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Non-equilibrium systems continuously evolve toward states with a lower free energy. 

For glass-forming systems, the most stable structures satisfy the condition of 

isostaticity, where the number of rigid constraints is exactly equal to the number of 

atomic degrees of freedom. The rigidity of a system is based on the topology of the 

glass network, which is affected by atomistic structural rearrangements. In some 

systems with adaptable network topologies, a perfect isostatic condition can be 

achieved over a range of compositions, i.e., over a range of different structures, giving 

rise to the intermediate phase of optimized glass formation. Here we develop a 

statistical mechanical model to quantify the width of the intermediate phase, 

accounting for the rearrangement of the atomic structure to relax localized stresses 

and to achieve an ideal, isostatic state. 
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INTRODUCTION 

Within the field of topological constraint theory, there is growing interest in the ability of a glass 

network to adapt its topology to achieve isostaticity. A glass network is isostatic when the number 

of rigid constraints per atom, n, equals the number of translational degrees of freedom (Phillips, 

1979). For a system in three-dimensional space, each atom has three degrees of freedom; hence, 

hni= 3 is the condition for achieving an isostatic network (Thorpe, 1983). If hni> 3 the system is 

overconstrained (stressed rigid), and if hni < 3 the system is underconstrained (floppy) (Thorpe, 

1983). In the overconstrained region, additional rigidity, beyond hni= 3, creates localized stresses. 

Elimination of these stresses can be achieved through an imposition of crystalline order, which 

drives the network out of the glassy state (Thorpe, 1983). 

When topological constraint theory of glass was originally proposed by Phillips and Thorpe, the 

isostatic state was predicted to be achieved at a single composition, viz., the rigidity percolation 

threshold (Phillips and Thorpe, 1985). However, in 1999, Raman scattering and temperature-

modulated differential scanning calorimetry (MDSC) experiments by Punit Boolchand et al. 

revealed a finite width of isostatic compositions in which the system can maintain stability, called 

the intermediate phase (IP) (Selvanathan et al., 1999; Boolchand et al., 2001b; Micoulaut, 2007; 

Moukarzel, 2013). Thorough investigations, particularly in chalcogenide systems, have revealed a 

difference between the onset of rigidity and the onset of stress, creating a finite width of 

compositions that enable the most stable, isostatic state (Selvanathan et al., 1999; Boolchand et 

al., 2001b). One of the most pronounced signatures of the intermediate phase was detected using 

MDSC measurements (Feng et al., 1997), which measures the non-reversible enthalpy of 

relaxation, 1H. The difference between the original Phillips-Thorpe single percolation threshold 

result and Boolchand’s intermediate phase can be visualized in Figures 1A,B, respectively, where 

the blue circles indicate the lowest energy states of 1H and hence the isostatic composition(s). 
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Although a consensus 

within the glass community 

has still not been reached 

regarding the existence of 

the intermediate phase, over 

the past 18 years 

understanding of the 

phenomenon has greatly 

advanced. Evidence of the IP 

has been found through 

numerical studies (Thorpe et 

al., 2000), analysis of finite 

size clusters (Micoulaut and 

Phillips, 2003), and thorough 

analyses using MDSC 

(Selvanathan et al., 1999, 

2000; Boolchand et al., 

2001b; Vaills et al., 2005; 

Novita et al., 2007) and 

Raman scattering 

(Selvanathan et al., 1999, 

2000; Boolchand et al., 

2001a; Wang et al., 2001; 

Novita et al., 2007). These 

studies all reveal two distinct 

thresholds marking the 

boundaries of the 

intermediate phase: the 

rigidity transition (the lower 

bound, below which there 

are floppy modes in the 

network) and the stress 

transition (the upper bound, 

above which the network is 

stressed-rigid). Between the 

two thresholds, fluctuations 

in the system can enable self-

organization, as visualized in 

Figure 2. 

A challenge when 

studying the intermediate 

phase is the apparent 

irreproducibility of some of 

the experiments, causing the 

physical origins and very 

existence of the phase to be 

 
controversial. Careful sample preparation is necessary in order to detect the IP due to the 

experiment’s high sensitivity to impurities, inhomogeneities, and the thermal history of the glass 

(Bhosle et al., 2011, 2012). Some critics of the intermediate phase attribute the observed finite 

widths as possible experimental artifacts (Golovchak et al., 2008; Lucas et al., 2009; Shpotyuk and 

Golovchak, 2011). During MDSC experiments on Ge-Se glasses, the non-reversible enthalpy was 

shown to decrease in the IP domain, inferring a need for Ge-Se-Se isostatic structural fragments to 

account for the rigid but unstressed network (Micoulaut and Phillips, 2003; Massobrio et al., 2007; 

Sartbaeva et al., 2007). However, an extensive high-temperature nuclear magnetic resonance 

study revealed that these fragments were missing from the structure (Lucas et al., 2009). To 

account for this discrepancy, Lucas et al. disagreed with the existence of the intermediate phase 

and instead hypothesized that the previously observed phase could be an experimental artifact 

resulting from the use of a single modulation frequency in the MDSC experiments. However, 

subsequent modeling work showed that the frequency correction used in the analysis of the MDSC 

experiments provided non-reversing heat flows independent of the particular choice of 

modulation frequency (Guo et al., 2012). 

Another claim against the existence of the intermediate phase is the observation of physical 

aging in the intermediate phase glasses (Golovchak et al., 2006, 2008, 2011; Shpotyuk et al., 2008; 

Elabbar and Adu-Sehly, 2011). The intermediate phase is reported to be characterized by high 

stability and a lack of physical aging. However, when differential scanning calorimetry was used to 

investigate the kinetics associated with the glass transition, results showed that all samples had 

evidence of physical aging behavior (Zhao et al., 2013). These inconsistencies in the physical 

understanding of glass adaptability and isostaticity sparked the glass community’s growing interest 

in this field. 

FIGURE 1 | (A) Phillips-Thorpe theory based on a single isostatic point. 
( B ) Boolchand intermediate phase where the isostatic region encompasses a 
finite width. In both ( A ) and ( B ) , the isostatic region is shown as the blue 
shaded region, and the blue circle identifies the compositions with the lowest 
enthalpy,  H, therefore indicating the energetically preferred and isostatic 
composition(s). 

FIGURE 2 | A visual representation of the two thresholds bounding the 
intermediate phase (IP) for varying compositions, x. The rigidity transition and 
stress transition separate the floppy, isostatic, and stressed rigid 
compositions, as shown. 
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Further work is therefore 

required to elucidate the 

origin of the intermediate 

phase. Considering that a 

finite width of isostatic 

compositions is indeed 

possible, the second point of 

debate is the underlying 

mechanisms (structure, 

dynamics, interaction, etc.) 

enabling the two-threshold 

intermediate phase. 

Typically, studies emphasize 

the central role of 

fluctuations (Thorpe et al., 

2000; Barré et al., 2005; 

Chubynsky et al., 2006; 

Micoulaut, 2006). More 

specifically, it is proposed 

that the fluctuations in the 

system enable the atoms to 

self-organize into a stress-

free state while still 

maintaining a non-crystalline 

structure of the glass. These 

structural rearrangements 

relieve additional stresses, 

driving the system back 

toward a lower free energy 

state (Selvanathan et al., 

1999; Boolchand et al., 

2001b). The network 

mitigates the stresses by 

adapting its topology, 

thereby affecting the number 

of rigid constraints in the 

network. 

Topological fluctuations in 

a glassy system are based on 

the distribution in rigid 

constraints, n(x,T,P) 

(Micoulaut, 2016). Given the 

non-linear behavior of 

coordination changes with 

pressure, pressure 

dependence is out of the 

scope in this simplified 

topological model, i.e., here 

we will only explore the 

dependence on composition 

and temperature. 

Additionally, this paper 

considers the network’s 

ability to adapt its topology 

to eliminate stresses, without considering the kinetics of this adaptation process. 

This paper explores both the statistical mechanical origin of the intermediate phase, as well as 

the role of topological fluctuations in governing its width. The proposed mechanism for the 

intermediate phase is based on the ability of the network to self-organize, i.e., to eliminate 

localized stress due to the adaptability of the network. This adaptability is made possible by the 

localized fluctuations in the glass network’s structure and topology, with localized stresses as the 

driving force for these rearrangements. Modeling the distribution of topological fluctuations was 

made possible in prior work by linking statistical mechanics and topological constraint theory 

(Kirchner et al., 2018). Extending this previous work, the current investigation analyzes the degree 

of self-organization enabled through these structural and topological fluctuations to create a 

generalized approach for modeling the width of the intermediate phase of an arbitrary glass-

forming system. The model is used to quantify the width of the intermediate phase, which can be 

defined either in units of constraints, n, or composition, x. In both representations, the width is 

analyzed as a function of composition and temperature. These results are then discussed in 

relation to localized topological fluctuations. Utilizing the general approach outlined in this paper, 

the structure of a glass-forming system could potentially be designed to achieve a desired 

intermediate phase width. 

CALCULATION OF THE TOPOLOGICAL FLUCTUATIONS 

The width of the intermediate phase is dependent on the adaptability of the glass network, which 

is enabled by the distribution of rigidity fluctuations. Prior work by the authors established a 

general approach for calculating the distribution of the number of rigid constraints per atom by 

linking statistical mechanics and topological constraint theory (Kirchner et al., 2018). Through 

statistical mechanics, the probability of site occupation is given by Mauro (2013); 

Mauro and Smedskjaer (2014) 

 pi,m  gi − ai,m  (1) 

 Qm−1 kT 

where Qm−1 is the path-dependent partition function calculated after occupation of modifier m−1 

(which normalizes the distribution at each step), gi is the population size of network former sites 

of type i, and ai,m−1 is the number of type i sites previously occupied after modifier m−1. 1Hi is the 

enthalpy change associated with occupying site type i, k is Boltzmann’s constant, and T is the 

absolute temperature. To account for thermal history effects in a glass, the temperature can be 

set equal to the fictive temperature of the system. 

This statistical mechanical approach calculates the probability density of Ni(x), the mole fraction 

of network-forming species i in composition x, which serves as an input for the distribution of the 

number of atomistic constraints, given by Mauro et al. (2009); Mauro (2011) 

n (T, x) = X Ni(x) X wi,αqα(T). (2) i α 

In Equation (2) the outer summation is over the networkforming species i and the inner summation 

is over the various constraints α. wi,α is the number of constraints of type α associated with the 

species type i and qα(T) is the temperaturedependent rigidity of constraint α, given by 

vtobs 

 qα(T) =. (3) 

The rigidity for each constraint, α, is an independent function of the absolute temperature, T, 

where v is the vibrational attempt frequency, tobs is the observation time, and is the activation 

free energy for breaking the α constraint, given by 
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 (4) 

where Tα is the onset 

temperature for constraint 

α. The onset temperature, 

Tα, is defined as the 

temperature at which the 

probability of breaking the 

constraint is exactly 1/2 

(Mauro, 2011). Linking 

Equations (1,2) results in the 

 
distribution of local 

constraints, which quantifies 

the topological fluctuations 

dictating the width of the 

intermediate phase (Kirchner 

et al., 2018). 

THE INTERMEDIATE PHASE 

The width of the intermediate phase is defined by two boundaries: the rigidity transition and the 

stress transition. The rigidity transition occurs when the average number of atomic constraints, 

hni, equals the number of degrees of freedom; this represents the transition from a flexible to an 

isostatic network. Since here we consider a three-dimensional network, the rigidity transition 

occurs when hni = 3. Note that the number of rigid constraints per atom, n, is typically presented 

as a single mean value; however, this investigation explores the distributions of fluctuations, and 

hence, the full distribution of n. Therefore, in the context of this paper, hni refers to the mean, 

while n refers to the distribution of the number of atomistic constraints. 

 

TABLE 1 | The arbitrary model’s starting conditions, prior to varying the concentration of network former, B, the network 

modifier, M, or the temperature, T. 

 

wA,un 6 wA,oc 6 wB,un 6 wB,oc 6 

TA,un (K) 590 

TA,oc(K) 565 

TB,un(K) 590 

TB,oc(K) 615 
T (K) 600 
[B] 0.5 
[M] 0.5 

vtobs 1,000 

 
Since the dimensionality of the system remains constant, the rigidity transition in a 3D network 

is defined by 

 hni = 3 (5) 

The second threshold, the stress transition, occurs when the overconstrained system can no longer 

rearrange itself into a stress-free state. This boundary is defined by the low-rigidity tail of the 

distribution, which we quantity with the floppy mode probability, f, given by 

FIGURE 3 | A visual representation of the thresholds that determine the width 
of the IP, both in terms of the atomic constraints, n ( x ) , and the composition, 
x ( n ) . Within his paper, the constraints are given as a distribution, hence 
incorporating the statistical fluctuations of constraints. The rigidity transition is 
determined by the composition in which the constraint distribution satisfies 
 n  3 . The stress transition is determined by the composition corresponding 

to the constraint distribution of n stress . 

FIGURE 4 |  n  vs. f when varying the concentration of network formers, B, 
modifiers, M, and temperature, T. 
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 f 

=P (n) dn (6) 
0 

where P(n) is the probability 

density function of the 

rigidity distribution n. The 

quantity f therefore gives the 

probability of the system 

having an atomic rigidity less 

than or equal to three. 

It is important to note that 

not all systems will enable 

rearrangement, and to 

model the obtainable 

intermediate phase within a 

glass-forming system we 

need to incorporate a 

reasonable threshold for 

rearrangement. Using the 

definition of f in Equation (6), 

we can define a material 

property, fthres, which is the 

threshold probability for the 

system to be able to 

rearrange its structure and 

topology. In other words, we can define fthres as a minimum threshold for which the system can 

remain isostatic by relaxing the localized stresses in a stressedrigid network through structural 

rearrangements. As long as f>fthres the structure can rearrange itself to eliminate the stresses, viz., 

by biasing the structure toward the stress-free isostatic configurations. The driving force for this 

network adaptability is the localized stress generated in the overconstrained, stressedrigid 

configurations. Once f<fthres the isostatic configurations are no longer considered to be accessible, 

i.e., the stresses in the network are too high to fully relax. Therefore, f = fthres marks the stress 

transition, i.e., the second boundary of the intermediate phase, which can be given in terms of the 

corresponding 

constraint distribution, nstress, and is defined as 

 nstress =   n x, fthres . (7) 

The difference between the two boundaries, given by Equations (5,7), dictates the maximum 

allowed width, w, of the intermediate phase. The width can be given either in units of the 

difference in number of constraints, 

 wn = nstress(x, fthres) − 3 (8) 

or more typically by the corresponding compositional width, 

 wx = x ( nstress, fthres) − x (3), (9) 

where wn > 0 and wx > 0. Figure 3 illustrates the thresholds and corresponding parameters that 

determine this maximum width of constraints or compositions enabling self-organization with a 

disordered network. Given that fthres can vary for different systems, here we consider the 

intermediate phase width as a function of this material property, fthres. 

RESULTS AND DISCUSSION then plot the IP widths in units of n in terms of fthres or ln(fthres), 

respectively. Both figures show that changing [B], [M], or T result 
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hence, dictating the rigidity,        
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IPWidthsinUnitsof n 
The concentration of network former   
network modifier   

    
phase width in units of n.   
altering the distribution of    and     

       
      use Equation (8) to 

    

FIGURE 6 | An example IP for f thres  0.1 in terms of composition. This figure 
shows that the model can quantify the theoretical IP, as given in Figure 2 . 

FIGURE 7 | The width of the IP in terms of composition, x , based on f thres . 
Given an f 

thres 
, which is a material property, this graph allows us to determine 

the corresponding w 
x if the system enables adaptable network topologies. 

FIGURE 5 | (A) The IP width, w n , given by Equation (8), based on f thres . ( B ) The IP width, w n , given by Equation (8), based on ln( f thres ). 



 

Frontiers in Materials | www.frontiersin.org 7 February 2019 | Volume 6 | Article 11 

 

IP Widths in Units of x 
As shown with wn, altering composition dictates the width 

between the two IP thresholds. To measure wx, the intermediate 

phase width in terms of the glass composition A1−x Bx My, we 

determine the composition x at each of the IP thresholds. As 

defined in Equation (9), the difference between these the 

composition at hni= 3 and the composition at nstress determines 

the width wx. Given a sample’s material property fthres, this 

approach enables us to quantify the threshold proposed in 

Figure 2, as shown in Figure 6 for an arbitrary fthres= 0.1. A more 

general representation of wx for each fthres is plotted in Figure 7. 

From these results, with a known rearrangement threshold for 

a given glass-forming system, we can approximate the width of 

the intermediate phase. 

The proposed mechanism for self-organization, and hence 

the intermediate phase, is topological fluctuations, which 

depend on the standard deviation of the distribution of 

constraints. Figure 8 plots the magnitude of fluctuations 

(quantified using the standard deviation of n, calculated over the 

ensemble of configurations resulting from the combined 

statistical mechanical/topological model) compared to the 

intermediate phase width for an arbitrary value of fthres= 0.1. 

Details of the procedure for calculating the standard deviation 

of n are provided in our previous work (Kirchner et al., 2018). 

The results in Figure 8 show a direct correlation between the 

maximum fluctuations and the maximum intermediate phase 

width, hence supporting the proposed mechanism of topological 

fluctuations enabling the adaptability of glass-forming systems. 

Increased fluctuations thereby enable a greater width for the 

intermediate phase. 

While this research focuses on the topological origin of the 

intermediate phase, we have not addressed the important 

question of the kinetics of the topological changes that enable 

intermediate phase formation. Moreover, while we have 

considered the temperature dependence of the constraint 

rigidity, pressure effects have not yet been investigated. Both of 

these subjects will be suitable topics for future studies. 

CONCLUSION 

In this paper we have established a general approach for 

calculating the boundaries of the intermediate phase for an 

arbitrary glass-forming system. Our calculation is based on 

topological fluctuations in the network, which allow for the 

ability of the glass to relax localized stresses from a stressed-

rigid condition. The width of the intermediate phase increases 

with the level of topological fluctuations, since these 

fluctuations allow for self-organization of the network, i.e., the 

ability of the glass to dynamically adapt its topology to alleviate 

localized stresses. The distribution of fluctuations, as dependent 

on composition and temperature, was modeled by linking 

statistical mechanics and topological constraint theory, which 

can then be used to quantify the width of the intermediate 

phase in an arbitrary glass-forming system. This theory could 

also be extended to incorporate the pressure dependence of the 

intermediate phase boundaries. Future work may also include 

an in-depth study of the kinetics of the topological 

reconfigurations enabling the adaptability of the network. 
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