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Abstract

We discuss an application of the transfer operator approach to the analysis of the dif-
ferent spectral characteristics of 1d random band matrices (correlation functions of charac-
teristic polynomials, density of states, spectral correlation functions). We show that when
the bandwidth W crosses the threshold W = N'/2| the model has a kind of phase transi-
tion (crossover), whose nature can be explained by the spectral properties of the transfer
operator.

1 Introduction

Random band matrices (RBM) represent quantum systems on a large box in Z¢ with random
transition amplitudes effective up to distances of order W, which is called a bandwidth. They
are natural intermediate models to study eigenvalue statistics and quantum propagation in
disordered systems as they interpolate between Wigner matrices and random Schrodinger op-
erators: Wigner matrix ensembles represent mean-field models without spatial structure, where
the quantum transition rates between any two sites are i.i.d. random variables; in contrast, ran-
dom Schrodinger operator has only a random diagonal potential in addition to the deterministic
Laplacian on a box in Z%.

In the simplest 1d case RBM H is a Hermitian or real symmetric N x N matrix with
independent (up to the symmetry condition) entries H;; such that

E{Hi;} =0, E{|Hy[*} = W) "1 ji<w,

i.e. H is a Hermitian matrix with which has inly non 2W + 1 zero diagonals whose entries are
ii.d. random variables (up to the symmetry) and the sum of the variances of entries in each
line is 1.

In a more general case H is a Hermitian random N x N matrix, whose entries Hj; are
independent (up to the symmetry) complex random variables with mean zero and variances
scaled as

1Ll — k|
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Here A is a box in Z%, |A| = N, and J : RY — R, is a function having the compact support or
decaying sufficiently fast at infinity and normalized in such a way that

> J(k/W) =1,

keA

and the bandwidth W > 1 is a large parameter.
The density of states p of a general class of RBM with W >> 1 is given by the well-known
Wigner semicircle law (see [3, 18]):

p(E) = (2m)"'W4—-FE?2, FEc[-2,2] (1.2)

As it was mentioned above, a substantial interest to random band matrices is caused by the fact
that they have a non-trivial spatial structure like random Schrédinger matrices (in contrast to
classical random matrix ensembles), and furthermore RBM and random Schrédinger matrices
are expected to have some similar qualitative properties (for more details on these conjectures
see [32]). For instance, RBM can be used to model the celebrated Anderson metal-insulator
phase transition in d > 3. Moreover, the crossover for RBM can be investigated even in d = 1
by varying the bandwidth W.

The key physical parameter of RBM is the localization length £, which describes the length
scale of the eigenvector ¢ (FE) corresponding to the energy F € (—2,2). The system is called
delocalized if for all £ in the bulk of spectrum £, is comparable with the system size, £;, ~ N,
and it is called localized otherwise. Delocalized systems correspond to electric conductors, and
localized systems are insulators.

In the case of 1d RBM there is a fundamental conjecture stating that for every eigenfunction
¥(E) in the bulk of the spectrum ¢y is of order W? (see [7, 15]). In d = 2, the localization length
is expected to be exponentially large in W, in d > 3 it is expected to be macroscopic, £, ~ N,
i.e. system is delocalized.

Notice that the global eigenvalue statistics for 1d RBM such as density of states does not
feel any difference between the regime W > +/N and W < v/N (see (1.2)). Same situation
with the central limit theorem for the linear eigenvalue statistics which was proved in [21] for
any W > 1 (see also [17] for CLT in the regime W > v/N). However, the questions of the
localization length are closely related to the universality conjecture of the bulk local regime of
the random matrix theory. The bulk local regime deals with the behaviour of eigenvalues of
N x N random matrices on the intervals whose length is of the order O(N~!). According to
the Wigner — Dyson universality conjecture, this local behaviour does not depend on the matrix
probability law (ensemble) and is determined only by the symmetry type of matrices (real
symmetric, Hermitian, or quaternion real in the case of real eigenvalues and orthogonal, unitary
or symplectic in the case of eigenvalues on the unit circle). In terms of eigenvalue statistics the
conjecture about the localization length of RBM in d = 1 means that 1d RBM in the bulk of
the spectrum changes the spectral local behaviour of random operator type with Poisson local
eigenvalue statistics (for W < VN ) to the local spectral behaviour of the GUE/GOE type
(for W > +/N). In particular, it means that if we consider the second correlation function Ry



defined by the equality

E{ S o)} :/RQ 0(A1, Ag) Ra(A1, A2)dArd)s, (1.3)

J1#d2

where {);} are eigenvalues of a random matrix, the function ¢ : R? — C is bounded, continuous
and symmetric in its arguments, and the summation is over all pairs of distinct integers ji, jo € A,
then in the delocalization region W > v N

9 & & _sin(n(& — &)
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while in the localization region
—2 &1 3
(Np(E)) “Rq (E+p(E)N’E+p(E)N> — 1. (1.5)

The conjecture on the crossover in RBM with W ~ /N is supported by physical derivation due
to Fyodorov and Mirlin (see [15]) based on supersymmetric formalism, and also by the so-called
Thouless scaling. However, there are only a few partial results on the mathematical level of
rigour. At the present time only some upper and lower bounds for £, for the general class of 1d
RBM are proved rigorously. It is known from the paper [20] that £, < W8. Recently this bound
was improved in [19] to W7. On the other side, for the general Wigner matrices (i.e. W = N)
the bulk universality has been proved in [14, 33], which gives ¢, > W. By the developing the
Erdos-Yau approach, there were also obtained some other results, where the localization length
is controlled: £, > W7/ in [12] and £, > W4 in [13]. GUE/GOE gap distributions for W ~ N
was proved recently in [4].

The study of the eigenfunctions decay is closely related to properties of the Green function
(H — E —ie)~! with a small e. For instance, if |(H — E — ic);;|? (without expectation) is
bounded for all ¢ and all E € (—2,2), then each normalized eigenvector ¢ of H is delocalized on
the scale ¢! in a sense that

maX|¢’L‘2 < Ce_la
7
and so 9 is supported on at least ! sites. In particular, if |(H — E — ia)i_il | can be controlled
down to the scale € ~ 1/N, then the system is in the complete delocalized regime. Moreover, in
view of the bound
E{|(H — E — ig) |} ~ Cet e~ IT=HI/E

which holds for the localized regime, the problem of localization/delocalization reduces to con-
trolling
E{|(H - B —ie)5! [*}

for e ~ 1/N. As it will be shown below, similar estimates of E{|Tr (H — E —ie)~1|?} fore ~ 1/N
are required to work with the correlation functions of RBM.

Despite many attempts, such control so far has not been achieved. The standard approaches
of [14] and [13] do not seem to work for ¢ < W', and so cannot give an information about the



strong form of delocalization (i.e. for all eigenfunctions). Classical moment methods, even with
a delicate renormalization approach [31], could not break the barrier ¢ ~ W~1 either.

Another method which allows to work with random operators with non-trivial spatial struc-
tures and breaks that barrier, is supersymmetry techniques (SUSY). It is based on the repre-
sentation of the determinant as an integral (formal) over the Grassmann variables. Combining
this representation with the representation of the inverse determinant as an integral over the
Gaussian complex field, SUSY allows to obtain the integral representation for the main spec-
tral characteristics such as averaged density of states and correlation functions, as well as for
E{G,r(E +ie)}, E{|Gjx(E +ic)|*}, etc. For instance, according to the properties of the Stieljes
transform, the second correlation function can be rewritten in the form

Rao(A1, Ag) =(nN) ™2 lim B{S Tr (H — A1 — ie) I Tr (H — Ay —ie) '} (1.6)
E—r
—(2irN)~2 nmE{ (ﬁ (H =i —ie)™ = T (H — M\ + is)_1>
e—0

X <Tr (H— Xy —ie) ' —=Tr (H — Ay + ia‘)*l)}?
and since

E{Tr (H — ) 'Tr (H — z)" '} = , (1.7)

Z'=z

d2 E{det(H—Zl)det(H—Zg))}
dzjdzy,  Udet(H — 2}) det(H — 2)))

Ry can be represented as a sum of derivatives of the expectation of ratio of four determinants.
Besides, it is expected that if we set

z1=FE+ie/N +& /Np(E), z2=FE+1ie/N+&/Np(E), (1.8)
B+ ie/N + € /Np(E), = E+ie/N +€/Np(B),
then the r.h.s. of (1.7) before taking derivatives is an analytic function in &1, &2, &}, §5. Thus, to

study the second correlation function, it suffices to study the ratio of four determinants, which
we call the second ”generalized” correlation functions
}7 (1.9)

det(H — z1)det(H — Z2

+— I N=E )
R3 (21, 21; 22, 25) {det( — 2})det(H —
)

Zh
det(H — z1)det(H — 2
det(H — z})det(H — z

! !
R;+(zl,z1;22,z2) = E{

Similarly the derivative of the first ” generalized” correlation function

det(H — zi)}

Ni=E
Ri(z1,21) {det(H —21)

gives the Stieltjes transform of of the density of states (the first correlation function).
Instead of eigenvalue correlation functions one can consider more simple objects which are
the correlation functions of characteristic polynomials:

Ro(Ai, Aa) = IE{ det(H — A1) det(H — AQ)}, M2 =E+¢/Np(E). (1.10)
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Characteristic polynomials are the objects of independent interest because of their connections
to the number theory, quantum chaos, integrable systems, combinatorics, representation theory
and others. But in our context the main point is that from the SUSY point of view correlation
functions of characteristic polynomials correspond to the so-called fermion-fermion (Grassmann)
sector of the supersymmetric full model describing the usual correlation functions (since they
represent two determinants in the numerator of (1.9)). They are especially convenient for the
SUSY approach and were successfully studied by the techniques for many ensembles (see [5],
[6], [26], [27], etc.). In addition, although Ro(A1, A2) is not a local object, it is also expected
to be universal in some sense. Moreover, correlation functions of characteristic polynomials
are expected to exhibit a crossover which is similar to that of local eigenvalue statistics. In
particular, for 1d RBM they are expected to have the same local behaviour as for GUE for
W > /N, and the different behaviour for W < +/N. Besides, the analysis of Ro(A1, o) is
much less involved than that for R; ~ (21, 21; 22, 25), but on the other hand, this analysis allows
to understand the nature of the crossover in RBM when W crosses the threshold W ~ v/N.

The derivation of SUSY integral representation is basically an algebraic step, and usually
it can be done by the standard algebraic manipulations. SUSY is widely used in the physics
literature, but the rigour analysis of the obtained integral representation is a real mathemat-
ical challenge. Usually it is quite difficult, and it requires a powerful analytic and statistical
mechanics techniques, such as a saddle point analysis, transfer operators, cluster expansions,
renormalization group methods, etc. However, it can be done rigorously for some special class
of RBM.

There exist especially convenient classes of RBM, where the control of SUSY integral repre-
sentation becomes more accessible. One of them was introduced in [9]: it is (1.1) with Gaussian
elements with variance

E{|Hs*} = (-W2Aa+1) ], (1.11)

where A is the discrete Laplacian on A with Neumann boundary conditions: for the case d =1,

an. ) i 2f5— [, J#F L,
(=2 _{ —f;—1+fj]— fjil, j=1,n (1.12)

with fo = fry1 = 0. It is easy to see that in 1d case Jj;, ~ C1W L exp{—C3|j — k|/W}, and so
the variance of matrix elements is exponentially small when |j — k| > W.

Another class of convenient models are the Gaussian block RBM which are the special class
of Wegner’s orbital models (see [35]). Gaussian block RBM are N x N Hermitian block matrices
composed from n? blocks of the size W x W (N = nW). Only 3 block diagonals are non zero:

A, B 0 0 0 ... 0

Bf A, B, 0 0 ... 0

| 0 B A4 By o 0
B . .

. . . . An,1 Bn,1

0 . . . 0 B_, A,



Here Ay, ... A, are independent W x W GU E-matrices with i.i.d. (up to the symmetry) Gaussian
entries with variance (1 — 2a)/W, «a < i, and Bi,...B,_1 are independent W x W Ginibre
matrices with i.i.d. Gaussian entries with variance o/W.

More precisely, H is Hermitian matrices with complex zero-mean random Gaussian entries
Hji g, where j,k € A C Z? (they parameterize the lattice sites) and o,y = 1,...,W (they
parametrize the orbitals on each site), such that

<Hj1k1,04171 Hj2k2702’72> = Oj1ko 5j2k1 5111’)/2 671(12 Jj1k1 (1'13)

with
J=1/W + aA/W, (1.14)

where W > 1 and A is the discrete Laplacian on A (as in (1.11)). The probability law of H can
be written in the form

w
Py(dH) = exp{ —% > W}dH. (1.15)

J.
jkeraqy=1 Ik

This model is one of the possible realizations of the Gaussian RBM, for example for d = 1 they
correspond to the band matrices with the bandwidth 2W 4 1. Let us remark that for this model
N = nW, hence the crossover is expected for n ~ W.

The main advantage of both models (1.11) and (1.13) — (1.14) is that the main spectral
characteristics such as density of states, Ry, E{|Gjx(E +ic)|*} for these models can be expressed
via SUSY as the averages of certain observables of nearest-neighbour statistical mechanics models
on A, which makes the model easier. For instance, the detailed information about the averaged
density of states Gaussian RBM (1.11) in dimension 3 including local semicircle low at arbitrary
short scales and smoothness in energy (in the limit of infinite volume and fixed large band width
W) was obtained in [9]. The techniques of this paper was used in [8] to obtain the same result in
2d. The rigorous application of SUSY to the Gaussian block RBM (1.13) — (1.14) was developed
in [29], where the universality of the bulk local regime for n = const was proved. Combining
this approach with Green’s function comparison strategy it has been proved in [1] that ¢ > w/6
(in a strong sense) for the block band matrices with rather general element’s distribution.

The nearest-neighbour structure of the model also allows to combine the SUSY techniques
with a transfer matrix approach.

2 Idea of the transfer operator approach

The supersymmetric transfer matrix formalism was first suggested by Efetov (see [11]) and
on a heuristic level it was adapted specifically for RBM in [16] (see also references therein).
The rigorous application of this method to the density of states and correlation function of
characteristic polynomials was done in [22], [23], [24], [30]. The approach is based on the fact
that many nearest-neighbour statistical mechanics problems in 1d can be formulated in terms
of properties of some integral operator K that is called a transfer operator. More precisely,
the discussion above yields that for 1d RBM of the form (1.11) or (1.13) — (1.14) the SUSY



techniques helps to find a scalar kernel Ky(X7, X2) and matrix kernels K1 (X1, X2), K2( X1, X2)
(containing z1 2, 2]  as parameters) such that

Ro()\l,)\g):CN/go(Xl)’Co(Xl,XQ)...ICo( n— 1, HdXZ, (2.1)
Ri(z1,21) = W? /91 (XK1 (X1, X2) .. . Ki(Xn—1, Xn) f1(X Hde

Ra(21, 21; 20, 2) = W /92 (X1 (X1, X2) ... Ka(Xn—1, Xp) f2(X HdXz,

where {X;} are Hermitian 2 x 2 matrices for the cases of Ry, 2 x 2 matrices whose entries
depend on 2 spacial variables z1;,71; € R for the cases R1, and for the case of Ry {X;} are
70 x 70 matrices whose entries depend on 4 spacial variables x1;, 25,15, %2 € R, unitary 2 x 2
matrix Uj, and hyperbolic 2 x 2 matrix Sj, dX; means the standard measure on Herm(2) for
Ro, dX; = dxj1dy;1 for R1, and for Ro dX; means the integration over dxyjdxajdy jdy2;dU;dS;
with dU, dS being the corresponding Haar measures.

Remark, that for the model (1.11) n = N, while for the block band matrix (1.13) — (1.15) n
is a number of blocks on the main diagonal.

The idea of the transfer operator approach is very simple and natural. Let K(X,Y") be the
matrix kernel of the compact integral operator in ®!_; Lo[X, du(X)]. Then

/g(Xl)IC(Xl,XQ)...IC(Xn 1 Xo) (X)) [ [ d(Xi) = (K" £,9)
— Z)\?—l(K)Cj, with cj = (f, w])(g,ﬁzﬂ) (22)
7=0

Here {A;(K)}32 are the eigenvalues of K ( [Ao| > [A1| > ...), ¥; are corresponding eigenvectors,
and 1%' are the eigenvectors of K*. Hence, to study the correlation function, it suffices to study
the eigenvalues and eigenfunctions of the integral operator with a kernel £(X,Y).

The main difficulties here are the complicated structure and non self-adjointness of the
corresponding transfer operators.

In fact, since the analysis of eigenvectors of non self-adjoint operators is rather involved, it
is simpler to work with the resolvent analog of (2.2)

Ro= (K2 1.0) = =50 § 77 @), Gal2) = (Ka=2)7 a =012 (23)
where L is any closed contour which contains all eigenvalues of K. For any « if we set

Ax = /\O(ICa)v (>‘* ~ 1))

then it suffices to choose £ as Lo = {z : |z] = |\|(1+O(n™1))}. However, it is more convenient
to choose £ = £1 U Ly, where Lo = {2 : |2| = |\|(1 —log?n/n)}, and £ is some contour in the
domain between Ly and Lo which contains all eigenvalues of K, outside of Lo. Then

(Km 1 fog) = — o § 2 Ga(2) 9z — —— b 2 (Gu(2) . G)dz

2me 51 27 J



and if we have a reasonable bound for ||G,(z)|| (# € L2), then the second integral is small
comparing with [\.|"~!, since
‘Z‘nfl < |)\*|n716710g2n.

Hence, it is natural to expect that the integral over £; gives the main contribution to R,.

Definition 2.1. We shall say that the operator A, w is equivalent to B, w (Anw ~ Bnw ), if
for some certain contour Ly (the choice of L1 depends on the problem)

((An,W - Z)ilfvg) = ((Bn,W - Z)ilfa g)(l + 0(1))7 n, W — o0,

with f,g of (2.2).

The idea is to find some K, ~ I, whose spectral analysis we are ready to perform.

3 Mechanism of the crossover for R

As it was mentioned in Section 1, the simplest object which allows to understand the crossover’s
mechanism for the 1d RBM (1.11) is the correlation function of characteristic polynomials Ry.
Using SUSY and the idea of the transfer operator approach, one can write Rq (see [23]) as

¢ ¢
No(E) " Np(E)

Ro (E + ) = C - Windet ™2 - (KJ " Fe, Fe), (3.1)
where (-, -) is a standard inner product in La(Herm(2),dX) (i.e., 2 x 2 Hermitian matrices), with
respect to the measure

dXj = d(X;)11d(X;)22dR(X;)12d3(X)12,
(), is some &-independent constant, Koe : H — H be the operators with the kernels

4 2
Ke(X,Y) = 2%2 Fe(X) exp { - WTTr (X — Y)Q} Fe(Y). (3.2)

where £ = diag {¢, =€}, Ag = E - I, and F¢(X) is the operator of multiplication by

Fe(X) = F(X) - exp { - Tr Xé} (3.3)

2np(E)

with
) 2
F(X)=exp{ - %Tr (x+ ZA?O) + %Tr log (X —iAo/2) — C4 |

and some specific C'y. Notice that the stationary points of F are

ar =—a_ =+/1—E?/4=np(E). (3.4)



The first step is to show that if we introduce the projection Py onto the W_l/% log W-
neighbourhood of the“surface” X.(U) = UDU* with D = diag{a4+,a_} and U € U(2) :=
U(2)/U(1) x U(1), then in the sense of Definition 2.1

Koe ~ PrKoePs. (3.5)

To study the operators Py Koc P+ we use the "polar coordinates”. Namely, introduce
T
t = (Il - yl)(xQ - ?/2), p($)y) = 5(.@ - y)27 (36)

and denote by dU the integration with respect to the Haar measure on the group U (2). Consider
the space L[R2, p] x Ly[U(2),dU]. The inner product and the action of an integral operator in
this space are

(.9)y = [ Fa9)ae. (o) do dy: (3.7)
(M f)(x1,y1,U1) :/M($1791,U1;$27?J2,U2)f($2,y2,U2)p(9€2,y2)d$2dy2dU2-

Changing the variables
X =U*AU, A =diag{z1,z2}, x1 >x2, UE€ 10](2),

we obtain that Koe can be represented as an integral operator in Lo[R?, p] x Lo[U(2), dU] defined
by the kernel

Koe(X,Y) = Kog(z1,y1, Ur; 22, y2, U2) (3.8)
where
Koe (1, y1, Ut w2, y2, Un) = t L Ay (21, 22) Ao (y1, y2) Kuoe (t, Ur, Un) (1 + O(n W 1/2));
Ay o(xy, x0) = (27T)—1/26—W2(11—$2)2/2€f1,2(1"1)+f1,2(ff2); (3.9)
K*O{(ta Ul; UQ) — W2t . etWQTrUlUé‘L(U1Ué‘)*L/4—tW2/26—i§7r(l/(U1)+V(U2))/TL; (310)
v(U)=TeU*LUL/2, L =diag{l,—1},
and t is defined in (3.6). The concrete form of fi9 in (3.9) is not important for us now.
It is important that they are analytic functions with stationary points ai (see (3.4)). The
analysis of the resolvent of A; and As allows us to show that only eigenfunctions localized in the
W~—1/21og W neighbourhood of a4+ and a_ give essential contribution in (2.2). More precisely,
the resolvent analysis of A; 2 allows to prove (3.5). Further resolvent analysis gives
PiKoc Py ~ Kue @ A, (3.11)
Kie(U1,Us) i= Kuge(t*, U1, Us)  with t* = (a4 — a_)? = 4n?p(E)?,
A(:’Ula SCQ, ylu y2) = A]. (.’1717 $2)A2(y17 y2)



Then from (2.3) and Definition 2.1 it is easy to obtain
Re = Cu(Kle ' @ AV, 9) (14 0(1)) = (Kl fo, fo) (A" f1,91) (1 + (1)),
where we used that both f, g asymptotically can be replaced by fo(U) ® fi(z,y) with
fo=1 (3.12)

If we introduce
Dy :RO(E)E)’ (313)

then the above consideration yields

§ N
Np(E) " No(E)

n—1
3 )= (’ij_lfo’ fo) (14 o(1)). (3.14)
(’C*o anfO)
A good news here is that the operator K, is self-adjoint and his kernel depends only on
|(U1U3)12]*. By [34], his eigenfunctions are associated Legendre polynomials P/. Moreover
since K. is reduced by the space & C La(U(2)) of the functions which depends only on |Uy|?,
and fy € &y, we can restrict our spectral analysis to &. In this space eigenfunctions of K,y are
Legendre polynomials P; and it is easy to check that correspondent eigenvalues have the form

Dy 'Ry (E +

No=1—jG+1)/EW?+ 06 +1)/W?)?), j=0,1... (3.15)
with ¢t* of (3.11). Moreover, it follows from (3.10) that
Kie = Kio — 20 'migi 4+ o(n™1),

where ¥ is the operator of multiplication by v of (3.10). Thus the eigenvalues of KC,¢ are in the
n~-neighbourhood of Aj. This implies that for W2>ntl=N"1

M(Kig) S1=0W™2), Ao =1-2n""mi&(v fo, fo) +o(n™")

Since
(vfo, fo) =0,

we obtain that the numerator and the denominator of (3.14) tends to 1 in this regime.
To study the regime W2 = Cn~! = CN~!, observe that the Laplace operator Ay on U(2)
is also reduced by & and has the same eigenfunctions as K9 with eigenvalues

Aj =7 +1)
Hence, we can write K,¢ as
Kue ~1—n"Y(CAy — 2iémv) = (K2 fo, fo) = (e C2V T4 £y fo),

where

d
AU: ——x(l—x)—x, T = ‘U12‘2. (316)



And in the regime W2 < n~! we have Kl L' I in the strong vector topology, hence
Kig ~ 1 —n""2i¢mv = (K3 fo, fo) = (€72 fo, fo)

and the numerator of (3.14) is given by the multiplication of fy by e~2%7™
form as for the correlation function of the Wigner model.

The last result was proved in [28] with a different method:

, which gives the same

Theorem 3.1 ([28]). For the 1d RBM of (1.11) with W? = N'*9 where 0 < 6 < 1, we have

13 > 13 ) _ sin(2m¢) (3.17)

lim D;'Ro(E —
nn 2 0( TNpE) T T No(E) e

i.e. the limit coincides with that for GUE. The limit is uniform in £ varying in any compact set
C C R. Here p(z) and Ry are defined in (1.2) and (1.10), E € (—2,2).

The regime W2 > N~! was studied in [23]:
Theorem 3.2. For the 1d RBM of (1.11) with 1 < W < /N/Cylog N for sufficiently big C\,

we have ¢ ¢
B ToE) "

where the limit is uniform in & varying in any compact set C C R. Here E € (—2,2), and p(x),
Ro, and Dy are defined in (1.2), (1.10), and (3.13).

lim Dy 'Ry (E +

n—oo

Remark 3.1. Although the result is formulated for & = —& = £ in (1.8), one can prove
Theorem 3.2 for &1,& € [—C,C] C R by the same arguments with minor revisions. The only
difference is a little bit more complicated expressions for Dy and K.

The regime W2 = C, N~ is studied in [30]:

Theorem 3.3. For the 1d RBM of (1.11) with N = C,W?, we have

. 1 3 § . —CAy—2rith
nlingoDQ R0<E+ Np(E)’E_ Np(E)) = (6 2 f07f0>7

where C = 1/t*C, with t* of (3.11), and the limit is uniform in £ varying in any compact subset
of R. Here E € (—2,2).

4 Analysis of R,

In the case of R the transfer operator Iy of (2.2) has the form

Ki= Ai(z1,22) Aa(y1,12)Q,  Q < 1+ L(z,5)/W?> —1/W? > (4.1)

_L(J_jv Zj) 1
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with some explicit function L whose form is not important for us now. Operators A; » (the same
as for Ry) contain a large parameter W in the exponent, hence only W1/2- neighbourhood of
the stationary point gives the main contribution. The spectral analysis of A; gives us that

Ay~ 89+ BN AL Ay AL

A+(:c,y) _ (27r)—1/2W2€—W2(gc—y)/2+c+(x2+y2)/2, =1+ a’—T-27

g+(E) = (—FE +iv4— E?)/2. (4.2)
Then since
' _ 20[+ Cyt *1/2*.7'
Aj(Ay) = (1 W + ﬁ) ) (4.3)

e cp \1/2
a+_,/2<1+2w2> , (4.4)

we obtain that the spectral gap for Ay is of the order W1 > N~! hence one could expect
that Ajlv ~1 converges in the strong vector topology to the projection

AT = XN (Ao ©

where

A1o = Ao(A1)o, AT = Ao(A1)vy.
The entry @12 here is small hence the main order of our operator contains the Jordan cell. A
simple computation shows that if we just replace in (4.1) A1 2 by A4 and @12 by 0, then the
answer will be wrong. Hence one should apply more refine analysis. An important point of such
analysis is an application of the ”gauge” transformation of K; with matrix T’

Ki— Kir= TK:lel = AIAQS, S = TQATil; (4.5)

T 0 w2 g 1 ~L/W
“\w2 0 P\ —yw o1+ L/w? )

With this transformation it can be shown that for any W
Ao(Kir) = 9+ EVN (1 1 O(n=2)),  |M(Kir)| <1 —¢/W, ¢>0.

Hence for any 1 < W < N we get that (K17)V~! converges in the strong vector topology
to the projection (non-orthogonal) on the eigenvector, corresponding to Ag(Ki7). This gives

Theorem 4.1. Let H be 1d Gaussian RBM defined in (1.11) with N > CoW logW, and let
|E| < 4V/2/3 ~ 1.88.

Ru(E + /N, E) — ¢£9(2), (,ffw FENE)|_ —guB)| < Ow,

The second relation implies that
PN (E) = p(E)| < C/W, (4.6)
where pn(E) = R1(E) is the first correlation function, and p(E) is defined in (1.2).
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Remark 4.1. The statement is expected to be true for all |E| < 2. The condition |E| < 4v/2/3 ~
1.88 is technical, and it can be removed by the proper deformation of the integration contour in
the integral representation.

Theorem 4.1 yields, in particular, that for gy (E + ic) (the Stieltjes transform of the first
correlation function py(E)) and g(E + ie) (the Stieltjes transform of p(F)) we have

lgN (E +ig) — g(E +ie)| < C/W (4.7)

uniformly in any arbitrary small € > 0. As it was mentioned above, similar asymptotics (with
correction C'/W?2) for RBM of (1.11) in 3d was obtained in [9] and in 2d was obtained in [§]
(by the same techniques), however their method cannot be directly applied to 1d case since it
essentially uses the Fourier analysis which is different in 1d. All other previous results about the
density of states for RBM deal with € 3> W~ or bigger (for fixed £ > 0 the asymptotics (4.7)
follows from the results of [3]; [12] gives (4.7) with & > W~1/3; [31] yields (4.7) for 1d RBM
with Bernoulli elements distribution for e > W =9 and [14] proves similar to (4.7) asymptotics
with correction 1/(We)Y/2 for € > 1/W). On the other hand, the methods of [12], [14] allow to
control N™'Tr (E +ie — Hy) ™! and (E +ie — Hy),, for e > W~ without expectation, which
gives some information about the localization length. This cannot be obtained from Theorem
4.1, since it requires estimates on E{|(E + ic — HN);y1|2}.

5 Analysis of Ry for the block RBM

5.1 Sigma-model approximation for R, for the block RBM

We start from the analysis of so-called sigma-model approximation for the model (1.13) — (1.14).
Sigma-model approximation is often used by physicists to study a complicated statistical me-
chanics systems. In such approximation spins take values in some symmetric space (41 for Ising
model, S! for the rotator, S? for the classical Heisenberg model, etc.). It is expected that sigma-
models have all the qualitative physics of more complicated models with the same symmetry
(for more details see, e.g., [32]). The sigma-model approximation for RBM was introduced by
Efetov (see [11]), and the spins there are 4 x 4 matrices with both complex and Grassmann
entries (this approximation was studied in [15], [16]). Let us mention also the paper [10], where
the average conductance for 1d Efetov’s sigma-model for RBM was computed.

In the subsection we present rigorous results on the derivation of the sigma-model approxi-
mation for 1d RBM and the analysis of the model in the delocalization regime. The results are
published in [24].

To derive a sigma-model approximation for the model (1.13) — (1.14), we take « in (1.14)
a=[B/W,ie. put

J=1/W+BA/W?, >0, (5.1)

fix B and n, and consider the limit W — oo, for the generalized correlation functions
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_ [ det(H — z1)det(H — Z)
Riyns(E:e.8) = E{ det(H — 2))det(H — 7)) } (5:2)
[ det(H — zp)det(H — z2)
Rins (Ese:6) = E{ det(H — 2 )det(H — 2) }

for § = (6175275175&)‘

Theorem 5.1. Gz’v_en R;@LB of (5.2) ,(1.13) and (5.1), with any dimension d, any fized 3, |A|,
€> 07 and § = (5175275176&) € (C4 (|%‘£J’ <e- IO(E)/Q) we hcwe, as W — oo:

RI~ (B RI(E Rivag E O R E 5.3
W'nﬂ( 7‘€7§)_> 'nﬁ( 7675)7 M( 7€7§>_>M( 7876)7 ( : )

+— _ E 0. €0 .
where Rnﬂ (E,e,§) = C’E’S/exp {Z ZStr QiQj-1 — M ZStr Q]Ag,g}dQ,

B = @mp(E))28, Uy € U(2), §; € U(1,1) = UL, 1)/U(1) x U(1),

Cpe = PEHa—6-8)/2E) ) = (2m)~1\/4 — B2,

and Qj are 4 x 4 supermatrices with commuting diagonal and anticommuting off-diagonal 2 x 2

blocks
vy 0 (I +2p;7;) L 27 U; 0
A J 375 j J
“ < 0 s > < 2 AN (5.4)
dQ = H dea de = (1 — 2nj,1nj’2) dpjyldeJ dpj72d7—j’2 de de
with

njvl = pj’lTj717 nj72 = pj»27-j727
pj = diag{pj1, pje}, 7; = diag{mj1,pje}, L =diag{l, —1}

Here p;;, 751, 1 = 1,2 are anticommuting Grassmann variables,

Str(A g > =TrA—Tr B,
n B

and
A.f,z—: = diag {E - ifl/p(E)7 —& = ZEQ//)(E)7 €= Zfi/p(E), —& = Zfé/p(E)}

Theorem 5.2. Given R‘J,FVZB of (5.2) ,(1.13) and (5.1), with any dimension d, any fized 3, |A|,
>0, and £ = (&,&2,€],85) € C* (IS¢ < e- p(E)/2) we have, as W — oo:

627?,—"‘/{/—*— o ! !
785,657? (B,e,6) = —a% Jp*(B) - e+ E+&-6-8)/o®) o — (iE+ /4 E?)/2.
1¥52
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Note that Q? = I for Q) of (5.4) and so the integral in the r.h.s of (5.3) is a sigma-model
approximation similar to Efetov’s one (see [11]).

The kernel of the transfer operator for ”ng) has a form
K — POF

where F' and Q are 6 x 6 matrix kernels, such that F wv are the operators of the multiplication
by some function of U, S and QW = QW(Ul Us,5155 1) are the ”difference” operators.

After some asymptotic analysis ICgo) and some ”gauge” transformation similar to (4.5) we obtain
that TICgU)T can be replaced by the 4 x 4 "effective” matrix kernel

TKY)T ~ FE,F, (5.6)
K K, Ky Ks 1 R F, BB
. 0 K 0 K, . 01 0 &
K = ~ F:F ~
0 0 0 K K |’ 00 1 R
0 0 0 K 00 0 1

where K = Ky ® Kg
Ky (U, Us) ~ Be BIWUNRP  frg(8) | Sy) ~ BeBlS15 D2l

K; =K; (U1U5; 5152_ ) F' is an operator of multiplication by e?U:5)/2n and Fy 2 are operators
of multiplication by n =11 2(U, S) with some specific ¢, ¢1 and 2. An 1mp0rtant feature of K;
that they satisfy the operator bound

|K;| < OB (Au + As)

where Ay, Ag are the Laplace operator on the correspondent groups (see e.g. (3.16) for the
definition of Ag;). The bounds imply that for sufficiently smooth function f K;f ~ 71
Similarly to Section 3 the idea is to show that in the regime 8 > n

FKF ~ F?
Then we get
R (B.c.6) = f (T, 8)dz + o(1) = CH(EF.5) + o(1)
/ (4n*F Fy — 2)F?"dUdS + o(1),
where

Ch = e 9+ B)G+G-6=8)/p(E) ¢ (E) = (—F + i\/4 — E2)/2. (5.7)

This relation allows us to prove
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Theorem 5.3. If n, — oo in such a way that B > Cnlog®n, then for any fized € > 0 and
£ = (6,6,6,8) € C* (IS¢ <e-p(E)/2) we have

619 01 + & a

4 * 192 9coa; 1y _ Y1 2 2cpan 2coay 1
Ros _>CE(011042 (e 1) E— e +e 042)’ (5.8)
where a1 =¢ —i(& —&)/2p(E), as=¢—i(& —&)/2p(E), (5.9)

01 =1i(&1 —&)/2p(E), 02 =1i(62 — &)/2p(E),
and C}, is defined in (5.7).

Theorem 5.3 combined with Theorem 5.2 gives the GUE type behaviour for the spectral
correlation function:

Theorem 5.4. In the dimension d = 1 the behaviour of the sigma-model approximation of the
second order correlation function (5.2) of (1.13), (5.1), as > n, in the bulk of the spectrum
coincides with those for the GUE. More precisely, if A = [1,n]NZ and Hy, N = Wn are
matrices (1.13) with J of (5.1), then for any |E| < V2 (1.4) holds in the limit first W — oo,
and then B,n — oo, B > Cnlog?n.

5.2 Analysis of R, for block RBM of (1.13)-(1.14)

As it was mentioned in Section 2 in the case of Ry the transfer operator Ko is a 70 x 70
matrices whose entries depend on 8 spacial variables x1, z2, Y1, y2; 2}, 25, ¥1, v5 € R, two unitary
2 x 2 matrix U,U’, and two hyperbolic 2 x 2 matrix S,S’, which acts in the direct sum of
70 Hilbert spaces Ly(R*) @ Lo(U(2),dU) ® Ly(U(1,1),dS), where dU, dS are integrations with
respect to the corresponding Haar measures. In general the analysis of such operator is a very
involved problem, unless there is a possibility to take into account some special features of the
matrix kernel and to reduce it (in the sense of Definition 2.1) by some matrix kernel of smaller
dimensionality.
In the case of Ky the first observation is that it can be factorised as

Ky = FQAF

where F' , Q and A are 70 x 70 matrix kernels, such that F uv are the operators of multiplication
by some function of U, S,

Quv = KuKsQu, (UU')*; 8(S") ™),
Ky = atWe “WHUUM:P - g — of e oWHSES) Dl

with ¢, ¢ defined similarly to (3.6) and functions Qv which do not depend on W, and
Ay = Ax(z1, 7)) Ao (y1, 1) As (w2, 75) Aa(y2, ¥5) A (T, 7,9, 7)

with A 234 being a scalar kernels similar to that for Rg (see (3.9)) and functions A, which
do not depend on W. Tt is straightforward to prove that only W~/2log W -neighbourhoods of
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some stationary points in R® give essential contributions. Further analysis shows that after some
"gauge” transformation similar to (4.5) TKoT ! can be replaced (in the sense of Definition 2.1)
by 4 x 4 effective kernel of the form similar to (5.6).

Remark that the analysis justifies the physics conjecture that the behaviour of the ”general-
ized” correlation function R for the model (1.13) — (1.14) and of its sigma-model approximation
RS of are very similar.

As a result we obtain (cf with Theorem 5.4)

Theorem 5.5. In the dimension d = 1 the behaviour of the second order correlation function
(1.6) of the model (1.13) — (1.14), as W > n, in the bulk of the spectrum coincides with
those for the GUE. More precisely, for any |E| < v/2 (1.4) holds in the limit W,n — oo with
W/log? W > Cn.

The theorem is the main result of the paper [25].
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