
Spectres, Virtual Ghosts, and Hardware Support

Xiaowan Dong
University of Rochester

Rochester, NY

xdong@cs.rochester.edu

Zhuojia Shen
University of Rochester

Rochester, NY

zshen10@cs.rochester.edu

John Criswell
University of Rochester

Rochester, NY

criswell@cs.rochester.edu

Alan Cox
Rice University

Houston, TX

alc@rice.edu

Sandhya Dwarkadas
University of Rochester

Rochester, NY

sandhya@cs.rochester.edu

ABSTRACT

Side-channel attacks, such as Spectre and Meltdown, that leverage

speculative execution pose a serious threat to computing systems.

Worse yet, such attacks can be perpetrated by compromised operat-

ing system (OS) kernels to bypass defenses that protect applications

from the OS kernel.

This work evaluates the performance impact of three di!erent

defenses against in-kernel speculation side-channel attacks within

the context of Virtual Ghost, a system that protects user data from

compromised OS kernels: Intel MPX bounds checks, which require

a memory fence; address bit-masking and testing, which creates

a dependence between the bounds check and the load/store; and

the use of separate virtual address spaces for applications, the OS

kernel, and the Virtual Ghost virtual machine, forcing a specula-

tion boundary. Our results indicate that an instrumentation-based

bit-masking approach to protection incurs the least overhead by

minimizing speculation boundaries. Our work also highlights possi-

ble improvements to Intel MPX that could help mitigate speculation

side-channel attacks at a lower cost.

CCS CONCEPTS

• Security and privacy→ Side-channel analysis and counter-

measures; Operating systems security;

KEYWORDS

speculation-based side channels, operating systems security, secure

computer architectures, compiler-based virtual machines

ACM Reference Format:

XiaowanDong, Zhuojia Shen, JohnCriswell, Alan Cox, and SandhyaDwarkadas.

2018. Spectres, Virtual Ghosts, and Hardware Support. In HASP ’18: Hard-

ware and Architectural Support for Security and Privacy, June 2, 2018, Los

Angeles, CA, USA. ACM, New York, NY, USA, Article 5, 9 pages. https:

//doi.org/10.1145/3214292.3214297

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro"t or commercial advantage and that copies bear this notice and the full citation
on the "rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci"c permission
and/or a fee. Request permissions from permissions@acm.org.

HASP ’18, June 2, 2018, Los Angeles, CA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6500-0/18/06. . . $15.00
https://doi.org/10.1145/3214292.3214297

1 INTRODUCTION

Side channels leveraging speculative execution in processors [16,

18] pose a serious threat to computing systems. The Spectre at-

tack [16] leverages speculative execution to trick a victim process

into loading data into the processor and then leaking that data to

the attacker via cache side channels. Meltdown [18] exploits the fact

that memory protection checks are performed late in the processor

pipeline to bypass supervisor-only page protections. While these

attacks are launched by malicious user-space applications to steal

data that is supposedly protected by the processor’s memory man-

agement unit (MMU), speculative execution attacks can also defeat

other methods of memory isolation, such as software fault isolation

(SFI) [25]. Worse yet, such attacks pose a threat to systems like

Virtual Ghost [5] that are supposed to protect applications from

compromised operating system (OS) kernels. If an application’s

physical memory remains mapped in the virtual address space

while the kernel is executing, then a compromised kernel can use

variants of the Spectre [16] and Meltdown [18] attacks to read the

contents of the application’s memory even if hardware protection

mechanisms (e.g., the MMU) or software protection mechanisms

(e.g., SFI) are employed to prevent the kernel from reading the

memory.

Virtual Ghost [5] is a compiler-based virtual machine that uses

a combination of program rewriting techniques and hardware sup-

port to protect applications from a compromised OS kernel. Con-

sequently, it can use both SFI and hardware support to mitigate

speculation-based side-channel attacks. We evaluate the perfor-

mance impact of two di!erent defenses against in-kernel specula-

tion side-channel attacks. The "rst approach, suggested by Intel [13],

transforms the SFI code so that the instructions performingmemory

protection checks commit before memory read instructions start.

The second approach creates separate virtual address spaces for the

application, the OS kernel, and the Virtual Ghost virtual machine

(VM) and con"gures them such that memory private to one com-

ponent is not mapped while the other components execute. This

approach is similar to defenses adopted by the Linux kernel [8, 9].

Results on our application benchmarks show that the average

increase in execution time from the use of SFI using bit masking,

SFI using MPX and lfence, and separate address spaces ranges

from 1.00× to 2.43×, 1.05× to 4.46×, and 1.00× to 1.59×, respectively.

SFI using bit masking to rewrite pointer values always performs

better than SFI using MPX and lfence because lfence stalls the

execution of subsequent instructions until prior instructions are

HASP ’18, June 2, 2018, Los Angeles, CA, USA Dong et al.

Figure 1: Virtual Ghost Architecture

completed locally. In contrast, SFI with bit masking alleviates the

pipeline stall by converting the bounds check’s control dependence

into a data dependence. Speci!cally, the address targeted by the

load has a data dependence on the bounds check, while the other

speculative instructions can proceed.

To summarize, our contributions are as follows:

• We implement and evaluate an SFI approach that prevents

the OS kernel from launching Spectre attacks [16]. We eval-

uate a variant that uses the Intel MPX features [12] with

lfence and one that only uses bit-masking operations.

• We evaluate a method of using multiple page tables to pre-

vent the OS kernel from using Spectre attacks [16].

• We !nd that on Virtual Ghost the SFI using bit-masking

operations is generally the best performing way to defend

against speculation side-channel attacks by the OS kernel.

Both the separate-page-table approach, which was recently

incorporated into commodity OS kernels [8, 9], and MPX

with lfence su"er varying performance penalties due to

serialization.

• We propose enhancements to the x86 ISA that would im-

prove the performance of our defenses. We emulate these

enhancements to demonstrate their bene!ts.

The rest of this paper is organized as follows. Section 2 presents

background on Virtual Ghost [5], and Section 3 discusses Spectre

attacks launched by compromised OS kernels. Section 4 describes

our attack model. Section 5 presents the di"erent methods of miti-

gating Spectre on Virtual Ghost. Section 6 describes our prototype

implementation, Section 7 evaluates our defenses, and Section 8

discusses what hardware support would better aid the implemen-

tation of our defenses. Section 9 presents related work. Section 10

discusses future work and concludes.

2 VIRTUAL GHOST

Virtual Ghost [5] is a compiler-based virtual machine, built from

Secure Virtual Architecture (SVA) [6], which protects applications

from a compromised OS kernel. As Figure 1 shows, Virtual Ghost is

interposed between the traditional software stack and the processor.

On Virtual Ghost systems [5], the OS kernel is compiled into a

virtual instruction set (V-ISA) and then translated by the Virtual

Ghost VM into the processor’s native instruction set (N-ISA). The

V-ISA extends the LLVM Intermediate Representation (IR) [17]

with a set of instructions collectively called SVA-OS. The LLVM IR

enables sophisticated static analysis on the OS kernel code while

SVA-OS provides instructions for the OS kernel to use to con!gure

hardware state (e.g., the MMU) and manipulate program state (e.g.,

context switching).

Virtual Ghost [5] provides three services to applications that

want to protect themselves from the OS kernel:

• Ghost Memory: Virtual Ghost provides applications with

memory that the OS kernel cannot read or write.

• Protected State on Kernel Entry: Virtual Ghost saves an

application’s CPU state into its own protected memory re-

gion when an interrupt, trap, or system call occurs. This

feature protects both the con!dentiality of the program’s

state as well as the integrity of its control #ow.

• Secure Encryption Key Delivery: Virtual Ghost loads an

application’s private encryption and digital signing keys

from persistent storage into the application’s ghost memory

to protect their con!dentiality and integrity.

Virtual Ghost [5] partitions the address space of each process

into four regions as Figure 2 depicts. There are the traditional user-

space and kernel-space memory regions; both the application and

the OS kernel can access the former but only the OS kernel can

access the latter. Each process gets its own private user-space mem-

ory while kernel-space memory is shared among processes [19].

Ghost memory is memory that only user-space code can read or

write; Virtual Ghost prevents the OS kernel from reading and writ-

ing ghost memory and from changing the page table entries that

map ghost memory. Like user-space memory, each process has

its own private ghost memory, which is only mapped when the

process is running. Finally, there is Virtual Ghost VM memory:

this is memory that only the Virtual Ghost VM, implementing the

SVA-OS instructions, can read and write. The Virtual Ghost VM

stores its own internal data structures, interrupted program state

that it saves on interrupts, traps, and system calls, as well as kernel

thread state saved on context switches, in the Virtual Ghost VM

memory. Interrupts, traps, and system calls are !rst handled by

the Virtual Ghost VM, which saves the interrupted program state

and zeros out registers (except for those loaded with system call

arguments) before handing control over to the OS kernel.

As Virtual Ghost [5] allows the OS kernel to read page tables, it

does not place the page tables in Virtual Ghost VMmemory. Instead,

it maps page table pages as read-only memory in the OS page

table and makes the OS use SVA-OS instructions to modify them,

thereby preserving the integrity of the page table pages. However,

enhancements to Virtual Ghost [7] protect the con!dentiality of

the page tables for ghost memory as Section 5.4 describes.

Unlike existing systems, Virtual Ghost [5] prevents user-space,

kernel-space, and ghost memory from being con!gured as exe-

cutable; they do not contain executable native code. Instead, Virtual

Ghost puts the executable code, either code translations from V-

ISA or code segments of N-ISA applications, in the Virtual Ghost

VM memory region. Pages containing native code are mapped as

execute-only while all other parts of the region are inaccessible to

both applications and the OS kernel.

With these features, applications on Virtual Ghost systems can

actively protect themselves from the OS kernel: they can store all

their data inside ghost memory to prevent theft and tampering

and can use encryption and digital signatures to maintain data

Spectres, Virtual Ghosts, and Hardware Support HASP ’18, June 2, 2018, Los Angeles, CA, USA

Figure 2: Virtual Ghost Address Space Layout

con!dentiality and integrity when transmitting data through the

OS kernel’s I/O systems.

Virtual Ghost [5] employs compiler techniques to enforce secu-

rity policies on the OS kernel, such as SFI [25] and control-"ow

integrity (CFI) [1]. SFI, as Sections 5.1 and 5.2 discuss, prevents

the OS kernel from reading and writing ghost memory and Virtual

Ghost VM memory while CFI guarantees that the kernel does not

bypass the SFI instrumentation.

3 OS KERNEL SPECTRE ATTACKS

Speculation [10] is a technique in which a processor executes a set

of instructions before knowing if those instructions should execute;

the processor rolls back the e#ects of speculatively executed in-

structions if it determines that it should not have executed them.

Speculation side-channel attacks [16, 18] cause the processor to

speculatively read data (which the process may or may not have

permission to access) whose value is exposed by further specu-

lative execution of instructions that create a cache side channel.

Spectre [16], for example, tricks a victim user-space process into

speculatively assuming a branch is taken, resulting in an out-of-

bounds array access that loads data into the cache. The address

of this load can subsequently be observed by the attacker via a

cache side channel, thereby exposing the value used to compute

that address. Meltdown [18] exploits a "aw in which the processor

checks MMU memory protections late in the processor pipeline.

With Meltdown, a user-space process speculatively loads informa-

tion from the OS kernel’s memory before the processor performs

the memory protection check and uses a cache side channel to leak

the data to the attacking user-space process.

While the existing Spectre attack [16] is one user-space process

attacking another user-space process, it is possible for a compro-

mised OS kernel to use similar techniques to read ghost memory

and Virtual Ghost VM memory. For e$ciency, Virtual Ghost [5]

keeps ghost memory and Virtual Ghost VM memory mapped into

the virtual address space while the kernel is running and uses SFI

to prevent the kernel from accessing ghost memory and Virtual

Ghost VM memory. The SFI instrumentation adds code prior to

every instruction that reads and writes memory to ensure that the

instruction only accesses user-space or kernel-space memory. At

the native code level, if the SFI instructions do not ensure that

the SFI check has completed prior to a memory read instruction,

then the kernel can speculatively load data from ghost memory

or Virtual Ghost VM memory and leak it via a cache side channel.

This variation of a Spectre attack is similar to Meltdown [18] in

that it accesses memory that is currently mapped in the OS kernel’s

address space that it normally cannot access. Unlike Meltdown,

this attack does not leverage an MMU check that is performed late

in the pipeline. Rather, like existing Spectre attacks [16], it uses

speculation to bypass instructions in the code segment that would

otherwise restrict the program’s access to memory.

4 ATTACK MODEL

Our attack model assumes that an attacker can compromise the OS

kernel or replace it with intentionally malicious software. Since we

assume that the system is using Virtual Ghost [5], a compromised

OS kernel cannot read or write ghost memory or modify appli-

cation control "ow. We further assume that the attacker wishes

to steal information; integrity and availability attacks are out of

scope. Therefore, we assume that the OS kernel will want to use

speculative execution side channels to steal private application in-

formation. Other side-channel attacks are possible but outside the

scope of this work. We assume that processor protection features

are implemented correctly from the perspective of the instruction

set architecture (ISA); speculation side channels are the only "aw

in the hardware.

Under these conditions, our defenses must prevent a compro-

mised OS kernel from using the variations of Spectre attacks [16]

presented in Section 3 to read Virtual Ghost VM memory and ghost

memory. Additionally, since the OS kernel can create and execute

new user-space programs, our defenses must prevent application

code from using Spectre [16] and Meltdown [18] attacks to read

Virtual Ghost VM memory. Since Virtual Ghost [5] and the appli-

cations executing thereon treat the OS kernel as untrusted code,

applications wanting to keep their data private should store it in

their own ghost memory and encrypt it when sending it through

the OS kernel to perform I/O.

5 MEMORY PROTECTIONS

There are two broad approaches for preventing an OS kernel from

launching Spectre attacks [16]. The !rst is to use an SFI technique

that forces the processor pipeline to commit the SFI instructions

before executing memory read instructions. This SFI protection

must be enforced on both OS kernel and application code; this

requires that OS kernel and application code be shipped as V-ISA

code. The second is to unmap the ghost memory and Virtual Ghost

VM memory from the virtual address space while the OS kernel

is running and to unmap the Virtual Ghost VM memory while

applications are running (we also unmap kernel-space memory like

previous work [8, 9] as it mitigates user-level Meltdown attacks [18]

and induces no additional overhead to our defense).

We explore three approaches of mitigating speculation side chan-

nels on Virtual Ghost:

(1) Bit-Masking SFI: We employ the SFI method in the original

Virtual Ghost [5] on the kernel, which uses bit masking to

ensure that addresses used in memory reads point into either

user-space or kernel-space memory. This version, coinciden-

tally, creates data dependencies that force the processor to

delay memory loads until the SFI instructions commit.

(2) MPX SFI with Lfence: We employ a new SFI approach that

uses the Intel MPX bounds checking instructions [12] to ver-

ify that pointers point into either user-space or kernel-space

memory [7]. According to Intel [14], adding an lfence be-

tween an MPX check and a memory read instruction stalls

the pipeline to prevent Spectre [16] attacks. Note that MPX

SFI will need the lfence only before loads and not before

stores since we are concerned with the speculative read ex-

posing protected data values. Speculative writes do not load

HASP ’18, June 2, 2018, Los Angeles, CA, USA Dong et al.

movq %r9, %rbx

shrq $0x20 , %rbx

andl $0xfffffd00 , %ebx

cmpq $0xfffffd00 , %rbx

sete %bl

movzbl %bl, %ebx

shlq $0x29 , %rbx

orq %r9, %rbx

movb (%rbx), %bl

(a) SFI Using Bit-Masking Operations

movabsq $0x10000000000 , %rax

addq %rsi , %rax

bndcl %rax , %bnd0

lfence

movq (%rsi), %rdx

(b) SFI Using MPX

cmpq $4095 , %rdi

setbe %r15b

movzbq %r15b , %r15

orq %r15 , %rdi

movb (%rdi), %al

(c) SFI Using EMPX

Figure 3: SFI Code Snippets (AT&T Syntax)

any protected data into the processor registers; both Spec-

tre and Meltdown attacks depend upon loading protected

data into a processor register in order to leak it via a covert

channel [16, 18].

(3) Separate Virtual Address Spaces: We employ a method

that creates separate pages tables for the application, the OS

kernel, and the Virtual Ghost VM.

Modern OS kernels maintain a data structure dubbed the direct

map. The direct map is a one-to-one mapping of contiguous virtual

addresses to contiguous physical memory addresses which the OS

kernel uses to quickly !nd a virtual address mapped to a physical

address to which it can read and write [4]. A compromised OS

kernel could use a Spectre [16] or Meltdown [18] attack to read the

contents of the direct map, bypassing our protections. Therefore,

after describing our three defenses, we explain how we protect the

direct map by moving it into Virtual Ghost VM memory.

5.1 Bit-Masking SFI

The SFI instrumentation in the original Virtual Ghost [5] uses sim-

ple bit masking to check whether a pointer points into the Virtual

Ghost VM memory or ghost memory regions and to move that

pointer into the kernel-space region if so; since the OS kernel should

only read and write user-space and kernel-space memory, moving

the pointer into kernel space causes an incorrect OS kernel to be-

have securely but still incorrectly. This SFI instrumentation uses

data dependence instead of branches and bounds checking instruc-

tions to protect memory. Figure 3a shows an x86 assembly code

snippet that we use to perform an SFI check in the latest Virtual

Ghost implementation before each memory read. This code checks

whether the input pointer points into either the Virtual Ghost VM

memory or ghost memory (these are placed contiguously in the

virtual address space). If the pointer is within these two memory

regions, it sets a bit in the pointer to move it into the kernel-space

memory region.

In Figure 3a, the pointer to check is stored in register %r9. The

SFI instrumentation works as follows:

(1) It copies the original pointer value from %r9 to %rbx.

(2) It extracts the high-order 24 bits of the pointer value and

determines whether it equals 0xfffffd (the value of the

high order bits of any address within the ghost memory or

Virtual Ghost VM memory region).

(3) The sete and movzbl instructions place 0x1 into %ebx if

the pointer is within the ghost memory or Virtual Ghost

VM memory region or 0x0 otherwise. The shlq instruction

transforms a 0x1 value into 0x20000000000.

(4) If the original pointer needs to be moved out of ghost mem-

ory or Virtual Ghost VM memory, the orq instruction will

mask the pointer value with 0x20000000000, generating a

pointer into the kernel-space memory region. If the origi-

nal pointer pointed into user-space or kernel-space memory,

then it is masked with 0x0 and remains unchanged.

Intel states that using a sete instruction constrains specula-

tion [14]. Additionally, the bit-masking instructions create a data

dependence between the SFI code and the address of the protected

load; the processor must compute the result of the SFI-protected

pointer before the memory read instruction, thereby preventing

Spectre [16] attacks.

5.2 MPX SFI with Lfence

We utilize Intel MPX [12], a hardware mechanism originally de-

signed for e"cient pointer bounds checking, to implement SFI. MPX

provides four bounds registers; each register maintains the lower

and upper bounds of a memory object. Software is instrumented to

use bounds checking instructions that check whether a pointer is

within the bounds stored within a speci!ed bounds register; these

instructions generate a trap if the pointer is out of bounds.

Apparition [7] is an enhanced version of Virtual Ghost [5] that

uses MPX instructions for its SFI implementation. Instead of storing

the bounds of individual memory objects within the bounds regis-

ters, Apparition [7] stores the bounds of an entire memory region

within a bounds register. Speci!cally, Apparition treats user-space

and kernel-space memory as a single large memory region and

checks whether each OS kernel load and store is within the bounds

of this memory region. As there is only one memory region, only

one bounds register is needed. One di"culty is that the user-space

memory and kernel-space memory are not contiguous; ghost mem-

ory and Virtual Ghost VMmemory reside between them as Figure 2

shows. To address this issue, each run-time check before a load

or store subtracts the starting address of ghost memory from the

value of the pointer being dereferenced, thus making the user- and

kernel-space memory appear contiguous. MPX can then be used by

setting the lower and upper bounds in the bounds register to the

Spectres, Virtual Ghosts, and Hardware Support HASP ’18, June 2, 2018, Los Angeles, CA, USA

Figure 4: The separate root-level page table pages

remapped values of the start of kernel-space memory and the end

of user-space memory, respectively.

Intel processors assume that most bounds checks will pass and

will therefore speculatively execute instructions after an MPX

bounds check instruction [14]. To prevent a Spectre attack from

reading out-of-bounds data, we modify Virtual Ghost to insert an

lfence instruction between the MPX bounds check instruction and

the memory access as Intel suggests [13, 14]. The lfence instruc-

tion acts as a speculation barrier, preventing younger instructions,

including memory reads, from executing speculatively before older

instructions, including the MPX bounds check, retire [13, 14].

Figure 3b lists instructions in an MPX SFI check. The movabsq

and addq instructions subtract a constant from the pointer value

stored in %rsi to make user-space and kernel-space memory appear

contiguous; theMPX bounds check instruction (bndcl) follows. The

subsequent lfence instruction ensures that the processor pipeline

stalls until the bounds check has completed and the processor

knows that it will not generate a trap. At that point, the movq

instruction that performs the actual memory read can commence.

5.3 Separate Virtual Address Spaces

Another defense for Spectre attacks [16] is to execute the applica-

tion, the OS kernel, and the Virtual Ghost VM within their own

separate virtual address spaces. This defense requires three address

spaces that unmap memory needing protection as follows:

• VG-AddrSpace: The Virtual Ghost VM maps all four mem-

ory regions depicted in Figure 2.

• App-AddrSpace: Applications map only user-space mem-

ory and the application’s ghost memory.

• Kernel-AddrSpace: The kernel maps only user-space and

kernel-space memory.

While the OS kernel is executing, only the Kernel-AddrSpace

can be used. The App-AddrSpace is used when the user-space ap-

plication is running; the VG-AddrSpace translations are active only

when the Virtual Ghost VM is executing.

We modi!ed Virtual Ghost [5] to create three separate virtual

address spaces for each process by maintaining separate page tables

for the VG-AddrSpace, App-AddrSpace, and Kernel-AddrSpace as

Figure 4 depicts. For architectures that use hierarchical page tables

e.g., x86 [12], we strategically place the ghost memory and Virtual

Ghost VMmemory regions in the virtual address space so that mod-

ifying one entry in the root-level page table page can unmap the

region. This approach reduces the number of additional page table

pages required; the Virtual Ghost VM only needs two additional

root-level PTPs for the App-AddrSpace and Kernel-AddrSpace in ad-

dition to the existing root PTP for the VG-AddrSpace. We add a new

!fth memory region, named Virtual Ghost VM trampolines, which

contains the minimal subset of Virtual Ghost VM code required to

switch address spaces; it is mapped by a separate root-level page

table entry in all three address spaces.

Virtual Ghost [5] prevents the OS kernel from modifying page

tables directly; instead, the Virtual Ghost VM provides SVA-OS

instructions that the OS kernel can use to insert, update, or remove

page table entries (PTEs) at each level of a hierarchical page table.

We modi!ed the relevant SVA-OS instructions to propagate any

changes to the root-level PTEs of a memory region to all the root-

level PTPs mapping the memory region. These SVA-OS instructions

also ensure that the root-level entries of the ghost memory regions

can only be populated in the VG-AddrSpace and App-AddrSpace,

and the root-level entries of the Virtual Ghost VM Memory can

only be inserted in the VG-AddrSpace.

Whenever switching address spaces, the Virtual Ghost VM must

load the page table base register (PTBR) with the physical address

of the correct root-level PTP. For SVA-OS instructions, the Virtual

Ghost VM loads the root-level PTP of the VG-AddrSpace into the

PTBR and then restores the Kernel-AddrSpace root-level PTP into

the PTBR before returning control to kernel code. For system calls,

traps, and interrupts, the Virtual Ghost VM loads the root-level PTP

of the VG-AddrSpace into the PTBR so that it can save the CPU

state into Virtual Ghost VM memory where it will be protected

from applications and the OS kernel. It then switches to the Kernel-

AddrSpace and calls the OS kernel’s handler for the system call,

trap, or interrupt.

To alleviate Translation Look-aside Bu"er (TLB) #ushes when

switching address spaces, we assign di"erent address space identi-

!ers (ASIDs) to the OS kernel, the application, and the Virtual Ghost

VM.We also enhanced the SVA-OSMMU instructions to ensure that

ghost memory and Virtual Ghost VM memory are never mapped

with page table entries marked with the global bit [12]. On x86,

both the PTBR and the ASID are in Control Register 3 (CR3) [12].

Modifying either the PTBR or ASID is a serializing instruction [12],

resulting in additional latency on every switch among the App-

AddrSpace, the Kernel-AddrSpace, and the VG-AddrSpace.

Two x86 features prevent fully correct implementation of multi-

ple address spaces. First, the x86 saves several registers e.g., program

counter, stack pointer, and processor status register, into memory

before handing control over to the interrupt handling routine [12].

This creates a “chicken and egg” problem: software must switch to a

di"erent virtual address space in order to save interrupted program

state in Virtual Ghost VM memory, but the processor attempts to

save the state before software can switch to the virtual address

space that maps Virtual Ghost VM memory. Second, the x86 re-

quires that a general purpose register be free in order to change

the ASID and page table pointer in CR3; the only instruction that

can modify a control register reads its input from a general pur-

pose register, and no general purpose registers are free when the

interrupt handling code begins execution [12].

HASP ’18, June 2, 2018, Los Angeles, CA, USA Dong et al.

Two simple changes would alleviate these di!culties. First, the

processor should save the registers that are currently saved into

memory on an interrupt, trap, or system call into special registers on

the processor (as ARM does [2]) instead of saving them to memory.

This change would allow software to switch to a di"erent virtual

address space before saving interrupted program state into Virtual

Ghost VM memory. Second, one or more general purpose registers

should be reserved for trusted code to use to switch virtual address

spaces, alleviating the need to save general purpose registers before

performing the virtual address space switch.

5.4 Virtual Ghost Internal Direct Map

A direct map is a region of contiguous virtual memory that is

mapped to a contiguous range of physical memory [4]. The OS ker-

nel uses a direct map to compute a virtual address that is mapped

to a speci#ed physical address in constant time via bitwise OR op-

erations on the physical address [4]. Apparition [7] extends Virtual

Ghost [5] by creating a direct map within the Virtual Ghost VM

Memory that only the Virtual Ghost VM can use. This new direct

map provides write access to all the physical memory. Apparition

unmaps physical memory frames used for ghost memory, Virtual

Ghost VM memory, and page tables mapping ghost memory and

Virtual Ghost VM memory from the OS kernel’s direct map. Such

frames only appear in Apparition’s internal direct map, and the

SVA-OS instructions maintain this restriction. Combined with our

defenses, this internal direct map prevents the kernel and appli-

cations from gleaning con#dential information from the original

direct map via speculation side channels.

6 IMPLEMENTATION

Our work modi#es the Virtual Ghost [5, 7] prototype for x86-64

systems and uses the FreeBSD 9.0 kernel ported to the SVA virtual

instruction set. This prototype only supports single-processor ex-

ecution. The kernel is translated from V-ISA to N-ISA code and

instrumented during static compilation; online translation of V-ISA

to N-ISA code and moving N-ISA code into the Virtual Ghost VM

memory is not implemented. Virtual Ghost [5] instruments loads,

stores, atomic operations, and calls to memset() and memcpy() at

the LLVM IR level; it does not instrument calls to functions that

copy data between user and kernel memory [19]. Since we modi#ed

our kernel to use constant-sized stack frames, the stack pointer is

never loaded from memory, removing the need for bounds checks

on reads from stack spill slots. We modi#ed the SFI MPX pass so

that it inserts lfence instructions before every load instruction,

atomic instruction, and memcpy() call. We do not modify the bit-

masking SFI instrumentation as it already inserts instructions e.g.,

sete [14], that constrain speculation prior to memory access in-

structions. The CFI instrumentation uses a bitwise OR instruction

to ensure that control-$ow targets are within kernel memory, and

it folds the memory read that loads CFI labels into an x86 compare

instruction. These two features prevent the kernel from using the

memory reads added by CFI to launch Spectre attacks.

We only instrument the OS kernel with the SFI instructions to

defend against speculation side-channel attacks performed directly

by the OS kernel. We therefore evaluate OS kernel performance

and leave application performance for future work. To make a fair

comparison between the separate-address-spaces approach and

the SFI approaches, using two address spaces, the VG-AddrSpace

and Kernel-AddrSpace as described in Section 5.3, is su!cient to

mitigate against kernel-side speculation side channels, where the

application and the Virtual Ghost VM share the VG-AddrSpace.

Due to the x86 limitations described in Section 5.3, we mimic the

behavior of using separate page tables by creating identical copies

of the top-level page table page for VG-AddrSpace and Kernel-

AddrSpace. We then modi#ed the Virtual Ghost VM so that tran-

sitions between the VG-AddrSpace and Kernel-AddrSpace change

page table pages and switch to separate address space identi#ers

(which are called Process Context Identi!ers, or PCIDs [12]). This

causes the OS kernel and the Virtual Ghost VM to use separate

page tables and TLB entries.

7 EVALUATION

7.1 Methodology

We ran the experiments on a Dell Precision T3620 workstation

with a 3.40 GHz Intel® Core™ i7-6700 hyperthreading quad-core

processor, 16 GB of RAM, an Intel® E1000 network card, a 256 GB

Solid State Drive (SSD), and a 7,200 RPM 500 GB hard disk. For

our network experiments, we used a dedicated Gigabit Ethernet

network with a Dell T1700 Precision workstation running FreeBSD

9.3 as the client machine; this machine has a 3.40 GHz Intel® i7-

4770 hyperthreading quad-core processor with 16 GB of RAM. We

ran our experiments with the OS in single-user mode to alleviate

noise from other processes on the system. We stored all #les for

our experiments on the SSD.

Besides the baseline FreeBSD 9.0 kernel, we conducted our ex-

periments on the FreeBSD SVA kernels executing on the following

con#gurations of Virtual Ghost [5] coupled with the SVA internal

direct map (described in Section 5.4):

(1) SFI-MPX-lfence: Virtual Ghost implementing SFIwithMPX

and lfence. The lfence stops all younger instructions from

executing, even speculatively, before the older instructions

retire.

(2) SFI-arith: Virtual Ghost employing traditional SFI using

bit-masking operations. The speculation boundary is only

between the check and the use of the pointer; other specula-

tive instructions can proceed.

(3) AS: Virtual Ghost using separate virtual address spaces.

Address space switching occurs frequently since each ker-

nel invocation of an SVA-OS instruction (as described in

Section 2) triggers two address space switches: one from

Kernel-AddrSpace to VG-AddrSpace and the other from VG-

AddrSpace back to Kernel-AddrSpace. For traps, interrupts

and system calls, the trap handling code within the Virtual

Ghost VMmust #rst execute in VG-AddrSpace before switch-

ing to Kernel-AddrSpace to execute the kernel trap handlers.

In addition, modi#cation of CR3.PTBR and CR3.PCID are

expensive serializing instructions.

(4) SFI-MPX: Virtual Ghost implementing SFI with MPX but

without lfence.

Spectres, Virtual Ghosts, and Hardware Support HASP ’18, June 2, 2018, Los Angeles, CA, USA

Test Native Std. Overhead (×)
(µs) dev.

(µs)
SFI-
MPX
lfence

SFI-
arith

AS SFI-
MPX

SFI-
EMPX

null syscall 0.1 0.0 5.3 2.9 7.0 2.6 2.8

open/close 1.8 0.0 6.0 2.3 1.9 1.9 2.1

mmap 5.7 0.1 6.2 3.5 4.6 2.8 3.2

page fault 31.5 1.7 1.1 1.1 1.1 1.1 1.0

fork + exit 50.2 0.1 4.2 2.2 3.9 1.9 2.2

fork + exec 55.0 0.2 4.1 2.2 3.7 1.9 2.2

Average - - 4.5 2.4 3.7 2.0 2.3

Table 1: LMBench Results

(5) SFI-EMPX: Virtual Ghost implementing SFI to emulate the

MPX improvements suggested in Section 8.We propose hard-

ware improvements to MPX to gain the performance of SFI-

MPX with the security of SFI-arith.

7.2 Microbenchmarks

We used LMBench [20] to measure the overhead of Virtual Ghost

with the various mitigations on various system calls. We chose the

process latency benchmarks that would impact application perfor-

mance most and measure the performance of the OS kernel instead

of the hardware. We used 1,000 repetitions for the benchmarks

for which the number of repetitions is con!gurable. We report the

averages of the elapsed time output by the benchmarks over 10

rounds of execution.

Table 1 reports the overhead of Virtual ghost with the various

mitigations. The overheads of SFI-MPX-lfence, SFI-arith, AS and

SFI-MPX are 4.5×, 2.4×, 3.7×, and 2.0× on average, respectively,

across all the system calls tested. Our results show that SFI-arith

outperforms SFI-MPX-lfence and AS for all the system calls except

for open/close and page fault. AS is slower due to the frequent

address space switches and the expensive serializing instructions.

SFI-MPX-lfence has the worst performance of the three defenses for

all the system calls except for null syscall due to the expense of

using an lfence speculation barrier. SFI-MPX-lfence is more than

2 times slower than SFI-MPX on average. AS shows the worst over-

head on the null syscall benchmark relative to SFI-Arith and

SFI-MPX-lfence since no work is performed in the system call, mak-

ing the overhead of address space switches a larger proportion of

the execution time than in the other benchmarks. For open/close,

AS is faster than SFI-arith, where the overhead of address space

switches is smaller than the costs of instrumenting every kernel

load and store with bit-masking instructions. The three defenses

incur similar overhead on page fault when accounting for stan-

dard deviation. In addition, the overhead incurred by SFI-EMPX is

similar to SFI-arith across all the system calls tested.

7.3 Libc Compilation Performance

We studied our defenses’ overheads when compiling the FreeBSD

9.0 C library. To measure compilation time, we read the x86 Time

Stamp Counter (TSC) right before and after the execution of the

make command, took the di"erence between the two, and divided

the result by the processor frequency to compute execution time.

We ran each experiment 10 times and report the averages in Table 2.

SFI-arith is the fastest option among the threemitigations, incurring

an overhead of 1.17×. AS is slower than SFI-arith due to the high

frequency of address space switches. SFI-MPX-lfence performs the

worst due to the use of lfence; adding an lfence to the MPX

check increases the overhead from 1.12× to 1.44×. SFI-EMPX incurs

similar overhead as SFI-arith and SFI-MPX without lfence.

7.4 Postmark Performance

To analyze the performance impact of the defenses on the !le

system, we used Postmark [22], which mimics the behavior of a

mail server and exercises the !le system intensively. We con!gured

Postmark to use 500 !les ranging in size from 500 B to 9.77 KB. We

also con!gured it to use Unix bu"ered !le I/O and a 512 B block

size for reads and writes. The read/append and create/delete biases

were set to 5. We performed 500,000 transactions in each run.

Table 2 reports the averages over 20 rounds of execution. AS in-

curs the smallest overhead (1.58×), outperforming SFI-arith (2.43×)

and SFI-MPX-lfence (4.46×). The cost of AS is smaller than the

cost of SFI-arith, which indicates the overhead of address space

switches is less expensive than instrumenting all the kernel load

and stores. Lfence increases the overhead of SFI-MPX signi!cantly,

from 1.63× to 4.46×. SFI-EMPX incurs 13.17% less overhead com-

pared to SFI-arith and 29.45% more overhead than SFI-MPX without

lfence.

7.5 OpenSSH Performance

To analyze our defenses’ e"ects on network I/O, we measured the

bandwidth of the OpenSSH [24] server running on our defenses

serving !les to a FreeBSD client. We used the OpenSSH server on

our test machine and the OpenSSH scp client on the FreeBSD 9.3

machine described in Section 7.1. We created a set of !les of varying

sizes before running the experiment; we !lled the contents of each

!le with random numbers generated by the /dev/random device

on our test machine.

We ran each experiment 20 times and report the averages. Fig-

ure 5 illustrates the average !le transfer rates on the baseline

FreeBSD 9.0, and Figure 6 shows the overhead of the mitigations.

SFI-MPX-lfence has the worst performance, incurring overhead

ranging from 1.05× to 1.97× across all !le sizes due to the expen-

sive lfence. In contrast, the SFI-MPX overhead without lfence

is 1.00× to 1.34×. SFI-arith is a clear winner over the other two

defenses with overhead ranging from 1.04× to 1.40× when trans-

ferring 1 KB to 4 MB !les, whereas the overhead of AS is larger,

from 1.05× to 1.59×. AS is slower than SFI-arith due to the frequent

and expensive address space switches. For large !les ranging from

8 MB to 512 MB, the overheads of SFI-arith, AS and SFI-MPX are

negligible. SFI-EMPX performs similarly as SFI-arith and is slightly

slower than SFI-MPX for !les from 1 KB to 128 KB. For 256 KB

App Native Std. Overhead (×)
(s) Dev.

(s)
SFI-
MPX
lfence

SFI-
arith

AS SFI-
MPX

SFI-
EMPX

Libc com-
pilation

67.68 0.64 1.44 1.17 1.22 1.12 1.15

Postmark 8.00 0.55 4.46 2.43 1.58 1.63 2.11

Table 2: Postmark and Libc Compilation Results

HASP ’18, June 2, 2018, Los Angeles, CA, USA Dong et al.

Figure 5: SSH Server Transfer Rate on Native FreeBSD

Figure 6: Overheads on SSH Server Transfer Rate

to 512 MB !les, SFI-EMPX, SFI-arith and SFI-MPX incur similar
overhead.

8 HARDWARE IMPROVEMENTS

As Section 7 shows, MPX provided the best performance prior to
the addition of lfence to mitigate Spectre [16] attacks. We propose
two improvements to MPX that could provide good performance
and mitigate Spectre attacks.

First, adding a condition code dependency between the MPX
bounds checking instruction and the memory access instruction
would help eliminate the need for an lfence. For example, instead
of triggering a fault, the MPX bounds checking instructions could
simply set a bit in a register indicating that the bounds check failed;
the subsequent memory access instructions could potentially be
conditionally executed based on the value of this bit, generating a
trap if the bit is set.

Second, to allow pointers to point into multiple regions of the
virtual address space, the MPX bounds checking instructions could
be enhanced to take an operand that speci!es a set of bounds
registers against which to check the pointer; an out-of-bounds result
only occurs if the pointer is not within the bounds stored within
any of the speci!ed bounds check registers. This change would
decrease register pressure and instruction count by alleviating the
pointer arithmetic needed to make user-space and kernel-space
appear contiguous.

Figure 3c shows x86 assembly code that mimics SFI that uses our
proposed MPX improvements. The code checks the pointer stored
in %rdi against a constant value using the cmpq. It then sets a bit
in the pointer if it is out of bounds using the setbe instruction;
this creates the data dependency between the check and the movb
which reads memory. Our results show that this emulated SFI has
similar performance to the fastest of the three defenses, as Section 7
shows.

9 RELATEDWORK

Intel [14], Microsoft [21], and ARM [3] leverage speculation barri-
ers (such as cpuid, lfence, CMOVcc, and SETcc) to mitigate Spec-
tre [16] attacks that bypass bounds checking. Kernel page-table
isolation (KPTI or KAISER) modi!es the Linux kernel to mitigate
Meltdown [8, 9, 18] by unmapping kernel-space memory when
user-space code is running on the processor. Microsoft Windows 10
has similar features [15]. These defenses do not mitigate speculation
side-channel attacks performed by privileged code.

Intel suggests that future processors should be able to use mem-
ory protection keys (MPK) and supervisor-mode access prevention
(SMAP) [12] to restrict the memory that might be used to create
cache side channels.

Red Hat found the kernel patches for mitigating Meltdown and
Spectre launched by user-space attackers incurred 1% to 8% over-
head on the wide range of applications tested, including HPC,
JavaVM and database benchmarks [11]. Nikolay et al. evaluated the
overhead of these kernel patches on HPC applications and found
their overhead was 2% to 3% for single node jobs and 5% to 11% for
two node jobs [23].

10 FUTUREWORK AND CONCLUSIONS

SFI with bit masking generally has the best performance of our three
defenses; SFI with MPX and lfence has the worst performance.
Average application execution time overheads for SFI with bit mask-
ing, MPX coupled with lfence, and separate address spaces range
from 1.00× to 2.43×, 1.05× to 4.46×, and 1.00× to 1.59×, respectively.
Our hypothetical SFI utilizing our MPX improvements has similar
or better performance compared to bit-masking SFI.

There are several directions for future work. First, we can ex-
plore the use of type-safety optimizations [6] to remove unneeded
speculation barriers and evaluate the development cost of such op-
timizations. Second, we will prototype and evaluate our proposed
improvements to Intel MPX [12].

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments
and suggestions. Thisworkwas funded byNSFAwards CNS-1319353,
CNS-1618497, CNS-1618588, CNS-1629770, and CNS-1652280.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-"ow

integrity principles, implementations, and applications. ACM Transactions on
Information Systems Security 13, Article 4 (November 2009), 40 pages. Issue 1.

[2] ARM. 2014. ARM Architecture Reference Manual: ARMv8, for ARMv8-A Architec-
ture Pro!le.

[3] ARM. 2018. ARM speculation barrier header. https://github.com/ARM-
software/speculation-barrier.

Spectres, Virtual Ghosts, and Hardware Support HASP ’18, June 2, 2018, Los Angeles, CA, USA

[4] D. P. Bovet and Marco Cesati. 2006. Understanding the LINUX Kernel (3rd ed.).
O’Reilly, Sebastopol, CA.

[5] John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. Virtual Ghost:
Protecting Applications from Hostile Operating Systems. In Proceedings of the
Nineteenth International Conference on Architectural Support for Programming
Languages and Operating Systems.

[6] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve. 2007.
Secure Virtual Architecture: A Safe Execution Environment for Commodity
Operating Systems. In Proceedings of the ACM SIGOPS Symposium on Operating
System Principles. Stevenson, WA, USA.

[7] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox, and Sandhya Dwarkadas.
2018. Shielding Software From Privileged Side-Channel Attacks. To appear in
the 27th USENIX Security Symposium.

[8] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, ClémentineMaurice,
and Stefan Mangard. 2017. KASLR is Dead: Long Live KASLR. In Engineering
Secure Software and Systems. Springer International Publishing, Cham.

[9] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan
Mangard. 2016. Prefetch Side-Channel Attacks: Bypassing SMAP and Ker-
nel ASLR. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’16). ACM, New York, NY, USA, 368–379.
https://doi.org/10.1145/2976749.2978356

[10] John L. Hennessy and David A. Patterson. 2002. Computer Architecture: A Quan-

titative Approach (3rd ed.). Morgan Kaufmann, San Francisco, CA.
[11] Red Hat Inc. 2018. Speculative Execution Exploit Performance Impacts - Describ-

ing the performance impacts to security patches for CVE-2017-5754 CVE-2017-
5753 and CVE-2017-5715. https://access.redhat.com/articles/3307751.

[12] Intel. 2016. Intel 64 and IA-32 Architectures Software Developer’s Manual.
(September 2016).

[13] Intel. 2018. Intel Analysis of Speculative Execution Side Channels. Technical Report
336983-001.

[14] Intel. 2018. Speculative Execution Side Channel Mitigations. Technical Report
336996-001.

[15] Alex Ionescu. 2017. Windows 17035 Kernel ASLR/VA Isolation In Practice (like
Linux KAISER). (2017).

[16] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. (2018).

[17] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. In Proceedings of the Conference
on Code Generation and Optimization. San Jose, CA, USA, 75–88.

[18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. (2018).

[19] Marshall Kirk McKusick, George V. Neville-Neil, and Robert N. M. Watson. 2015.
The Design and Implementation of the FreeBSD Operating System (second ed.).
Pearson Education.

[20] Larry McVoy and Carl Staelin. 1996. lmbench: portable tools for performance
analysis. In Proceedings of the 1996 USENIX Annual Technical Conference (ATC’96).
USENIX Association, Berkeley, CA, USA, 16. http://dl.acm.org/citation.cfm?id=
1268299.1268322

[21] Andrew Pardoe. 2018. Spectre mitigations in MSVC.
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-
in-msvc/.

[22] Postmark. 2013. Email delivery for web apps. https://postmarkapp.com/.
[23] Nikolay A. Simakov, Martins D. Innus, Matthew D. Jones, Joseph P. White,

Steven M. Gallo, Robert L. DeLeon, and Thomas R. Furlani. 2018. E!ect of
Meltdown and Spectre Patches on the Performance of HPC Applications. (2018).
https://arxiv.org/abs/1801.04329.

[24] The OpenBSD Project. 2014. OpenSSH. http://www.openssh.com
http://www.openssh.com.

[25] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.
E"cient Software-based Fault Isolation. In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles (SOSP ’93). ACM, New York, NY, USA,
14. https://doi.org/10.1145/168619.168635

