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ABSTRACT 
In this paper, we demonstrate the feasibility of smart malware 
that advances state-of-the-art attacks by (i) indirectly attacking a 
computing infrastructure through a cyber-physical system (CPS) 
that manages the environment in which the computing enterprise 
operates, (ii) disguising its malicious actions as accidental failures, 
and (iii) self-learning attack strategies from cyber-physical system 
measurement data. We address all aspects of the malware, including 
the construction of the self-learning malware and the launch of a 
failure injection attack. We validate the attacks in a data-driven 
CPS simulation environment developed as part of this study. 

CCS CONCEPTS 
• Security and privacy → Distributed systems security; • Com- 
puter systems organization → Embedded and cyber-physical 
systems; • Computing methodologies → Machine learning. 
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1 INTRODUCTION 
The growing sophistication of cyber-physical systems (CPSes), 
while enabling new breakthroughs in different application domains, 
also brings new vulnerabilities that can be exploited by malicious ac- 
tors. In a typical CPS, a computing infrastructure provides support 
to the physical infrastructure, and the resiliency of such systems 
gets significant attention from both researchers and practitioners. 
However, we find that a different scenario, in which a closed-loop 
CPS provides essential services to the computing infrastructure, 
has not yet been well investigated. More specifically, we consider a 
scenario in which an attacker attempts to shut down a computing 
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infrastructure and cause a system-wide outage by compromising 
the CPS with self-learning malware. 

A weakness in the cyber security of CPSes and computing in- 
frastructure (CI) can introduce an unforeseen threat. By utilizing 
the often underestimated dependency of computing infrastructure 
on surrounding CPSes, an adversary who targets a high-value com- 
puting infrastructure (e.g., a data center or supercomputer) can 
deploy an indirect attack by exploiting the relatively weak secu- 
rity of CPSes that are critical to the operation of the computing 
infrastructure. In this scenario, the vulnerability of the CPS acts 
as a weak point that lowers the security barrier of the otherwise 
well-protected system. As demonstrated in [5], an indirect attack 
can further thwart detection by replaying known failure scenarios 
in the CPS such that their impact cascades to the target CI. 

In this paper we discuss advances of cyber-attacks in the context 
of indirectness and automation (driven by self-learning abilities). 
More concisely, we present a type of smart (self-learning) malware 
that exploits the weaknesses of a CPS to induce a malicious at- 
tack that (i) masquerades (to monitoring entities of the CPS) as an 
accidental failure, and (ii) stealthily propagates to the computing 
infrastructure, causing a major failure that includes a system-wide 
outage. To be specific, in the context of a real computing facility 
(i.e., Blue Waters), we present a learning malware logic that mimics 
failures or abnormal events in the cooling facility (i.e., the National 
Petascale Computing Facility) that eventually lead to an outage of 
the HPC housed in the facility. Building on the hypothetical attack 
scenario in [5], we implement and evaluate variations of attack 
scenarios (leveraged by the degree of automation and learning). 
The most naive approach randomly pollutes the data segments of 
random packets, whereas the most advanced approach carefully 
crafts an attack strategy inferred from operational data. 

As demonstrated in this paper, self-learning malware is no longer 
a remote possibility. Our experimental results show that our mal- 
ware can effectively (i) classify the CPS measurements related to 
failure incidents of the computing infrastructure in an unsuper- 
vised manner, (ii) identify core CPS parameters related to the regu- 
lation of cooling capacity, and (iii) infer abnormal measurements in 
the parameters that triggered anomalies in the CPS whose impact 
propagated to the computing infrastructure. While the advances 
discussed in this paper might seem to benefit malicious entities, 
our approach (especially for inferring the attack strategy) can be 
used to preemptively eliminate the potential risks by detecting 
sensitive anomalies in real time; it can also be used to reinforce 
the control logic to properly handle such anomalies (see Section 5). 
Furthermore, the CPS simulator presented in this paper can be used 
to evaluate the resilience of the CPS against unforeseen abnormal 
conditions. 
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Figure 1: Chilled water system overview. 
 

The contributions of this paper are the following: 
We show the possibility of an indirect attack on a computing 
infrastructure through intrusion in a cyber-physical system. 
We present smart malware logic that can learn attack strategies 
from CPS data and replay failure scenarios. The malware imple- 
mented 3 attack strategies that corrupt the cooling capacity. 
We present a data-driven CPS simulator and its usage in evaluat- 
ing the resilience of a CPS against the malware. Comparison of 
simulation data with real data found a mean error of 3%. 
We discuss how our findings as a white-hat hacker can be used 
to secure a system from advanced threats. 

2 SYSTEM OVERVIEW 
As shown in Figure 1, we consider a typical configuration of a 
large-scale computing facility instantiated in the context of the 
Blue Waters supercomputer. In this configuration, the operational 
environment (e.g., room temperature, delivery of chilled water to 
cool the computing nodes) of the computing infrastructure is man- 
aged by a building automation system (and associated CPS) that 
optimizes the control over the actuators, given a set of measure- 
ments representing the parameters of the operational environment. 

2.1 Computing infrastructure: Blue Waters 
In our attack model, we set a computing infrastructure, or, to be 
more specific, its availability, as the final target. In this paper, we 
study the case of Blue Waters, a 13.3-petaflop supercomputer man- 
aged by the National Center for Supercomputing Applications 
(NCSA) at the University of Illinois. Blue Waters is composed of 
around 300 computing cabinets, each of which houses around 90 
nodes (i.e., 3,000 16-core processors per cabinet, or 27,000 in total) 
[6]. To prevent damage to the physical parts from the massive heat 
generated during the operation of the supercomputer, a liquid-based 
cooling system has been deployed. For Blue Waters, 72 cooling cab- 
inets are placed alongside the compute nodes, and each cabinet 
prepares and delivers Freon to the three adjacent compute nodes. 
The liquid form of Freon, travelling through the rack of compute 
nodes, then absorbs the heat from the compute nodes and returns 
to the cooling cabinet in the form of a gas. 

2.2 Cyber-physical system: NPCF building 
automation system 

The Blue Waters supercomputer is housed in a dedicated build- 
ing, the National Petascale Computing Facility (NPCF). The 88,000- 
square-foot building uses a state-of-the-art building automation 
system (BAS) that is in charge of regulating the environmental 
parameters (i.e., pressure, flow, and source of the cooling system) 

of the building, including the server room. A detailed configura- 
tion of the system can be found in [5]. The building automation 
system (which consists of a control server, a set of programmable 
logic controllers-PLCs, sensors, and actuators) utilizes a set of mea- 
surements collected from the chilled water loop to regulate the 
chilled water delivered to the cooling cabinet, under three modes 
of operation: campus mode, mix mode, and economic (econ) mode. 
Campus mode is the used mode in most data centers that use chilled 
water bought from external providers. While the chilled water from 
such providers is well controlled (i.e., the temperature, flows, and 
pressure are kept within an agreed range), its usage results in an 
increase in the cost of operation. To reduce the cost of operation, 
NPCF has a set of dedicated cooling towers (which use cold tem- 
peratures to naturally chill the water) by means of which it can 
deploy an additional mode of operation: economic mode. By taking 
advantage of cold external temperatures throughout 2/3 of the year 
to prepare the chilled water, NPCF was able to significantly reduce 
its cost of operation, which compensated for the construction costs 
of the water towers after one year of operation. The mix mode is an 
intermediate mode that was introduced to enable smooth transition 
between economic and campus modes. 

2.3 Data 
The CPS operational data set is an archive of all measurements 
and control command values within the chilled water system of  
the building facility that were collected from September 2016 to 
May 2017. The data set contains 47 distinct parameters (see Table 
1 in Appendix A) collected every 5 minutes. Sample parameters 
monitored and collected within the chilled water system include 
differential pressure, flow, and temperature of the campus input 
(“CAMP.CHW.DP, FLOW, TEMP”), control valve setting and mea- 
surements at the high loop (“CHW.HI.CV, TEMP, FLOW”). This 
data set is essential for analyzing the operation of the CPS and 
inferring critical information related to failure of the computing 
infrastructure. 
The incident reports log incidents related to the computing in- 
frastructure since the deployment of the system (i.e., December 
2012). The incidents recorded in the reports include hardware part 
failures, cooling-system-related problems, and system-wide outages 
(SWOs) during which all 28,164 compute nodes were shut down. 

2.4 Threat model 
In our threat model, we assume: 

The cooling control system (CPS) is less secure than the target 
computing infrastructure and is relatively easier to exploit. (This 
motivates our indirect attack model.) 
The attacker (i) can get (remote) access (e.g., through phishing, 
stolen credentials, or insider attack) to the control network and 
the CPS control server, (ii) can identify the target parameter(s) 
(e.g., the flow and temperature of the chilled water supplied to 
the server room) based on the information available through 
the control server interface, and (iii) does not have access to the 
incident reports on the failures of the computing infrastructure. 
Our smart malware (i) has access to the data archive that stores 
the CPS measurements and the copies of the PLC programs kept 
in the control server as a backup of the actual logic that had been 
loaded onto the PLC, (ii) can automatically derive attack strategies 
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Figure 2: Approach and attack modes. 

(as described in detail in Section 3), (iii) can inject malicious con- 
trol code (that checks for the attack-triggering condition(s) and 
overwrites the critical parameters) into the controller program, 
and (iv) can upload the program to the controller by using the 
control server APIs. The technical details of the control server 
APIs and PLC control logic format can be obtained from publicly 
available documents on a given CPS (e.g., [22, 23]) . 

3 SELF-LEARNING MALWARE: AN 
UNSUPERVISED APPROACH 

In this section, in terms of a set of steps (depicted in Figure 2), we 
describe our approach to developing self-learning malware that is 
capable of inducing malicious attacks against a CPS that controls 
the environment in which the computing infrastructure operates. 

3.1 Step 1: Identification of mode of operation 
Goal. As discussed in Section 2.2, a BAS relies on multiple input 
sources to deploy different modes of operation. The control logic 
and the measurements differ depending on the mode of operation, 
and hence, it is critical to accurately classify the data by the mode 
of operation to infer characteristics specific to each mode. 
Approach. We apply (i.e., our malware runs) k-means clustering 
[11] to classify the data by the mode of operation. With the goal 
of interrupting the cooling capacity, we choose the two parame- 
ters that define the cooling capacity delivered to the server room: 
chilled water flow (chw_flow) and temperature difference (tempDiff) 
between the supply and return water. 
Results. The clustering algorithm, with a k value of two, effectively 
captures the data clusters (campus and econ mode). When com- 
pared to the ground truth, we achieved a 97.96% true-positive rate 
(0.04% false-positive rate) for campus mode, a 99.76% true-positive 
rate for econ mode, and 98.62% overall accuracy. 

3.2 Step 2: Filtration of failure data 
Goal. To design attacks that masquerade as accidental failures, the 
primary step is to parse the CPS data that are related to system 
failures. However, with our assumption that the intrusion will be 
restricted to the level of the building control network, the iden- 
tification of failures in the computing infrastructure becomes a 
nontrivial problem, as the information available to the attacker is 
limited. (I.e., the attack does not have access to failure logs collected 
from the computing infrastructure.) In order to overcome that limi- 
tation, we present an indirect approach to predicting the state of 

Figure 3: SWO observed through chilled water supply and 
return temperature measurements. 

 
the computing infrastructure from the available CPS data. 
Approach. A feasible approach is to infer the system status from the 
returning chilled water temperature, the only parameter within the 
measurements that reflects the status of the computing infrastruc- 
ture of interest. In Figure 3, we plot the supply water temperature 
to the data center (“CHW.R.HI.CHRS.TEMP” ) and the return tem- 
perature from the data center (“CHW.R.HI.CHWR.TEMP” ) during a 
month of operation (March 2017). The distance between the two 
plots reflects the amount of heat generated by the computing infras- 
tructure. What we focus on is the occasional nadirs (drops) among 
the relatively constant (compared to the supply temperature) return 
temperature. The nadirs indicate events in which the computing 
infrastructure did not generate heat, which happens only when 
the computing infrastructure is down. As a result, by detecting the 
nadir, the attacker can parse data related to maintenance of Blue 
Waters or its surrounding systems, and outages of Blue Waters. 
Results. Analysis of CPS operational data over 9 months shows that 
the nadir detection approach reduces the data of interest from 72.5K 
entries (i.e., measurement points) to 2,938 entries (a 96% reduction). 
The 2,938 entries can be coalesced into 23 distinct events. (An event 
is represented as a set of measurement points collected within 3 
hours of the extreme nadir.) By cross-validating those data with 
the incident reports (which are not available to external entities or 
attackers) that manually log the failure incidents of Blue Waters, we 
found that our prediction model captured 3 out of 5 system-wide 
outages that occurred during the period of study. The two SWOs 
that were not captured with our approach occurred when an outage 
did not last long enough for its impact to be visible at the chilled 
water system level. Reduction and filtration of the data in this step 
ensured that (i) the correlation analysis (Section 3.3) inferred the 
relationships among the parameters during normal operation (by 
excluding the data that were predicted to be related to computing 
infrastructure failure), and (ii) the abnormality analysis (Section 
3.4) captured the anomalies in the failure data set by comparing it 
with the normal-operation data set. 

3.3 Step 3: Reduction of target parameters 
Goal. Within the control system under study, measurements of 
47 parameters are monitored and shared among the controllers. 
While each and every parameter plays a role in the control logic, 
not all parameters are closely related to the goal of the attacker, 
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i.e., disrupting the delivery of chilled water to the computing in- 
frastructure. While malware can be designed in a naive manner 
to pollute random parameters, its likelihood of success would be 
extremely low despite the high likelihood of exposure (or detection). 
Instead, we apply a statistical method to carefully choose the target 
parameters to be altered by our malware. 
Approach. The attacker’s goal is to reduce the cooling capacity 
of the chilled water delivered to the server room, and hence the 
attacker needs to monitor the final target parameters: the temper- 
ature and volumetric flow of the supplied chilled water. Given a 
series of measurements of the 47 parameters, the malware com- 
putes correlation between each pair of parameters, where a value 
closer to 1 (or 1) represents the significance of a linear relationship 
between the two parameters. 
Results. For each mode of operation we choose the top ten param- 
eters with the highest correlation. Example parameters include con- 
trol valve setting, pump speed, and input water temperature/flow 
and pressure. In addition to reducing the number of target param- 
eters, our correlation-based approach captures the relationships 
among the critical parameters to minimize contextual inconsistency 
during false-data injection. (I.e., when injecting false data into a crit- 
ical parameter X, we also appropriately alter the data for parameters 
that report high correlation with the parameter X.) The reduced 
data set consists of 23 distinct events with 10 critical parameters 
each. In the next step, we filter out events with no abnormal values 
of critical parameters. 

3.4 Step 4: Filtration of events with abnormal 
measurements 

Goal. In step 2, we reduced the CPS measurement dataset to 23 
events that are predicted to be related to a CI outage. In this step, 
we further reduce the number of events and its critical parameters 
by selecting those events for which the critical parameters show 
abnormal values. (We consider those events to be the root cause of 
the CPS-induced CI outages). 
Approach. As part of defining an abnormal event for a parameter, 
we assume that the parameter values can be represented as a Gauss- 
ian distribution. Given a Gaussian distribution, measurements with 
z-scores greater than 3 are considered as outliers. For a stricter 
bound (to reduce false positives), we consider a measurement to be 
abnormal if its z-score exceeds 4. (In a perfect Gaussian distribution, 
99.9936% of the measurements have z-scores smaller than 4.) To be 
specific, for each parameter in the 23 events, we check if there is 
an abnormal measurement that exceeds a threshold (whose z = 4). 
We remove the parameter from the list of critical parameters if no 
abnormal measurement/value is detected for this parameter. Also, 
if all the critical parameters are removed for an event, then we 
consider that event as “inappropriate for an attack strategy.” After 
running the abnormality analysis over each critical parameter (from 
Section 3.3) for all events (from Section 3.2), we are left with a set 
of events to be implemented as part of an attack strategy. 
Results. To demonstrate the effectiveness of this step, we applied 
our analysis to a known incident in the chilled water system that 
had impacted the operation of the computing infrastructure. Figure 
4 shows the flow of the chilled water to the computing infrastruc- 
ture (CI) during a maintenance operation on the campus loop. A 
closure in the tank of the campus chilled water (CHW) loop resulted 

 

 
Figure 4: Loss of flow due to campus maintenance operation. 
in an increase in CHW flow to the CI around 9:30; the CPS immedi- 
ately regulated it by closing the valves. Later, after the maintenance 
operation was over around 13:00, the input flow returned to normal. 
However, with the current settings of the valve, the flow to the CI 
faced a dramatic drop that resulted in a lack of cooling capacity for 
a set of compute cabinets and caused an emergency power off (EPO) 
because of the increase in the internal temperature. The thresholds 
indicating the abnormal measurements of the parameter (chilled 
water flow) in Figure 4 (“CHW.L.HI.FLOW”) are depicted as dashed 
lines. The figure shows that our threshold effectively identified the 
abnormal event, i.e., the dramatic drop in the water flow around 
13:00 that was the root cause of the CI outage. 

When we apply (or the malware applies) the abnormality detec- 
tion method to each candidate parameter of the 23 events (identified 
in steps 1—3), we end up with 7 events that each include at least one 
abnormal measurement. In Section 3.5, we evaluate the events (in 
the context of causing a CI outage) and describe how the malware 
constructs attack strategies based on the selected events. 

3.5 Variations of attack levels 
The attack strategies that can be implemented by our malware 
are classified into three levels of sophistication (Figure 2): random 
attacks, semi-targeted attacks, and fully targeted attacks. Each level 
differs from the others in terms of the difficulty of preparing the 
attack and the likelihood of detection. 
Random attack: This attack poisons the measurements of the BAS 
by overwriting the data segment of random parameters with ran- 
dom values. With consistent alteration of the measurements, there 
is a possibility that a malicious measurement will cause a BAS to 
make a faulty decision that leads to failure of the computing in- 
frastructure. However, no sophistication is involved in this attack; 
hence, it has a low probability of success (from the attacker’s per- 
spective) and a high probability of detection (due to the lack of 
contextual consistency in the measurements). This attack is more 
likely to be effective if the attacker has some understanding of the 
physical system, but most likely there would be only one oppor- 
tunity to carry out such an attack, since it would leave a highly 
visible, abnormal trace. 
Semi-targeted attack: This attack strategically filters the parame- 
ters of interest. By reducing the target parameters, the attacker can 
increase the likelihood of success. Using the method discussed in 
Section 3.3, we identify 10 target parameters (out of 47 parameters 
available in the BAS) per mode of operation. When we validated 
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the 10 parameters with human expertise (which is not available    
to attackers), we found that 6 were critical to preparation of the 
chilled water for the campus mode and can potentially cause failure 
of computing infrastructure when corrupted. For the econ mode, 
we found 5 parameters to be critical. While the approach can in- 
crease the likelihood of a successful attack by reducing the target 
parameters from 47 to 5, the value to be injected into the reduced 
set of parameters remains unknown. A random injection into a 
selected set of parameters would leave the success of the attack at 
risk (though its chances are better than those of random attacks). 
Fully targeted attack: A smart attack, which we claim as the core 
contribution of this paper, aims at minimizing the probability of 
exposure while increasing the probability of success. Our attack 
model accomplishes that goal by emulating a failure incident. By 
applying the statistical methods discussed in sections 3.1–4 over 
the CPS data set, the malware infers seven attack strategies, where 
each strategy includes (i) critical parameters that can trigger a CI 
outage, (ii) a sequence of values to overwrite for each critical param- 
eter, and (iii) a critical condition to initiate the attack (i.e., overwrite 
the values for each parameter with the sequence of values from the 
attack strategy). By cross-validating the timestamp of the strategies 
with the incident reports, we found that three of the seven strate- 
gies (4 for campus mode and 3 for economic mode) successfully 
captured incidents related to the CPS (see Table 2 in Appendix A). 
The remaining four strategies detected anomalies introduced by 
“the change of CPS operation mode” that was demonstrated to be 
“likely to cause a valve failure” (i.e., hardware failure in the control 
valve) in the cooling cabinet ([5]), or detected an anomaly in the 
return water temperature caused by the scheduled shutdown of the 
CI, which cannot cause a failure of the CI. Also, as occurrence of fail- 
ures caused by “changes in operation mode” remains probabilistic, 
we left those strategies out of this paper. 

 
4 RESULTS: ATTACK STRATEGIES AND 

THEIR DEPLOYMENT VIA THE 
SELF-LEARNING MALWARE 

After the malware infers the strategies to be implemented as attacks, 
the malware identifies the controller (PLC) that uses the critical 
parameters as inputs or derives the values for the critical parameters 
as outputs. For the identified PLC, the malware modifies the PLC 
program (i) to check for attack- triggering conditions and (ii) tp 
overwrite the normal values of the critical parameters with the 
sequence of abnormal values defined by the attack strategy. The 
malware completes the preparation of the attack by uploading the 
modified program to the PLC. In the remainder of this section, we 
introduce the three attack strategies (from Section 3.5) and describe 
their implementation as smart malware. 

4.1 Strategy 1: CHW abnormality due to a 
power interrupt (S1) 

Incident. As shown in Figure 5a, an abnormality occurred in the 
temperature of the input chilled water (“CAMP.L.CHWS.TEMP”, 
“CAMP.CHWS.TEMP”) from the campus chilled water plant. Specif- 
ically, the input temperature increased by 10oF above the usual 
value (from 40oF to 50oF) and remained high for 30 minutes. By 
relating this observation to the corresponding incident report, we 

found that a power interrupt at the campus chilled water plant had 
impacted the computing facility. For this incident, the impact did 
not cascade into the computing infrastructure, because the incident 
occurred when computing infrastructure was not being heavily 
used (i.e., the computing infrastructure generated less heat and did 
not require significant cooling), but the consequences would have 
been different if the incident had happened during peak hours. 
Attack. When this strategy is implemented and triggered as an 
attack, the malicious PLC logic on the controller overwrites the wa- 
ter temperature measurements as if the temperature had increased 
and forces the CPS to respond to the apparent abnormality. The 
CPS, in response to the “abnormality”, increases the water flow 
to compensate for the (fake) loss of cooling capacity, which leads 
to excess cooling capacity to the CI cooling cabinets in the data 
center (i.e. a violation of the service-level agreement between the 
facility and the computing infrastructure). To avoid reaching the 
dew point, the CI cooling cabinets close the valve to slow down 
the flow. The attack becomes effective when the parameter values 
go back to normal. Once the (fake) temperature returns to normal, 
the CPS starts to close the valves, which reduces the flow of the 
chilled water to the CI. However, since the CI cooling cabinets do 
not react in a timely manner [5], the CI encounters a shortage in 
cooling capacity that increases the risk of an EPO. 

4.2 Strategy 2: Maintenance operation (S2) 
Incident. Figure 5b shows a maintenance operation (replacement 
of a water valve) that was identified by the smart malware. Around 
03:00, the CV1A valve gets closed even though the CPS was operat- 
ing in campus mode. (The operation was allowed because the CI was 
shut down for planned maintenance.) The flow of the chilled wa- 
ter (“CHW.FLOW”, “CAMP.CHW.FLOW”) dramatically decreases, 
resulting in low cooling capacity. The entire event (including the 
process of replacing the control valve) lasted for 18 hours.  
Attack. When this strategy is implemented and triggered as an 
attack, the malicious PLC logic on the controller overwrites the 
control valve opening (“CHW.L.HI.CV1A”) with the strategic values 
(i.e., 40%). Without noticing the corruption in the command value, 
the actuator closes the valve for an hour, which results in reduced 
CHW flow (by 75%) and eventually a failure to deliver sufficient 
cooling capacity to the system (because of reduced chilled water 
flow); that failure would lead to an SWO of Blue Waters. As this 
attack emulates a maintenance operation, it can be relatively easy 
for the operators to notice it, and they may try to fix the problem by 
overwriting the suspicious commands from the PLC with manual 
commands from the control server. In such a case, the incident will 
not last for the entire period of the scenario (24 hours). However, 
as the impact of such an extreme loss in cooling capacity would 
quickly (i.e., in 2—3 minutes) cascade into the CI, the operator would 
not be able to prevent the SWO. 

4.3 Strategy 3: Reduced cooling for an 
emergency outage (S3) 

Incident. The last scenario captured by the malware is a reduction 
of chilled water flow in preparation for an emergency outage of 
the computing infrastructure. In economic mode, control valve 1B, 
which manages the water from the cooling tower, is fully open 
because of the relatively high input temperature, and the cooling 



ICCPS ’19, April 16–18, 2019, Montreal, QC, Canada Keywhan Chung, Zbigniew T. Kalbarczyk, Ravishankar K. Iyer 
 

 

 
(a) Supply water temperature abnormality due to power interruption. 

(b) CHW loop closure for maintenance operation. 

 
(c) Reduced cooling capacity for emergency outage in computing infrastructure. 

 
Figure 5: Attack scenarios derived by the smart malware. (A description of the parameters can be found in Appendix A.) 
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capacity is mainly managed by the pumps controlling the flow in 
the closed loop. As shown in Figure 5c, the speed of the four pumps 
(refer to “CHW.R.P1-4.SPD” in Figure 5c) is reduced, which results 
in a lower flow of chilled water, and eventually, low cooling capac- 
ity for the CI. 
Attack. The reduction of cooling was intentional because the oper- 
ator wanted to avoid reaching the dew point during the emergency 
outage. However, when the incident is replayed as an attack during 
normal CI operation, it can trigger an SWO of the CI. When this 
strategy is implemented and triggered as an attack, the malicious 
PLC logic on the controller overwrites the pump speed commands 
(“CHW.R.P1-4.SPD”). As in the real incident, the flow is reduced 
accordingly, which results in reduction of the cooling capacity avail- 
able to the CI. As the cooling system fails to remove the heat in the 
CIs, the compute cabinets start to trigger EPOs to prevent critical 
damage in the hardware. 

4.4 Malware implementation 
Attack timeline. As demonstrated in [20], the majority of security 
attacks are detected by catching (i) the payload that the attacker 
executes or (ii) the trace left by the attacker in keeping a foothold 
in the system (e.g., a remote network connection). Under proper 
security monitoring, the likelihood of attack detection increases 
with the length of time the attacker stays in the system (which 
must be lengthy to enable investigation of the target and design 
of the attack) [26]. We consider the possibility that the attackers 
may avoid detection by deploying self-learning malware that can 
infer attack strategies (specific to the target system) from the data 
available in the system. In Figure 6, we show how an attack using 
our self-learning malware proceeds. The attacker starts by send- 
ing a phishing email to the CPS administrator ( 1 ) to obtain the 
credentials of the administrator ( 2 ). Using the credentials, the 
attacker gains access to the VPN-protected control network and the 
control server, and installs the smart malware ( 3 ). Once started, 
the malware runs the learning algorithm (discussed in detail in 
Section 3) with the CPS measurement data archived in a database 
and derives potential attack strategies. The strategies are then in- 
jected into the controller (refer to Algorithm 1 in Appendix B) along 
with the attack control logic that determines when to trigger the 
attack ( 4 ). In 5 , the malware updates the logic embedded in the 
controller with the malicious logic. Once embedded into the PLC 
(programmable logic controllers), the malicious code monitors the 
measurements and checks for a triggering condition (to maximize 
the probability of a successful attack, 6 ). When the condition is 
met, the output of the controller is overwritten with the strategic 
values (from  4 ) to initiate a failure-triggering abnormal event  
( 7 ). The CPS responds to the abnormal measurements (i.e., tries 
to regulate the chilled water accordingly, 8 ), but, as in the failure 
incidents, the response is not satisfactory, and the impact (of loss of 
or excess cooling capacity) cascades to the compute cabinets ( 9 ), 
triggering an EPO or an SWO. 
Minimization of traces. The overhead of our approach is that it re- 
quires computing resources during data analysis. That requirement 
can be reduced via a number of tricks. First, instead of executing 
the malware as a single block executable, we divide the source code 
into snippets of logic modules (divided by functionality as described 
in Section 3), and have each module span the next module as an 

independent thread. After finishing its job, and executing the next 
module, it can terminate its execution, and the next module can 
remove the traces of the previous execution. Using that approach, 
detection of the malware’s execution becomes harder as the execu- 
tion proceeds. (Recall that the later steps require fewer computation 
resources because of the reduction of data.) 

5 DISCUSSION 
Generalization. We discussed our malware in the context of the 
CPS that manages the cooling system of Blue Waters. However, we 
believe that the same malware (with little or no modification) can be 
used in other computing facilities (HPCs, data centers, or the cloud) 
with dedicated cooling systems, as long as they use a CPS from the 
same vendor. Such a generalization is feasible because the attack 
strategies are not hard-coded into the malware, but dynamically 
derived from the environment that the malware observes. If the 
CPS were from a different vendor, the malware would need to be 
modified/adapted to account for different ways of programming 
and uploading a control logic to the controller(s). The rest of the 
procedures that constitute the presented self-learning malware (i.e., 
steps A through D as depicted in Figure 6) should remain the same. 

The success of the self-learning malware, as presented in this 
paper, depends on the existence of CPS failures that lead to outages 
of the computing infrastructure. The events that would benefit the 

attacker (or malware) are rare (at NPCF, 2.73% of the 5,419 incidents 
from 2013 to 2016 were cooling-system-related [5]), and there is no 
guarantee that the malware can capture all such events. 

Finally, although we focused on indirect (via CPS) attacks against 
the computing infrastructure, the ultimate success of an attack de- 
pends on the workload on the computing infrastructure, which is 
beyond the control of an attacker. For instance, in the case of a cool- 
ing system failure, only compute cabinets with high computational 
load (during the incident) can trigger an EPO. 
Detection. Having demonstrated that malware with learning as- 
pects is a potential risk, we must consider how to protect and secure 
our systems. System administrators, trying to protect a system from 
advanced attacks, can take advantage of the approach discussed   
in Section 3 in a supervised manner. In the following, we briefly 
discuss example feasible approaches. One is to detect data obfusca- 
tion and abnormalities using the steps in Section 3. The CPS under 
study deploys redundancy to enhance reliability, i.e., the transition 
to the backup CPS  components  happens  only upon detection of  
a failure (e.g., a timeout on receiving heartbeat packets), and no 
validation process exists to detect malicious tampering with the 
measurements. As a solution for data tampering, we consider an 
intrusion detection system that analyzes data collected from the 
control network. For instance, the Bro IDS (intrusion detection 
system [19]) can be deployed in the control network. Bro can be 
used as a resiliency monitor to detect abnormal events (e.g., sud- 
den changes, outliers, or measurements inconsistent with earlier 
observations). More specifically, unlike the malware, which has to 
conduct unsupervised learning because of limited information, the 
system administrators have full knowledge of (i) the CI and CPS, 
(ii) the data collected from those systems, and (iii) the ground truth 
on the CI status (which can be used to label the data). 

Another feasible approach is to deploy multi-layered monitoring. 
We consider a monitoring strategy that collects security events from 
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Figure 6: Overview of the fully targeted attack model (smart malware). 

the CPS and the computing infrastructure. We can build probabilis- 
tic graphical models that effectively capture dependency among 
events and system states. For example, a factor graph based frame- 
work, for preemptive detection of security incidents, has been pro- 
posed in [3]. By correlating events that represent the behavior of the 
CI and CPS, we can enable early (i.e., before the CI is compromised) 
detection of security incidents. 

6 VALIDATION 
While the results described in the previous sections demonstrate 
that our malware logic can effectively parse attack scenarios (i.e., 
data from the time interval during which an anomaly in the CPS 
affected the operations of the computing infrastructure), its impact 
when injected is yet to be verified. To evaluate the effectiveness 
of the attack, we have implemented a software-driven simulation 
framework that replicates the operations of the BAS under study 
and (i) is driven by real CPS operational data, (ii) emulates the 
chilled water regulation process of the BAS, (iii) provides a cyber 
interface for the CPS used for communication and control of the 
components, and (iv) can test attack scenarios (as described in 
Section 4.4). After validating our framework’s ability to emulate 
effectively the operation of the BAS, we evaluate the impact of the 
attack strategies generated by the smart malware by injecting the 
attacks in the simulated environment. 

6.1 CPS simulation framework 
The most effective approach for validation would be to inject the 
attack scenarios into the CPS and its automation system. However, 
such experiments are necessarily restricted because (i) we cannot 
perform such an experiment without impacting users; (ii) the com- 
puting infrastructure is heavily used (24/7) for scientific research, 
so there is no down time for such experiments such that no users 
are impacted; and (iii) the final impact of the experiment is un- 
known (and could include hardware damage). Also, configuration 
of a physical test environment, which might be considered as an 
alternative, would not be easy, considering the scale and nature of 
the system (i.e., CPS of a building managing tons of water). Our 
simulation-based approach addresses such concerns by emulating 
the physical interaction in software. For extended usage of the sim- 
ulator (i.e., for usage in CPSes other than our BAS under study), we 

have implemented the simulator in a layer-based architecture. As 
our simulator emulates the full functionality of the CPS (i.e., from 
the low-level interaction in the physical layer to communication 
between the controllers and control server in the cyber layer), we 
can efficiently evaluate the security and reliability of the CPS. 

The simulation framework consists of a set of APIs, with the 
system divided into three layers: a physical layer (which models 
the interactions within the physical components), a programmable 
logic layer (which serves as the programmable logic controllers), 
and a cyber layer (which emulates the interaction between the 
controllers and the control server). We expect the simulator users 
to focus simply on the layer of interest, with the details in irrelevant 
layers remaining abstract. 
Physical layer. Each of the physical components and their activi- 
ties is defined as a Python function. In the current simulator (for the 
chilled water BAS under study), such components include the pump, 
control valve, T-junction merge, T-junction distribution, 
and heat exchange. Using Bernoulli’s incompressible flow equa- 
tion [12], we define the fluid-mechanical activities (i.e., changes in 
pressure, flow, and temperature) within each component. The inputs 
for each implemented component describe the physical characteris- 
tics of the chilled water fed into the component. By combining the 
inputs with the control values (from the controllers), the function 
can derive the physical characteristics of the output. 
Programmable logic layer. The PLCs in the CPS are a critical 
component in the cyber layer of the CPS, as they provide the core 
intelligence that automates the control of the physical layer. For 
each controller in the system, we implemented the controller logic 
code (in our case from NPCF) in the Python language. Taking the 
same set of inputs, our Python code derives the output by using 
the logic described in the controller logic code. When using our 
framework for simulating a CPS other than our BAS, users must 
properly convert the controller logic code into the programming 
language of the framework. For such users, we provide a set of 
common instructions in the control logic code as Python functions. 
The cyber layer provides interfaces for communication between 
the controllers and the server. By default, we provided the inter- 
face with the UDP protocol, but it can be extended to use other 
commonly used (or even custom) protocols (e.g., BACNet or any 
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Figure 7: Comparison of real and simulated data for flow and 
temperature of the chilled water going to the computing in- 
frastructure. 

 

Figure 8: NPCF chilled water system simulator. 

proprietary protocol). In addition, the API provides a feature for 
updating the controller logic. Since the controller logic is defined as 
a separate Python file, one can update it by executing a command 
in the control server. A summary of the interfaces available in the 
framework can be found in Table 3 in Appendix A. 

6.2 Validation: simulation framework 
To demonstrate the ability of the simulator to represent real op- 
erations of the system under study, we ran the simulator with 
input conditions (i.e., measurements of the chilled water input to 
the building) from the real system. Using the simulator APIs, we 
constructed a model of the CPS under study (Figure 8), and ran a 
simulation by feeding the system with real data that describe (i) 
the condition of the chilled water fed from the campus, and (ii) the 
condition of the chilled water returning from the server room (with 
the heat absorbed from the CI). 

As shown in Figure 7, we found that the level of abstraction was 
sufficient for our purpose of replicating the physical system. In 
Figure 7a, the measurements from the simulator show a constant 
offset (by 403.07 gallons per minute for the flow and by 2.95oF for 
the temperature). In terms of error rate, a raw comparison (simply 
comparing the measurements from the simulator with those in the 
data) found error rates of 10.44% for the flow and 6.07% for the 
temperature. Those differences are due to the assumptions made in 
the design of the simulator (for instance, negligible major loss or loss 

due to friction). The excess energy (compared to the real operation) 
is represented as increased flow in the simulation. Furthermore,   
as the temperature of the chilled water is affected by the flow, the 
impact of the additional flow cascades into the temperature. We 
acknowledged that the offset was due to the abstractions adopted 
within the process of representing the real system with a simulator, 
so we removed the constant offsets from the simulation data. After 
we removed the offsets, the percentage difference between the 
simulation data and real data was reduced to 2.95% for the flow 
and 3.20% for the temperature (as shown in Figure 7b). Having 
confirmed the validity of the simulator, we could then evaluate the 
effectiveness of the strategies derived by the smart malware. 

The simulation of the current framework is limited to the BAS 
studied in this paper, and the components of the framework are 
limited to those needed to simulate the BAS. For extended easy 
use of the simulator (e.g., for HVAC or water distribution), more 
components need to be added. In addition, in simulating physical 
aspects, the framework utilizes an abstract model that deploys a 
set of assumptions. Such an abstraction was reasonable for our 
purpose of verifying the smart malware strategies. However, for a 
more accurate simulation of the physical aspects, such assumptions 
should be removed, and the APIs should be updated accordingly. 

6.3 Validation: smart malware 
Having verified the effectiveness of the CPS simulation framework, 
we now discuss the results of replaying the smart attack strategies 
(as described in Section 4) in the simulator through the following 
procedure implemented as part of the self-learning malware. (i) 
The malware analyzes the CPS operational data (archived in the 
database) and infer an attack strategy (e.g., altering measurements 
on the water temperature); (ii) it then embeds the selected attack 
strategy by injecting malicious code in the controller logic program 
of the target controller; (iii) it uploads the maliciously crafted con- 
troller logic program to the controller (PLC); and (iv) the malware 
then uses the maliciously altered PLC to monitor attack-triggering 
conditions, and, when the triggering conditions are satisfied, re- 
places the input/output values of the controller with the strategic 
values derived in step (i). 

In order to validate the attack consequences, we set an upper and 
lower bound/limit on the cooling capacity. The cooling capacity is 
derived by multiplying the volumetric water flow by the tempera- 
ture difference between the water going to and the water coming 
from the server room; the cooling capacity is measured in British 
thermal units (BTU). An attack is considered successful if the check 
on chilled water cooling capacity passes (i.e., the CPS perceives the 
supplied water cooling capacity to be within the predefined bounds) 
while the CPS measurements were being maliciously altered by our 
malware. 

By injecting attacks in the simulated environment, we confirmed 
that the identified attack strategies can effectively introduce anom- 
alies in the CPS such that the cooling capacity provided to the 
server room falls outside the normal range. 
S1: CHW abnormality due to a power interrupt: 110  minutes 
(in simulation time) after the malicious PLC logic triggered the at- 
tack, the values for CHW flow measurements (“CHW.FLOW”) were 
overwritten with abnormal values (derived by the smart malware), 
and the cooling capacity exceeded the upper limit of the maximum 
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(a) Simulated attack strategy 1 (S1) 

 

 
(b) Simulated attack strategy 2 (S2) 

 

 
(c) Simulated attack strategy 3 (S3) 

Figure 9: Simulated impacts of attack strategies. (Dotted 
lines indicate the min/max normal cooling capacity.) 

 
range. This anomaly occurred because the control system (given the 
fake data that reported an increase in chilled water input) increased 
the flow (to compensate for the increased temperature) by opening 
the control valve. However, as the real temperature was normal, 
the increased water flow resulted in excess cooling capacity, which 
is something the administrators try to avoid because of the risk 
that dew might form in the CI (Figure 9a). 
S2: Maintenance operation (valve replacement): In this attack 
strategy, the malicious PLC logic started to provide the control valve 
opening command (“CHW.L.HI.CV1A”) with abnormal values, 125 
minutes after the attack was triggered. Initially, the controller (with 
its original logic) derived the correct control valve command (be- 
cause the malicious PLC logic did not corrupt the input parameters). 
However, before sending out the command values, the malicious 
logic overwrote the correct values with the strategically crafted 
values, which caused the cooling capacity to drop below the lower 
limit. As shown in Figure 9b, while the simulation without injection 
kept the cooling capacity within the predefined boundaries, the 
attack effectively drove the cooling capacity outside the normal 
bounds. 
S3: Reduced cooling for emergency outage: 90 minutes after the 
attack was triggered, the normal command values (i.e., “CHW.R.P1- 
P4.SPD”) were overwritten with the maliciously crafted values, 
which leads to a loss of flow in the chilled water loop. As a result, 
the cooling system encountered a loss of cooling capacity such that 
it dropped below the lower limit 95 minutes after the attack was 
triggered. The cooling capacity was restored back to normal after 
240 minutes (Figure 9c). 

As demonstrated in our simulated environment, the attack strate- 
gies derived by the smart malware can effectively introduce an 
anomaly into the cooling system. Though the impact of the anom- 
aly on the CI cannot be shown, we have successfully demonstrated 
that the attack can emulate incidents that led to SWOs in the past. 

7 RELATED WORK 
Energy-related attack models. In [15], the authors present an 
attack on the power system of a data center, which aggressively 
discharges a backup battery of a server rack and triggers a switch 
of power source to the discharged battery. The switch of the power 
source to the empty battery results in loss of service. Similar studies 
on different attacks were presented in [27] and [7]. Also, a number 
of previous efforts studied the impact of cooling failures on the 
availability of data centers. In [21], the author considered cooling 
systems as a vulnerable component of data centers and studied the 
impact of cooling losses due to power failure. Zhou et al., in [29], 
present a control logic that optimizes the operation of computer 
room air conditioning units. Papers [8, 9] investigate vulnerabilities 
introduced by aggressive heat policies in data centers and introduce 
a set of thermal attacks, and the authors of [2] demonstrate that 
DDoS attacks, by generating massive heat, can permanently damage 
server or switch hardware. 
CPS Security. Multiple kinds of malware has been reported that 
take advantage of vulnerabilities in power systems [13, 14], such 
that the malware introduces a breakdown of critical components in 
the system or obfuscates the power grid, causing a blackout. The 
authors of [10] generalizes Stuxnet with a physical model embedded 
to derive the optimal attack vector that maximizes damage to the 
current target. Also, a number of studies have conducted research 
on the security of networked control systems [4, 24, 25, 28]. In 
[1], Alemzadeh et al. present malware that targets a teleoperated 
surgical robot, where the malware identifies packets that contain 
data for a certain state and injects faults that can cause catastrophic 
consequences. Furthermore, their attack model learns the optimal 
attack time that can maximize the impact of an attack. In [16], 
the authors present a method to identify network packets that 
update the control of a nuclear power plant’s logic, and to overwrite 
the logic with failure-causing logic. In [18], an IDS that utilizes 
fused information from multiple sensors to detect energy theft is 
discussed. In terms of protection, Lin [17] deployed an open-source 
intrusion detection system over SCADA systems that expands the 
coverage of the IDS to control system-specific protocols. We expect 
such an approach to be effective against our attack model; different 
scripts can be added to detect policy violations and anomalies. 

 
 

8 CONCLUSIONS 
In this paper, we demonstrate the feasibility of security attacks that 
masquerade as failures and are delivered via self-learning malware 
that monitors the target system and launches the attack by injecting 
a strategic failure at  a time  and system location  chosen to  have  
a maximal impact. The target system we focus on is a CPS that 
manages and controls the cooling system for a large computing 
enterprise (i.e., the Blue Waters supercomputer). We address a range 
of issues, including the construction of the self-learning malware 
and the launch of a failure injection attack. Provided with real CPS 
data, our malware inferred 3 unique attack strategies which disrupt 
the cooling system while the attack masquerades as an accidental 
CPS failure. We validated the attacks in a data-driven CPS simulator 
developed as part of this study. 
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Algorithm 1 Pseudocode of the malicious wrapper around the 
original controller logic 

 
 

1: procedure DetermineOptimalStrategy 
2: if  α par 1 + β par 2 < thr 2 

& Timer == 0 then 
3: mode = econ 
4: else 
5: mode = campus 
6: op_strateдy = strateдy[mode] 
7: procedure Original Controller Code 
8: output _1 = orд_f unct 1(parX1, ..., parZ1) 
9: ... 

10: output _N = orд_f unct N (parXN , ..., parZN ) 
11: procedure Output Overwrite 
12:     if  Timer  < len op_strateдy[output _1]  then 
13: output _1 = op_strateдy[output _1][Timer ] 
14: ... 
15: output _N = op_strateдy[output _N ][Timer ] 
16: Timer + = 1 
17: else 
18: Timer = 0 
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Table 1: Critical Parameters for the Attack Strategies 
 

Mode of Operation Parameter Description 
 

CHW.L.HI.CV1A How far the control valve 1A is opened (%) 
CAMP.CHWR.TEMP Temperature of chilled water returning to the campus CHW loop 

Campus 
 
 
 
 

Economic 

CAMP.CHWS.TEMP Temperature of chilled water supplied from the campus 
CAMP.L.CHWS.TEMP Temperature of chilled water supplied from the campus 
CHW.FLOW Chilled water’s volumetric flow 
CAMP.CHW.FLOW Chilled water’s volumetric flow from campus 
CHW.L.HI.CV1A How far the control valve 1A is opened (%) 
CHW.L.HI.CV1B.CHWS.TEMP1 Temperature of chilled water supplied to the server room 
CHW.L.HI.CV1B.FLOW1 Volumetric flow of chilled water through control valve 1B 
CHW.R.P1.SPD Pump 1 speed (%) 
CHW.R.P2.SPD Pump 2 speed (%) 
CHW.R.P3.SPD Pump 3 speed (%) 
CHW.R.P4.SPD Pump 4 speed (%) 

 
 

 
 
 

Table 2: Attack strategies inferred by the fully targeted attack (smart malware) 
 

Timestamp Abnormal Parameter  Recorded Incident  Impact on CI 
2016-10-25 09:25   control valve 1B flow reduced cooling capacity for emergency outage (Figure 5c) scheduled outage 
2016-11-07 10:40    chw return temperature (change in mode of operation) 

 

2016-12-05 08:10    chw return temperature (reduction of heat absorbed from CI due to scheduled maintenance) 
2016-12-26 00:45  chw return temperature (change in mode of operation) 
2016-12-26 07:35  chw return temperature (change in mode of operation) 
2017-02-11 19:55     chw supply temperature     supply water anomaly due to power interrupt (Figure 5a) SWO for 5 hrs 
2017-03-28 09:15    pump 1 speed chilled water loop maintenance (Figure 5b) scheduled outage 

 

 
 
 

Table 3: Summary of APIs provided in the simulation framework 
 

Layer API Description 
 

socket_init()/close() Initializes/closes the network sockets used for communication 
ctrl_recvData() Controller receives packets from the network that contain commands (from the 

Cyber 

 
 
 
 

Programmable 
Logic 

 
 
 

Physical 

server) and data from different controllers 
ctrl_sendData() Controller sends the data to be sent over the control network 
server_recvData() Server receives data from the client and acknowledges receipt to the sender 
server_sendData() Server prompts for operator command (e.g., update PLC), and sends the command 

to the controller over the network 
reportData() Controller reports the data to predefined destinations 
recvPacket() Receives packets from the server or other controllers 
controller_init()/close() Initializes the controller and its network socket and closes the socket 
ctrl_logic() The control logic (for each controller) implemented in the Python language 
PID() Function for PID logic (or the LOOP instruction in Siemens PPCL [23]) 

 

table() Function for the TABLE instruction in Siemens PPCL [23]) 
HeatExchanger() Models the temperature during heat exchange 
tJunction_distribution() Models the flow and pressure for a T-junction with one input and two outlets 
tJunction_merge() Models the flow and pressure for a T-junction with two inputs and one outlet 
controlValve() Models the flow by the control valve that takes commands from a controller 
Pump() Models the flow and pressure by the pump operation that takes commands from 

the controller 
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