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Analysis of Cohesive Microsized
Particle Packing Structure
Using History-Dependent
Contact Models

Granular packing structures of cohesive microsized particles with different sizes and size
distributions, including monosized, uniform, and Gaussian distribution, are investigated
by using two different history dependent contact models with discrete element
method (DEM). The simulation is carried out in the framework of LIGGGHTS, which is a
DEM simulation package extended based on branch of granular package of widely used
open-source code LAMMPS. Contact force caused by translation and rotation, frictional
and damping forces due to collision with other particles or container boundaries, cohe-
sive force, van der Waals force, and gravity is considered. The radial distribution func-
tions (RDF's), force distributions, porosities, and coordination numbers under cohesive
and noncohesive conditions are reported. The results indicate that particle size and size
distributions have great influences on the packing density for particle packing under
cohesive effect: particles with Gaussian distribution have the lowest packing density, fol-
lowed by the particles with uniform distribution; the particles with monosized distribution
have the highest packing density. It is also found that cohesive effect to the system does
not significantly affect the coordination number that mainly depends on the particle size
and size distribution. Although the magnitude of net force distribution is different, the
results for porosity, coordination number, and mean value of magnitude of net force do
not vary significantly between the two contact models.
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Introduction

Granular packing simulation is usually used to model structures
of materials that are involved in many industrial applications
ranging from manufacturing raw materials to developing
advanced products. The impact of particle properties on their
packing structures is of the prime importance to the entire packing
process and is always essential for fabrication. A better under-
standing of packing is beneficial to optimize and to improve the
industrial applications. This topic has been intensively studied in
the past decades; many of them focused on the microlevel packing
[1-3] where packing density, which is equals to unity minus its
porosity, is used as their main indicator to measure and evaluate
the quality of packing structure [4]. Among those works, research-
ers, by varying particle sizes, size distributions, or forces involved
in the packing process, obtained detailed information of packing
structures and revealed weighted influences from different param-
eters [5-9]. Some of them are interested in cohesive effect that is
substantially caused by cohesive forces such as van der Waals
force, capillary force that is associated with wet particles, and
electrostatic force that can be important for finer particles. Cohe-
sive effect turns out to be of importance in particular situations,
for example, when packing containers are no longer rigid but are
kind of material that has similar properties like dry sand, cement,
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or wet soil, or it is not even solid just like settling particles in the
fluid where effect of gravity will reduce and cohesive effect will
become significant [10-12].

The studies on behaviors of cohesive particles are usually car-
ried out by changing particle sizes, mixture component percentage
if particles are not made with the same material or fluid density if
particles are settled down into a fluid. Effects of particle diameters
(mean diameters for mixed particle cases) are considered to be a
great factor that influences the packing structures, thereby worth
more attention. Boundary condition is another important factor
that alters the force and deformation of the packing structure. Pre-
viously, researchers mostly adopted the periodic boundary condi-
tions for the packing process where particles that exit the
simulation box will come back in opposite direction in order to
maintain the number of particles in the simulation box [13]. This
approach allows that the simulation can be carried out smoothly,
because of lower chances of losing systemic energy and generat-
ing huge interactive force.

In this work, the cohesive effects associated with size distribu-
tions, which include monosized, uniform, and Gaussian distribu-
tions, will be investigated by using two different history-
dependent contact models. It is worth to point out that the uniform
distribution of particle size indicates the sizes of particles linearly
increase from the minimum to the maximum. The range for uni-
form distribution is kept at a constant of 40 um. For Gaussian dis-
tribution, the STD (standard deviation), o, is set as 13.33 um for
all cases. In addition, fixed boundary conditions are applied to all
sides of the simulation box for all the cases such that the particles
may collide with boundaries during the packing process which
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will cause energy losses due to friction. In order to understand the
fundamentals that govern the cohesive particle packing, a series
of well-designed programs are developed based on the DEM
[14-17]. uicGeuTs [18] that is based on LAMMPS [19], providing
a simulator of solving particle related problems from industrial
applications, is employed to resolve the packing process. The
simulation results, including RDF that indicates how number den-
sity changes with distance from a selected reference point, force
distributions that give a view on the magnitude of forces acting on
the particles, porosities, and coordination numbers, are presented
in this paper.

Numerical Methods and Physical Models

It is well known that any motions of a rigid particle can be
decomposed to two parts: translational and rotational motions.
Referring to the Newton’s second law, the governing equations
for each particle during this packing process can be written as

0*X;
mj 2 =F; (1
d*o;
liy = T 2
F; =F} + Fj, 3)
T, =T, + T}j 4)

where m; is the mass of the ith particle, X; is the position vector of
the ith particle, /; is the moment of inertia that equals to 0.4 mR?,
and the rotated angle of particle 7 is represented by 0;. The symbol
F; in Eq. (1) is the resultant contact force generated by two col-
lided particles, i and j. This force can be decomposed further into
two components: one is contact force in normal direction Fj} and
the other is contact force in tangential direction F as shown in
Eq. (3). The symbol T; in Eq. (2) is the resultant torque acting on
the ith particle. It can also be decomposed into two components:
torques caused by rolling friction and tangential force, respec-
tively, as given in Eq. (4).

The two contact models adopted in this work are both history
deformation dependent. The difference is from the relationship
between deformation and contact force. Gran—Hertz—History
model describes a nonlinear relationship between the contact force
and the overlap distance, while Gran—-Hooke—History model gives
a linear relationship. The open-source software package LIGGGHTS
provides both of these models. However, the Gran—Hertz—History
model is modified to include van der Waals force, which can be
significant for small particles, and thereby referred to as modified
Gran—Hertz—History model.

The normal contact force F:; can be determined by [20-22]

Fi = [K,&n — 7,(vi-my)Iny; ®)

where in the modified Gran—Hertz—History model, the parameters

are given by
- 2\/7/))ett S nMeff 5

and in Gran—Hooke—History model

16 0% 0.2
K, = (E \/ﬁYeff> (meff"gh> =

and v;; represents the velocity of the particle i relative to velocity
of the particle j, n;; is the unit vector point from particle i to parti-
cle j, e is the coefficient of restitution of the particles, R =
RiR;/(R; + R;) is the effective radius that represent the geometrlc
mean dlameter of the i and j particle, Yer = 1/((1 — 02)/Y; +
(1 —a2)/Y2) is the effective Young’s modulus that is calculated
in terms of individual Young’s modulus and Poisson ratio accord-
ingly, &, =R;+R; —|R;| is the overlap in normal direction,
and  megr = mym;/(m; +my;) is the effective masses of the
particles. Characteristic velocity ve, is taken as unity in
Gran—-Hooke—History model.

The contact force in tangential direction is calculated by [23]

K& - ty) — 7, (ve - )]ty (6)

where in the modified Gran—Hertz—History model, the parameters
are determined by

— 5 —
Kt - 8Geff V Rém Ve = 2\/%ﬁeff V Sfmeff7 St = 8Geff V R‘fn

Gt — 1/{2(2 - alY)l(l to) 202 O’zy)z(l + )

and in Gran—Hooke—Hlstory model, K; =K, 7, = 7,-

&= fm vidt represents the tangential displacement vector
between the two spherical particles, vi = [(v; — V;) - t;;]t;; + (o
x R; —®; x R;) is the tangential relatively velocity, t; is the
unit vector along the tangential direction, #; is the time when the
two particles just touch and have no deformation, 7 is the time of
collision, w; or w; is the angular velocities of particles 7 or j, and
R; or R; is the vector running from the center of particle 7 or j to
the contact point of the two particles.

The cohesive force is included in both the modified
Gran—Hertz—History model and Gran—Hooke—History model. For
the cohesive force, Johnson—Kendall-Roberts (JKR) model [24]
based on Hertz elastic theory is used to estimate the cohesive
behavior of the particles. In Hertz elastic theory, the normal push-
back force between two particles is proportional to the area of
overlap between the particles. Based on Hertz elastic assumption
and meanwhile considering the contact surface as perfectly
smooth, the JKR model here is satisfactorily accurate to determine
the cohesive force. In fact, the basic idea is that if two particles
are in contact, it adds an additional normal force tending to main-
tain the contact

IF| = kA @)

Kn - eff RCm
In(e) _ where k is the surface energy density and A is the particle
i = ————, S» =2YexrVRE, contact area. For sphere-sphere contact [25], contact area A is
In(e) + n2 evaluated by
ATy (dist — R; — R;)(dist + R; — R;)(dist — R; + R;)(dist + R; + R;) ®)
T4 dist?
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where dist is the central distance between the i and j particles. R;
and R; are the radius of the ith and jth particle, respectively.

The van der Waals forces among particles are included only in
the modified Gran—Hertz—History model. The van der Waals
force, F; between particles i and j is given by [26]

oo M 64RR (h + Ri + R))
U6 (B4 2R+ 2R;h)? (K + 2R;h + 2R;h + 4ARiR))

(C)]

where H, is the Hamaker constant, and / is the separation of surfa-
ces along the line of the centers of particles i and j. A minimum
separation distance /Ay, is considered to prevent F}, becoming
infinity when % goes to zero. The Hamaker constant is related to
the surface energy density by [27]

H, = 24nkh>

‘min (10)

The torque due to tangential contact force and the torque due
to rolling friction are calculated in the same way for both
models [28]

Tf:/- =R; x F},— (11)
s ow Ot
T:/ = 1, RK, ¢, . ij (12)
|

where ®;; = ®; — o; is the relative angular velocity.

Table 1 shows the material properties and other physical coeffi-
cients used in these packing simulations. The material properties
of the particles are same as those for iron. The surface energy
density is calculated from the Hamaker constant. The material
properties for the container are same as those for the particles.

For each simulation, 4500 particles are settled in a simulation
box having length and width equal to 0.006 m, and the particles
have no initial physical contact among them. The initial porosity
is kept constant at 0.75. Figure 1 shows the initial state of Gaus-
sian particle packing. As the simulation time increases, the par-
ticles begin to fall down due to gravity and then collide with other
particles or with the boundaries. In this work, all six sides of the
simulation box are considered as physically stationary. Consider-
ing the fact that the contact force is mainly related to the particle
deformation, the time-step must be sufficiently small to prevent
any unrealistic overlap [29]. In this work, the time step is set to be
1 x 107 s for all simulation cases. It should be pointed out that
the velocity of each particle will hardly reach zero completely but
the magnitude of velocity will approach to an extremely small
value. In this work, the particles are considered to be completely
stationary when their mean velocities are below 1 x 1078 m/s.
The results are presented through three parameters, which are
widely used to measure the packing structure: (1) RDF, (2) poros-
ity that is the ratio of total volume of void space to the volume
taken by all the particles, and (3) coordination number that is

Table 1 Values of the parameters used in the simulation
process

Parameters Values
Particle density, p 7870 k%/m3
Young’s modulus, ¥ 200 x 10°N/m?
Restitution coefficient, e 0.75
Sliding friction coefficient, y 0.42
Rolling friction coefficient, 2% 107*
Poison ratio, gp 0.29
Hamaker constant, H, 21.1x1072°)
Minimum separation distance, /i, 1x10%m
Surface energy density, k 0.280J/m*
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Fig. 1 Initial and final structure for Gaussian particles from the
modified Gran-Hertz—History model with cohesion: (a) particles
att=1x 1078 s and (b) particles at t=0.2s

defined as the number of particles that are contacting with the one
chosen as reference center.

Results and Discussions

Sixty scenarios are studied in this work: five different mean
radius (75 ym, 85 um, 100 ym, 110 um, and 120 um) and three dif-
ferent size distributions (monosized, uniform, and Gaussian) for
two contact models (modified Gran—Hertz—History model and

®

Fig. 2 Initial and final packing structure for monosized
particles from the modified Gran-Hertz—History model with cohe-
sion: (a) particles at t=1 x 10~ 8 s and (b) particles at t= 0.2 s
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Fig. 3 |Initial and final packing structure for uniform size
particles from modified Gran—Hertz—History with cohesion: (a)
particles at t=1 x 108 s and (b) particles at t=0.2s

Gran—-Hooke—History model) with and without cohesion. The
results are presented in the form of porosity, coordination
numbers, RDF, and force distribution, when the all particles are
completely packed. Forces considered in the packing process
include contact force, which is decomposed into normal and tan-
gential components, viscoelastic and frictional forces generated
when collision occurs, gravity which drives the particles to fall
down, cohesive force and van der Waals force which are

®)

Fig. 4

t=1x10"%s and (b) particles at t=0.2s

041005-4 / Vol. 138, APRIL 2016

Initial and final structure for Gaussian particles
from Gran—Hooke—History model with cohesion: (a) particles at

considered as external forces acting on themselves. Figures 14
show the initial and final packing structures for these three distri-
butions with the mean diameter of 75 um. It should be noted that
the deformation calculation is very important for packing simula-
tion since the oversimplified model of calculating overlap distance
is always the main reason that leads to the simulation crash by
introducing unrealistic energy. Two basic rules are applied to
these packing simulations: one is that particles are always consid-
ered as rigid body even though a deformation is considered by the
chosen model, and the other is that the critical central distance is
set for particle deformation. The critical distance is 1.01 (d; + d5)/
2 where d; and d, are the diameters of the two particles. It
means when the central distance of two particles is less than the
critical distance, the two particles are considered to be in direct
contact [6].

Figures 5 and 6 present the porosities and coordination numbers
for different cases. It can be seen that the porosity decreases along
with the increasing particle radius for all distributions when cohe-
sive forces are considered. Similar trend was observed in the work
of previous researchers [30]. This decrease in porosity with
increase in radius is expected since with increase of radii or
masses of the particles the initial supplied energy (gravitational
potential) also increases. So, the effect of cohesion in the packing
of particles decreases and the porosity values become closer to
those for random loose packing [2,31]. This also explains the
decrease in differences between different size distributions in
terms of porosity when the radius increases. Among the three
distributions considered, Gaussian distribution has the highest
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Fig. 5 Effect of porosity with particle size and distribution:

(a) the modified Gran-Hertz—History model
Gran-Hooke-History model

and (b)
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Fig. 6 Effect of coordination number with particle size and
distribution: (a) the modified Gran—Hertz—History model and (b)
Gran—-Hooke—-History model

Table 2 Porosity and coordination number for the modified
Gran—Hertz-History model

Porosity Coordination number

Radius

(um)  Monosized Uniform Gaussian Monosized Uniform Gaussian
75 0.615 0.695 0.713 4.04 3.50 3.14
85 0.656 0.685 0.660 4.84 4.49 4.01
100 0.583 0.615 0.637 5.27 5.29 5.14
110 0.575 0.505 0.557 5.41 5.56 5.37
120 0.485 0.574 0.487 5.36 5.46 5.45

porosity and monosize has the lowest. The porosity values for the
two models, the modified Gran-Hertz and Gran-Hooke, are
slightly different, but both show the same trend. As for the nonco-
hesion case, porosity also decreases with the increase in particle
radius, but the porosity values are much smaller. Figure 5 also
shows that the rate of decrease of porosity with radius for nonco-
hesion case is much smaller. For monosized distribution without
cohesion, porosity remains almost constant for both the modified
Gran-Hertz—History model and Gran—-Hooke—History model.
Since there is no cohesion, the dissipative forces are smaller and
particles can pack more closely. Again the difference between the
two models in noncohesion cases is very small. For the

Journal of Manufacturing Science and Engineering

Table 3 Porosity and coordination number for Gran—-Hooke-
History model

Porosity Coordination number

Radius

(um)  Monosized Uniform Gaussian Monosized Uniform Gaussian
75 0.599 0.695 0.724 4.00 3.59 3.11
85 0.656 0.685 0.643 4.83 4.50 4.00
100 0.566 0.615 0.476 5.25 5.25 5.13
110 0.525 0.505 0.591 5.50 5.55 5.43
120 0.476 0.574 0.651 5.33 547 5.36

Table 4 Porosity and coordination number for the modified
Gran-Hertz—History model without cohesion

Porosity Coordination number

Radius

(um)  Monosized Uniform Gaussian Monosized Uniform Gaussian
75 0.454 0.485 0.505 4.05 3.55 3.46
85 0.436 0.478 0.493 4.85 4.48 4.08
100 0.415 0.422 0.439 5.28 5.27 5.12
110 0.430 0.421 0.437 5.33 5.47 5.35
120 0.429 0.426 0.438 5.43 5.50 5.38

Table 5 Porosity and coordination number for Gran—-Hooke-
History model without cohesion

Porosity Coordination number

Radius

(um)  Monosized Uniform Gaussian Monosized Uniform Gaussian
75 0.407 0.483 0.458 4.01 3.52 3.60
85 0.439 0.460 0.472 4.82 4.44 4.00
100 0.419 0.427 0.453 5.28 5.31 5.13
110 0.427 0.452 0.448 5.37 5.44 5.33
120 0.419 0.435 0.436 5.36 5.55 5.46

coordination number, the trends for three distributions with cohe-
sion are similar. It can be observed that the coordination number
increases as particle radius increases which is exactly the opposite
of the trend of porosity. Unlike porosity, Gaussian distribution
now has the lowest coordination number and monosize distribu-
tion has the highest. Interestingly, it is found that there is no
significant change in coordination number whether or not cohe-
sion is included. However, one can expect that coordination num-
ber should be smaller when there is no cohesion (porosity is
larger). This can be explained as follows. When there is cohesion,
particles tend to clump together and form clusters. These clusters
have void spaces in them. Due to this formation of clusters, in
some region, particles have high coordination number and in
some region, the coordination number is small. The coordination
numbers given in Tables 2-5 and Fig. 6 are average of coordina-
tion numbers for all particles. It can be seen that the coordination
numbers for cohesion and noncohesion cases are similar.

Figures 7-11 show the RDF for particle systems with mean ra-
dius of 75 um, 85 um, 100 um, 110 pum, and 120 ym and associated
with three different size distributions (monosized, uniform, and
Gaussian). For the cases where the particles have the same radius,
three main apparent peaks appear. The first peak is sharply at 2r,
which is for the initial one to one contact, the second and
the third are at around 2\/§r and 4r, respectively, which
corresponds to the two characteristic particle contact types,
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Fig. 7 RDF for particles with 75 um radius: (a) the modified Gran—-Hertz—History with cohe-
sion, (b) the modified Gran-Hertz—History without cohesion, (¢) Gran—-Hooke-History with
cohesion, and (d) Gran—-Hooke—-History without cohesion

namely, edge-sharing-in-plane equilateral triangle and three par-  distribution usually have the highest peak values among all three
ticles centers in a line (the three contact types are illustrated in  cases. The peak values for Hertz model are close to those for
Fig. 7(a)). The second and third peaks merge into a single second Hooke model. Also, the peak values of RDF are almost same for
peak for other distributions. The particle systems with monosize the cohesion and noncohesion cases.

1.6 — 1.6 —

T T T T

‘ Gahssi'dln(cohcsi(l)n) — Glausslian(nlo cohesion) —+—
14 r Mono-size(cohesion) -—--x-- 7 14 r Mono-size(no cohesion) --—--%--- 7
12k Uniform(cohesion) x| 12 b Uniform(no cohesion) ---*-- |
1 . 1t
s 0.8 rii E s 081 }
0.6 1% 4 0.6
04 & 04 K
0.2 H . 02
0 d . 0 i L 3
0O 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
r (radial distance) r (radial distance)
(a) ®
1.6 T T T T T T T 1.6 T T T T T T T T T
Gaussian(cohesion) —+— Gaussian(no cohesion) —+—
14 r Mono-size(cohesion) ----%--- 7] 14 r Mono-size(no cohesion) ----x--- 7
12 L Uniform(cohesion) - oo 12 L Uniform(no cohesion) - LEEI
lr 1 I 1
S 08 Hir 1 & 087 1
0.6 [ 4 0.6 | &
04 5 04 g
0.2 | o 02 .
0 0
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
r (radial distance) 1 (radial distance)
© @

Fig. 8 RDF for particles with 85 um radius: (a) the modified Gran—-Hertz—History with cohe-
sion, (b) the modified Gran-Hertz—History without cohesion, (¢) Gran—-Hooke-History with
cohesion, and (d) Gran—-Hooke—-History without cohesion
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Figures 12—14 show the force distribution results after the par-
ticles are completely packed for particle systems with the mean
radius of 75 um. The force distribution graphs for other particle
radii look similar. For same distribution, the counts for each force
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magnitude are not exactly the same but close. However, as the
particle radius increases, the force magnitudes increase as a
response. Tables 6 and 7 give the mean net force for all the cases
when the particles are finally packed. It has to be pointed out that
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Fig. 10 RDF for particles with 110 um radius: (a) the modified Gran—-Hertz—History with cohe-
sion, (b) the modified Gran-Hertz—History without cohesion, (¢) Gran—-Hooke-History with
cohesion, and (d) Gran—-Hooke—-History without cohesion
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Fig. 11 RDF for particles with 120 um radius: (a) the modified Gran—-Hertz—History with cohe-

sion, (b) the modified Gran—Hertz—History without cohesion, (¢) Gran—-Hooke-History with

cohesion, and (d) Gran—-Hooke—History without cohesion
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Fig. 12 Force distribution for particles with 75 um radius and Gaussian distribution: (a) the
modified Gran—Hertz—History with cohesion, (b) the modified Gran-Hertz—History without
cohesion, (¢) Gran-Hooke-History with cohesion, and (d) Gran-Hooke-History without
cohesion

the resultant force here does not represent gravity, since effect of
gravity is small (of the order of 107'? N). It can also be observed
that the net force does not vary much even when the cohesion is
included. The mean net force increases with the size of the

particles, and it can also be seen that this force has the largest
value if the particle size follows uniform distribution. Particles
with Gaussian distribution have the secondary magnitude of force,
while the monosized particles have the smallest net force.
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Fig. 13 Force distribution for particles with 75 um radius and monosize distribution: (a) the
modified Gran-Hertz—History with cohesion, (b) the modified Gran-Hertz—History without
cohesion, (¢) Gran-Hooke-History with cohesion, and (d) Gran-Hooke-History without
cohesion

The difference in magnitude of mean net force between the two
different contact models is negligible.

By comparing

the

two models,

the modified Gran—

Hertz—History and Gran-Hooke—History, it can be seen that the
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difference between them is not significant in terms of porosity,
coordination number, and mean net force. Both of these models
assume that the particles are viscoelastic and have a stiffness term
and a dissipation term. As pointed out in [32], the linear
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Fig. 14 Force distribution for particles with 75 um radius and uniform distribution: (a) the
modified Gran—Hertz—History with cohesion, (b) the modified Gran—-Hertz—History without
cohesion, (¢) Gran—-Hooke—History with cohesion, and (d) Gran-Hooke-History without
cohesion
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Table 6 Magnitude of mean net contact force (N) for the modified Gran-Hertz—History model

Cohesion No cohesion
Radius (um) Monosized Uniform Gaussian Monosized Uniform Gaussian
75 1.91x 1077 3.00%x 1077 220%x10°¢ 1.94%x 1077 287 %1077 225%x 1077
85 3.75% 1077 4.86 x 1077 413 %1077 376 x 1077 474 %1077 422 %1077
100 8.50x 1077 1.07x10°¢ 9.22%x 1077 8.60x 1077 1.03x10°¢ 9.09x 1077
110 141x107° 1.59x 107° 1.52%x107° 1.41x107° 1.59x 107° 1.50 x 107°
120 230%x10°¢ 241%x10°¢ 230%x10°¢ 223%x10°°¢ 240%10°° 230%x10°°¢

Table 7 Magnitude of mean net contact force (N) for Gran—-Hooke-History model

Cohesion No cohesion
Radius (um) Monosized Uniform Gaussian Monosized Uniform Gaussian
75 1.96 x 1077 293 %107 223%x 1077 2.00%x 1077 2.85%x 1077 223x 1077
85 3.92x 1077 494 x 1077 430x% 1077 3.94%x 1077 5.46 x 1077 4.10x 1077
100 8.75x 1077 1.00x 10°¢ 928 x 1077 8.61 x 1077 1.03x10°¢ 8.87 x 1077
110 1.50 x 107° 1.59x 107° 1.45%x107° 1.39%x107° 1.58 x 107° 149 x 107°
120 224 %107 2.35%107° 231x107° 2.19%x10°° 244 %107 248 x107°

Gran—-Hooke model can be as accurate as the nonlinear modified
Gran—Hertz model if the stiffness constants, K, and K,, and damp-
ing coefficients, y, and 7y,, are evaluated carefully. In this study,
even though cohesion is included, the results obtained from the
two models are still close. Van der Waals force included in the
modified Gran—Hertz model did not seem to play a great role in
the packing process. This might be because particle sizes are too
large for van der Waals force to take effect. When the efficiency
of the two models is considered, the simulations with the
Gran—-Hooke-History model ran faster than the simulation with
the modified Gran—-Hertz—History model. So, the linear
Gran—-Hooke—History model is more efficient than the modified
Gran—Hertz—History model.

Conclusions

A study on packing structures of particle system with different
radii and size distributions using two different models are carried
out by the DEM. The simulation results, including RDF, force dis-
tribution, porosity, and coordination number, are presented. It was
observed that the particles with Gaussian distribution always have
the lowest packing density while the particles with uniform size
distribution have the medium packing density and monosized par-
ticles normally have the highest packing density. For the particles
packing under cohesive effect, size distributions result in the same
tendency of packing density but have much less variation with
particle size. Coordination number is not affected by cohesion sig-
nificantly, but the particle size and size distribution do influence
the result. The differences in porosity, coordination number, RDF,
and magnitude of mean net force between the two models used
are not substantial, which show that any of the models can be
used for simulation of particle packing. However, when efficiency
is considered, the Gran—Hooke—History model is found to be
more efficient than the modified Gran—Hertz—History model. So,
Gran—Hooke—History model can be the model of choice for simu-
lating microsized particles.
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Nomenclature

d = diameter of particle, m
e = coefficient of restitution

041005-10 / Vol. 138, APRIL 2016

F = force on particle, N

¢ = gravity, m/s’

I = moment of inertia, kg-m?
m = mass of particle, kg

R = radius of particle, m

T = torque, N-m

v = velocity, m/s

X = position vector, m

Y = Young’s modulus, Pa

Greek Symbols

y = damping coefficient, s
0 = rotational angle, rad
u, = rolling friction coefficient
us = sliding friction coefficient
¢, = normal direction displacement, m
¢, = tangential displacement, m

p = particle density, kg/m’
¢ = standard deviation

op = Poisson ratio

o = angular velocity, rad/s
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