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Non-equilibrium systems continuously evolve toward states with a lower free energy.
For glass-forming systems, the most stable structures satisfy the condition of
isostaticity, where the number of rigid constraints is exactly equal to the number of
atomic degrees of freedom. The rigidity of a system is based on the topology of the
glass network, which is affected by atomistic structural rearrangements. In some
systems with adaptable network topologies, a perfect isostatic condition can be
achieved over a range of compositions, i.e., over a range of different structures, giving
rise to the intermediate phase of optimized glass formation. Here we develop a
statistical mechanical model to quantify the width of the intermediate phase,
accounting for the rearrangement of the atomic structure to relax localized stresses
and to achieve an ideal, isostatic state.
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INTRODUCTION

Within the field of topological constraint theory, there is growing interest in the ability of a glass
network to adapt its topology to achieve isostaticity. A glass network is isostatic when the number
of rigid constraints per atom, n, equals the number of translational degrees of freedom (Phillips,
1979). For a system in three-dimensional space, each atom has three degrees of freedom; hence,
hni= 3 is the condition for achieving an isostatic network (Thorpe, 1983). If hni> 3 the system is
overconstrained (stressed rigid), and if hni < 3 the system is underconstrained (floppy) (Thorpe,
1983). In the overconstrained region, additional rigidity, beyond hni= 3, creates localized stresses.
Elimination of these stresses can be achieved through an imposition of crystalline order, which
drives the network out of the glassy state (Thorpe, 1983).

When topological constraint theory of glass was originally proposed by Phillips and Thorpe, the
isostatic state was predicted to be achieved at a single composition, viz., the rigidity percolation
threshold (Phillips and Thorpe, 1985). However, in 1999, Raman scattering and temperature-
modulated differential scanning calorimetry (MDSC) experiments by Punit Boolchand et al.
revealed a finite width of isostatic compositions in which the system can maintain stability, called
the intermediate phase (IP) (Selvanathan et al., 1999; Boolchand et al., 2001b; Micoulaut, 2007;
Moukarzel, 2013). Thorough investigations, particularly in chalcogenide systems, have revealed a
difference between the onset of rigidity and the onset of stress, creating a finite width of
compositions that enable the most stable, isostatic state (Selvanathan et al., 1999; Boolchand et
al., 2001b). One of the most pronounced signatures of the intermediate phase was detected using
MDSC measurements (Feng et al.,, 1997), which measures the non-reversible enthalpy of
relaxation, 1H. The difference between the original Phillips-Thorpe single percolation threshold
result and Boolchand’s intermediate phase can be visualized in Figures 1A,B, respectively, where
the blue circles indicate the lowest energy states of 1H and hence the isostatic composition(s).
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Although a consensus
within the glass community
has still not been reached
regarding the existence of
the intermediate phase, over
the past 18 years
understanding of the
phenomenon has greatly
advanced. Evidence of the IP
has been found through
numerical studies (Thorpe et
al., 2000), analysis of finite
size clusters (Micoulaut and
Phillips, 2003), and thorough
analyses using MDSC
(Selvanathan et al.,, 1999,
2000; Boolchand et al,
2001b; Vaills et al.,, 2005;
Novita et al.,, 2007) and
Raman scattering
(Selvanathan et al.,, 1999,
2000; Boolchand et al,
2001a; Wang et al.,, 2001;
Novita et al.,, 2007). These
studies all reveal two distinct
thresholds  marking  the
boundaries of the
intermediate  phase: the
rigidity transition (the lower
bound, below which there
are floppy modes in the
network) and the stress
transition (the upper bound,
above which the network is
stressed-rigid). Between the
two thresholds, fluctuations
in the system can enable self-
organization, as visualized in
Figure 2.

A challenge when
studying the intermediate
phase is the apparent
irreproducibility of some of
the experiments, causing the
physical origins and very
existence of the phase to be

Self-Organized Intermediate Phase
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FIGURE 1 | (A) Phillips-Thorpe theory based on a single isostatic point.

(B) Boolchand intermediate phase where the isostatic region encompasses a
finite width. In both (A) and (B), the isostatic region is shown as the blue
shaded region, and the blue circle identifies the compositions with the lowest
enthalpy, 1 H, therefore indicating the energetically preferred and isostatic

composition(s).
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FIGURE 2 | A visual representation of the two thresholds bounding the
intermediate phase (IP) for varying compositions, x. The rigidity transition and
stress transition separate the floppy, isostatic, and stressed rigid
compositions, as shown.

controversial. Careful sample preparation is necessary in order to detect the IP due to the
experiment’s high sensitivity to impurities, inhomogeneities, and the thermal history of the glass
(Bhosle et al., 2011, 2012). Some critics of the intermediate phase attribute the observed finite
widths as possible experimental artifacts (Golovchak et al., 2008; Lucas et al., 2009; Shpotyuk and
Golovchak, 2011). During MDSC experiments on Ge-Se glasses, the non-reversible enthalpy was
shown to decrease in the IP domain, inferring a need for Ge-Se-Se isostatic structural fragments to
account for the rigid but unstressed network (Micoulaut and Phillips, 2003; Massobrio et al., 2007;
Sartbaeva et al., 2007). However, an extensive high-temperature nuclear magnetic resonance
study revealed that these fragments were missing from the structure (Lucas et al., 2009). To
account for this discrepancy, Lucas et al. disagreed with the existence of the intermediate phase
and instead hypothesized that the previously observed phase could be an experimental artifact
resulting from the use of a single modulation frequency in the MDSC experiments. However,
subsequent modeling work showed that the frequency correction used in the analysis of the MDSC
experiments provided non-reversing heat flows independent of the particular choice of
modulation frequency (Guo et al., 2012).

Another claim against the existence of the intermediate phase is the observation of physical
aging in the intermediate phase glasses (Golovchak et al., 2006, 2008, 2011; Shpotyuk et al., 2008;
Elabbar and Adu-Sehly, 2011). The intermediate phase is reported to be characterized by high
stability and a lack of physical aging. However, when differential scanning calorimetry was used to
investigate the kinetics associated with the glass transition, results showed that all samples had
evidence of physical aging behavior (Zhao et al., 2013). These inconsistencies in the physical
understanding of glass adaptability and isostaticity sparked the glass community’s growing interest
in this field.
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Further work is therefore
required to elucidate the
origin of the intermediate
phase. Considering that a
finite width of isostatic
compositions  is  indeed
possible, the second point of
debate is the underlying
mechanisms (structure,
dynamics, interaction, etc.)
enabling the two-threshold
intermediate phase.
Typically, studies emphasize
the central role of
fluctuations (Thorpe et al.,
2000; Barré et al.,, 2005;
Chubynsky et al.,, 2006;
Micoulaut, 2006). More
specifically, it is proposed
that the fluctuations in the
system enable the atoms to
self-organize into a stress-
free  state  while  still
maintaining a non-crystalline
structure of the glass. These
structural  rearrangements
relieve additional stresses,
driving the system back
toward a lower free energy
state (Selvanathan et al,
1999; Boolchand et al.,
2001b). The network
mitigates the stresses by
adapting its topology,
thereby affecting the number
of rigid constraints in the
network.

Topological fluctuations in
a glassy system are based on
the distribution in rigid
constraints, n(x,T,P)
(Micoulaut, 2016). Given the
non-linear  behavior  of
coordination changes with
pressure, pressure
dependence is out of the
scope in this simplified
topological model, i.e., here
we will only explore the
dependence on composition
and temperature.
Additionally, this  paper
considers the network’s
ability to adapt its topology

Self-Organized Intermediate Phase

to eliminate stresses, without considering the kinetics of this adaptation process.

This paper explores both the statistical mechanical origin of the intermediate phase, as well as
the role of topological fluctuations in governing its width. The proposed mechanism for the
intermediate phase is based on the ability of the network to self-organize, i.e., to eliminate
localized stress due to the adaptability of the network. This adaptability is made possible by the
localized fluctuations in the glass network’s structure and topology, with localized stresses as the
driving force for these rearrangements. Modeling the distribution of topological fluctuations was
made possible in prior work by linking statistical mechanics and topological constraint theory
(Kirchner et al., 2018). Extending this previous work, the current investigation analyzes the degree
of self-organization enabled through these structural and topological fluctuations to create a
generalized approach for modeling the width of the intermediate phase of an arbitrary glass-
forming system. The model is used to quantify the width of the intermediate phase, which can be
defined either in units of constraints, n, or composition, x. In both representations, the width is
analyzed as a function of composition and temperature. These results are then discussed in
relation to localized topological fluctuations. Utilizing the general approach outlined in this paper,
the structure of a glass-forming system could potentially be designed to achieve a desired
intermediate phase width.

CALCULATION OF THE TOPOLOGICAL FLUCTUATIONS

The width of the intermediate phase is dependent on the adaptability of the glass network, which
is enabled by the distribution of rigidity fluctuations. Prior work by the authors established a
general approach for calculating the distribution of the number of rigid constraints per atom by
linking statistical mechanics and topological constraint theory (Kirchner et al., 2018). Through
statistical mechanics, the probability of site occupation is given by Mauro (2013);

Mauro and Smedskjaer (2014)

pi,m- gi— aim - (1)

Qm_l kT

where Q-1 is the path-dependent partition function calculated after occupation of modifier m-1
(which normalizes the distribution at each step), g;is the population size of network former sites
of type i, and a;m-1is the number of type i sites previously occupied after modifier m-1. 1H;is the
enthalpy change associated with occupying site type i, k is Boltzmann’s constant, and T is the
absolute temperature. To account for thermal history effects in a glass, the temperature can be
set equal to the fictive temperature of the system.

This statistical mechanical approach calculates the probability density of Nj(x), the mole fraction
of network-forming species i in composition x, which serves as an input for the distribution of the
number of atomistic constraints, given by Mauro et al. (2009); Mauro (2011)

n (T, x) = X Ni{x) X Wi oqo(T). (2) o

In Equation (2) the outer summation is over the networkforming species i and the inner summation
is over the various constraints a. w;qis the number of constraints of type a associated with the
species type i and ga(T) is the temperaturedependent rigidity of constraint a, given by

Qa(T) =. (3)

The rigidity for each constraint, a, is an independent function of the absolute temperature, T,
where v is the vibrational attempt frequency, tossis the observation time, and IIllis the activation
free energy for breaking the a constraint, given by

Frontiers in Materials | www.frontiersin.org 3

February 2019 | Volume 6 | Article 11



Kirchner and Mauro

F
(4)
where Ta is the onset

temperature for constraint
ao. The onset temperature,
Ta, is defined as the
temperature at which the
probability of breaking the
constraint is exactly 1/2
(Mauro,  2011). Linking
Equations (1,2) results in the

THE INTERMEDIATE PHASE

The width of the intermediate phase is defined by two boundaries: the rigidity transition and the
stress transition. The rigidity transition occurs when the average number of atomic constraints,

Self-Organized Intermediate Phase

hni, equals the number of degrees of freedom; this represents the transition from a flexible to an
isostatic network. Since here we consider a three-dimensional network, the rigidity transition

occurs when hni = 3. Note that the number of rigid constraints per atom, n, is typically presented
as a single mean value; however, this investigation explores the distributions of fluctuations, and

hence, the full distribution of n. Therefore, in the context of this paper, hni refers to the mean,

modifier, M, or the temperature, T.
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distribution of local FIGURE 4 | hni vs. f when varying the concentration of network formers, B,
. . . modifiers, M, and temperature, T.
constraints, which quantifies

the topological fluctuations
dictating the width of the
intermediate phase (Kirchner
etal., 2018).

while n refers to the distribution of the number of atomistic constraints.

TABLE 1 | The arbitrary model’s starting conditions, prior to varying the concentration of network former, B, the network

Since the dimensionality of the system remains constant, the rigidity transition in a 3D network

is defined by

hni=3

(5)

The second threshold, the stress transition, occurs when the overconstrained system can no longer
rearrange itself into a stress-free state. This boundary is defined by the low-rigidity tail of the
distribution, which we quantity with the floppy mode probability, f, given by
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=P (n) dn (6)
0

where P(n) is the probability
density function of the
rigidity distribution n. The
guantity f therefore gives the
probability of the system
having an atomic rigidity less
than or equal to three.

Itis important to note that
not all systems will enable
rearrangement, and to
model the obtainable
intermediate phase within a
glass-forming  system we

need to incorporate a
reasonable threshold for
rearrangement. Using the

definition of fin Equation (6),
we can define a material
property, fires, Which is the
threshold probability for the
system to be able to
rearrange its structure and

RESULTS AND DISCUSSION

Self-Organized Intermediate Phase

topology. In other words, we can define fiwes as @ minimum threshold for which the system can
remain isostatic by relaxing the localized stresses in a stressedrigid network through structural
rearrangements. As long as f>fires the structure can rearrange itself to eliminate the stresses, viz.,
by biasing the structure toward the stress-free isostatic configurations. The driving force for this
network adaptability is the localized stress generated in the overconstrained, stressedrigid
configurations. Once f<fires the isostatic configurations are no longer considered to be accessible,
i.e., the stresses in the network are too high to fully relax. Therefore, f = fines marks the stress
transition, i.e., the second boundary of the intermediate phase, which can be given in terms of the
corresponding

constraint distribution, nsess, and is defined as

Nstress= N X, fthres . (7)

The difference between the two boundaries, given by Equations (5,7), dictates the maximum
allowed width, w, of the intermediate phase. The width can be given either in units of the
difference in number of constraints,

Wn = Nstress(X, fthres) — 3 (8)
or more typically by the corresponding compositional width,
Wx=X ( Nstress, fthres) -X (3), (9)

where w,> 0 and w, > 0. Figure 3 illustrates the thresholds and corresponding parameters that
determine this maximum width of constraints or compositions enabling self-organization with a
disordered network. Given that fies can vary for different systems, here we consider the
intermediate phase width as a function of this material property, fiares.

then plot the IP widths in units of n in terms of finres OF In(fires),
respectively. Both figures show that changing [B], [M], or T result
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The scope of the current investigation considers a simplified
glass network with composition A B M, where A and B
are the two network formers and M is the network modifier.
Given that there are two types of network formers and one
type of modifier, there are four possible structural motifs within
the system, based on whether a network-forming site is either
unoccupied (denoted as Aun and Bun) or occupied (Aoc and Boc)
by a modifier. Following Equation (1), the probability of site
occupation is based on the competition between entropic and
enthalpic effects. The compositions of A, B, and M determine
the entropic preferences, while the enthalpic preferences are
determined by the relative energies associated which each state.
In our model, we arbitrarily specify theB site to be enthalpically
favored for modifier association, i.e., Ha,oc> HB,oc.

The set of parameter values is provided inTable 1, including
the number of constraints, wiq, the onset temperatures, T.
(hence, dictating the rigidity, g.(T), of each constraint), the
temperature, the concentration of network formers and network
modifiers, and the value of vt,ps, i.e., the complete set of variables
necessary to solve Equations (1-4). The model’s parameters were
arbitrarily chosen to makehni = 3 near [A] = [B] = 0.5. [B], [M],
T were then altered to find the thresholds for the IP.

As addressed in Equations (8,9), the width of the intermediate
phase can be expressed either in units of constraints, n, or
composition, x. In both representations, the constraints and
compositions defining the intermediate phase width are based on
the network’s composition and temperature.

IPWidthsinUnitsof n

The concentration of network former B, the concentration of
network modifier M, and the absolute temperature of the system,
T, dictate the distribution of n, and therefore, the intermediate
phase width in units of n. Figure 4 illustrates these variables
altering the distribution ofn, thereby influencing f and hni. Given
wn> 0 and Equation (8), the IP width in units ofn can only be
applied to data from hni = 3. Figures 5A,B use Equation (8) to

Self-Organized Intermediate Phase

in similar widths for a givenfires.

FIGURE 6 | An example IP forfy,es = 0.1 in terms of composition. This figure
shows that the model can quantify the theoretical IP, as given Figure 2.
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IP Widths in Units of x

As shown with w,, altering composition dictates the width
between the two IP thresholds. To measure w,, the intermediate
phase width in terms of the glass composition A1, B, M, we
determine the composition x at each of the IP thresholds. As
defined in Equation (9), the difference between these the
composition at hni= 3 and the composition at ns.ss determines
the width wy. Given a sample’s material property finres, this
approach enables us to quantify the threshold proposed in
Figure 2, as shown in Figure 6 for an arbitrary fin.s= 0.1. A more
general representation of w, for each fuyesis plotted in Figure 7.
From these results, with a known rearrangement threshold for
a given glass-forming system, we can approximate the width of
the intermediate phase.

The proposed mechanism for self-organization, and hence
the intermediate phase, is topological fluctuations, which
depend on the standard deviation of the distribution of
constraints. Figure 8 plots the magnitude of fluctuations
(quantified using the standard deviation of n, calculated over the
ensemble of configurations resulting from the combined
statistical mechanical/topological model) compared to the
intermediate phase width for an arbitrary value of fies= 0.1.
Details of the procedure for calculating the standard deviation
of n are provided in our previous work (Kirchner et al., 2018).
The results in Figure 8 show a direct correlation between the
maximum fluctuations and the maximum intermediate phase
width, hence supporting the proposed mechanism of topological
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