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Abstract

We discuss an application of the transfer operator approach to the analysis of the dif-
ferent spectral characteristics of 1d random band matrices (correlation functions of charac-
teristic polynomials, density of states, spectral correlation functions). We show that when
the bandwidth W crosses the threshold W = N1/2, the model has a kind of phase transi-
tion (crossover), whose nature can be explained by the spectral properties of the transfer
operator.

1 Introduction

Random band matrices (RBM) represent quantum systems on a large box in Z
d with random

transition amplitudes effective up to distances of order W , which is called a bandwidth. They
are natural intermediate models to study eigenvalue statistics and quantum propagation in
disordered systems as they interpolate between Wigner matrices and random Schrödinger op-
erators: Wigner matrix ensembles represent mean-field models without spatial structure, where
the quantum transition rates between any two sites are i.i.d. random variables; in contrast, ran-
dom Schrödinger operator has only a random diagonal potential in addition to the deterministic
Laplacian on a box in Z

d.
In the simplest 1d case RBM H is a Hermitian or real symmetric N × N matrix with

independent (up to the symmetry condition) entries Hij such that

E
{
Hij} = 0, E{ |Hij |2} = (2W )−11|i−j|≤W ,

i.e. H is a Hermitian matrix with which has inly non 2W + 1 zero diagonals whose entries are
i.i.d. random variables (up to the symmetry) and the sum of the variances of entries in each
line is 1.

In a more general case H is a Hermitian random N × N matrix, whose entries Hjk are
independent (up to the symmetry) complex random variables with mean zero and variances
scaled as

E{|Hjk|2} =
1

W d
J
( |j − k|

W

)
. (1.1)
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Here Λ is a box in Z
d, |Λ| = N , and J : Rd → R+ is a function having the compact support or

decaying sufficiently fast at infinity and normalized in such a way that

∑

k∈Λ

J(|k|/W ) = 1,

and the bandwidth W � 1 is a large parameter.
The density of states ρ of a general class of RBM with W � 1 is given by the well-known

Wigner semicircle law (see [3, 18]):

ρ(E) = (2π)−1
√
4− E2, E ∈ [−2, 2]. (1.2)

As it was mentioned above, a substantial interest to random band matrices is caused by the fact
that they have a non-trivial spatial structure like random Schrödinger matrices (in contrast to
classical random matrix ensembles), and furthermore RBM and random Schrödinger matrices
are expected to have some similar qualitative properties (for more details on these conjectures
see [32]). For instance, RBM can be used to model the celebrated Anderson metal-insulator
phase transition in d ≥ 3. Moreover, the crossover for RBM can be investigated even in d = 1
by varying the bandwidth W .

The key physical parameter of RBM is the localization length `ψ, which describes the length
scale of the eigenvector ψ(E) corresponding to the energy E ∈ (−2, 2). The system is called
delocalized if for all E in the bulk of spectrum `ψ is comparable with the system size, `ψ ∼ N ,
and it is called localized otherwise. Delocalized systems correspond to electric conductors, and
localized systems are insulators.

In the case of 1d RBM there is a fundamental conjecture stating that for every eigenfunction
ψ(E) in the bulk of the spectrum `ψ is of orderW 2 (see [7, 15]). In d = 2, the localization length
is expected to be exponentially large in W , in d ≥ 3 it is expected to be macroscopic, `ψ ∼ N ,
i.e. system is delocalized.

Notice that the global eigenvalue statistics for 1d RBM such as density of states does not
feel any difference between the regime W �

√
N and W �

√
N (see (1.2)). Same situation

with the central limit theorem for the linear eigenvalue statistics which was proved in [21] for
any W � 1 (see also [17] for CLT in the regime W �

√
N). However, the questions of the

localization length are closely related to the universality conjecture of the bulk local regime of
the random matrix theory. The bulk local regime deals with the behaviour of eigenvalues of
N × N random matrices on the intervals whose length is of the order O(N−1). According to
the Wigner – Dyson universality conjecture, this local behaviour does not depend on the matrix
probability law (ensemble) and is determined only by the symmetry type of matrices (real
symmetric, Hermitian, or quaternion real in the case of real eigenvalues and orthogonal, unitary
or symplectic in the case of eigenvalues on the unit circle). In terms of eigenvalue statistics the
conjecture about the localization length of RBM in d = 1 means that 1d RBM in the bulk of
the spectrum changes the spectral local behaviour of random operator type with Poisson local
eigenvalue statistics (for W �

√
N) to the local spectral behaviour of the GUE/GOE type

(for W �
√
N). In particular, it means that if we consider the second correlation function R2

2



defined by the equality

E

{ ∑

j1 6=j2

ϕ(λj1 , λj2)
}
=

∫

R2

ϕ(λ1, λ2)R2(λ1, λ2)dλ1dλ2, (1.3)

where {λj} are eigenvalues of a random matrix, the function ϕ : R2 → C is bounded, continuous
and symmetric in its arguments, and the summation is over all pairs of distinct integers j1, j2 ∈ Λ,
then in the delocalization region W �

√
N

(Nρ(E))−2R2

(
E +

ξ1
ρ(E)N

,E +
ξ2

ρ(E)N

)
−→ 1− sin2(π(ξ1 − ξ2))

π2(ξ1 − ξ2)2
, (1.4)

while in the localization region

(Nρ(E))−2R2

(
E +

ξ1
ρ(E)N

,E +
ξ2

ρ(E)N

)
−→ 1. (1.5)

The conjecture on the crossover in RBM with W ∼
√
N is supported by physical derivation due

to Fyodorov and Mirlin (see [15]) based on supersymmetric formalism, and also by the so-called
Thouless scaling. However, there are only a few partial results on the mathematical level of
rigour. At the present time only some upper and lower bounds for `ψ for the general class of 1d
RBM are proved rigorously. It is known from the paper [20] that `ψ ≤W 8. Recently this bound
was improved in [19] to W 7. On the other side, for the general Wigner matrices (i.e. W = N)
the bulk universality has been proved in [14, 33], which gives `ψ ≥ W . By the developing the
Erdős-Yau approach, there were also obtained some other results, where the localization length
is controlled: `ψ ≥W 7/6 in [12] and `ψ ≥W 5/4 in [13]. GUE/GOE gap distributions forW ∼ N
was proved recently in [4].

The study of the eigenfunctions decay is closely related to properties of the Green function
(H − E − iε)−1 with a small ε. For instance, if |(H − E − iε)−1

ii |2 (without expectation) is
bounded for all i and all E ∈ (−2, 2), then each normalized eigenvector ψ of H is delocalized on
the scale ε−1 in a sense that

max
i

|ψi|2 ≤ Cε−1,

and so ψ is supported on at least ε−1 sites. In particular, if |(H −E − iε)−1
ii |2 can be controlled

down to the scale ε ∼ 1/N , then the system is in the complete delocalized regime. Moreover, in
view of the bound

E{|(H − E − iε)−1
jk |2} ∼ Cε−1 e−‖j−k‖/`

which holds for the localized regime, the problem of localization/delocalization reduces to con-
trolling

E{|(H − E − iε)−1
jk |2}

for ε ∼ 1/N . As it will be shown below, similar estimates of E{|Tr (H−E− iε)−1|2} for ε ∼ 1/N
are required to work with the correlation functions of RBM.

Despite many attempts, such control so far has not been achieved. The standard approaches
of [14] and [13] do not seem to work for ε ≤W−1, and so cannot give an information about the
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strong form of delocalization (i.e. for all eigenfunctions). Classical moment methods, even with
a delicate renormalization approach [31], could not break the barrier ε ∼W−1 either.

Another method which allows to work with random operators with non-trivial spatial struc-
tures and breaks that barrier, is supersymmetry techniques (SUSY). It is based on the repre-
sentation of the determinant as an integral (formal) over the Grassmann variables. Combining
this representation with the representation of the inverse determinant as an integral over the
Gaussian complex field, SUSY allows to obtain the integral representation for the main spec-
tral characteristics such as averaged density of states and correlation functions, as well as for
E{Gjk(E+ iε)}, E{|Gjk(E+ iε)|2}, etc. For instance, according to the properties of the Stieljes
transform, the second correlation function can be rewritten in the form

R2(λ1, λ2) =(πN)−2 lim
ε→0

E{=Tr (H − λ1 − iε)−1=Tr (H − λ2 − iε)−1} (1.6)

=(2iπN)−2 lim
ε→0

E

{(
Tr (H − λ1 − iε)−1 − Tr (H − λ1 + iε)−1

)

×
(
Tr (H − λ2 − iε)−1 − Tr (H − λ2 + iε)−1

)}
,

and since

E{Tr (H − z1)
−1Tr (H − z2)

−1} =
d2

dz′1dz
′
2

E

{det(H − z1) det(H − z2))

det(H − z′1) det(H − z′2))

}∣∣∣
z′=z

, (1.7)

R2 can be represented as a sum of derivatives of the expectation of ratio of four determinants.
Besides, it is expected that if we set

z1 = E + iε/N + ξ1/Nρ(E), z2 = E + iε/N + ξ2/Nρ(E), (1.8)

z′1 = E + iε/N + ξ′1/Nρ(E), z′2 = E + iε/N + ξ′2/Nρ(E),

then the r.h.s. of (1.7) before taking derivatives is an analytic function in ξ1, ξ2, ξ
′
1, ξ

′
2. Thus, to

study the second correlation function, it suffices to study the ratio of four determinants, which
we call the second ”generalized” correlation functions

R+−
2 (z1, z

′
1; z2, z

′
2) = E

{
det(H − z1)det(H − z2)

det(H − z′1)det(H − z′2)

}
, (1.9)

R++
2 (z1, z

′
1; z2, z

′
2) = E

{
det(H − z1)det(H − z2)

det(H − z′1)det(H − z′2)

}
.

Similarly the derivative of the first ”generalized” correlation function

R1(z1, z
′
1) := E

{det(H − z′1)

det(H − z1)

}

gives the Stieltjes transform of of the density of states (the first correlation function).
Instead of eigenvalue correlation functions one can consider more simple objects which are

the correlation functions of characteristic polynomials:

R0(λ1, λ2) = E

{
det(H − λ1) det(H − λ2)

}
, λ1,2 = E ± ξ/Nρ(E). (1.10)
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Characteristic polynomials are the objects of independent interest because of their connections
to the number theory, quantum chaos, integrable systems, combinatorics, representation theory
and others. But in our context the main point is that from the SUSY point of view correlation
functions of characteristic polynomials correspond to the so-called fermion-fermion (Grassmann)
sector of the supersymmetric full model describing the usual correlation functions (since they
represent two determinants in the numerator of (1.9)). They are especially convenient for the
SUSY approach and were successfully studied by the techniques for many ensembles (see [5],
[6], [26], [27], etc.). In addition, although R0(λ1, λ2) is not a local object, it is also expected
to be universal in some sense. Moreover, correlation functions of characteristic polynomials
are expected to exhibit a crossover which is similar to that of local eigenvalue statistics. In
particular, for 1d RBM they are expected to have the same local behaviour as for GUE for
W �

√
N , and the different behaviour for W �

√
N . Besides, the analysis of R0(λ1, λ2) is

much less involved than that for R+−
2 (z1, z

′
1; z2, z

′
2), but on the other hand, this analysis allows

to understand the nature of the crossover in RBM when W crosses the threshold W ∼
√
N .

The derivation of SUSY integral representation is basically an algebraic step, and usually
it can be done by the standard algebraic manipulations. SUSY is widely used in the physics
literature, but the rigour analysis of the obtained integral representation is a real mathemat-
ical challenge. Usually it is quite difficult, and it requires a powerful analytic and statistical
mechanics techniques, such as a saddle point analysis, transfer operators, cluster expansions,
renormalization group methods, etc. However, it can be done rigorously for some special class
of RBM.

There exist especially convenient classes of RBM, where the control of SUSY integral repre-
sentation becomes more accessible. One of them was introduced in [9]: it is (1.1) with Gaussian
elements with variance

E{|Hjk|2} =
(
−W 2∆+ 1

)−1

jk
, (1.11)

where 4 is the discrete Laplacian on Λ with Neumann boundary conditions: for the case d = 1,

(−∆f)j =

{
−fj−1 + 2fj − fj+1, j 6= 1, n,
−fj−1 + fj − fj+1, j = 1, n

(1.12)

with f0 = fn+1 = 0. It is easy to see that in 1d case Jjk ≈ C1W
−1 exp{−C2|j − k|/W}, and so

the variance of matrix elements is exponentially small when |j − k| �W .
Another class of convenient models are the Gaussian block RBM which are the special class

of Wegner’s orbital models (see [35]). Gaussian block RBM are N×N Hermitian block matrices
composed from n2 blocks of the size W ×W (N = nW ). Only 3 block diagonals are non zero:

H =




A1 B1 0 0 0 . . . 0
B∗

1 A2 B2 0 0 . . . 0
0 B∗

2 A3 B3 0 . . . 0
. . B∗

3 . . . .
. . . . . An−1 Bn−1

0 . . . 0 B∗
n−1 An



.
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Here A1, . . . An are independentW×W GUE-matrices with i.i.d. (up to the symmetry) Gaussian
entries with variance (1 − 2α)/W , α < 1

4 , and B1, . . . Bn−1 are independent W ×W Ginibre
matrices with i.i.d. Gaussian entries with variance α/W .

More precisely, H is Hermitian matrices with complex zero-mean random Gaussian entries
Hjk,αβ , where j, k ∈ Λ ⊂ Z

d (they parameterize the lattice sites) and α, γ = 1, . . . ,W (they
parametrize the orbitals on each site), such that

〈Hj1k1,α1γ1Hj2k2,α2γ2〉 = δj1k2δj2k1δα1γ2δγ1α2
Jj1k1 (1.13)

with
J = 1/W + α∆/W, (1.14)

where W � 1 and ∆ is the discrete Laplacian on Λ (as in (1.11)). The probability law of H can
be written in the form

PN (dH) = exp
{
− 1

2

∑

j,k∈Λ

W∑

α,γ=1

|Hjk,αγ |2
Jjk

}
dH. (1.15)

This model is one of the possible realizations of the Gaussian RBM, for example for d = 1 they
correspond to the band matrices with the bandwidth 2W +1. Let us remark that for this model
N = nW , hence the crossover is expected for n ∼W .

The main advantage of both models (1.11) and (1.13) – (1.14) is that the main spectral
characteristics such as density of states, R2, E{|Gjk(E+ iε)|2} for these models can be expressed
via SUSY as the averages of certain observables of nearest-neighbour statistical mechanics models
on Λ, which makes the model easier. For instance, the detailed information about the averaged
density of states Gaussian RBM (1.11) in dimension 3 including local semicircle low at arbitrary
short scales and smoothness in energy (in the limit of infinite volume and fixed large band width
W ) was obtained in [9]. The techniques of this paper was used in [8] to obtain the same result in
2d. The rigorous application of SUSY to the Gaussian block RBM (1.13) – (1.14) was developed
in [29], where the universality of the bulk local regime for n = const was proved. Combining
this approach with Green’s function comparison strategy it has been proved in [1] that ` ≥W 7/6

(in a strong sense) for the block band matrices with rather general element’s distribution.
The nearest-neighbour structure of the model also allows to combine the SUSY techniques

with a transfer matrix approach.

2 Idea of the transfer operator approach

The supersymmetric transfer matrix formalism was first suggested by Efetov (see [11]) and
on a heuristic level it was adapted specifically for RBM in [16] (see also references therein).
The rigorous application of this method to the density of states and correlation function of
characteristic polynomials was done in [22], [23], [24], [30]. The approach is based on the fact
that many nearest-neighbour statistical mechanics problems in 1d can be formulated in terms
of properties of some integral operator K that is called a transfer operator. More precisely,
the discussion above yields that for 1d RBM of the form (1.11) or (1.13) – (1.14) the SUSY
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techniques helps to find a scalar kernel K0(X1, X2) and matrix kernels K1(X1, X2), K2(X1, X2)
(containing z1,2, z

′
1,2 as parameters) such that

R0(λ1, λ2) = CN

∫
g0(X1)K0(X1, X2) . . .K0(Xn−1, Xn)f0(Xn)

∏
dXi, (2.1)

R1(z1, z
′
1) =W 2

∫
g1(X1)K1(X1, X2) . . .K1(Xn−1, Xn)f1(Xn)

∏
dXi,

R2(z1, z
′
1; z2, z

′
2) =W 4

∫
g2(X1)K2(X1, X2) . . .K2(Xn−1, Xn)f2(Xn)

∏
dXi,

where {Xj} are Hermitian 2 × 2 matrices for the cases of R0, 2 × 2 matrices whose entries
depend on 2 spacial variables x1j , y1j ∈ R for the cases R1, and for the case of R2 {Xj} are
70× 70 matrices whose entries depend on 4 spacial variables x1j , x2j , y1j , y2j ∈ R, unitary 2× 2
matrix Ui, and hyperbolic 2 × 2 matrix Sj , dXj means the standard measure on Herm(2) for
R0, dXj = dxj1dyj1 for R1, and for R2 dXj means the integration over dx1jdx2jdy1jdy2jdUjdSj
with dU, dS being the corresponding Haar measures.

Remark, that for the model (1.11) n = N , while for the block band matrix (1.13) – (1.15) n
is a number of blocks on the main diagonal.

The idea of the transfer operator approach is very simple and natural. Let K(X,Y ) be the
matrix kernel of the compact integral operator in ⊕p

i=1L2[X, dµ(X)]. Then
∫
g(X1)K(X1, X2) . . .K(Xn−1, Xn)f(Xn)

∏
dµ(Xi) = (Kn−1f, ḡ)

=

∞∑

j=0

λn−1
j (K)cj , with cj = (f, ψj)(g, ψ̃j). (2.2)

Here {λj(K)}∞j=0 are the eigenvalues of K ( |λ0| ≥ |λ1| ≥ . . . ), ψj are corresponding eigenvectors,

and ψ̃j are the eigenvectors of K∗. Hence, to study the correlation function, it suffices to study
the eigenvalues and eigenfunctions of the integral operator with a kernel K(X,Y ).

The main difficulties here are the complicated structure and non self-adjointness of the
corresponding transfer operators.

In fact, since the analysis of eigenvectors of non self-adjoint operators is rather involved, it
is simpler to work with the resolvent analog of (2.2)

Rα = (Kn−1
α f, ḡ) = − 1

2πi

∮

L
zn−1(Gα(z)f, ḡ)dz, Gα(z) = (Kα − z)−1, α = 0, 1, 2, (2.3)

where L is any closed contour which contains all eigenvalues of Kα. For any α if we set

λ∗ = λ0(Kα), (λ∗ ∼ 1),

then it suffices to choose L as L0 = {z : |z| = |λ∗|(1+O(n−1))}. However, it is more convenient
to choose L = L1 ∪L2, where L2 = {z : |z| = |λ∗|(1− log2 n/n)}, and L1 is some contour in the
domain between L0 and L2 which contains all eigenvalues of Kα outside of L2. Then

(Kn−1
α f, ḡ) = − 1

2πi

∮

L1

zn−1(Gα(z)f, ḡ)dz −
1

2πi

∮

L2

zn−1(Gα(z)f, ḡ)dz
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and if we have a reasonable bound for ‖Gα(z)‖ (z ∈ L2), then the second integral is small
comparing with |λ∗|n−1, since

|z|n−1 ≤ |λ∗|n−1e− log2 n.

Hence, it is natural to expect that the integral over L1 gives the main contribution to Rα.

Definition 2.1. We shall say that the operator An,W is equivalent to Bn,W (An,W ∼ Bn,W ), if
for some certain contour L1 (the choice of L1 depends on the problem)

((An,W − z)−1f, ḡ) = ((Bn,W − z)−1f, ḡ)(1 + o(1)), n,W → ∞,

with f, g of (2.2).

The idea is to find some K∗α ∼ Kα whose spectral analysis we are ready to perform.

3 Mechanism of the crossover for R0

As it was mentioned in Section 1, the simplest object which allows to understand the crossover’s
mechanism for the 1d RBM (1.11) is the correlation function of characteristic polynomials R0.
Using SUSY and the idea of the transfer operator approach, one can write R0 (see [23]) as

R0

(
E +

ξ

Nρ(E)
, E − ξ

Nρ(E)

)
= Cn ·W−4ndet−2J · (Kn−1

0ξ Fξ, F̄ξ), (3.1)

where (·, ·) is a standard inner product in L2(Herm(2), dX) (i.e., 2×2 Hermitian matrices), with
respect to the measure

dXj = d(Xj)11d(Xj)22d<(Xj)12d=(Xj)12,

Cn is some ξ-independent constant, K0ξ : H → H be the operators with the kernels

Kξ(X,Y ) =
W 4

2π2
Fξ(X) exp

{
− W 2

2
Tr (X − Y )2

}
Fξ(Y ). (3.2)

where ξ̂ = diag {ξ,−ξ}, Λ0 = E · I2, and Fξ(X) is the operator of multiplication by

Fξ(X) = F(X) · exp
{
− i

2nρ(E)
TrXξ̂

}
(3.3)

with

F(X) = exp
{
− 1

4
Tr

(
X +

iΛ0

2

)2
+

1

2
Tr log

(
X − iΛ0/2

)
− C+

}

and some specific C+. Notice that the stationary points of F are

a+ = −a− =
√

1− E2/4 = πρ(E). (3.4)
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The first step is to show that if we introduce the projection P± onto the W−1/2 logW -
neighbourhood of the“surface” X∗(U) = UDU∗ with D = diag {a+, a−} and U ∈ Ů(2) :=
U(2)/U(1)× U(1), then in the sense of Definition 2.1

K0ξ ∼ P±K0ξP±. (3.5)

To study the operators P±K0ξP± we use the ”polar coordinates”. Namely, introduce

t = (x1 − y1)(x2 − y2), p(x, y) =
π

2
(x− y)2, (3.6)

and denote by dU the integration with respect to the Haar measure on the group Ů(2). Consider
the space L2[R

2, p]× L2[Ů(2), dU ]. The inner product and the action of an integral operator in
this space are

(f, g)p =

∫
f(x, y)ḡ(x, y)p(x, y) dx dy; (3.7)

(Mf)(x1, y1, U1) =

∫
M(x1, y1, U1;x2, y2, U2) f(x2, y2, U2) p(x2, y2)dx2dy2dU2.

Changing the variables

X = U∗ΛU, Λ = diag{x1, x2}, x1 > x2, U ∈ Ů(2),

we obtain that K0ξ can be represented as an integral operator in L2[R
2, p]×L2[Ů(2), dU ] defined

by the kernel

K0ξ(X,Y ) → K0ξ(x1, y1, U1;x2, y2, U2) (3.8)

where

K0ξ(x1, y1, U1;x2, y2, U2) = t−1A1(x1, x2)A2(y1, y2)K∗0ξ(t, U1, U2)(1 +O(n−1W−1/2));

A1,2(x1, x2) = (2π)−1/2e−W
2(x1−x2)2/2ef1,2(x1)+f1,2(x2); (3.9)

K∗0ξ(t, U1, U2) :=W 2t · etW 2TrU1U∗
2
L(U1U∗

2
)∗L/4−tW 2/2e−iξπ(ν(U1)+ν(U2))/n; (3.10)

ν(U) = TrU∗LUL/2, L = diag{1,−1},

and t is defined in (3.6). The concrete form of f1,2 in (3.9) is not important for us now.
It is important that they are analytic functions with stationary points a± (see (3.4)). The
analysis of the resolvent of A1 and A2 allows us to show that only eigenfunctions localized in the
W−1/2 logW neighbourhood of a+ and a− give essential contribution in (2.2). More precisely,
the resolvent analysis of A1,2 allows to prove (3.5). Further resolvent analysis gives

P±K0ξP± ∼ K∗ξ ⊗A, (3.11)

K∗ξ(U1, U2) := K∗0ξ(t
∗, U1, U2) with t∗ = (a+ − a−)

2 = 4π2ρ(E)2,

A(x1, x2, y1, y2) = A1(x1, x2)A2(y1, y2).
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Then from (2.3) and Definition 2.1 it is easy to obtain

Rξ = Cn(Kn−1
∗ξ ⊗An−1f, ḡ)(1 + o(1)) = (Kn−1

∗ξ f0, f0)(An−1f1, ḡ1)(1 + o(1)),

where we used that both f, g asymptotically can be replaced by f0(U)⊗ f1(x, y) with

f0 ≡ 1. (3.12)

If we introduce
D2 = R0(E,E), (3.13)

then the above consideration yields

D−1
2 R0

(
E +

ξ

Nρ(E)
, E − ξ

Nρ(E)

)
=

(Kn−1
∗ξ f0, f0)

(Kn−1
∗0 f0, f0)

(1 + o(1)). (3.14)

A good news here is that the operator K∗0 is self-adjoint and his kernel depends only on
|(U1U

∗
2 )12|2. By [34], his eigenfunctions are associated Legendre polynomials P jk . Moreover

since K∗0 is reduced by the space E0 ⊂ L2(U(2)) of the functions which depends only on |U12|2,
and f0 ∈ E0, we can restrict our spectral analysis to E0. In this space eigenfunctions of K∗0 are
Legendre polynomials Pj and it is easy to check that correspondent eigenvalues have the form

λj = 1− j(j + 1)/t∗W 2 +O((j(j + 1)/W 2)2), j = 0, 1 . . . (3.15)

with t∗ of (3.11). Moreover, it follows from (3.10) that

K∗ξ = K∗0 − 2n−1πiξν̂ + o(n−1),

where ν̂ is the operator of multiplication by ν of (3.10). Thus the eigenvalues of K∗ξ are in the
n−1-neighbourhood of λj . This implies that for W−2 � n−1 = N−1

|λ1(K∗ξ)| ≤ 1−O(W−2), λ0 = 1− 2n−1πiξ(νf0, f0) + o(n−1)

Since
(νf0, f0) = 0,

we obtain that the numerator and the denominator of (3.14) tends to 1 in this regime.
To study the regime W−2 = Cn−1 = CN−1, observe that the Laplace operator ∆U on U(2)

is also reduced by E0 and has the same eigenfunctions as K∗0 with eigenvalues

λ∗j = j(j + 1)

Hence, we can write K∗ξ as

K∗ξ ∼ 1− n−1(C∆U − 2iξπν) ⇒ (Kn−1
∗ξ f0, f0) → (e−C∆U+2iξπν̂f0, f0),

where

∆U = − d

dx
x(1− x)

d

dx
, x = |U12|2. (3.16)
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And in the regime W−2 � n−1 we have Kn−1
∗0 → I in the strong vector topology, hence

K∗ξ ∼ 1− n−12iξπν ⇒ (Kn−1
∗ξ f0, f0) → (e−2iξπν̂f0, f0)

and the numerator of (3.14) is given by the multiplication of f0 by e−2iξπν̂ , which gives the same
form as for the correlation function of the Wigner model.

The last result was proved in [28] with a different method:

Theorem 3.1 ([28]). For the 1d RBM of (1.11) with W 2 = N1+θ, where 0 < θ ≤ 1, we have

lim
n→∞

D−1
2 R0

(
E +

ξ

Nρ(E)
, E − ξ

Nρ(E)

)
=

sin(2πξ)

2πξ
, (3.17)

i.e. the limit coincides with that for GUE. The limit is uniform in ξ varying in any compact set
C ⊂ R. Here ρ(x) and R0 are defined in (1.2) and (1.10), E ∈ (−2, 2).

The regime W−2 � N−1 was studied in [23]:

Theorem 3.2. For the 1d RBM of (1.11) with 1 �W ≤
√
N/C∗ logN for sufficiently big C∗,

we have

lim
n→∞

D−1
2 R0

(
E +

ξ

Nρ(E)
, E − ξ

Nρ(E)

)
= 1,

where the limit is uniform in ξ varying in any compact set C ⊂ R. Here E ∈ (−2, 2), and ρ(x),
R0, and D2 are defined in (1.2), (1.10), and (3.13).

Remark 3.1. Although the result is formulated for ξ1 = −ξ2 = ξ in (1.8), one can prove
Theorem 3.2 for ξ1, ξ2 ∈ [−C,C] ⊂ R by the same arguments with minor revisions. The only
difference is a little bit more complicated expressions for D2 and Kξ.

The regime W−2 = C∗N
−1 is studied in [30]:

Theorem 3.3. For the 1d RBM of (1.11) with N = C∗W
2, we have

lim
n→∞

D−1
2 R0

(
E +

ξ

Nρ(E)
, E − ξ

Nρ(E)

)
= (e−C∆U−2πiξν̂f0, f0),

where C = 1/t∗C∗ with t∗ of (3.11), and the limit is uniform in ξ varying in any compact subset
of R. Here E ∈ (−2, 2).

4 Analysis of R1

In the case of R1 the transfer operator K1 of (2.2) has the form

K1 = A1(x1, x2)A2(y1, y2)Q̂, Q̂ :=

(
1 + L(x̄, ȳ)/W 2 −1/W 2

−L(x̄, ȳ) 1

)
(4.1)

11



with some explicit function L whose form is not important for us now. Operators A1,2 (the same
as for R0) contain a large parameter W in the exponent, hence only W−1/2- neighbourhood of
the stationary point gives the main contribution. The spectral analysis of A1 gives us that

A1 ∼ eξg+(E)/NA+, A2 ∼ A+,

A+(x, y) = (2π)−1/2W 2e−W
2(x−y)/2+c+(x2+y2)/2, c+ = 1 + a−2

+ ,

g+(E) = (−E + i
√

4− E2)/2. (4.2)

Then since

λj(A+) =
(
1 +

2α+

W
+

c+
W 2

)−1/2−j
, (4.3)

α+ =

√
c+
2

(
1 +

c+
2W 2

)1/2
, (4.4)

we obtain that the spectral gap for A1,2 is of the order W−1 � N−1, hence one could expect
that AN−1

1 converges in the strong vector topology to the projection

AN−1
1,2 → λN−1

0 (A1)ψ0 ⊗ ψ∗
0

where
A1ψ0 = λ0(A1)ψ0, A∗

1ψ
∗
0 = λ0(A1)ψ

∗
0.

The entry Q12 here is small hence the main order of our operator contains the Jordan cell. A
simple computation shows that if we just replace in (4.1) A1,2 by A+ and Q12 by 0, then the
answer will be wrong. Hence one should apply more refine analysis. An important point of such
analysis is an application of the ”gauge” transformation of K1 with matrix T

K1 → K1T = TK1T
−1 = A1A2Ŝ, Ŝ = TQ̂T−1; (4.5)

T =

(
0 W−1/2

W 1/2 0

)
, Ŝ =

(
1 −L/W

−1/W 1 + L/W 2

)
.

With this transformation it can be shown that for any W

λ0(K1T ) = eξg+(E)/N (1 +O(n−2)), |λ1(K1T )| ≤ 1− c/W, c > 0.

Hence for any 1 � W � N we get that (K1T )
N−1 converges in the strong vector topology

to the projection (non-orthogonal) on the eigenvector, corresponding to λ0(K1T ). This gives

Theorem 4.1. Let H be 1d Gaussian RBM defined in (1.11) with N ≥ C0W logW , and let
|E| ≤ 4

√
2/3 ≈ 1.88.

R1(E + ξ/N,E) → eξg(E),
∣∣∣ ∂
∂ξ

R1(E + ξ/N,E)
∣∣∣
ξ=0

− g+(E)
∣∣∣ ≤ C/W.

The second relation implies that

|ρ̄N (E)− ρ(E)| ≤ C/W, (4.6)

where ρ̄N (E) = R1(E) is the first correlation function, and ρ(E) is defined in (1.2).
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Remark 4.1. The statement is expected to be true for all |E| < 2. The condition |E| ≤ 4
√
2/3 ≈

1.88 is technical, and it can be removed by the proper deformation of the integration contour in
the integral representation.

Theorem 4.1 yields, in particular, that for gN (E + iε) (the Stieltjes transform of the first
correlation function ρ̄N (E)) and g(E + iε) (the Stieltjes transform of ρ(E)) we have

|ḡN (E + iε)− g(E + iε)| ≤ C/W (4.7)

uniformly in any arbitrary small ε ≥ 0. As it was mentioned above, similar asymptotics (with
correction C/W 2) for RBM of (1.11) in 3d was obtained in [9] and in 2d was obtained in [8]
(by the same techniques), however their method cannot be directly applied to 1d case since it
essentially uses the Fourier analysis which is different in 1d. All other previous results about the
density of states for RBM deal with ε � W−1 or bigger (for fixed ε > 0 the asymptotics (4.7)
follows from the results of [3]; [12] gives (4.7) with ε � W−1/3; [31] yields (4.7) for 1d RBM
with Bernoulli elements distribution for ε ≥W−0.99, and [14] proves similar to (4.7) asymptotics
with correction 1/(Wε)1/2 for ε� 1/W ). On the other hand, the methods of [12], [14] allow to
control N−1Tr (E + iε−HN )

−1 and (E + iε−HN )
−1
xy for ε�W−1 without expectation, which

gives some information about the localization length. This cannot be obtained from Theorem
4.1, since it requires estimates on E{|(E + iε−HN )

−1
xy |2}.

5 Analysis of R2 for the block RBM

5.1 Sigma-model approximation for R2 for the block RBM

We start from the analysis of so-called sigma-model approximation for the model (1.13) – (1.14).
Sigma-model approximation is often used by physicists to study a complicated statistical me-
chanics systems. In such approximation spins take values in some symmetric space (±1 for Ising
model, S1 for the rotator, S2 for the classical Heisenberg model, etc.). It is expected that sigma-
models have all the qualitative physics of more complicated models with the same symmetry
(for more details see, e.g., [32]). The sigma-model approximation for RBM was introduced by
Efetov (see [11]), and the spins there are 4 × 4 matrices with both complex and Grassmann
entries (this approximation was studied in [15], [16]). Let us mention also the paper [10], where
the average conductance for 1d Efetov’s sigma-model for RBM was computed.

In the subsection we present rigorous results on the derivation of the sigma-model approxi-
mation for 1d RBM and the analysis of the model in the delocalization regime. The results are
published in [24].

To derive a sigma-model approximation for the model (1.13) – (1.14), we take α in (1.14)
α = β/W , i.e. put

J = 1/W + β∆/W 2, β > 0, (5.1)

fix β and n, and consider the limit W → ∞, for the generalized correlation functions
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R+−
Wnβ(E, ε, ξ) = E

{
det(H − z1)det(H − z2)

det(H − z′1)det(H − z′2)

}
, (5.2)

R++
Wnβ(E, ε, ξ) = E

{
det(H − z1)det(H − z2)

det(H − z′1)det(H − z′2)

}

for ξ = (ξ1, ξ2, ξ
′
1, ξ

′
2).

Theorem 5.1. Given R+−
Wnβ of (5.2) ,(1.13) and (5.1), with any dimension d, any fixed β, |Λ|,

ε > 0, and ξ = (ξ1, ξ̄2, ξ
′
1, ξ̄

′
2) ∈ C

4 (|=ξj | < ε · ρ(E)/2) we have, as W → ∞:

R+−
Wnβ(E, ε, ξ) → R+−

nβ (E, ε, ξ),
∂2R+−

Wnβ

∂ξ′1∂ξ
′
2

(E, ε, ξ) →
∂2R+−

nβ

∂ξ′1∂ξ
′
2

(E, ε, ξ), (5.3)

where R+−
nβ (E, ε, ξ) = CE,ξ

∫
exp

{ β̃
4

∑
StrQjQj−1 −

c0
2|Λ|

∑
StrQjΛξ,ε

}
dQ,

β̃ = (2πρ(E))2β, Uj ∈ Ů(2), Sj ∈ Ů(1, 1) = U(1, 1)/U(1)× U(1),

CE,ξ = eE(ξ1+ξ2−ξ′1−ξ
′
2
)/2ρ(E), ρ(E) = (2π)−1

√
4− E2,

and Qj are 4× 4 supermatrices with commuting diagonal and anticommuting off-diagonal 2× 2
blocks

Qj =

(
U∗
j 0

0 S−1
j

)(
(I + 2ρ̂j τ̂j)L 2τ̂j

2ρ̂j −(I − 2ρ̂j τ̂j)L

)(
Uj 0
0 Sj

)
, (5.4)

dQ =
∏

dQj , dQj = (1− 2nj,1nj,2) dρj,1dτj,1 dρj,2dτj,2 dUj dSj

with

nj,1 = ρj,1τj,1, nj,2 = ρj,2τj,2,

ρ̂j = diag{ρj1, ρj2}, τ̂j = diag{τj1, ρj2}, L = diag{1,−1}

Here ρj,l, τj,l, l = 1, 2 are anticommuting Grassmann variables,

Str

(
A σ
η B

)
= TrA− TrB,

and

Λξ,ε = diag {ε− iξ1/ρ(E),−ε− iξ2/ρ(E), ε− iξ′1/ρ(E),−ε− iξ′2/ρ(E)}.

Theorem 5.2. Given R++
Wnβ of (5.2) ,(1.13) and (5.1), with any dimension d, any fixed β, |Λ|,

ε > 0, and ξ = (ξ1, ξ2, ξ
′
1, ξ

′
2) ∈ C

4 (|=ξj | < ε · ρ(E)/2) we have, as W → ∞:

R++
Wnβ(E, ε, ξ) → eia+(ξ′

1
+ξ′

2
−ξ1−ξ2)/ρ(E), (5.5)

∂2R++
Wnβ

∂ξ′1∂ξ
′
2

(E, ε, ξ) → −a2+/ρ2(E) · eia+(ξ′
1
+ξ′

2
−ξ1−ξ2)/ρ(E), a+ = (iE +

√
4− E2)/2.
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Note that Q2
j = I for Qj of (5.4) and so the integral in the r.h.s of (5.3) is a sigma-model

approximation similar to Efetov’s one (see [11]).

The kernel of the transfer operator for R(σ)
2 has a form

K(σ)
2 = F̂ Q̂F̂

where F̂ and Q̂ are 6 × 6 matrix kernels, such that F̂µν are the operators of the multiplication
by some function of U, S and Q̂µν = Q̂µν(U1U

∗
2 , S1S

−1
2 ) are the ”difference” operators.

After some asymptotic analysis K(σ)
2 and some ”gauge” transformation similar to (4.5) we obtain

that TK(σ)
2 T can be replaced by the 4× 4 ”effective” matrix kernel

TK(σ)
2 T ∼ F̃ K̂0F̃ , (5.6)

K̂0 =




K K̃1 K̃2 K̃3

0 K 0 K̃2

0 0 K K̃1

0 0 0 K


 , F̃ = F




1 F̃1 F̃2 F̃1F̃2

0 1 0 F̃2

0 0 1 F̃1

0 0 0 1




where K = KU ⊗KS

KU (U1, U2) ∼ βe−β|(U1U∗
2
)12|2 , KS(S1, S2) ∼ βe−β|(S1S

−1

2
)12|2 ,

K̃i = K̃i(U1U
∗
2 ;S1S

−1
2 ), F is an operator of multiplication by eϕ(U,S)/2n, and F̃1,2 are operators

of multiplication by n−1ϕ1,2(U, S) with some specific ϕ, ϕ1 and ϕ2. An important feature of K̃i

that they satisfy the operator bound

|K̃i| ≤ Cβ−1(∆U +∆S)

where ∆U ,∆S are the Laplace operator on the correspondent groups (see e.g. (3.16) for the
definition of ∆U ). The bounds imply that for sufficiently smooth function f K̃if ∼ β−1.

Similarly to Section 3 the idea is to show that in the regime β � n

F̃ K̂0F̃ ∼ F̃ 2

Then we get

R+−

nβ̃
(E, ε, ξ) =

C∗
E

2πi

∮

ωA

zn−1(Ĝ0(z)f̂ , ĝ)dz + o(1) = C∗
E(F̂

2n−2f̂ , ĝ) + o(1)

= C∗
E

∫ (
4n2F1F2 − 2)F 2ndUdS + o(1),

where

C∗
E = e−g+(E)(ξ1+ξ′1−ξ2−ξ

′
2
)/ρ(E), g+(E) = (−E + i

√
4− E2)/2. (5.7)

This relation allows us to prove
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Theorem 5.3. If n, β → ∞ in such a way that β > Cn log2 n, then for any fixed ε > 0 and
ξ = (ξ1, ξ2, ξ

′
1, ξ

′
2) ∈ C

4 (|=ξj | < ε · ρ(E)/2) we have

R+−
nβ →C∗

E

( δ1δ2
α1α2

(e2c0α1 − 1)− δ1 + δ2
α2

e2c0α1 + e2c0α1
α1

α2

)
, (5.8)

where α1 = ε− i(ξ1 − ξ2)/2ρ(E), α2 = ε− i(ξ′1 − ξ′2)/2ρ(E), (5.9)

δ1 = i(ξ′1 − ξ1)/2ρ(E), δ2 = i(ξ2 − ξ′2)/2ρ(E),

and C∗
E is defined in (5.7).

Theorem 5.3 combined with Theorem 5.2 gives the GUE type behaviour for the spectral
correlation function:

Theorem 5.4. In the dimension d = 1 the behaviour of the sigma-model approximation of the
second order correlation function (5.2) of (1.13), (5.1), as β � n, in the bulk of the spectrum
coincides with those for the GUE. More precisely, if Λ = [1, n] ∩ Z and HN , N = Wn are
matrices (1.13) with J of (5.1), then for any |E| <

√
2 (1.4) holds in the limit first W → ∞,

and then β, n→ ∞, β ≥ Cn log2 n.

5.2 Analysis of R2 for block RBM of (1.13)-(1.14)

As it was mentioned in Section 2 in the case of R2 the transfer operator K2 is a 70 × 70
matrices whose entries depend on 8 spacial variables x1, x2, y1, y2;x

′
1, x

′
2, y

′
1, y

′
2 ∈ R, two unitary

2 × 2 matrix U,U ′, and two hyperbolic 2 × 2 matrix S, S′, which acts in the direct sum of
70 Hilbert spaces L2(R

4) ⊗ L2(Ů(2), dU) ⊗ L2(Ů(1, 1), dS), where dU, dS are integrations with
respect to the corresponding Haar measures. In general the analysis of such operator is a very
involved problem, unless there is a possibility to take into account some special features of the
matrix kernel and to reduce it (in the sense of Definition 2.1) by some matrix kernel of smaller
dimensionality.

In the case of K2 the first observation is that it can be factorised as

K2 = F̂ Q̂ÂF̂

where F̂ , Q̂ and Â are 70× 70 matrix kernels, such that F̂µν are the operators of multiplication
by some function of U, S,

Q̂µν = KUKSQµν(U(U ′)∗;S(S′)−1),

KU = αtWe−αWt|(U(U ′)∗)12|2 , KS = αt̃We−αWt̃|(S(S′)−1)12|2 ,

with t, t̃ defined similarly to (3.6) and functions Qµν which do not depend on W , and

Âµν = A1(x1, x
′
1)A2(y1, y

′
1)A3(x2, x

′
2)A4(y2, y

′
2)Aµ,ν(x̄, x̄

′, ȳ, ȳ′)

with A1,2,3,4 being a scalar kernels similar to that for R0 (see (3.9)) and functions Aµν which
do not depend on W . It is straightforward to prove that only W−1/2 logW -neighbourhoods of
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some stationary points in R
8 give essential contributions. Further analysis shows that after some

”gauge” transformation similar to (4.5) TK2T
−1 can be replaced (in the sense of Definition 2.1)

by 4× 4 effective kernel of the form similar to (5.6).
Remark that the analysis justifies the physics conjecture that the behaviour of the ”general-

ized” correlation function R2 for the model (1.13) – (1.14) and of its sigma-model approximation
Rσ

2 of are very similar.
As a result we obtain (cf with Theorem 5.4)

Theorem 5.5. In the dimension d = 1 the behaviour of the second order correlation function
(1.6) of the model (1.13) – (1.14), as W � n, in the bulk of the spectrum coincides with
those for the GUE. More precisely, for any |E| <

√
2 (1.4) holds in the limit W,n → ∞ with

W/ log2W > Cn.

The theorem is the main result of the paper [25].

References

[1] Bao, J., Erdős, L.: Delocalization for a class of random block band matrices. Probab.
Theory Relat. Fields, 167, pp. 673 – 776 (2017)

[2] Berezin, F.A.: Introduction to the algebra and analysis of anticommuting variables. Moscow
State University Publ., Moscow (1983) (Russian)

[3] Bogachev, L. V., Molchanov, S. A., and Pastur, L. A.: On the level density of random band
matrices. Mat. Zametki, 50:6, 31 – 42(1991)
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[5] Brézin, E., Hikami, S.: Characteristic polynomials of random matrices. Commun. Math.
Phys. 214, 111 – 135 (2000)
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