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ABSTRACT

In this paper, we demonstrate the feasibility of smart malware
that advances state-of-the-art attacks by (i) indirectly attacking a
computing infrastructure through a cyber-physical system (CPS)
that manages the environment in which the computing enterprise
operates, (ii) disguising itsmaliciousactionsas accidental failures,
and (iii) self-learning attack strategies from cyber-physical system
measurement data. We address all aspects of the malware, including
the construction of the self-learning malware and the launch of a
failure injection attack. We validate the attacks in a data-driven
CPS simulation environment developed as part of this study.

CCS CONCEPTS

* Security and privacy — Distributed systems security; ®* Com-
puter systems organization —» Embedded and cyber-physical
systems; ¢ Computing methodologies — Machine learning.
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1 INTRODUCTION

The growing sophistication of cyber-physical systems (CPSes),
while enabling new breakthroughs in different application domains,
also brings new vulnerabilities that can be exploited by malicious ac-
tors. In a typical CPS, a computing infrastructure provides support
to the physical infrastructure, and the resiliency of such systems
gets significant attention from both researchers and practitioners.
However, we find that a different scenario, in which a closed-loop
CPS provides essential services to the computing infrastructure,
has not yet been well investigated. More specifically, we consider a
scenario in which an attacker attempts to shut down a computing
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infrastructure and cause a system-wide outage by compromising
the CPS with self-learning malware.

A weakness in the cyber security of CPSes and computing in-
frastructure (CI) can introduce an unforeseen threat. By utilizing
the often underestimated dependency of computing infrastructure
onsurrounding CPSes, anadversary who targets ahigh-value com-
puting infrastructure (e.g., a data center or supercomputer) can
deploy an indirect attack by exploiting the relatively weak secu-
rity of CPSes that are critical to the operation of the computing
infrastructure. In this scenario, the vulnerability of the CPS acts
as a weak point that lowers the security barrier of the otherwise
well-protected system. As demonstrated in [5], an indirect attack
can further thwart detection by replaying known failure scenarios
in the CPS such that their impact cascades to the target CI.

In this paper we discuss advances of cyber-attacks in the context
of indirectness and automation (driven by self-learning abilities).
More concisely, we present a type of smart (self-learning) malware
that exploits the weaknesses of a CPS to induce a malicious at-
tack that (i) masquerades (to monitoring entities of the CPS) as an
accidental failure, and (ii) stealthily propagates to the computing
infrastructure, causing a major failure that includes a system-wide
outage. To be specific, in the context of a real computing facility
(i.e., Blue Waters), we present a learning malware logic that mimics
failures or abnormal events in the cooling facility (i.e., the National
Petascale Computing Facility) that eventually lead to an outage of
the HPC housed in the facility. Building on the hypothetical attack
scenario in [5], we implement and evaluate variations of attack
scenarios (leveraged by the degree of automation and learning).
The most naive approach randomly pollutes the data segments of
random packets, whereas the most advanced approach carefully
crafts an attack strategy inferred from operational data.

Asdemonstratedinthispaper, self-learningmalwareisnolonger
aremote possibility. Our experimental results show that our mal-
ware can effectively (i) classify the CPS measurements related to
failure incidents of the computing infrastructure in an unsuper-
vised manner, (ii) identify core CPS parameters related to the regu-
lation of cooling capacity, and (iii) inferabnormal measurementsin
the parameters that triggered anomalies in the CPS whose impact
propagated to the computing infrastructure. While the advances
discussed in this paper might seem to benefit malicious entities,
our approach (especially for inferring the attack strategy) can be
used to preemptively eliminate the potential risks by detecting
sensitive anomalies in real time; it can also be used to reinforce
the control logicto properly handle such anomalies (see Section 5).
Furthermore, the CPS simulator presented in this paper can be used
to evaluate the resilience of the CPS against unforeseen abnormal
conditions.
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Figure 1: Chilled water system overview.

The contributions of this paper are the following:

= We show the possibility of an indirect attack on a computing
infrastructure through intrusion in a cyber-physical system.

* We present smart malware logic that can learn attack strategies
from CPS data and replay failure scenarios. The malware imple-
mented 3 attack strategies that corrupt the cooling capacity.

* We present a data-driven CPS simulator and its usage in evaluat-
ing the resilience of a CPS against the malware. Comparison of
simulation data with real data found a mean error of 3%.

* We discuss how our findings as a white-hat hacker can be used
to secure a system from advanced threats.

2 SYSTEM OVERVIEW

As shown in Figure 1, we consider a typical configuration of a
large-scale computing facility instantiated in the context of the
Blue Waters supercomputer. In this configuration, the operational
environment (e.g., room temperature, delivery of chilled water to
cool the computing nodes) of the computing infrastructure is man-
aged by a building automation system (and associated CPS) that
optimizes the control over the actuators, given a set of measure-
ments representing the parameters of the operational environment.

2.1 Computing infrastructure: Blue Waters

In our attack model, we set a computing infrastructure, or, to be
more specific, its availability, as the final target. In this paper, we
study the case of Blue Waters, a 13.3-petaflop supercomputer man-
aged by the National Center for Supercomputing Applications
(NCSA) at the University of Illinois. Blue Waters is composed of
around 300 computing cabinets, each of which houses around 90
nodes (i.e., 3,000 16-core processors per cabinet, or 27,000 in total)
[6]. Toprevent damage to the physical parts from the massive heat
generated during the operation of the supercomputer, a liquid-based
cooling system has been deployed. For Blue Waters, 72 cooling cab-
inets are placed alongside the compute nodes, and each cabinet
prepares and delivers Freon to the three adjacent compute nodes.
The liquid form of Freon, travelling through the rack of compute
nodes, then absorbs the heat from the compute nodes and returns
to the cooling cabinet in the form of a gas.

2.2 Cyber-physical system: NPCF building
automation system

The Blue Waters supercomputer is housed in a dedicated build-

ing, the National Petascale Computing Facility (NPCF). The 88,000-

square-foot building uses a state-of-the-art building automation

system (BAS) that is in charge of regulating the environmental

parameters (i.e., pressure, flow, and source of the cooling system)
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of the building, including the server room. A detailed configura-
tion of the system can be found in [5]. The building automation
system (which consists of a control server, a set of programmable
logic controllers-PLCs, sensors, and actuators) utilizes a set of mea-
surements collected from the chilled water loop to regulate the
chilled water delivered to the cooling cabinet, under three modes
of operation: campus mode, mix mode, and economic (econ) mode.
Campus mode is the used mode in most data centers that use chilled
water bought from external providers. While the chilled water from
such providers is well controlled (i.e., the temperature, flows, and
pressure are kept within an agreed range), its usage results in an
increase in the cost of operation. To reduce the cost of operation,
NPCEF has a set of dedicated cooling towers (which use cold tem-
peratures to naturally chill the water) by means of which it can
deploy an additional mode of operation: economic mode. By taking
advantage of cold external temperatures throughout 2/3 of the year
to prepare the chilled water, NPCF was able to significantly reduce
its cost of operation, which compensated for the construction costs
of the water towers after one year of operation. The mix mode is an
intermediate mode that was introduced to enable smooth transition
between economic and campus modes.

2.3 Data

The CPS operational data set is an archive of all measurements

and control command values within the chilled water system of
the building facility that were collected from September 2016 to

May 2017. The data set contains 47 distinct parameters (see Table

1 in Appendix A) collected every 5 minutes. Sample parameters

monitored and collected within the chilled water system include

differential pressure, flow, and temperature of the campus input
(“CAMP.CHW.DP, FLOW, TEMP”), control valve setting and mea-
surements at the high loop (“CHW.HI.CV, TEMP, FLOW”). This

data set is essential for analyzing the operation of the CPS and
inferring critical information related to failure of the computing
infrastructure.

The incident reports log incidents related to the computing in-
frastructure since the deployment of the system (i.e., December

2012). The incidents recorded in the reports include hardware part

failures, cooling-system-related problems, and system-wide outages

(SWOs) during which all 28,164 compute nodes were shut down.

2.4 Threat model

In our threat model, we assume:
= The cooling control system (CPS) is less secure than the target
computing infrastructure and is relatively easier to exploit. (This
motivates our indirect attack model.)
The attacker (i) can get (remote) access (e.g., through phishing,
stolen credentials, or insider attack) to the control network and
the CPS control server, (ii) can identify the target parameter(s)
(e.g., the flow and temperature of the chilled water supplied to
the server room) based on the information available through
the control server interface, and (iii) does not have access to the
incident reports on the failures of the computing infrastructure.
e Our smart malware (i) has access to the data archive that stores
the CPS measurements and the copies of the PLC programs kept
in the control server as a backup of the actual logic that had been
loaded onto the PLC, (ii) can automatically derive attack strategies
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Figure 2: Approach and attack modes.
(as described in detail in Section 3), (iii) can inject malicious con-
trol code (that checks for the attack-triggering condition(s) and
overwrites the critical parameters) into the controller program,
and (iv) can upload the program to the controller by using the
control server APIs. The technical details of the control server
APIs and PLC control logic format can be obtained from publicly
available documents on a given CPS (e.g., [22, 23]).

3 SELF-LEARNING MALWARE: AN
UNSUPERVISED APPROACH

In this section, in terms of a set of steps (depicted in Figure 2), we
describe our approach to developing self-learning malware that is
capable of inducing malicious attacks against a CPS that controls
the environment in which the computing infrastructure operates.

3.1 Step 1: Identification of mode of operation
Goal. As discussed in Section 2.2, a BAS relies on multiple input
sources to deploy different modes of operation. The control logic
and the measurements differ depending on the mode of operation,
and hence, it is critical to accurately classify the data by the mode
of operation to infer characteristics specific to each mode.
Approach. We apply (i.e., our malware runs) k-means clustering
[11] to classify the data by the mode of operation. With the goal
of interrupting the cooling capacity, we choose the two parame-
ters that define the cooling capacity delivered to the server room:
chilled water flow (chw_flow) and temperature difference (tempDiff)
between the supply and return water.

Results. The clustering algorithm, with a k value of two, effectively
captures the data clusters (campus and econ mode). When com-
pared to the ground truth, we achieved a 97.96% true-positive rate
(0.04% false-positive rate) for campus mode, a 99.76% true-positive
rate for econ mode, and 98.62% overall accuracy.

3.2 Step 2: Filtration of failure data

Goal. To design attacks that masquerade as accidental failures, the
primary step is to parse the CPS data that are related to system
failures. However, with our assumption that the intrusion will be
restricted to the level of the building control network, the iden-
tification of failures in the computing infrastructure becomes a
nontrivial problem, as the information available to the attacker is
limited. (I.e., the attack does not have access to failure logs collected
from the computing infrastructure.) In order to overcome that limi-
tation, we present an indirect approach to predicting the state of
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Figure 3: SWO observed through chilled water supply and
return temperature measurements.

the computing infrastructure from the available CPS data.
Approach. Afeasibleapproachistoinferthesystemstatus fromthe
returning chilled water temperature,the only parameter withinthe
measurements that reflects the status of the computing infrastruc-
ture of interest. In Figure 3, we plot the supply water temperature
to the data center (“CHW.R.HI.CHRS.TEMP”) and the return tem-
perature from the data center (“CHW.R.HL.CHWR.TEMP” ) during a
month of operation (March 2017). The distance between the two
plotsreflectstheamountofheat generated by the computing infras-
tructure. What we focus on is the occasional nadirs (drops) among
therelatively constant (compared to the supply temperature) return
temperature. The nadirs indicate events in which the computing
infrastructure did not generate heat, which happens only when
the computing infrastructure is down. As aresult, by detecting the
nadir, the attacker can parse data related to maintenance of Blue
Waters or its surrounding systems, and outages of Blue Waters.
Results. Analysis of CPS operational data over 9 months shows that
thenadirdetectionapproachreducesthe dataofinterest from 72.5K
entries (i.e., measurement points) to 2,938 entries (a 96% reduction).
The 2,938 entries canbe coalescedinto23 distinctevents. (Anevent
is represented as a set of measurement points collected withirt 3
hours of the extreme nadir.) By cross-validating those data with
the incident reports (which are not available to external entities or
attackers)thatmanuallylogthefailureincidents of Blue Waters, we
found that our prediction model captured 3 out of 5 system-wide
outages that occurred during the period of study. The two SWOs
that were not captured with our approach occurred when an outage
did not last long enough for its impact to be visible at the chilled
water system level. Reduction and filtration of the data in this step
ensured that (i) the correlation analysis (Section 3.3) inferred the
relationships among the parameters during normal operation (by
excluding the data that were predicted to be related to computing
infrastructure failure), and (ii) the abnormality analysis (Section
3.4) captured the anomalies in the failure data set by comparing it
with the normal-operation data set.

3.3 Step 3: Reduction of target parameters

Goal. Within the control system under study, measurements of
47 parameters are monitored and shared among the controllers.
While each and every parameter plays a role in the control logic,
not all parameters are closely related to the goal of the attacker,
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i.e., disrupting the delivery of chilled water to the computing in-
frastructure. While malware can be designed in a naive manner
to pollute random parameters, its likelihood of success would be
extremely low despite the high likelihood of exposure (or detection).
Instead, we apply a statistical method to carefully choose the target
parameters to be altered by ourmalware.

Approach. The attacker’s goal is to reduce the cooling capacity
of the chilled water delivered to the server room, and hence the
attacker needs to monitor the final target parameters: the temper-
ature and volumetric flow of the supplied chilled water. Given a
series of measurements of the 47 parameters, the malware com-
putes correlation between each pair of parameters, where a value
closerto 1 (or—1) represents the significance of alinear relationship
between the two parameters.

Results. For each mode of operation we choose the top ten param-
eters withthehighest correlation. Example parametersinclude con-
trol valve setting, pump speed, and input water temperature/flow
and pressure. In addition to reducing the number of target param-
eters, our correlation-based approach captures the relationships
among the critical parameters to minimize contextual inconsistency
duringfalse-datainjection. (I.e., wheninjecting falsedataintoacrit-
ical parameter X, wealso appropriately alterthe data for parameters
that report high correlation with the parameter X.) The reduced
data set consists of 23 distinct events with 10 critical parameters
each. In the next step, we filter out events with no abnormal values
of critical parameters.

3.4 Step 4: Filtration of events with abnormal
measurements

Goal. In step 2, we reduced the CPS measurement dataset to 23
events that are predicted to be related to a CI outage. In this step,
we further reduce the number of events and its critical parameters
by selecting those events for which the critical parameters show
abnormal values. (We consider those events to be the root cause of
the CPS-induced CI outages).

Approach. As part of defining an abnormal event for a parameter,
we assume that the parameter values can be represented as a Gauss-
iandistribution. Given a Gaussian distribution, measurements with
z-scores greater than 3 are considered as outliers. For a stricter
bound (to reduce false positives), we consider ameasurement to be
abnormal if its z-score exceeds 4. (In a perfect Gaussian distribution,
99.9936% ofthe measurementshave z-scores smallerthan4.) Tobe
specific, for each parameter in the 23 events, we check if there is
an abnormal measurement that exceeds a threshold (whose z = 4).
Weremove the parameter from the list of critical parameters if no
abnormal measurement/value is detected for this parameter. Also,
if all the critical parameters are removed for an event, then we
consider that event as “inappropriate for an attack strategy.” After
runningtheabnormality analysis overeachcritical parameter (from
Section 3.3) for all events (from Section 3.2), we are left with a set
of events to be implemented as part of an attack strategy.
Results. To demonstrate the effectiveness of this step, we applied
our analysis to a known incident in the chilled water system that
had impacted the operation of the computing infrastructure. Figure
4 shows the flow of the chilled water to the computing infrastruc-
ture (CI) during a maintenance operation on the campus loop. A
closure in the tank of the campus chilled water (CHW) loop resulted
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Figure 4: Loss of flow due to campus maintenance operation.

in an increase in CHW flow to the CI around 9:30; the CPS immedi-
ately regulated it by closing the valves. Later, after the maintenance
operation was over around 13:00, the input flow returned to normal.
However, with the current settings of the valve, the flow to the CI
faced a dramatic drop that resulted in a lack of cooling capacity for
a set of compute cabinets and caused an emergency power off (EPO)
because of the increase in the internal temperature. The thresholds
indicating the abnormal measurements of the parameter (chilled
water flow) in Figure 4 (“CHW.L.HL.FLOW”) are depicted as dashed
lines. The figure shows that our threshold effectively identified the
abnormal event, i.e., the dramatic drop in the water flow around
13:00 that was the root cause of the CI outage.

When we apply (or the malware applies) the abnormality detec-
tionmethodto eachcandidate parameterofthe23 events (identified
insteps 1—3), weend up with 7 events that each include at least one
abnormal measurement. In Section 3.5, we evaluate the events (in
the context of causing a CI outage) and describe how the malware
constructs attack strategies based on the selected events.

3.5 Variations of attack levels

The attack strategies that can be implemented by our malware
are classified into threelevels of sophistication (Figure 2): random
attacks, semi-targeted attacks, and fully targeted attacks. Each level
differs from the others in terms of the difficulty of preparing the
attack and the likelihood of detection.

Random attack: This attack poisons the measurements of the BAS
by overwriting the data segment of random parameters with ran-
dom values. With consistent alteration of the measurements, there
is a possibility that a malicious measurement will cause a BAS to
make a faulty decision that leads to failure of the computing in-
frastructure. However, no sophistication is involved in this attack;
hence, it has a low probability of success (from the attacker’s per-
spective) and a high probability of detection (due to the lack of
contextual consistency in the measurements). This attack is more
likely to be effective if the attacker has some understanding of the
physical system, but most likely there would be only one oppor-
tunity to carry out such an attack, since it would leave a highly
visible, abnormal trace.

Semi-targeted attack: This attack strategically filters the parame-
ters of interest. By reducing the target parameters, the attacker can
increase the likelihood of success. Using the method discussed in
Section 3.3, we identify 10 target parameters (out of 47 parameters
available in the BAS) per mode of operation. When we validated
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the 10 parameters with human expertise (which is not available

to attackers), we found that 6 were critical to preparation of the
chilled water for the campus mode and can potentially cause failure
of computing infrastructure when corrupted. For the econ mode,
we found 5 parameters to be critical. While the approach can in-
crease the likelihood of a successful attack by reducing the target
parameters from 47 to 5, the value to be injected into the reduced
set of parameters remains unknown. A random injection into a
selected set of parameters would leave the success of the attack at
risk (though its chances are better than those of random attacks).
Fully targeted attack: A smart attack, which we claim as the core
contribution of this paper, aims at minimizing the probability of
exposure while increasing the probability of success. Our attack
model accomplishes that goal by emulating a failure incident. By
applying the statistical methods discussed in sections 3.1-4 over
the CPS data set, the malware infers seven attack strategies, where
each strategy includes (i) critical parameters that can trigger a CI
outage, (ii) a sequence of values to overwrite for each critical param-
eter, and (iii) a critical condition to initiate the attack (i.e., overwrite
the values for each parameter with the sequence of values from the
attack strategy). By cross-validating the timestamp of the strategies
with the incident reports, we found that three of the seven strate-
gies (4 for campus mode and 3 for economic mode) successfully
captured incidents related to the CPS (see Table 2 in Appendix A).
The remaining four strategies detected anomalies introduced by
“the change of CPS operation mode” that was demonstrated to be
“likely to cause a valve failure” (i.e., hardware failure in the control
valve) in the cooling cabinet ([5]), or detected an anomaly in the
return water temperature caused by the scheduled shutdown of the
CI, which cannot cause a failure of the CI. Also, as occurrence of fail-
ures caused by “changes in operation mode” remains probabilistic,
we left those strategies out of this paper.

4 RESULTS:ATTACKSTRATEGIES AND
THEIR DEPLOYMENT VIATHE
SELF-LEARNING MALWARE

Afterthemalwareinfersthestrategiestobeimplementedasattacks,
the malware identifies the controller (PLC) that uses the critical
parametersasinputsorderivesthe values forthe critical parameters
as outputs. For the identified PLC, the malware modifies the PLC
program (i) to check for attack- triggering conditions and (ii) tp
overwrite the normal values of the critical parameters with the
sequence of abnormal values defined by the attack strategy. The
malware completes the preparation of the attack by uploading the
modified program to the PLC. In the remainder of this section, we
introducethethreeattack strategies (from Section3.5)and describe
their implementation as smart malware.

4.1 Strategy 1: CHW abnormality due to a
power interrupt (S1)
Incident. As shown in Figure 5a, an abnormality occurred in the

temperature of the input chilled water (“CAMP.L.CHWS.TEMP”,
“CAMP.CHWS.TEMP”) fromthecampuschilled waterplant. Specif-

ically, the input temperature increased by 10°F above the usual

value (from 40°F to 50°F) and remained high for 30 minutes. By
relating this observation to the corresponding incident report, we
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found that a power interrupt at the campus chilled water plant had
impacted the computing facility. For this incident, the impact did
not cascade into the computing infrastructure, because the incident
occurred when computing infrastructure was not being heavily
used (i.e., the computing infrastructure generated less heat and did
not require significant cooling), but the consequences would have
been different if the incident had happened during peak hours.
Attack. When this strategy is implemented and triggered as an
attack, the malicious PLClogic onthe controller overwrites the wa-
ter temperature measurements as if the temperature had increased
and forces the CPS to respond to the apparent abnormality. The
CPS, in response to the “abnormality”, increases the water flow
to compensate for the (fake) loss of cooling capacity, which leads
to excess cooling capacity to the CI cooling cabinets in the data
center (i.e. a violation of the service-level agreement between the
facility and the computing infrastructure). To avoid reaching the
dew point, the CI cooling cabinets close the valve to slow down
the flow. The attack becomes effective when the parameter values
go back to normal. Once the (fake) temperature returns to normal,
the CPS starts to close the valves, which reduces the flow of the
chilled water to the CI. However, since the CI cooling cabinets do
not react in a timely manner [5], the CI encounters a shortage in
cooling capacity that increases the risk of an EPO.

4.2 Strategy 2: Maintenance operation (52)

Incident. Figure 5b shows a maintenance operation (replacement
of a water valve) that was identified by the smart malware. Around
03:00, the CV1A valve gets closed even though the CPS was operat-
ing in campus mode. (The operation was allowed because the CI was
shut down for planned maintenance.) The flow of the chilled wa-
ter (“CHW.FLOW”, “CAMP.CHW.FLOW”) dramatically decreases,
resulting in low cooling capacity. The entire event (including the
process of replacing the control valve) lasted for 18 hours.
Attack. When this strategy is implemented and triggered as an
attack, the malicious PLC logic on the controller overwrites the
control valveopening (“CHW.L.HI.CV1A”) withthe strategic values
(i.e., 40%). Without noticing the corruption in the command value,
the actuator closes the valve for an hour, which results in reduced
CHW flow (by 75%) and eventually a failure to deliver sufficient
cooling capacity to the system (because of reduced chilled water
flow); that failure would lead to an SWO of Blue Waters. As this
attack emulates a maintenance operation, it can be relatively easy
for the operators to notice it, and they may try to fix the problem by
overwriting the suspicious commands from the PLC with manual
commands from the control server. In such a case, the incident will
not last for the entire period of the scenario (24 hours). However,
as the impact of such an extreme loss in cooling capacity would
quickly (i.e., in 2—3 minutes) cascade into the CI, the operator would
not be able to prevent the SWO.

4.3 Strategy 3: Reduced cooling for an
emergency outage (S3)

Incident. Thelast scenario captured by the malwareis areduction

of chilled water flow in preparation for an emergency outage of

the computing infrastructure. Ineconomic mode, control valve 1B,

which manages the water from the cooling tower, is fully open

because of the relatively high input temperature, and the cooling
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Figure 5: Attack scenarios derived by the smart malware. (A description of the parameters can be found in Appendix A.)
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capacity is mainly managed by the pumps controlling the flow in
the closed loop. As shown in Figure Sc, the speed of the four pumps
(refer to “CHW.R.P1-4.SPD” in Figure 5c) is reduced, which results
in a lower flow of chilled water, and eventually, low cooling capac-
ity for the CI.

Attack. The reduction of cooling was intentional because the oper-
ator wanted to avoid reaching the dew point during the emergency
outage. However, when the incident is replayed as an attack during
normal CI operation, it can trigger an SWO of the CI. When this
strategy is implemented and triggered as an attack, the malicious
PLC logic on the controller overwrites the pump speed commands
(“CHW.R.P1-4.SPD”). As in the real incident, the flow is reduced
accordingly, which results in reduction of the cooling capacity avail-
able to the CI. As the cooling system fails to remove the heat in the
Cls, the compute cabinets start to trigger EPOs to prevent critical
damage in the hardware.

4.4 Malware implementation

Attack timeline. Asdemonstratedin [20], themajority of security
attacks are detected by catching (i) the payload that the attacker
executes or (ii) the trace left by the attacker in keeping a foothold
in the system (e.g., a remote network connection). Under proper
security monitoring, the likelihood of attack detection increases
with the length of time the attacker stays in the system (which
must be lengthy to enable investigation of the target and design
of the attack) [26]. We consider the possibility that the attackers
may avoid detection by deploying self-learning malware that can
infer attack strategies (specific to the target system) from the data
available in the system. In Figure 6, we show how an attack using
our self-learning malware proceeds. The attacker starts by send-
ing a phishing email to the CPS administrator @) to obtain the
credentials of the administrator (@). Using the credentials, the
attacker gainsaccessto the VPN-protected control network and the
control server, and installs the smart malware (€)). Once started,
the malware runs the learning algorithm (discussed in detail in
Section 3) with the CPS measurement data archived in a database
and derives potential attack strategies. The strategies are then in-
jectedintothecontroller (referto Algorithm 1in Appendix B)along
with the attack control logic that determines when to trigger the
attack (@). In @, the malware updates the logic embedded in the
controller with the malicious logic. Once embedded into the PLC
(programmable logic controllers), the malicious code monitors the
measurements and checks for a triggering condition (to maximize
the probability of a successful attack,@). When the condition is
met, the output of the controller is overwritten with the strategic
values (from @) to initiate a failure-triggering abnormal event
(0). The CPS responds to the abnormal measurements (i.e., tries
to regulate the chilled water accordingly,@ ), but, as in the failure
incidents, the response is not satisfactory, and the impact (ofloss of
or excess cooling capacity) cascades to the compute cabinets (@),
triggering an EPO or an SWO.

Minimization of traces. The overhead of our approach is that it re-
quires computing resources during data analysis. That requirement
can be reduced via a number of tricks. First, instead of executing
the malware as a single block executable, we divide the source code
into snippets of logic modules (divided by functionality as described
in Section 3), and have each module span the next module as an
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independent thread. After finishing its job, and executing the next
module, it can terminate its execution, and the next module can
remove the traces of the previous execution. Using that approach,
detection of the malware’s executionbecomes harder as the execu-
tionproceeds. (Recallthatthelaterstepsrequire fewercomputation
resources because of the reduction ofdata.)

5 DISCUSSION

Generalization. We discussed our malware in the context of the
CPS that manages the cooling system of Blue Waters. However, we
believe that the same malware (with little or no modification) can be
used in other computing facilities (HPCs, data centers, or the cloud)
with dedicated cooling systems, as long as they use a CPS from the
same vendor. Such a generalization is feasible because the attack
strategies are not hard-coded into the malware, but dynamically
derived from the environment that the malware observes. If the
CPS were from a different vendor, the malware would need to be
modified/adapted to account for different ways of programming
and uploading a control logic to the controller(s). The rest of the
procedures that constitute the presented self-learning malware (i.e.,
steps A through D as depicted in Figure 6) should remainthe same.

The success of the self-learning malware, as presented in this
paper, depends on the existence of CPS failures that lead to outages

of the computing infrastructure. The events that would benefit the
attacker (or malware) are rare (at NPCF, 2.73% of the 5,419 incidents
from 2013 to 2016 were cooling-system-related [5]), and there is no
guarantee that the malware can capture all such events.

Finally, although we focused on indirect (via CPS) attacks against

the computing infrastructure, the ultimate success of an attack de-
pends on the workload on the computing infrastructure, which is
beyond the control of an attacker. For instance, in the case of a cool-
ing system failure, only compute cabinets with high computational
load (during the incident) can trigger an EPO.
Detection. Having demonstrated that malware with learning as-
pects is a potential risk, we must consider how to protect and secure
our systems. System administrators, trying to protect a system from
advanced attacks, can take advantage of the approach discussed
in Section 3 in a supervised manner. In the following, we briefly
discuss example feasible approaches. One is to detect data obfusca-
tion and abnormalities using the steps in Section 3. The CPS under
study deploys redundancy to enhance reliability, i.e., the transition
to the backup CPS components happens only upon detection of
a failure (e.g., a timeout on receiving heartbeat packets), and no
validation process exists to detect malicious tampering with the
measurements. As a solution for data tampering, we consider an
intrusion detection system that analyzes data collected from the
control network. For instance, the Bro IDS (intrusion detection
system [19]) can be deployed in the control network. Bro can be
used as a resiliency monitor to detect abnormal events (e.g., sud-
den changes, outliers, or measurements inconsistent with earlier
observations). More specifically, unlike the malware, which has to
conduct unsupervised learning because of limited information, the
system administrators have full knowledge of (i) the CI and CPS,
(i1) the data collected from those systems, and (iii) the ground truth
on the CI status (which can be used to label the data).

Another feasible approach is to deploy multi-layered monitoring.
We consider a monitoring strategy that collects security events from
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Figure 6: Overview of the fully targeted attack model (smart malware).

the CPS and the computing infrastructure. We can build probabilis-
tic graphical models that effectively capture dependency among
events and system states. For example, a factor graph based frame-
work, for preemptive detection of security incidents, has been pro-
posed in [3]. By correlating events that represent the behavior of the
Cl and CPS, we can enable early (i.e., before the CI is compromised)
detection of security incidents.

6 VALIDATION

While the results described in the previous sections demonstrate
that our malware logic can effectively parse attack scenarios (i.e.,
data from the time interval during which an anomaly in the CPS
affected the operations of the computing infrastructure), its impact
when injected is yet to be verified. To evaluate the effectiveness
of the attack, we have implemented a software-driven simulation
framework that replicates the operations of the BAS under study
and (i) is driven by real CPS operational data, (ii) emulates the
chilled water regulation process of the BAS, (iii) provides a cyber
interface for the CPS used for communication and control of the
components, and (iv) can test attack scenarios (as described in
Section 4.4). After validating our framework’s ability to emulate
effectively the operation of the BAS, we evaluate the impact of the
attack strategies generated by the smart malware by injecting the
attacks in the simulated environment.

6.1 CPS simulation framework

The most effective approach for validation would be to inject the
attack scenarios into the CPS and its automation system. However,
such experiments are necessarily restricted because (i) we cannot
perform such an experiment without impacting users; (ii) the com-
puting infrastructure is heavily used (24/7) for scientific research,
so there is no down time for such experiments such that no users
are impacted; and (iii) the final impact of the experiment is un-
known (and could include hardware damage). Also, configuration
of a physical test environment, which might be considered as an
alternative, would not be easy, considering the scale and nature of
the system (i.e., CPS of a building managing tons of water). Our
simulation-based approach addresses such concerns by emulating
the physical interaction in software. For extended usage of the sim-
ulator (i.e., for usage in CPSes other than our BAS under study), we

have implemented the simulator in a layer-based architecture. As
our simulator emulates the full functionality of the CPS (i.e., from
the low-level interaction in the physical layer to communication
between the controllers and control server in the cyber layer), we
can efficiently evaluate the security and reliability of the CPS.
The simulation framework consists of a set of APIs, with the
system divided into three layers: a physical layer (which models
the interactions within the physical components), aprogrammable
logic layer (which serves as the programmable logic controllers),
and a cyber layer (which emulates the interaction between the
controllers and the control server). We expect the simulator users
to focus simply on the layer of interest, with the details in irrelevant
layers remaining abstract.
Physical layer. Each of the physical components and their activi-
ties is defined as a Python function. In the current simulator (for the
chilled water BAS under study), such components include the pump,
control valve, T-junction merge, T-junction distribution,
and heat exchange. Using Bernoulli’s incompressible flow equa-
tion [12], we define the fluid-mechanical activities (i.e., changes in
pressure, flow, and temperature) within each component. The inputs
for each implemented component describe the physical characteris-
tics of the chilled water fed into the component. By combining the
inputs with the control values (from the controllers), the function
can derive the physical characteristics of the output.
Programmable logic layer. The PLCs in the CPS are a critical
component in the cyber layer of the CPS, as they provide the core
intelligence that automates the control of the physical layer. For
each controller in the system, we implemented the controller logic
code (in our case from NPCF) in the Python language. Taking the
same set of inputs, our Python code derives the output by using
the logic described in the controller logic code. When using our
framework for simulating a CPS other than our BAS, users must
properly convert the controller logic code into the programming
language of the framework. For such users, we provide a set of
common instructions in the control logic code as Python functions.
The cyber layer provides interfaces for communication between
the controllers and the server. By default, we provided the inter-
face with the UDP protocol, but it can be extended to use other
commonly used (or even custom) protocols (e.g., BACNet or any
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proprietary protocol). In addition, the API provides a feature for
updating the controller logic. Since the controller logic is defined as
a separate Python file, one can update it by executing a command
in the control server. A summary of the interfaces available in the
framework can be found in Table 3 in Appendix A.

6.2 Validation: simulation framework

To demonstrate the ability of the simulator to represent real op-
erations of the system under study, we ran the simulator with
input conditions (i.e., measurements of the chilled water input to
the building) from the real system. Using the simulator APIs, we
constructed a model of the CPS under study (Figure 8), and ran a
simulation by feeding the system with real data that describe (i)
the condition of the chilled water fed from the campus, and (ii) the
condition ofthe chilled water returning from the server room (with
the heat absorbed from the CI).

As shown in Figure 7, we found that the level of abstraction was
sufficient for our purpose of replicating the physical system. In
Figure 7a, the measurements from the simulator show a constant
offset (by 403.07 gallons per minute for the flow and by 2.95°F for
the temperature). In terms of error rate, a raw comparison (simply
comparing the measurements from the simulator with those in the
data) found error rates of 10.44% for the flow and 6.07% for the
temperature. Those differences are due to the assumptions made in
the design of the simulator (for instance, negligible major loss or loss
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due to friction). The excess energy (compared to the real operation)
is represented as increased flow in the simulation. Furthermore,
as the temperature of the chilled water is affected by the flow, the
impact of the additional flow cascades into the temperature. We
acknowledged that the offset was due to the abstractions adopted
within the process of representing the real system with a simulator,
so we removed the constant offsets from the simulation data. After
we removed the offsets, the percentage difference between the
simulation data and real data was reduced to 2.95% for the flow
and 3.20% for the temperature (as shown in Figure 7b). Having
confirmed the validity of the simulator, we could then evaluate the
effectiveness of the strategies derived by the smart malware.

The simulation of the current framework is limited to the BAS
studied in this paper, and the components of the framework are
limited to those needed to simulate the BAS. For extended easy
use of the simulator (e.g., for HVAC or water distribution), more
components need to be added. In addition, in simulating physical
aspects, the framework utilizes an abstract model that deploys a
set of assumptions. Such an abstraction was reasonable for our
purpose of verifying the smart malware strategies. However, for a
more accurate simulation of the physical aspects, such assumptions
should be removed, and the APIs should be updated accordingly.

6.3 Validation: smart malware

Having verified the effectiveness of the CPS simulation framework,
we now discuss the results of replaying the smart attack strategies
(as described in Section 4) in the simulator through the following
procedure implemented as part of the self-learning malware. (i)
The malware analyzes the CPS operational data (archived in the
database) and infer an attack strategy (e.g., altering measurements
on the water temperature); (ii) it then embeds the selected attack
strategy by injecting malicious code in the controller logic program
of the target controller; (iii) it uploads the maliciously crafted con-
troller logic program to the controller (PLC); and (iv) the malware
then uses the maliciously altered PLC to monitor attack-triggering
conditions, and, when the triggering conditions are satisfied, re-
places the input/output values of the controller with the strategic
values derived in step (i).

In order to validate the attack consequences, we set an upper and
lower bound/limit on the cooling capacity. The cooling capacity is
derived by multiplying the volumetric water flow by the tempera-
ture difference between the water going to and the water coming
from the server room; the cooling capacity is measured in British
thermal units (BTU). An attack is considered successful if the check
on chilled water cooling capacity passes (i.e., the CPS perceives the
supplied water cooling capacity to be within the predefined bounds)
while the CPS measurements were being maliciously altered by our
malware.

By injecting attacks in the simulated environment, we confirmed
that the identified attack strategies can effectively introduce anom-
alies in the CPS such that the cooling capacity provided to the
server room falls outside the normal range.

S1: CHW abnormality due to a power interrupt: 110 minutes
(in simulation time) after the malicious PLC logic triggered the at-
tack, the values for CHW flow measurements (“CHW.FLOW”) were
overwritten with abnormal values (derived by the smart malware),
and the cooling capacity exceeded the upper limit of the maximum
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range. This anomaly occurred because the control system (given the
fake data that reported an increase in chilled water input) increased
the flow (to compensate for the increased temperature) by opening
the control valve. However, as the real temperature was normal,
the increased water flow resulted in excess cooling capacity, which
is something the administrators try to avoid because of the risk
that dew might form in the CI (Figure 9a).

52: Maintenance operation (valve replacement): In this attack
strategy, the malicious PLC logic started to provide the control valve
opening command (“CHW.L.HI.CV1A”) with abnormal values, 125
minutes after the attack was triggered. Initially, the controller (with
its original logic) derived the correct control valve command (be-
cause the malicious PLC logic did not corrupt the input parameters).
However, before sending out the command values, the malicious
logic overwrote the correct values with the strategically crafted
values, which caused the cooling capacity to drop below the lower
limit. As shown in Figure 9b, while the simulation without injection
kept the cooling capacity within the predefined boundaries, the
attack effectively drove the cooling capacity outside the normal
bounds.

S3: Reduced cooling for emergency outage: 90 minutes after the
attack was triggered, the normal command values (i.e., “CHW.R.P1-
P4.SPD”) were overwritten with the maliciously crafted values,
which leads to a loss of flow in the chilled water loop. As a result,
the cooling system encountered a loss of cooling capacity such that
it dropped below the lower limit 95 minutes after the attack was
triggered. The cooling capacity was restored back to normal after
240 minutes (Figure 9c).

As demonstrated in our simulated environment, the attack strate-
gies derived by the smart malware can effectively introduce an
anomaly into the cooling system. Though the impact of the anom-
aly on the CI cannot be shown, we have successfully demonstrated
that the attack can emulate incidents that led to SWOs in the past.
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7 RELATED WORK

Energy-related attack models. In [15], the authors present an
attack on the power system of a data center, which aggressively
discharges a backup battery of a server rack and triggers a switch
of power source to the discharged battery. The switch of the power
source to the empty battery results in loss of service. Similar studies
on different attacks were presented in [27] and [7]. Also, a number
of previous efforts studied the impact of cooling failures on the
availability of data centers. In [21], the author considered cooling
systems as a vulnerable component of data centers and studied the
impact of cooling losses due to power failure. Zhou et al., in [29],
present a control logic that optimizes the operation of computer
room air conditioning units. Papers [8, 9] investigate vulnerabilities
introduced by aggressive heat policies in data centers and introduce
a set of thermal attacks, and the authors of [2] demonstrate that
DDoS attacks, by generating massive heat, can permanently damage
server or switch hardware.

CPS Security. Multiple kinds of malware has been reported that
take advantage of vulnerabilities in power systems [13, 14], such
that the malware introduces abreakdown of critical components in
the system or obfuscates the power grid, causing a blackout. The
authors of [10] generalizes Stuxnet with a physical model embedded
to derive the optimal attack vector that maximizes damage to the
current target. Also, a number of studies have conducted research
on the security of networked control systems [4, 24, 25, 28]. In
[1], Alemzadeh et al. present malware that targets a teleoperated
surgical robot, where the malware identifies packets that contain
data for a certain state and injects faults that can cause catastrophic
consequences. Furthermore, their attack model learns the optimal
attack time that can maximize the impact of an attack. In [16],
the authors present a method to identify network packets that
updatethe control ofanuclearpowerplant’slogic, and to overwrite
the logic with failure-causing logic. In [18], an IDS that utilizes
fused information from multiple sensors to detect energy theft is
discussed. Interms of protection, Lin[17]deployedan open-source
intrusion detection system over SCADA systems that expands the
coverage of the IDS to control system-specific protocols. We expect
such anapproachtobe effective against our attack model; different
scripts can be added to detect policy violations and anomalies.

8 CONCLUSIONS

In this paper, we demonstrate the feasibility of security attacks that
masquerade as failures and are delivered via self-learning malware
that monitors the target system and launches the attack by injecting
a strategic failure at a time and system location chosen to have
a maximal impact. The target system we focus on is a CPS that
manages and controls the cooling system for a large computing
enterprise (i.e., the Blue Waters supercomputer). We address a range
of issues, including the construction of the self-learning malware
and the launch of a failure injection attack. Provided with real CPS
data, our malware inferred 3 unique attack strategies which disrupt
the cooling system while the attack masquerades as an accidental
CPS failure. We validated the attacks in a data-driven CPS simulator
developed as part of this study.
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A TABLES

The tables can be found on the next page.

B ALGORITHM

Algorithm 1 Pseudocode of the malicious wrapper around the
original controller logic

1: procedure DetermineOptimalStrategy
2: if (o X par 1 + pXpar 2 < thr 2)
&(Timer == 0)then
mode =econ
:else
mode =campus

3

4

5

6: op_stratedy = stratedy[mode]

7: procedure Original Controller Code

8:output 1 = oro_funct 1(parXu, ..., parZy)

9:...

10: output_ N = oro_functN(parXn, ....parZn)
11: procedure Output Overwrite

12: if Timer < len(op_strateoy[output 1) then

13: output 1 = op_stratedy|output 1][Timer ]
14:

15: output_N = op_stratedy[output N |[Timer ]
16: Timer+ =1

17: else

18: Timer =0
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Table 1: Critical Parameters for the Attack Strategies

Mode of Operation Parameter Description
CHW.L.HI.CV1A How far the control valve 1A is opened (%)
CAMP.CHWR.TEMP Temperature of chilled water returning to the campus CHW loop

Campus CAMP.CHWS.TEMP Temperature of chilled water supplied from the campus
CAMP.L.CHWS.TEMP Temperature of chilled water supplied from the campus
CHW.FLOW Chilled water’s volumetric flow
CAMP.CHW.FLOW Chilled water’s volumetric flow from campus
CHW.L.HI.CVIA How far the control valve 1A is opened (%)
CHW.L.HL.CVIB.CHWS.TEMP1 Temperature of chilled water supplied to the server room
Economic CHW.L.HI.CVIB.FLOWI Volumetric flow of chilled water through control valve 1B
CHW.R.P1.SPD Pump 1 speed (%)
CHW.R.P2.SPD Pump 2 speed (%)
CHW.R.P3.SPD Pump 3 speed (%)
CHW.R.P4.SPD Pump 4 speed (%)

Table 2: Attack strategies inferred by the fully targeted attack (smart malware)

Timestamp Abnormal Parameter Recorded Incident Impact on CI

2016-10-25 09:25 control valve 1B flow reduced cooling capacity for emergency outage (Figure 5c¢) scheduled outage

2016-11-07 10:40 chw return temperature  (change in mode of operation)
2016-12-05 08:10 chw return temperature  (reduction of heat absorbed from CI due to scheduled maintenance)

2016-12-26 00:45 chw returntemperature (change in mode of operation)

2016-12-26 07:35 chw returntemperature (change in mode of operation)

2017-02-11 19:55  chw supply temperature  supply water anomaly due to power interrupt (Figure 5a) SWO for 5 hrs
2017-03-28 09:15 pump1 speed chilled water loop maintenance (Figure 5b) scheduled outage

Table 3: Summary of APIs provided in the simulation framework

Layer API Description
socket init()/close() Initializes/closes the network sockets used for communication
ctrl_recvData() Controller receives packets from the network that contain commands (from the

Cyber server) and data from different controllers
ctrl sendData() Controller sends the data to be sent over the control network
server_recvData () Server receives data from the client and acknowledges receipt to the sender
server_sendData () Server prompts for operator command (e.g., update PLC), and sends the command

to the controller over the network
reportData () Controller reports the data to predefined destinations
recvPacket () Receives packets from the server or other controllers
Programmable ~controller init()/close() Initializes the controller and its network socket and closes the socket

Logic ctrl_logic () The control logic (for each controller) implemented in the Python language
PID() Function for PID logic (or the LOOP instruction in Siemens PPCL [23])
table () Function for the TABLE instruction in Siemens PPCL [23])
HeatExchanger () Models the temperature during heat exchange
tJunction_distribution()  Models the flow and pressure for a T-junction with one input and two outlets

Physical tJunction merge () Models the flow and pressure for a T-junction with two inputs and one outlet

controlValve () Models the flow by the control valve that takes commands from a controller
Pump () Models the flow and pressure by the pump operation that takes commands from

the controller
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