) (filled symbols) obtained from fits as the
ones in (b), for l = 17 in the interval τ ∈ [1, 16] (NLCE-17), and for l = 16 in the interval τ ∈ [1, 6] (NLCE-16), reported for

g1 ∈ [0.03, 0.12]. Error bars show 95% confidence bounds for the fits. The straight line is the result of a fit to ΓNLCE
17 (g1) ∝ gβ

1

for g1 ∈ [0.03, 0.06]. The open symbols show the rates ΓFermi(g1) obtained evaluating Fermi’s golden rule [see Eqs. (53) and (54)]
using full exact diagonalization in chains with L = 18 (Fermi-18) and L = 17 (Fermi-17), and periodic boundary conditions.
The error bars show the standard deviation from averages over different choices of ∆E and τ (see Appendix D).

the last two orders of the NLCE up to τ = 100. In those
quenches, we expect the convergence errors for n(τ) to be
below 0.01% for times τ <

∼ 4, and to remain low (below
1%) up to times τ ≈ 16 (see Appendix C). For τ >

∼ 16,
the results for the last two orders of the NLCE can be
seen to (slightly) deviate from each other in Fig. 1(a). In
all the plots in Fig. 1(a), n(τ) can be seen to approach
nDE = 1/2. For g1 = 0.12, n(τ = 100) ≈ nDE.

The approach of n(τ) to nDE = 0.5 is exponential.
This is apparent in Fig. 1(b), where we plot the normal-
ized “distance” to equilibrium:

δDE
l [n(τ)] =

∣

∣

∣

∣

nl(τ)− nDE

nDE

∣

∣

∣

∣

. (52)

We fit δDE
l [n(τ)] to an exponential function ∝

exp[−ΓNLCE
l (g1) τ ] to obtain the thermalization rate

ΓNLCE
l (g1). In order to gain an understanding of the

accuracy of the obtained rates, we carry out fits in the
time interval τ ∈ [1, 16] for l = 17 [the corresponding fits
are shown in Fig. 1(b) as thin continuous lines], and in
the interval τ ∈ [1, 6] for l = 16. The rates obtained in
those calculations are shown in Fig. 1(c), as NLCE-17
and NLCE-16, respectively. They agree with each other
within the errors of the fits. This suggests that our cal-
culation of ΓNLCE(g1) is robust. A power-law fit to the
rates obtained for l = 17 is also shown in Fig. 1(c). We

find that ΓNLCE
17 (g1) ∝ gβ1 with β = 1.99, in agreement

with the analytical results in Sec. III.

In closing Sec. IVC, we argued that the rate q̇(τ) = 0

whenever the state ρ̂(τ) commutes exactly with Q̂. The
rate also vanishes if ρ̂(τ) is time-reversal invariant about
τ . Both conditions apply to our initial states ρ̂I . As a
result, there is a narrow plateau in n(τ) for τ ≤ 1. This
plateau is best seen in Fig. 9. This is why, to obtain the
rates reported in Fig. 1(c), we fit n(τ) at times τ ≥ 1.

Next, we show that the values obtained for ΓNLCE(g1)
are in agreement with the ones predicted by Fermi’s
golden rule. From Eq. (22), changing Q̂ → N̂ and

V̂ → V̂α, one can write for ṅ(τ) = dn/dτ ′|τ ′=τ :

ṅ(τ) =
2πg2α
L

∑

i,j

δ(E0
j − E0

i ) (Nj −Ni)P
0
i (τ)

×|〈E0
j |V̂α|E

0
i 〉|

2, (53)

where |E0
i 〉 are the eigenkets of Ĥ0 with energies E0

i ,

Ni = 〈E0
i |N̂ |E0

i 〉, and we average over the diagonal en-
semble distribution, P 0

i (τ) = 〈E0
i |ρ̂(τ)|E

0
i 〉. To evaluate

Eq. (53) numerically, we replace
∑

j δ(E
0
j −E0

i ) by a sum

over energies E0
j that lie within a small energy window

[

E0
i −∆E/2, E0

i +∆E/2
]

(see Appendix D).
The thermalization rates are estimated by computing

ΓFermi(gα) = −
ṅ(τ)

n(τ)− nDE
. (54)

When |n(τ)− nDE| � nDE, Γ
Fermi(gα) becomes indepen-

dent of τ and n(τ) relaxes exponentially. This condition
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is, to a good degree, satisfied for our choice of initial state,
for which δDE

l [n(τ)] < 0.09 [see Fig. 1(b)]. Our calcula-
tions of ΓFermi(gα) are done using full exact diagonaliza-
tion in chains with L = 17 and 18 sites, and periodic
boundary conditions. We identify a range of values for
∆E and τ for which the results for ΓFermi(gα) are robust
against the choice of ∆E, τ , and L (see Appendix D).
In Fig. 1(c), we report our results for ΓFermi(g1). They

are in excellent agreement with ΓNLCE(g1). We should

add that, for quenches ĤI → Ĥ2, Eq. (53) predicts the

same leading O(g2α) dynamics as under Ĥ1. This is the
case because the terms that change the total particles
number are the same in V̂1 and V̂2. Hence, n(τ) is the
same for both Hamiltonians up to corrections O(g3α).

B. Dynamics of the one-body nearest neighbor
correlation

Next, we study the dynamics of the one-body nearest
neighbor correlation, k(τ) [see Eq. (49)]. In contrast to
the particle filling studied in Sec. VIA, the nearest neigh-
bor correlation k(τ) exhibits dynamics even if gα = 0
after the quench.

Figure 2 shows the 18th (NLCE-18) and 19th (NLCE-
19) orders of the NLCE for k(τ) after a quench in which
gα = 0. The results of both orders are in excellent agree-
ment with each other, and equilibrate rapidly to the pre-
diction of the diagonal ensemble (horizontal dashed line).
The predictions of the diagonal and grand canonical (hor-
izontal contiguous line) ensembles are very close to each
other, indicating thermalization. This is expected be-
cause Ĥ0 after the quench is nonintegrable. The small
difference between the diagonal and the grand canonical
ensemble results is due to the lack of convergence of the
NLCE for the former (the latter is fully converged) [54].
Those differences decrease with increasing the order of
the NLCE. In what follows, we use the grand canonical
ensemble predictions to probe thermalization.

In Fig. 3, we show k(τ) after quenches ĤI → Ĥ1 (left-
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FIG. 2. Dynamics of the one-body nearest neighbor correla-
tion k(τ) when gα = 0 after the quench. Results are shown
for the 18th (NLCE-18) and 19th (NLCE-19) orders of the
NLCE. We also report, as horizontal lines, the results for the
19th order of the diagonal ensemble (DE19) and for the 19th
order of the grand canonical ensemble (GE19).

3

3.5

4

NLCE-16
NLCE-17
GE

0 20 40 60 80
τ

3

3.5

4

NLCE-16
NLCE-17
GE

0

0 20 40 60 80 100
τ

} }Dynamics
Projected

k (τ ) [x10
2
]

Dynamics

(a)

(b)

(c)

(d)g
1
 = 0.12

g
2
 = 0.06

g
2
 = 0.12

g
1
 = 0.06

FIG. 3. Dynamics of the one-body nearest neighbor correla-
tion k(τ) for (a) g1 = 0.06, (b) g1 = 0.12, (c) g2 = 0.06, and
(d) g2 = 0.12. Results are shown for the 16th (NLCE-16) and
17th (NLCE-17) orders of the NLCE, both for the dynamics
[see legends in (a)] and for the dynamics in the projected ba-

sis of Ĥ0 [see legends in (c)]. The horizontal lines show the
results for the grand canonical ensemble corresponding to the
original dynamics (GE) and to the projected dynamics (GE0),
both evaluated at the 17th order of the NLCE.

hand panels) and ĤI → Ĥ2 (right-hand panels). The
dynamics are qualitatively similar in both cases. They
can be split in two regimes: (i) fast (prethermal) dynam-

ics driven by Ĥ0 (note that, at times τ <
∼ 10, dynam-

ics in Fig. 3 are nearly identical to those in Fig. 2) and
(ii) a slower (thermalization) dynamics controlled by the
strength of the perturbation. During the latter regime,
the system approaches [and reaches for g1 = g2 = 0.12
and τ = 100, see Figs. 3(b) and 3(d)] the prediction of

the grand canonical ensemble ρ̂GE corresponding to Ĥα

after the quench (with the temperature set by the initial
state).
The slow approach to thermal equilibrium can be well

described using the projected state ρ̂0(τ) from Eq. (42).
In Fig. 3, we show the results for the projected dynam-
ics along with those for the actual dynamics. As follows
from the discussion in Sec. IV, the results for the pro-
jected dynamics approach those of a thermal equilibrium
state of Ĥ0, which we denote as ρ̂GE0

. We compute the
temperature T0 in ρ̂GE0

using the expectation value of

Ĥ0 in the thermal equilibrium state ρ̂GE of Ĥα:

Tr[ρ̂GE0
Ĥ0] = Tr[ρ̂GEĤ0]. (55)

The chemical potential in ρ̂GE0
is µ0 = 0 because, for

gα 6= 0, the systems after equilibration are at half filling.
In the left-hand panels in Fig. 3, for quenches ĤI →

Ĥ1, one can see the advanced offsets (see Sec. IV) be-



11

-5

0

5

NLCE-17

(6.54g
1
) x10

-3

(6.54g
1
  - 2.58g

1

2
) x10

-3

-0.1 -0.05 0 0.05 0.1
g

α

-2

-1

0

NLCE-17

(-1.65g
2

2
) x10

-4

(-1.65g
2

2
 + 0.241g

2

3
) x10

-4

(a)

(b)

(k
G

E
 -

 k
G

E
0

) 
[x

1
0

4
]

g
1
U

1

^

g
2
U

2

^

(k
G

E
 -

 k
G

E
0

) 
[x

1
0

6
]

FIG. 4. Difference in the equilibrium (grand canonical en-
semble) results between the actual dynamics (GE) and the
projected dynamics (GE0) for the one-body nearest neigh-
bor correlation (kGE − kGE0

) evaluated at the 17th order of

the NLCE. (a) g1V̂1 perturbation (symbols), with linear and

linear plus quadratic fits (lines). (b) g2V̂2 perturbation (sym-
bols), with quadratic and quadratic plus cubic fits (lines).

tween the dynamics and the projected dynamics. The
offsets are much smaller for quenches ĤI → Ĥ2, whose
results are shown in the right-hand panels in Fig. 3. The
offsets between the actual and projected dynamics re-
main constant at long times and are, essentially, the dif-
ference between the predictions of ρ̂GE and ρ̂GE0

.

The difference in the offsets generated by quenches
ĤI → Ĥ1 and ĤI → Ĥ2 can be understood using
Eq. (30), replacing Ô → K̂ [K̂ is defined in Eq. (49)] and

V̂ → V̂α. Since K̂ and ρ̂0(τ) [ρ̂0(τ) is defined in Eq. (42)]
are block diagonal in the particle number basis, only the
presence of terms in V̂α that do not change the particle
number can produce an O(g) correction. Such terms are

present in V̂1 (the hopping terms), see Eq. (36), but are

absent in V̂2, see Eq. (37). This means that, to leading

order, ∆k1(τ) ∝ g1 while ∆k2(τ) ∝ gβ2 with β ≥ 2.

In Fig. 4, we show the long-time offsets between the ac-
tual and projected dynamics as functions of gα (for posi-

tive and negative values of gα) in the quenches ĤI → Ĥ1

[Fig. 4(a)] and ĤI → Ĥ2 [Fig. 4(b)]. The offsets are com-
puted as the difference between the predictions of ρ̂GE

and ρ̂GE0
for the equilibrated results (see the horizontal

lines in Fig. 3). Those predictions are converged to ma-
chine precision in the 17th order of the NLCE shown in
Fig. 4. Figure 4(a), for quenches ĤI → Ĥ1, makes ap-
parent the presence of a leading linear correction and of a
subleading quadratic one. Figure 4(b) shows the absence

of the linear correction for quenches ĤI → Ĥ2. There,
the leading correction is quadratic, and our numerical re-
sults allow us to identify a subleading cubic correction,

which leads to a weak asymmetry about g2 = 0.
Comparing the results reported in Fig. 1(a), and in

Figs. 3(a) and 3(b), for g1 = 0.06 and 0.12, it becomes
apparent that k(τ) equilibrates (reaches the long-time
horizontal line prediction) faster than n(τ). This can
be understood to be the result of the one-body near-
est neighbor correlation being particle-hole symmetric
(as the Hamiltonians Ĥα are). This means that, close
to equilibrium, the difference between k(τ) and kGE can
only be a function of even powers of the difference be-
tween n(τ) and n = 1/2. Say the leading even power
in the difference between n(τ) and n = 1/2 entering in

k(τ)−kGE is 2, then k̇(τ) ' 2ΓFermi(gα) [k(τ)−kGE]. Our
numerical results for the thermalization rates of k(τ), not
shown, support the correctness of this simple analysis.
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FIG. 5. Momentum distribution function mk(τ) [see Eq. (50)]

at four times after quenches in which ĤI → Ĥ1 with g1 = 0.03
[(a)–(d)] and g1 = 0.12 [(e)–(h)]. mk(τ) is evaluated at
τ = 0 [(a),(e)], τ = 2 [(b),(f)], τ = 10 [(c),(g)], and τ = 100
[(d),(h)]. Results are reported for the 15th (NLCE-15) and
16th (NLCE-16) orders of the NLCE. We show mk(τ) for the
dynamics [see the legends in (a)], and for the projected dy-

namics in the basis of Ĥ0 [see the legends in (b)]. The predic-
tions of the diagonal ensemble (DE) and the grand canonical
ensemble (GE) for the dynamics, and of the grand canonical
ensemble for the projected dynamics (GE0), all evaluated at
the 16th order of the NLCE, are shown in (d) and (h) [see the
legends in (d)]. The inset in (h) shows the predictions of the
latter three ensembles about k = π.
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16 (g1) τ ]. (b) Thermalization rates ΓNLCE(g1) of mk(τ) (filled symbols) obtained from fits as the ones in (a), for
l = 16 in the interval τ ∈ [2, 6] (NLCE-16), and for l = 15 in the interval τ ∈ [2, 5] (NLCE-16), reported for g1 ∈ [0.03, 0.12].

Error bars show 95% confidence bounds for the fits. The straight line is the result of a fit to ΓNLCE
16 (g1) ∝ gβ

1
for g1 ∈ [0.03, 0.06].

The open circles show the rates ΓFermi(g1) [also reported in Fig. 1(c)] obtained by evaluating Fermi’s golden rule [see Eqs. (53)
and (54)] using full exact diagonalization in chains with L = 18 (Fermi-18) and periodic boundary conditions. The error bars
show the standard deviation from averages over different choices of ∆E and τ (see Appendix D).

C. Dynamics of the momentum distribution

Here, we study the dynamics of the momentum distri-
bution function mk(τ) [Eq. (50)] for quenches ĤI → Ĥ1.
Similar to the dynamics of k(τ), the evolution of mk(τ)
can be split into a fast prethermalization dynamics and
a slower relaxation to the thermal equilibrium prediction
at a rate controlled by the strength of the perturbation.

In Fig. 5, we show results for the 15th (NLCE-15) and
16th (NLCE-16) orders of the NLCE for mk(τ) at four
times (τ = 0, 2, 10, and 100) after quenches in which
g1 = 0.03 (left-hand panels in Fig. 5) and g1 = 0.12
(right-hand panels in Fig. 5). In all panels in Fig. 5,
we also show results for the 15th (NLCE-15) and 16th
(NLCE-16) orders of the NLCE for the projected dynam-

ics of mk(τ) in the basis of Ĥ0 [the dynamics dictated by
ρ̂0(τ), see Eq. (42)]. Figures 5(b) and 5(f) show that the
momentum distribution in the original and projected dy-
namics become nearly indistinguishable from each other
after short times (τ >

∼ 2), and remain so at long times
[see Figs. 5(c), 5(d), 5(g), and 5(h)].

In Figs. 5(d) and 5(h), we also show the 16th order
NLCE prediction of the diagonal and the grand canonical
ensembles for the long-time dynamics, and of the grand
canonical ensemble for the long-time projected dynamics
[see Eq. (55) and the discussion surrounding this equa-
tion]. For g1 = 0.03 [Fig. 5(d)], the results of the three
equilibrium ensembles are nearly indistinguishable from

each other. They differ from those of the dynamics at
τ = 100 (they all become nearly indistinguishable from
each other at later times). For g1 = 0.12 [Fig. 5(h)],
the results for the three equilibrium ensembles and for
the dynamics at τ = 100 agree with each other. This, in
contrast to the results for g1 = 0.03, makes apparent that
mk(τ) thermalizes faster with increasing the magnitude
of g1 (as expected). Also, as expected from our discus-
sion in Sec. IV and for k(τ) in Sec. VIB (see Fig. 3),
there is an O(g1) offset between the results for mk(τ) in
the dynamics and in the projected dynamics. The mag-
nitude of this offset is momentum dependent, as made
apparent by the inset in Fig. 5(d), and is too small to be
resolved at the scales used in the main panels of Fig. 5.

The operator corresponding to the momentum distri-
bution function, unlike the one for the one-body nearest
neighbor correlation, is not particle-hole symmetric. This
implies that, as mk(τ) approaches its equilibrium value
in the diagonal ensemble mDE

k , to leading order

mk(τ)−mDE
k ∝

[

n(τ)−
1

2

]

. (56)

Thus, we expect mk to thermalize with the same rate
ΓFermi(g1) given by Eq. (54). To quantify the “distance”
to equilibrium for mk(τ), we compute

δDE
l [m(τ)] =

∑

k

∣

∣

∣
ml

k(τ)−ml,DE
k

∣

∣

∣

∑

k m
l,DE
k

. (57)
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In Fig. 6(a), we show δDE
l [m(τ)] evaluated at the 15th

(NLCE-15) and 16th (NLCE-16) orders of the NLCE.
δDE
15 [m(τ)] and δDE

16 [m(τ)] can be seen to decay close to
exponentially, although the convergence of the results for
δDE
l [m(τ)] in Fig. 6(a) is not as good as for δDE

l [n(τ)] in
Fig. 1(b). This is understandable because (i) we are able
to calculate one order lower for mk(τ) than for n(τ) and
(ii) mk(τ) probes correlations at all distances, while n(τ)
is local and is a thermodynamic quantity.
We fit δDE

l [m(τ)] to an exponential function ∝
exp[−ΓNLCE

l (g1) τ ] to obtain the thermalization rates
ΓNLCE
l (g1) for the momentum distribution function. The

fits are carried out in the interval τ ∈ [2, 6] for NLCE-16
[shown as thin continuous lines in Fig. 6(a)], and in the
interval τ ∈ [2, 5] for NLCE-15. The rates ΓNLCE

l (g1) are
reported in Fig. 6(b) for g1 ∈ [0.03, 0.12]. In Fig. 6(b),
we also plot the rates ΓFermi(g1) obtained by evaluat-
ing Fermi’s golden rule [see Eqs. (53) and (54)] using
full exact diagonalization in chains with L = 18 sites
and periodic boundary conditions (see Sec. VIA and Ap-
pendix D). [The rates ΓFermi(g1) were also reported in
Fig. 1(c).] Figure 6(b) shows that, as advanced, the ther-
malization rates for the momentum distribution func-
tion are the same (within our computational errors) as
the ones for the particle filling. A power-law fit to the
rates ΓNLCE

16 (g1) is also shown in Fig. 6(b). We find that

ΓNLCE
16 (g1) ∝ gβ1 with β = 2.00, in agreement with the

numerical results in Sec. VIA, and with the analytical
ones in Secs. III and IV.

VII. SUMMARY AND DISCUSSION

We put forward a conceptually simple scenario for
prethermalization and thermalization in isolated quan-
tum systems with a weakly broken conservation law.
This scenario applies equally to noninteracting and
strongly interacting integrable systems in which integra-
bility is weakly broken, as well as to nonintegrable sys-
tems in which a conservation law is weakly broken. The
weak perturbation allows the system to equilibrate to a
state that is a (generalized) thermal equilibrium state of
the unperturbed system. The properties of such a state
are determined by the slowly changing value of the qua-
siconserved quantity (or quantities). The separation of
timescales leads to a universal description, two aspects
of which stand out.
(i) The dynamics of the (or each) quasiconserved quan-
tity is described by an autonomous equation that can
be constructed from Fermi’s golden rule in unperturbed
equilibrium ensembles. This equation is the generaliza-
tion of the nonlinear Boltzmann equation appearing in
weakly interacting quantum systems.
(ii) The deviation of observables in the instantaneous
state from the prediction of the unperturbed equilibrium
ensemble is described by first-order perturbation theory.
This generalizes the concept of “deformed GGE” that
was described in Ref. [12] for integrable systems in the
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FIG. 7. Dynamics after quantum quenches ĤI → Ĥ2, for
t′I = V ′

I = 0 in ĤI and t′ = V ′ = 0 in Ĥ2 (integrable refer-
ence dynamics). Main panel: Thermalization rates ΓNLCE(g2)
for the particle filling dynamics (filled symbols) obtained from
fits as the ones shown in the upper inset. The straight line
is the result of a fit to ΓNLCE

17 (g2) ∝ gβ
2
. The open symbols

show the rates ΓFermi(g2), see Eqs. (53) and (54), obtained us-
ing full exact diagonalization (see Appendix D). Upper inset:
δDE

l [n(τ)], see Eq. (52), versus τ . The straight lines depict
fits to exponential functions ∝ exp[−ΓNLCE

17 (g2) τ ]. The leg-
ends in the main panel and in the upper inset follow Fig. 1,
and the fits are done in the same intervals as in Fig. 1. Lower
inset: Dynamics, and projected dynamics in the basis of Ĥ0,
of k(τ) for g2 = 0.12. The horizontal line shows the result for
the grand canonical ensemble corresponding to the original
dynamics. The legends are identical to those in Fig. 3.

presence of a weak integrability-breaking perturbation.

Our theoretical results, as well as several special be-
haviors related to the initial state selected, properties of
the perturbations that break the conservation law, and
properties of the observables studied, were validated by
numerical experiments in systems for which both the ref-
erence and the perturbed dynamics are nonintegrable.

A systematic study of integrable systems in which in-
tegrability is weakly broken is beyond the scope of this
work. As mentioned in the Introduction, noninteracting
systems in the presence of weak integrability-breaking in-
teractions were studied in Refs. [7–15]. There have also
been studies of integrable systems mappable onto nonin-
teracting ones in the presence of an integrability-breaking
perturbation [57]. For a strongly interacting integrable

system, Ĥ0 in Eq. (35) with t = V = 1 and t′ = V ′ = 0
(which is not mappable onto a noninteracting model), in
Ref. [23] it was shown numerically that weakly break-
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FIG. 8. Projected dynamics of mk(τ) in the basis of Ĥ0 at

three times after the quench ĤI → Ĥ1, with g1 = 0.12. We
compare results for the projected dynamics within the diago-
nal ensemble (Projected DE), also reported in Fig. 5, with
those obtained within the grand canonical ensemble (Pro-
jected GE). The temperature and the chemical potential of
the grand canonical ensemble are set so that the energy den-
sity e0 and the particle filling n in this ensemble match those
in the diagonal ensemble. The results reported are for the
16th order of the NLCE.

ing integrability by making g ≡ t′ = V ′ 6= 0 results in
thermalization rates ∝ g2.
To check the applicability of our theory to strongly in-

teracting integrable reference dynamics, in Fig. 7 we show
results for dynamics under the same reference Hamilto-
nian as in Ref. [23] when one breaks integrability with

the perturbation g2V̂2 in Eq. (37). Those results are
the equivalent of results reported in Figs. 1 and 3, for
quenches ĤI → Ĥ2 in which t′I = V ′

I = 0 in ĤI and

t′ = V ′ = 0 in Ĥ2. The main panel in Fig. 7 shows that
the thermalization rate for the particle filling is ∝ g22 ,
and that it agrees with the Fermi golden rule prediction
[see Eqs. (53) and (54)] for small values of g2. The upper
inset in Fig. 7 shows that the particle filling approaches
exponentially its thermal equilibrium value, as seen in
Fig. 1(b) for the nonintegrable reference dynamics. The
lower inset in Fig. 7 shows the dynamics, and the pro-
jected dynamics in the basis of Ĥ0, of k(τ) for g2 = 0.12.
They are in excellent agreement with each other, like in
Fig. 3(d) for the nonintegrable reference dynamics. In
short, there are no qualitative differences between the
results reported in Figs. 1 and 3 for the nonintegrable
reference dynamics and in Fig. 7 for the integrable refer-
ence dynamics.
We should stress that all our numerical results for the

projected dynamics were obtained within the diagonal
ensemble, which allowed us to study indistinctively quan-
tum chaotic reference dynamics in Sec. VI, and strongly
interacting integrable reference dynamics in Fig. 7. How-
ever, because of eigenstate thermalization in quantum
chaotic systems, and its generalized version in integrable
systems, one can equally well use traditional ensembles

of statistical mechanics for the projected dynamics when
the reference dynamics is quantum chaotic [22] and gen-
eralized Gibbs ensembles when the reference dynamics
is integrable [17]. As an example, in Fig. 8 we compare
the results for the projected dynamics in the diagonal
ensemble reported in Fig. 5 for g1 = 0.12 at times τ = 2,
10, and 100 with those obtained replacing the diagonal
ensemble by the grand canonical ensemble with the same
energy density e0 and particle filling n. As expected, the
results obtained within both ensembles are indistinguish-
able from each other.
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Appendix A: Mori-Zwanzig formalism

To stress the algebra of the problem, we use a notation
different from that in the main text. We consider a linear
space V with a projector P : V → V , P2 = P, and a
linear evolution equation,

ȧ(τ) = Ma(τ), a(τ) ∈ V, M : V → V. (A1)

Then, we write P1 = P, P2 = (1 − P), ai = Pia, and
Mij = PiMPj . As the projector is time independent,
the evolution equation can be cast as a system of two
coupled equations:

ȧ1(τ) = M11a1(τ) +M12a2(τ), (A2)

ȧ2(τ) = M21a1(τ) +M22a2(τ). (A3)

We first formally solve the second of these equations,

a2(τ) = eτM22a2(0) +

∫ τ

0

ds esM22M21a1(τ − s), (A4)

and insert Eq. (A4) into Eq. (A2), yielding

ȧ1(τ) = M11a1(τ) +M12e
τM22a2(0)

+

∫ τ

0

dsM12e
sM22M21a1(τ − s). (A5)

See Eqs. (7) and (12) in the main text. The relevance of
this framework to irreversible phenomena was noticed in
Refs. [42, 43].
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Appendix B: From K to the autonomous equation

Here we look into the superoperator K [see Eq. (20)],

K =

∫ +∞

0

dsPL1e
sL0L1P, (B1)

in more detail. Each L1 contains a commutator −ig[V̂ , ·],
so in total there are four terms, depending on whether
gV̂ in each L1 term acts on the left or on the right. We
decompose

K = Kgain +Kloss, (B2)

where the “gain” operator contains the two cases in which
the V̂ ’s act on different sides, and the “loss” operator
contains the two cases in which they act on the same
side.
For both operators, we can recast the two cases into

a single formula by extending the integration range of s
from [0,∞) to (−∞,∞). One then has that

Kgainρ̂ = g2
∫ ∞

0

de0dqρ̂e0,q

∫ ∞

−∞

dsTr
[

P̂e0,qV̂0(s)P ρ̂V̂
]

,

(B3)
while for Kloss acting on ρ̂ one has

Klossρ̂ = −g2
∫

dedqρ̂e0,q

∫ ∞

−∞

dsTr
[

P̂e0,qV̂0(s)V̂ P ρ̂
]

,

(B4)

where we abbreviate P̂e0,q = P (Ĥ0 ≈ e0L)P (Q̂ ≈ qL)
(see Sec. III A), and we use the invariance of P ρ̂ and

P̂e0,q under the evolution generated by Ĥ0. Note that we

can assume, without loss of generality, that V̂ satisfies
〈V̂ 〉e0,q = 0 for all (e0, q), because a term with nonzero
mean would have canceled out in the commutators [al-
ternatively, it would cancel between Eqs. (B3) and (B4)].
For this reason, we can replace all correlation functions
below by truncated correlation functions.
Recall that we identified the space of P ρ̂ with distri-

butions p on (e0, q). Indeed, any P ρ̂ is of the form ρ̂p
with distribution p; see Eq. (3). Therefore, we can now
abuse notation and interpret K as a kernel on the space
of distributions p. We then have

Kp(e′0, q
′) =

∫

de0dqK(e0, q; e
′
0, q

′)p(e0, q), (B5)

and, from the above formulas, we identify

K(e0, q; e
′
0, q

′) = g2
∫ ∞

−∞

dsTr
[

P̂e′
0
,q′ V̂0(s)ρ̂e0,qV̂

]

(B6)

−g2
∫ ∞

−∞

dsTr
[

P̂e′
0
,q′ V̂0(s)V̂ ρ̂e0,q

]

.

To unravel this further, we introduce

V̂ δQ =
∑

Q,Q′

δQ′,Q+δQP̂Q′ V̂ P̂Q, (B7)

where P̂Q are spectral projections of Q̂ and the sum runs

over the eigenvalues of Q̂. Note that the admissible val-
ues of δQ are O(1) because V̂ is a sum of O(1) local

terms. For natural examples of Q̂, such as the total par-
ticle number operator, we see that also V̂ δQ is a sum of
local terms. In that case Eq. (B7) is manifestly of order
O(L), as a truncated correlation function in equilibrium.
The first term in Eq. (B6) can be written as

re0,q(δQ) = g2
∫ ∞

−∞

dsTr
[

V̂ δQ
0 (s)ρ̂e0,qV̂

−δQ
]

, (B8)

with e′0 = e0 and q′ − q = δQ/L. Indeed, the condition
e′0 = e0 is enforced by the integral over s. The second
term in Eq. (B6) has a contribution at e0 = e′0, q = q′

only (by the cyclic property of the trace, the projector

P̂e′
0
,q′ is put next to the density matrix ρ̂e0,q) and its

value is
∑

δQ

re0,q(δQ). (B9)

One could also have guessed this value because the pro-
cess generated by K conserves probability, which trans-
lates to

∫

dqde′0K(e0, q; e
′
0, q

′) = 0. (B10)

We have now explicitly interpreted the process generated
by K as a jump process, with jump rates re0,q(δQ) ≥ 0
for jumps in the density q of order 1/L. The link to the
“drift” computed in Sec. III F is by

d(e0, q) =
∑

δQ

δQ
1

L
re0,q(δQ) (B11)

The expressions in Sec. III F are recovered by writing
Eq. (B8) in terms of eigenkets of Ĥ0, and this eventually
yields Eq. (24).

Appendix C: Convergence of NLCE and exact
diagonalization

All the numerical results reported in the main text,
but the relaxation rates ΓFermi computed using Fermi’s
golden rule and full exact diagonalization, were obtained
using NLCE calculations. The basics of NLCEs was
summarized in Sec. VC, and relevant parameters for
the NLCE calculations (orders, largest Hilbert spaces in-
volved, etc) were mentioned in Sec. VE. Here we discuss
the convergence of the NLCE calculations and finite-size
effects in the full exact diagonalization calculations.
All our full exact diagonalization calculations are car-

ried out in chains with periodic boundary conditions.
We use translational symmetry to block diagonalize the
Hamiltonian, which allows us to study larger chains than
within the NLCE calculations. In the exact diagonal-
ization calculations when gα 6= 0, in the absence of
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FIG. 9. Time evolution of the filling n(τ), for g1 = 0.12, ob-
tained in the last four orders l of the NLCE (NLCE-l in the
legends), and in the three largest chains with L sites and peri-
odic boundary conditions solved using full exact diagonaliza-
tion (ED-L in the legends). The inset shows an enlargement
of the NLCE results between τ = 7.5 and 15.

particle-number conservation, the largest Hamiltonian
sector diagonalized has 14 602 states (for L = 18). When
gα = 0, in the presence of particle-number conserva-
tion, the largest Hamiltonian sector diagonalized has
9252 states (for L = 20). We only report exact diago-
nalization results for gα = 0 in Fig. 11(a). The matrices
involved in our full exact diagonalization calculations are
complex for sectors with total quasimomentum k 6= 0
and π, and the results reported contain the contribution
from all L quasimomentum sectors.

In Fig. 9, we show the evolution of the particle filling
n(τ) for g1 = 0.12 (the fastest changing case studied) as
obtained in the last four orders of the NLCE, and in the
three largest chains solved using full exact diagonaliza-
tion. In the scale of the figure, all the results are nearly
indistinguishable from each other up to τ ≈ 10. Beyond
that time, but not too far from it, the NLCE results can
be seen to oscillate in the order of the expansion, even
orders of the NLCE are above the odd orders (see the
inset in Fig. 9). With increasing the order of the NLCE,
one finds that the amplitude of the oscillation decreases
and the results converge at longer times. This is similar
to what happens in thermal equilibrium calculations, in
which the NLCEs converge at lower temperatures as one
increases the order of the expansion [53]. The exact di-
agonalization results, on the other hand, can be seen to
approach the NLCE ones monotonically with increasing
the chain size. In Fig. 9, the n(τ) results in the last order
of the NLCE and in the largest periodic chain diagonal-
ized are nearly indistinguishable up to τ ≈ 20.

To gain a more quantitative understanding of the con-
vergence of the particle filling nl(τ) calculations within
NLCE, where l is the order of the expansion, and of finite-
size effects in the exact diagonalization (ED) calculations
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FIG. 10. Relative differences, defined in Eqs. (C1)–(C3), for
g1 = 0.12. The exact diagonalization results are obtained in
chains with periodic boundary conditions.

of nL(τ), where L is the chain size, we compute the rel-
ative differences,

∆NLCE
l [n(τ)] =

|nl=17(τ)− nl(τ)|

|nI − 1/2|
(C1)

between the NLCE results at order l and the last order
calculated l = 17, and

∆ED
L [n(τ)] =

|nL=18(τ)− nL(τ)|

|nI − 1/2|
(C2)

between the results for chains with L sites and the largest
chain L = 18 diagonalized. We also compute the relative
differences between the last order of the NLCE and the
largest periodic chain diagonalized:

∆NLCE-ED [n(τ)] =
|nl=17(τ)− nL=18(τ)|

|nI − 1/2|
. (C3)

In Eqs. (C1)–(C3), nI is the initial particle filling, which
is obtained within machine precision at the 17th order of
the NLCE, and 1/2 is the filling in the diagonal ensemble.
In Fig. 10, we plot the relative differences defined in

Eqs. (C1) and (C2) for l = 15 and 16 of the NLCE, and
for L = 16 and 17 in the exact diagonalization calcula-
tions, also for g1 = 0.12 as in Fig. 9. Some points to be
highlighted from the plots in Fig. 10 are the following: (i)
the NLCE results for l = 16 are likely converged within
machine precision up to τ ≈ 2, while the exact diago-
nalization ones for L = 17 are likely converged within
machine precision only up to about one half of that time
(τ ≈ 1); (ii) the relative differences between the various
orders of the NLCE and between the various exact diag-
onalization calculations are below 0.01% for τ <

∼ 4; (iii)
at times τ ≈ 16, the relative differences are in all cases
below 2% (they are smaller between the exact diagonal-
ization results than between the NLCE ones).
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The results for the relative difference ∆NLCE-ED [n(τ)]
are qualitatively similar to those for ∆NLCE

l [n(τ)] and
∆ED

L [n(τ)]. We find that ∆NLCE-ED [n(τ)] ≤ 0.01% for
times τ ≤ 5. We use times τ ≤ 5 for the exact diagonal-
ization calculation of the rates from Fermi’s golden rule in
Appendix D. We also find that ∆NLCE-ED [n(τ)] <∼ 0.5%
for times τ ≤ 16. We use times τ ≤ 16 in the fits to ob-
tain the rates from the 17th order of the NLCE dynamics
in Sec. VIB.

Next, for the one-body nearest neighbor correlations
k(τ), we discuss the convergence of the NLCE calcula-
tions kl(τ) and finite-size effects in the full exact diago-
nalization calculations kL(τ). k(τ), being a correlation
function, is more challenging to obtain accurately than
n(τ), which is a thermodynamic quantity.

In Fig. 11(a), we show dynamics after the quench

ĤI → Ĥ0 for kl(τ) with l = 17, 18, and 19 (the lat-
ter two are also reported in Fig. 2) and for kL(τ) with L
= 18, 19, and 20. kl(τ) and kL(τ) are almost indistin-
guishable from each other up to times τ ≈ 5 (the earliest
times are not shown to gain dynamical range in the y
axis). For τ >

∼ 5, the NLCE and exact diagonalization
results split and each equilibrate to the prediction of the
corresponding diagonal ensemble, kDE

l=19 (DENLCE-19) and
kDE
L=20 (DEED-20), respectively. As in Ref. [23], the NLCE

results for the diagonal ensemble (DENLCE-19) are closer
to the grand canonical ensemble ones kGE

l=19 (GENLCE-19)
than the exact diagonalization results for the diagonal en-
semble (DEED-20). The differences between them are due
to lack of convergence of the diagonal ensemble within
NLCEs and finite-size effects for the diagonal ensemble
within exact diagonalization. The NLCE results for the
grand canonical ensemble are converged within machine
precision. Consequently, at long times, the NLCE is ex-
pected to be more accurate than exact diagonalization.
At intermediate times 5 <

∼ τ <
∼ 15, kl=16(τ) and kl=17(τ)

are almost indistinguishable from each other, while kL(τ)
shifts upward with increasing L, toward the NLCE pre-
dictions. This suggests that NLCE is also more accurate
than exact diagonalization at intermediate times.

In Fig. 11(b), we show dynamics after the quench

ĤI → Ĥ1 (g1 = 0.12) for kl(τ) with l = 15, 16, and
17 (the latter two are also reported in Fig. 3) and for
kL(τ) with L = 16, 17, and 18. kl(τ) and kL(τ) are al-
most indistinguishable from each other up to times τ ≈ 4
(again, the earliest times are not shown to gain dynam-
ical range in the y axis). For τ >

∼ 4, the NLCE and ex-
act diagonalization results again split, as for the quench
ĤI → Ĥ0, despite the fact that both equilibrate to diag-
onal ensemble results that are very close to each other.
kDE
l=17 (DENLCE-17) and kDE

L=18 (DEED-18) in Fig. 11(b)
are almost indistinguishable from each other and from
the grand canonical ensemble result kGE

l=17 (GENLCE-17).
At times 5 <

∼ τ <
∼ 15, kl=16(τ) and kl=17(τ) are almost

indistinguishable, while kL(τ) shifts upward toward the
NLCE predictions with increasing L. As for the quenches
ĤI → Ĥ0, these results suggest that NLCE is more ac-
curate than exact diagonalization at intermediate times
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FIG. 11. Time evolution of the one-body nearest neighbor
correlation k(τ) obtained in the last three orders l of the
NLCE (NLCE-l in the legends), and in the three largest chains
with L sites and periodic boundary conditions diagonalized
(ED-L in the legends). Results for the diagonal ensemble
are shown for the last order of the NLCE (DENLCE-l) and
the largest chain diagonalized (DEED-L), while results for the
grand canonical ensemble are shown for the last order of the
NLCE (GENLCE-l), which are converged to machine precision.

(a) Quenches ĤI → Ĥ0, for l = 17, 18, and 19 (NLCE-17,
NLCE-18, and NLCE-19), and for L = 18, 19, and 20 (ED-
18, ED-19, and ED-20), along with the diagonal ensembles
for l = 19 (DENLCE-19) and L = 20 (DEED-20), and the grand
canonical ensemble for l = 19 (GENLCE-19). (b) Quenches

ĤI → Ĥ1, in which g1 = 0.12, for l = 15, 16, 17 (NLCE-
15, NLCE-16, NLCE-17), and for L = 17, 18, 19 (ED-17,
ED-18, ED-19), along with the diagonal ensembles for l = 17
(DENLCE-17) and L = 18 (DEED-18), and the grand canonical
ensemble for l = 17 (GENLCE-17). Higher orders in the NLCE,
and larger chains in exact diagonalization, are calculated in
(a) than in (b) thanks to particle-number conservation in the
former.

in quenches ĤI → Ĥ1.

The discrepancy between the NLCE and exact diag-
onalization results at intermediate times after quenches
ĤI → Ĥ1 is likely a manifestation of finite-size effects in
kL(τ) that result from the “prethermal” dynamics seen
in Fig. 11(a), which equilibrates to a diagonal ensem-
ble value (kDE

L=20) that is lower than the expected grand
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canonical ensemble one. The results in Fig. 11(b) also
show that, because of finite-size effects, the thermaliza-
tion rates for k(τ) are smaller in exact diagonalization,
and increasing with increasing L, than in NLCE.

Appendix D: Thermalization rates from Fermi’s
golden rule

We use full exact diagonalization in chains with L sites
and periodic boundary conditions to evaluate Eq. (53).
For the numerical calculation, the delta function is re-
placed by a coarse-graining procedure leading to the fol-
lowing modified version of Eq. (53):

f∆E(τ) =
2πg2α
L∆E

∑

i

Pi(τ) (D1)

×
∑

|Ej−Ei|≤∆E/2

|〈E0
j |V̂α|E

0
i 〉|

2 (Nj −Ni) ,

where |E0
i 〉 (|E0

j 〉) are the eigenkets of Ĥ0 with energy

E0
i (E0

j ), Ni = 〈E0
i |N̂ |E0

i 〉, and Pi(τ) = 〈E0
i |ρ̂(τ)|E

0
i 〉.

In Fig. 12, we plot f∆E(τ), evaluated in chains with

L = 17 and L = 18 for quenches ĤI → Ĥ1 [see Eq. (36)],
as a function of ∆E. We show results at two times, τ = 1
in Fig. 12(a) and τ = 5 in Fig. 12(b), and for three values
of g1 at each time. Our main finding in Fig. 12 is that, in
the interval ∆E/L ∈ [0.03, 0.09], f∆E(τ) is nearly inde-
pendent of ∆E, and is approximately the same in chains
with L = 17 and L = 18. Similar results were obtained
at times τ ∈ [0, 5], for which we showed in Appendix C
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FIG. 12. f∆E(τ), see Eq. (D1), evaluated for a wide range

of energy windows ∆E for quenches ĤI → Ĥ1 [see Eq. (36)]
with g1 = 0.03, 0.06, and 0.12. f∆E(τ) is computed using full
exact diagonalization of chains with L = 18 (see legends) and
L = 17 (dotted lines) and periodic boundary conditions. The
vertical lines delimit the range ∆E/L ∈ [0.03, 0.09] in which
f∆E(τ) is approximately constant.
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FIG. 13. Γ∆E,τ (g1) [see Eq. (D2)] evaluated for quenches

ĤI → Ĥ1 [see Eq. (36)] with g1 = 0.03, 0.06, and 0.12. The
results reported are from full exact diagonalization of chains
with L = 18 and periodic boundary conditions. The average
thermalization rate (horizontal line) is obtained by averag-
ing Γ∆E,τ (g1) over τ = 1, 1.5, . . . , 5 (nine values) and over
∆E/L = 0.03, 0.032, . . . , 0.09 (31 values), for a total of 279
values of Γ∆E,τ (g1) entering each average reported.

that our best NLCE and exact diagonalization results for
n(τ) differ by less than 0.01%.

Having identified an appropriate range of values of ∆E,
we compute the rate

Γ∆E,τ (gα) = −
f∆E(τ)

n(τ)− nDE
, (D2)

which is defined following Eq. (54).

Figure 13 shows Γ∆E,τ (g1) versus τ for three values
of g1, and for three values of ∆E/L for each value of
g1. The rates for each value of g1 decrease slowly with
increasing τ , and are very close to each other for the
three values of ∆E/L shown. Given the results for n(τ)
at times τ ≤ 1 in Fig. 11, which exhibit a plateaulike
behavior discussed in Sec. VIA, the rates ΓFermi(gα) for
τ ≤ 1 are not meaningful. Hence, the rates ΓFermi(gα)
reported in Sec. VIA were obtained averaging Γ∆E,τ (gα)
over the results for τ = 1, 1.5, . . . , 5 (nine values), and for
∆E/L = 0.03, 0.032, . . . , 0.09 (31 values), for a total of
279 values entering each average. In Fig. 13, we report
the averages as horizontal lines. For each average, we also
compute the standard deviation. In Fig. 1(c), we report
the averages, and the standard deviations (as error bars),
for different values of g1 and for L = 17 and L = 18.

The rates ΓFermi(g2) reported in Fig. 7 were
obtained averaging Γ∆E,τ (g2) over the results for
τ = 1, 1.5, . . . , 5 (nine values), and for ∆E/L =
0.100, 0.102, . . . , 0.15, 0.16, . . . , 0.20 (31 values), for a to-
tal of 279 values entering each average.
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