Spectres, Virtual Ghosts, and Hardware Support

Xiaowan Dong
University of Rochester
Rochester, NY
xdong@cs.rochester.edu

Alan Cox
Rice University
Houston, TX
alc@rice.edu

ABSTRACT

Side-channel attacks, such as Spectre and Meltdown, that leverage
speculative execution pose a serious threat to computing systems.
Worse yet, such attacks can be perpetrated by compromised operat-
ing system (OS) kernels to bypass defenses that protect applications
from the OS kernel.

This work evaluates the performance impact of three different
defenses against in-kernel speculation side-channel attacks within
the context of Virtual Ghost, a system that protects user data from
compromised OS kernels: Intel MPX bounds checks, which require
a memory fence; address bit-masking and testing, which creates
a dependence between the bounds check and the load/store; and
the use of separate virtual address spaces for applications, the OS
kernel, and the Virtual Ghost virtual machine, forcing a specula-
tion boundary. Our results indicate that an instrumentation-based
bit-masking approach to protection incurs the least overhead by
minimizing speculation boundaries. Our work also highlights possi-
ble improvements to Intel MPX that could help mitigate speculation
side-channel attacks at a lower cost.

CCS CONCEPTS

« Security and privacy — Side-channel analysis and counter-
measures; Operating systems security;

KEYWORDS

speculation-based side channels, operating systems security, secure
computer architectures, compiler-based virtual machines

ACM Reference Format:

Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox, and Sandhya Dwarkadas.

2018. Spectres, Virtual Ghosts, and Hardware Support. In HASP ’18: Hard-
ware and Architectural Support for Security and Privacy, June 2, 2018, Los
Angeles, CA, USA. ACM, New York, NY, USA, Article 5, 9 pages. https:
//doi.org/10.1145/3214292.3214297

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HASP ’18, June 2, 2018, Los Angeles, CA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6500-0/18/06...$15.00
https://doi.org/10.1145/3214292.3214297

Zhuojia Shen

University of Rochester
Rochester, NY
zshen10@cs.rochester.edu

John Criswell
University of Rochester
Rochester, NY
criswell@cs.rochester.edu

Sandhya Dwarkadas
University of Rochester
Rochester, NY
sandhya@cs.rochester.edu

1 INTRODUCTION

Side channels leveraging speculative execution in processors [16,
18] pose a serious threat to computing systems. The Spectre at-
tack [16] leverages speculative execution to trick a victim process
into loading data into the processor and then leaking that data to
the attacker via cache side channels. Meltdown [18] exploits the fact
that memory protection checks are performed late in the processor
pipeline to bypass supervisor-only page protections. While these
attacks are launched by malicious user-space applications to steal
data that is supposedly protected by the processor’s memory man-
agement unit (MMU), speculative execution attacks can also defeat
other methods of memory isolation, such as software fault isolation
(SFI) [25]. Worse yet, such attacks pose a threat to systems like
Virtual Ghost [5] that are supposed to protect applications from
compromised operating system (OS) kernels. If an application’s
physical memory remains mapped in the virtual address space
while the kernel is executing, then a compromised kernel can use
variants of the Spectre [16] and Meltdown [18] attacks to read the
contents of the application’s memory even if hardware protection
mechanisms (e.g., the MMU) or software protection mechanisms
(e.g., SFI) are employed to prevent the kernel from reading the
memory.

Virtual Ghost [5] is a compiler-based virtual machine that uses
a combination of program rewriting techniques and hardware sup-
port to protect applications from a compromised OS kernel. Con-
sequently, it can use both SFI and hardware support to mitigate
speculation-based side-channel attacks. We evaluate the perfor-
mance impact of two different defenses against in-kernel specula-
tion side-channel attacks. The first approach, suggested by Intel [13],
transforms the SFI code so that the instructions performing memory
protection checks commit before memory read instructions start.
The second approach creates separate virtual address spaces for the
application, the OS kernel, and the Virtual Ghost virtual machine
(VM) and configures them such that memory private to one com-
ponent is not mapped while the other components execute. This
approach is similar to defenses adopted by the Linux kernel [8, 9].

Results on our application benchmarks show that the average
increase in execution time from the use of SFI using bit masking,
SFI using MPX and 1fence, and separate address spaces ranges
from 1.00X to 2.43X, 1.05X to 4.46X, and 1.00X to 1.59X%, respectively.
SFI using bit masking to rewrite pointer values always performs
better than SFI using MPX and 1fence because 1fence stalls the
execution of subsequent instructions until prior instructions are

HASP *18, June 2, 2018, Los Angeles, CA, USA

Applications
Virtual Ghost VM Virtual Instruction Set
| sm || svaos || cm |
Native Instruction Set
Processor

Figure 1: Virtual Ghost Architecture

completed locally. In contrast, SFI with bit masking alleviates the
pipeline stall by converting the bounds check’s control dependence
into a data dependence. Specifically, the address targeted by the
load has a data dependence on the bounds check, while the other
speculative instructions can proceed.

To summarize, our contributions are as follows:

e We implement and evaluate an SFI approach that prevents
the OS kernel from launching Spectre attacks [16]. We eval-
uate a variant that uses the Intel MPX features [12] with
1fence and one that only uses bit-masking operations.

e We evaluate a method of using multiple page tables to pre-
vent the OS kernel from using Spectre attacks [16].

e We find that on Virtual Ghost the SFI using bit-masking
operations is generally the best performing way to defend
against speculation side-channel attacks by the OS kernel.
Both the separate-page-table approach, which was recently
incorporated into commodity OS kernels [8, 9], and MPX
with 1fence suffer varying performance penalties due to
serialization.

e We propose enhancements to the x86 ISA that would im-
prove the performance of our defenses. We emulate these
enhancements to demonstrate their benefits.

The rest of this paper is organized as follows. Section 2 presents
background on Virtual Ghost [5], and Section 3 discusses Spectre
attacks launched by compromised OS kernels. Section 4 describes
our attack model. Section 5 presents the different methods of miti-
gating Spectre on Virtual Ghost. Section 6 describes our prototype
implementation, Section 7 evaluates our defenses, and Section 8
discusses what hardware support would better aid the implemen-
tation of our defenses. Section 9 presents related work. Section 10
discusses future work and concludes.

2 VIRTUAL GHOST

Virtual Ghost [5] is a compiler-based virtual machine, built from
Secure Virtual Architecture (SVA) [6], which protects applications
from a compromised OS kernel. As Figure 1 shows, Virtual Ghost is
interposed between the traditional software stack and the processor.

On Virtual Ghost systems [5], the OS kernel is compiled into a
virtual instruction set (V-ISA) and then translated by the Virtual
Ghost VM into the processor’s native instruction set (N-ISA). The
V-ISA extends the LLVM Intermediate Representation (IR) [17]
with a set of instructions collectively called SVA-OS. The LLVM IR
enables sophisticated static analysis on the OS kernel code while
SVA-OS provides instructions for the OS kernel to use to configure

Dong et al.

hardware state (e.g., the MMU) and manipulate program state (e.g.,
context switching).

Virtual Ghost [5] provides three services to applications that
want to protect themselves from the OS kernel:

e Ghost Memory: Virtual Ghost provides applications with
memory that the OS kernel cannot read or write.

e Protected State on Kernel Entry: Virtual Ghost saves an
application’s CPU state into its own protected memory re-
gion when an interrupt, trap, or system call occurs. This
feature protects both the confidentiality of the program’s
state as well as the integrity of its control flow.

e Secure Encryption Key Delivery: Virtual Ghost loads an
application’s private encryption and digital signing keys
from persistent storage into the application’s ghost memory
to protect their confidentiality and integrity.

Virtual Ghost [5] partitions the address space of each process
into four regions as Figure 2 depicts. There are the traditional user-
space and kernel-space memory regions; both the application and
the OS kernel can access the former but only the OS kernel can
access the latter. Each process gets its own private user-space mem-
ory while kernel-space memory is shared among processes [19].
Ghost memory is memory that only user-space code can read or
write; Virtual Ghost prevents the OS kernel from reading and writ-
ing ghost memory and from changing the page table entries that
map ghost memory. Like user-space memory, each process has
its own private ghost memory, which is only mapped when the
process is running. Finally, there is Virtual Ghost VM memory:
this is memory that only the Virtual Ghost VM, implementing the
SVA-OS instructions, can read and write. The Virtual Ghost VM
stores its own internal data structures, interrupted program state
that it saves on interrupts, traps, and system calls, as well as kernel
thread state saved on context switches, in the Virtual Ghost VM
memory. Interrupts, traps, and system calls are first handled by
the Virtual Ghost VM, which saves the interrupted program state
and zeros out registers (except for those loaded with system call
arguments) before handing control over to the OS kernel.

As Virtual Ghost [5] allows the OS kernel to read page tables, it
does not place the page tables in Virtual Ghost VM memory. Instead,
it maps page table pages as read-only memory in the OS page
table and makes the OS use SVA-OS instructions to modify them,
thereby preserving the integrity of the page table pages. However,
enhancements to Virtual Ghost [7] protect the confidentiality of
the page tables for ghost memory as Section 5.4 describes.

Unlike existing systems, Virtual Ghost [5] prevents user-space,
kernel-space, and ghost memory from being configured as exe-
cutable; they do not contain executable native code. Instead, Virtual
Ghost puts the executable code, either code translations from V-
ISA or code segments of N-ISA applications, in the Virtual Ghost
VM memory region. Pages containing native code are mapped as
execute-only while all other parts of the region are inaccessible to
both applications and the OS kernel.

With these features, applications on Virtual Ghost systems can
actively protect themselves from the OS kernel: they can store all
their data inside ghost memory to prevent theft and tampering
and can use encryption and digital signatures to maintain data

Spectres, Virtual Ghosts, and Hardware Support

Virtual Ghost

User Memory VM Memory

Ghost Memory Kernel Memory

0 264.1

Figure 2: Virtual Ghost Address Space Layout

confidentiality and integrity when transmitting data through the
OS kernel’s I/O systems.

Virtual Ghost [5] employs compiler techniques to enforce secu-
rity policies on the OS kernel, such as SFI [25] and control-flow
integrity (CFI) [1]. SFI, as Sections 5.1 and 5.2 discuss, prevents
the OS kernel from reading and writing ghost memory and Virtual
Ghost VM memory while CFI guarantees that the kernel does not
bypass the SFI instrumentation.

3 OS KERNEL SPECTRE ATTACKS

Speculation [10] is a technique in which a processor executes a set
of instructions before knowing if those instructions should execute;
the processor rolls back the effects of speculatively executed in-
structions if it determines that it should not have executed them.
Speculation side-channel attacks [16, 18] cause the processor to
speculatively read data (which the process may or may not have
permission to access) whose value is exposed by further specu-
lative execution of instructions that create a cache side channel.
Spectre [16], for example, tricks a victim user-space process into
speculatively assuming a branch is taken, resulting in an out-of-
bounds array access that loads data into the cache. The address
of this load can subsequently be observed by the attacker via a
cache side channel, thereby exposing the value used to compute
that address. Meltdown [18] exploits a flaw in which the processor
checks MMU memory protections late in the processor pipeline.
With Meltdown, a user-space process speculatively loads informa-
tion from the OS kernel’s memory before the processor performs
the memory protection check and uses a cache side channel to leak
the data to the attacking user-space process.

While the existing Spectre attack [16] is one user-space process
attacking another user-space process, it is possible for a compro-
mised OS kernel to use similar techniques to read ghost memory
and Virtual Ghost VM memory. For efficiency, Virtual Ghost [5]
keeps ghost memory and Virtual Ghost VM memory mapped into
the virtual address space while the kernel is running and uses SFI
to prevent the kernel from accessing ghost memory and Virtual
Ghost VM memory. The SFI instrumentation adds code prior to
every instruction that reads and writes memory to ensure that the
instruction only accesses user-space or kernel-space memory. At
the native code level, if the SFI instructions do not ensure that
the SFI check has completed prior to a memory read instruction,
then the kernel can speculatively load data from ghost memory
or Virtual Ghost VM memory and leak it via a cache side channel.
This variation of a Spectre attack is similar to Meltdown [18] in
that it accesses memory that is currently mapped in the OS kernel’s
address space that it normally cannot access. Unlike Meltdown,
this attack does not leverage an MMU check that is performed late
in the pipeline. Rather, like existing Spectre attacks [16], it uses
speculation to bypass instructions in the code segment that would
otherwise restrict the program’s access to memory.

HASP ’18, June 2, 2018, Los Angeles, CA, USA

4 ATTACK MODEL

Our attack model assumes that an attacker can compromise the OS
kernel or replace it with intentionally malicious software. Since we
assume that the system is using Virtual Ghost [5], a compromised
OS kernel cannot read or write ghost memory or modify appli-
cation control flow. We further assume that the attacker wishes
to steal information; integrity and availability attacks are out of
scope. Therefore, we assume that the OS kernel will want to use
speculative execution side channels to steal private application in-
formation. Other side-channel attacks are possible but outside the
scope of this work. We assume that processor protection features
are implemented correctly from the perspective of the instruction
set architecture (ISA); speculation side channels are the only flaw
in the hardware.

Under these conditions, our defenses must prevent a compro-
mised OS kernel from using the variations of Spectre attacks [16]
presented in Section 3 to read Virtual Ghost VM memory and ghost
memory. Additionally, since the OS kernel can create and execute
new user-space programs, our defenses must prevent application
code from using Spectre [16] and Meltdown [18] attacks to read
Virtual Ghost VM memory. Since Virtual Ghost [5] and the appli-
cations executing thereon treat the OS kernel as untrusted code,
applications wanting to keep their data private should store it in
their own ghost memory and encrypt it when sending it through
the OS kernel to perform I/O.

5 MEMORY PROTECTIONS

There are two broad approaches for preventing an OS kernel from
launching Spectre attacks [16]. The first is to use an SFI technique
that forces the processor pipeline to commit the SFI instructions
before executing memory read instructions. This SFI protection
must be enforced on both OS kernel and application code; this
requires that OS kernel and application code be shipped as V-ISA
code. The second is to unmap the ghost memory and Virtual Ghost
VM memory from the virtual address space while the OS kernel
is running and to unmap the Virtual Ghost VM memory while
applications are running (we also unmap kernel-space memory like
previous work [8, 9] as it mitigates user-level Meltdown attacks [18]
and induces no additional overhead to our defense).

We explore three approaches of mitigating speculation side chan-
nels on Virtual Ghost:

(1) Bit-Masking SFI: We employ the SFI method in the original
Virtual Ghost [5] on the kernel, which uses bit masking to
ensure that addresses used in memory reads point into either
user-space or kernel-space memory. This version, coinciden-
tally, creates data dependencies that force the processor to
delay memory loads until the SFI instructions commit.

(2) MPX SFI with Lfence: We employ a new SFI approach that
uses the Intel MPX bounds checking instructions [12] to ver-
ify that pointers point into either user-space or kernel-space
memory [7]. According to Intel [14], adding an 1fence be-
tween an MPX check and a memory read instruction stalls
the pipeline to prevent Spectre [16] attacks. Note that MPX
SFI will need the 1fence only before loads and not before
stores since we are concerned with the speculative read ex-
posing protected data values. Speculative writes do not load

HASP *18, June 2, 2018, Los Angeles, CA, USA

Dong et al.

movzbl %bl, %ebx
shlqg $0x29, %rbx
orq %r9, %rbx

movb (%rbx), %bl

(a) SFI Using Bit-Masking Operations

(b) SFI Using MPX

movq %r9, %rbx movabsq $0x10000000000, %rax cmpq $4095, %rdi
shrq $0x20, %rbx addq %rsi, %rax sethe %ri15b

andl $oxfffffdeo, %ebx bndcl %rax, %bnde movzbqg %ri15b, %ri15
cmpg $oxfffffdee, %rbx 1fence orq %r15, %rdi
sete %b1l movq (%rsi), %rdx movb (%rdi), %al

(c) SFI Using EMPX

Figure 3: SFI Code Snippets (AT&T Syntax)

any protected data into the processor registers; both Spec-
tre and Meltdown attacks depend upon loading protected
data into a processor register in order to leak it via a covert
channel [16, 18].

(3) Separate Virtual Address Spaces: We employ a method
that creates separate pages tables for the application, the OS
kernel, and the Virtual Ghost VM.

Modern OS kernels maintain a data structure dubbed the direct
map. The direct map is a one-to-one mapping of contiguous virtual
addresses to contiguous physical memory addresses which the OS
kernel uses to quickly find a virtual address mapped to a physical
address to which it can read and write [4]. A compromised OS
kernel could use a Spectre [16] or Meltdown [18] attack to read the
contents of the direct map, bypassing our protections. Therefore,
after describing our three defenses, we explain how we protect the
direct map by moving it into Virtual Ghost VM memory.

5.1 Bit-Masking SFI

The SFI instrumentation in the original Virtual Ghost [5] uses sim-
ple bit masking to check whether a pointer points into the Virtual
Ghost VM memory or ghost memory regions and to move that
pointer into the kernel-space region if so; since the OS kernel should
only read and write user-space and kernel-space memory, moving
the pointer into kernel space causes an incorrect OS kernel to be-
have securely but still incorrectly. This SFI instrumentation uses
data dependence instead of branches and bounds checking instruc-
tions to protect memory. Figure 3a shows an x86 assembly code
snippet that we use to perform an SFI check in the latest Virtual
Ghost implementation before each memory read. This code checks
whether the input pointer points into either the Virtual Ghost VM
memory or ghost memory (these are placed contiguously in the
virtual address space). If the pointer is within these two memory
regions, it sets a bit in the pointer to move it into the kernel-space
memory region.

In Figure 3a, the pointer to check is stored in register %r9. The
SFI instrumentation works as follows:

(1) It copies the original pointer value from %r9 to %rbx.

(2) It extracts the high-order 24 bits of the pointer value and
determines whether it equals @xfffffd (the value of the
high order bits of any address within the ghost memory or
Virtual Ghost VM memory region).

(3) The sete and movzbl instructions place 0x1 into %ebx if
the pointer is within the ghost memory or Virtual Ghost
VM memory region or 0x0 otherwise. The shlq instruction
transforms a 0x1 value into 0x20000000000.

(4) If the original pointer needs to be moved out of ghost mem-
ory or Virtual Ghost VM memory, the orq instruction will
mask the pointer value with 0x20000000000, generating a
pointer into the kernel-space memory region. If the origi-
nal pointer pointed into user-space or kernel-space memory,
then it is masked with 0x0@ and remains unchanged.

Intel states that using a sete instruction constrains specula-
tion [14]. Additionally, the bit-masking instructions create a data
dependence between the SFI code and the address of the protected
load; the processor must compute the result of the SFI-protected
pointer before the memory read instruction, thereby preventing
Spectre [16] attacks.

5.2 MPX SFI with Lfence

We utilize Intel MPX [12], a hardware mechanism originally de-
signed for efficient pointer bounds checking, to implement SFI. MPX
provides four bounds registers; each register maintains the lower
and upper bounds of a memory object. Software is instrumented to
use bounds checking instructions that check whether a pointer is
within the bounds stored within a specified bounds register; these
instructions generate a trap if the pointer is out of bounds.
Apparition [7] is an enhanced version of Virtual Ghost [5] that
uses MPX instructions for its SFI implementation. Instead of storing
the bounds of individual memory objects within the bounds regis-
ters, Apparition [7] stores the bounds of an entire memory region
within a bounds register. Specifically, Apparition treats user-space
and kernel-space memory as a single large memory region and
checks whether each OS kernel load and store is within the bounds
of this memory region. As there is only one memory region, only
one bounds register is needed. One difficulty is that the user-space
memory and kernel-space memory are not contiguous; ghost mem-
ory and Virtual Ghost VM memory reside between them as Figure 2
shows. To address this issue, each run-time check before a load
or store subtracts the starting address of ghost memory from the
value of the pointer being dereferenced, thus making the user- and
kernel-space memory appear contiguous. MPX can then be used by
setting the lower and upper bounds in the bounds register to the

Spectres, Virtual Ghosts, and Hardware Support

User Space User Space User Space User Space
PTE PTE PTE
Ghost Memory Ghost Memory Ghost Memory
PTE PTE
Virtual Ghost
VG VM VM Memory
Memory PTE
VG VM Virtual Ghost VG VM VG VM
Trampolines VM Trampolines Trampolines Trampolines
PTE PTE PTE
Kernel Space Kernel Space
PTE Kernel Space PTE
VG root-level Virtual address space App root-level Kernel root-level

page table page

page table page

page table page

Figure 4: The separate root-level page table pages

remapped values of the start of kernel-space memory and the end
of user-space memory, respectively.

Intel processors assume that most bounds checks will pass and
will therefore speculatively execute instructions after an MPX
bounds check instruction [14]. To prevent a Spectre attack from
reading out-of-bounds data, we modify Virtual Ghost to insert an
1fence instruction between the MPX bounds check instruction and
the memory access as Intel suggests [13, 14]. The 1fence instruc-
tion acts as a speculation barrier, preventing younger instructions,
including memory reads, from executing speculatively before older
instructions, including the MPX bounds check, retire [13, 14].

Figure 3b lists instructions in an MPX SFI check. The movabsq
and addq instructions subtract a constant from the pointer value
stored in %rsi to make user-space and kernel-space memory appear
contiguous; the MPX bounds check instruction (bndcl) follows. The
subsequent 1fence instruction ensures that the processor pipeline
stalls until the bounds check has completed and the processor
knows that it will not generate a trap. At that point, the movq
instruction that performs the actual memory read can commence.

5.3 Separate Virtual Address Spaces

Another defense for Spectre attacks [16] is to execute the applica-
tion, the OS kernel, and the Virtual Ghost VM within their own
separate virtual address spaces. This defense requires three address
spaces that unmap memory needing protection as follows:

e VG-AddrSpace: The Virtual Ghost VM maps all four mem-
ory regions depicted in Figure 2.

e App-AddrSpace: Applications map only user-space mem-
ory and the application’s ghost memory.

e Kernel-AddrSpace: The kernel maps only user-space and
kernel-space memory.

While the OS kernel is executing, only the Kernel-AddrSpace
can be used. The App-AddrSpace is used when the user-space ap-
plication is running; the VG-AddrSpace translations are active only
when the Virtual Ghost VM is executing.

We modified Virtual Ghost [5] to create three separate virtual
address spaces for each process by maintaining separate page tables
for the VG-AddrSpace, App-AddrSpace, and Kernel-AddrSpace as
Figure 4 depicts. For architectures that use hierarchical page tables
e.g., x86 [12], we strategically place the ghost memory and Virtual

HASP ’18, June 2, 2018, Los Angeles, CA, USA

Ghost VM memory regions in the virtual address space so that mod-
ifying one entry in the root-level page table page can unmap the
region. This approach reduces the number of additional page table
pages required; the Virtual Ghost VM only needs two additional
root-level PTPs for the App-AddrSpace and Kernel-AddrSpace in ad-
dition to the existing root PTP for the VG-AddrSpace. We add a new
fifth memory region, named Virtual Ghost VM trampolines, which
contains the minimal subset of Virtual Ghost VM code required to
switch address spaces; it is mapped by a separate root-level page
table entry in all three address spaces.

Virtual Ghost [5] prevents the OS kernel from modifying page
tables directly; instead, the Virtual Ghost VM provides SVA-OS
instructions that the OS kernel can use to insert, update, or remove
page table entries (PTEs) at each level of a hierarchical page table.
We modified the relevant SVA-OS instructions to propagate any
changes to the root-level PTEs of a memory region to all the root-
level PTPs mapping the memory region. These SVA-OS instructions
also ensure that the root-level entries of the ghost memory regions
can only be populated in the VG-AddrSpace and App-AddrSpace,
and the root-level entries of the Virtual Ghost VM Memory can
only be inserted in the VG-AddrSpace.

Whenever switching address spaces, the Virtual Ghost VM must
load the page table base register (PTBR) with the physical address
of the correct root-level PTP. For SVA-OS instructions, the Virtual
Ghost VM loads the root-level PTP of the VG-AddrSpace into the
PTBR and then restores the Kernel-AddrSpace root-level PTP into
the PTBR before returning control to kernel code. For system calls,
traps, and interrupts, the Virtual Ghost VM loads the root-level PTP
of the VG-AddrSpace into the PTBR so that it can save the CPU
state into Virtual Ghost VM memory where it will be protected
from applications and the OS kernel. It then switches to the Kernel-
AddrSpace and calls the OS kernel’s handler for the system call,
trap, or interrupt.

To alleviate Translation Look-aside Buffer (TLB) flushes when
switching address spaces, we assign different address space identi-
fiers (ASIDs) to the OS kernel, the application, and the Virtual Ghost
VM. We also enhanced the SVA-OS MMU instructions to ensure that
ghost memory and Virtual Ghost VM memory are never mapped
with page table entries marked with the global bit [12]. On x86,
both the PTBR and the ASID are in Control Register 3 (CR3) [12].
Modifying either the PTBR or ASID is a serializing instruction [12],
resulting in additional latency on every switch among the App-
AddrSpace, the Kernel-AddrSpace, and the VG-AddrSpace.

Two x86 features prevent fully correct implementation of multi-
ple address spaces. First, the x86 saves several registers e.g., program
counter, stack pointer, and processor status register, into memory
before handing control over to the interrupt handling routine [12].
This creates a “chicken and egg” problem: software must switch to a
different virtual address space in order to save interrupted program
state in Virtual Ghost VM memory, but the processor attempts to
save the state before software can switch to the virtual address
space that maps Virtual Ghost VM memory. Second, the x86 re-
quires that a general purpose register be free in order to change
the ASID and page table pointer in CR3; the only instruction that
can modify a control register reads its input from a general pur-
pose register, and no general purpose registers are free when the
interrupt handling code begins execution [12].

HASP *18, June 2, 2018, Los Angeles, CA, USA

Two simple changes would alleviate these difficulties. First, the
processor should save the registers that are currently saved into
memory on an interrupt, trap, or system call into special registers on
the processor (as ARM does [2]) instead of saving them to memory.
This change would allow software to switch to a different virtual
address space before saving interrupted program state into Virtual
Ghost VM memory. Second, one or more general purpose registers
should be reserved for trusted code to use to switch virtual address
spaces, alleviating the need to save general purpose registers before
performing the virtual address space switch.

5.4 Virtual Ghost Internal Direct Map

A direct map is a region of contiguous virtual memory that is
mapped to a contiguous range of physical memory [4]. The OS ker-
nel uses a direct map to compute a virtual address that is mapped
to a specified physical address in constant time via bitwise OR op-
erations on the physical address [4]. Apparition [7] extends Virtual
Ghost [5] by creating a direct map within the Virtual Ghost VM
Memory that only the Virtual Ghost VM can use. This new direct
map provides write access to all the physical memory. Apparition
unmaps physical memory frames used for ghost memory, Virtual
Ghost VM memory, and page tables mapping ghost memory and
Virtual Ghost VM memory from the OS kernel’s direct map. Such
frames only appear in Apparition’s internal direct map, and the
SVA-OS instructions maintain this restriction. Combined with our
defenses, this internal direct map prevents the kernel and appli-
cations from gleaning confidential information from the original
direct map via speculation side channels.

6 IMPLEMENTATION

Our work modifies the Virtual Ghost [5, 7] prototype for x86-64
systems and uses the FreeBSD 9.0 kernel ported to the SVA virtual
instruction set. This prototype only supports single-processor ex-
ecution. The kernel is translated from V-ISA to N-ISA code and
instrumented during static compilation; online translation of V-ISA
to N-ISA code and moving N-ISA code into the Virtual Ghost VM
memory is not implemented. Virtual Ghost [5] instruments loads,
stores, atomic operations, and calls to memset () and memcpy () at
the LLVM IR level; it does not instrument calls to functions that
copy data between user and kernel memory [19]. Since we modified
our kernel to use constant-sized stack frames, the stack pointer is
never loaded from memory, removing the need for bounds checks
on reads from stack spill slots. We modified the SFI MPX pass so
that it inserts 1fence instructions before every load instruction,
atomic instruction, and memcpy () call. We do not modify the bit-
masking SFI instrumentation as it already inserts instructions e.g.,
sete [14], that constrain speculation prior to memory access in-
structions. The CFI instrumentation uses a bitwise OR instruction
to ensure that control-flow targets are within kernel memory, and
it folds the memory read that loads CFI labels into an x86 compare
instruction. These two features prevent the kernel from using the
memory reads added by CFI to launch Spectre attacks.

We only instrument the OS kernel with the SFI instructions to
defend against speculation side-channel attacks performed directly
by the OS kernel. We therefore evaluate OS kernel performance
and leave application performance for future work. To make a fair

Dong et al.

comparison between the separate-address-spaces approach and
the SFI approaches, using two address spaces, the VG-AddrSpace
and Kernel-AddrSpace as described in Section 5.3, is sufficient to
mitigate against kernel-side speculation side channels, where the
application and the Virtual Ghost VM share the VG-AddrSpace.

Due to the x86 limitations described in Section 5.3, we mimic the
behavior of using separate page tables by creating identical copies
of the top-level page table page for VG-AddrSpace and Kernel-
AddrSpace. We then modified the Virtual Ghost VM so that tran-
sitions between the VG-AddrSpace and Kernel-AddrSpace change
page table pages and switch to separate address space identifiers
(which are called Process Context Identifiers, or PCIDs [12]). This
causes the OS kernel and the Virtual Ghost VM to use separate
page tables and TLB entries.

7 EVALUATION
7.1 Methodology

We ran the experiments on a Dell Precision T3620 workstation
with a 3.40 GHz Intel® Core™ i7-6700 hyperthreading quad-core
processor, 16 GB of RAM, an Intel® E1000 network card, a 256 GB
Solid State Drive (SSD), and a 7,200 RPM 500 GB hard disk. For
our network experiments, we used a dedicated Gigabit Ethernet
network with a Dell T1700 Precision workstation running FreeBSD
9.3 as the client machine; this machine has a 3.40 GHz Intel® i7-
4770 hyperthreading quad-core processor with 16 GB of RAM. We
ran our experiments with the OS in single-user mode to alleviate
noise from other processes on the system. We stored all files for
our experiments on the SSD.

Besides the baseline FreeBSD 9.0 kernel, we conducted our ex-
periments on the FreeBSD SVA kernels executing on the following
configurations of Virtual Ghost [5] coupled with the SVA internal
direct map (described in Section 5.4):

(1) SFI-MPX-Ifence: Virtual Ghost implementing SFI with MPX
and 1fence. The 1fence stops all younger instructions from
executing, even speculatively, before the older instructions
retire.

SFI-arith: Virtual Ghost employing traditional SFI using
bit-masking operations. The speculation boundary is only
between the check and the use of the pointer; other specula-
tive instructions can proceed.

(3) AS: Virtual Ghost using separate virtual address spaces.
Address space switching occurs frequently since each ker-
nel invocation of an SVA-OS instruction (as described in
Section 2) triggers two address space switches: one from
Kernel-AddrSpace to VG-AddrSpace and the other from VG-
AddrSpace back to Kernel-AddrSpace. For traps, interrupts
and system calls, the trap handling code within the Virtual
Ghost VM must first execute in VG-AddrSpace before switch-
ing to Kernel-AddrSpace to execute the kernel trap handlers.
In addition, modification of CR3.PTBR and CR3.PCID are
expensive serializing instructions.

SFI-MPX: Virtual Ghost implementing SFI with MPX but
without 1fence.

—
S
~

—~
N
=

Spectres, Virtual Ghosts, and Hardware Support

Test Native | Std. Overhead (X)
(ps) dev. SFI- SFI- AS SFI- SFI-
(us) | MPX | arith MPX | EMPX
Ifence

null syscall 0.1 0.0 5.3 2.9 7.0 2.6 2.8

open/close 1.8 0.0 6.0 2.3 1.9 1.9 2.1

mmap 5.7 0.1 6.2 3.5 4.6 2.8 3.2

page fault 31.5 1.7 1.1 1.1 1.1 1.1 1.0

fork + exit 50.2 0.1 4.2 2.2 3.9 1.9 2.2

fork + exec 55.0 0.2 4.1 2.2 3.7 1.9 2.2
[Average [-] -[45 24 37[20 2.3

Table 1: LMBench Results

(5) SFI-EMPX: Virtual Ghost implementing SFI to emulate the
MPX improvements suggested in Section 8. We propose hard-
ware improvements to MPX to gain the performance of SFI-
MPX with the security of SFI-arith.

7.2 Microbenchmarks

We used LMBench [20] to measure the overhead of Virtual Ghost
with the various mitigations on various system calls. We chose the
process latency benchmarks that would impact application perfor-
mance most and measure the performance of the OS kernel instead
of the hardware. We used 1,000 repetitions for the benchmarks
for which the number of repetitions is configurable. We report the
averages of the elapsed time output by the benchmarks over 10
rounds of execution.

Table 1 reports the overhead of Virtual ghost with the various
mitigations. The overheads of SFI-MPX-Ifence, SFI-arith, AS and
SFI-MPX are 4.5%, 2.4X, 3.7X, and 2.0X on average, respectively,
across all the system calls tested. Our results show that SFI-arith
outperforms SFI-MPX-Ifence and AS for all the system calls except
for open/close and page fault. AS is slower due to the frequent
address space switches and the expensive serializing instructions.
SFI-MPX-Ifence has the worst performance of the three defenses for
all the system calls except for null syscall due to the expense of
using an 1fence speculation barrier. SFI-MPX-Ifence is more than
2 times slower than SFI-MPX on average. AS shows the worst over-
head on the null syscall benchmark relative to SFI-Arith and
SFI-MPX-Ifence since no work is performed in the system call, mak-
ing the overhead of address space switches a larger proportion of
the execution time than in the other benchmarks. For open/close,
AS is faster than SFI-arith, where the overhead of address space
switches is smaller than the costs of instrumenting every kernel
load and store with bit-masking instructions. The three defenses
incur similar overhead on page fault when accounting for stan-
dard deviation. In addition, the overhead incurred by SFI-EMPX is
similar to SFI-arith across all the system calls tested.

7.3 Libc Compilation Performance

We studied our defenses’ overheads when compiling the FreeBSD
9.0 C library. To measure compilation time, we read the x86 Time
Stamp Counter (TSC) right before and after the execution of the
make command, took the difference between the two, and divided
the result by the processor frequency to compute execution time.
We ran each experiment 10 times and report the averages in Table 2.
SFI-arith is the fastest option among the three mitigations, incurring

HASP ’18, June 2, 2018, Los Angeles, CA, USA

an overhead of 1.17X. AS is slower than SFI-arith due to the high
frequency of address space switches. SFI-MPX-Ifence performs the
worst due to the use of 1fence; adding an 1fence to the MPX
check increases the overhead from 1.12x to 1.44x. SFI-EMPX incurs
similar overhead as SFI-arith and SFI-MPX without 1fence.

7.4 Postmark Performance

To analyze the performance impact of the defenses on the file
system, we used Postmark [22], which mimics the behavior of a
mail server and exercises the file system intensively. We configured
Postmark to use 500 files ranging in size from 500 B to 9.77 KB. We
also configured it to use Unix buffered file I/O and a 512 B block
size for reads and writes. The read/append and create/delete biases
were set to 5. We performed 500,000 transactions in each run.

Table 2 reports the averages over 20 rounds of execution. AS in-
curs the smallest overhead (1.58x), outperforming SFI-arith (2.43x)
and SFI-MPX-Ifence (4.46X). The cost of AS is smaller than the
cost of SFI-arith, which indicates the overhead of address space
switches is less expensive than instrumenting all the kernel load
and stores. Lfence increases the overhead of SFI-MPX significantly,
from 1.63x to 4.46x. SFI-EMPX incurs 13.17% less overhead com-
pared to SFI-arith and 29.45% more overhead than SFI-MPX without
1fence.

7.5 OpenSSH Performance

To analyze our defenses’ effects on network I/O, we measured the
bandwidth of the OpenSSH [24] server running on our defenses
serving files to a FreeBSD client. We used the OpenSSH server on
our test machine and the OpenSSH scp client on the FreeBSD 9.3
machine described in Section 7.1. We created a set of files of varying
sizes before running the experiment; we filled the contents of each
file with random numbers generated by the /dev/random device
on our test machine.

We ran each experiment 20 times and report the averages. Fig-
ure 5 illustrates the average file transfer rates on the baseline
FreeBSD 9.0, and Figure 6 shows the overhead of the mitigations.
SFI-MPX-Ifence has the worst performance, incurring overhead
ranging from 1.05X to 1.97X across all file sizes due to the expen-
sive 1fence. In contrast, the SFI-MPX overhead without 1fence
is 1.00% to 1.34x. SFl-arith is a clear winner over the other two
defenses with overhead ranging from 1.04x to 1.40X when trans-
ferring 1 KB to 4 MB files, whereas the overhead of AS is larger,
from 1.05X to 1.59%. AS is slower than SFI-arith due to the frequent
and expensive address space switches. For large files ranging from
8 MB to 512 MB, the overheads of SFI-arith, AS and SFI-MPX are
negligible. SFI-EMPX performs similarly as SFI-arith and is slightly
slower than SFI-MPX for files from 1 KB to 128 KB. For 256 KB

App Native | Std. Overhead (X)
(s) Dev. | SFI- SFI- AS SFI- SFI-
(s) MPX | arith MPX | EMPX
Ifence
Libc com- 67.68 0.64 1.44 1.17 1.22 1.12 1.15
pilation
Postmark 8.00 0.55 4.46 2.43 1.58 1.63 2.11

Table 2: Postmark and Libc Compilation Results

HASP *18, June 2, 2018, Los Angeles, CA, USA

120

Bandwidth (MB/s)

1

3
128
256
512
1,024
2,048
4,096
8,192
16,384
32,768
65,536
131,072
262,144
524,288

File Size (KB)

Figure 5: SSH Server Transfer Rate on Native FreeBSD

ig —8—SFI-MPX-Ifence Overhead
: -m~-AS Overhead
18 —+—SFl-arith Overhead
=17 -+ SFI-EMPX Overhead
B 16 =% SFI-MPX Overhead
% 1.5
g 1.4
o 13
1.2
1.1
1.0
NS0 W N T 0ONST ORS00 NS R
MmO NSNS OO M X
Ll R e e B S) = s B |
A NS00 N
)) M w MmO~
File Size (KB) — N

Figure 6: Overheads on SSH Server Transfer Rate

to 512 MB files, SFI-EMPX, SFI-arith and SFI-MPX incur similar
overhead.

8 HARDWARE IMPROVEMENTS

As Section 7 shows, MPX provided the best performance prior to
the addition of 1fence to mitigate Spectre [16] attacks. We propose
two improvements to MPX that could provide good performance
and mitigate Spectre attacks.

First, adding a condition code dependency between the MPX
bounds checking instruction and the memory access instruction
would help eliminate the need for an 1fence. For example, instead
of triggering a fault, the MPX bounds checking instructions could
simply set a bit in a register indicating that the bounds check failed;
the subsequent memory access instructions could potentially be
conditionally executed based on the value of this bit, generating a
trap if the bit is set.

Second, to allow pointers to point into multiple regions of the
virtual address space, the MPX bounds checking instructions could
be enhanced to take an operand that specifies a set of bounds
registers against which to check the pointer; an out-of-bounds result
only occurs if the pointer is not within the bounds stored within
any of the specified bounds check registers. This change would
decrease register pressure and instruction count by alleviating the
pointer arithmetic needed to make user-space and kernel-space
appear contiguous.

Dong et al.

Figure 3¢ shows x86 assembly code that mimics SFI that uses our
proposed MPX improvements. The code checks the pointer stored
in %rdi against a constant value using the cmpq. It then sets a bit
in the pointer if it is out of bounds using the setbe instruction;
this creates the data dependency between the check and the movb
which reads memory. Our results show that this emulated SFI has
similar performance to the fastest of the three defenses, as Section 7
shows.

9 RELATED WORK

Intel [14], Microsoft [21], and ARM [3] leverage speculation barri-
ers (such as cpuid, 1fence, CMOVcc, and SETcc) to mitigate Spec-
tre [16] attacks that bypass bounds checking. Kernel page-table
isolation (KPTI or KAISER) modifies the Linux kernel to mitigate
Meltdown [8, 9, 18] by unmapping kernel-space memory when
user-space code is running on the processor. Microsoft Windows 10
has similar features [15]. These defenses do not mitigate speculation
side-channel attacks performed by privileged code.

Intel suggests that future processors should be able to use mem-
ory protection keys (MPK) and supervisor-mode access prevention
(SMAP) [12] to restrict the memory that might be used to create
cache side channels.

Red Hat found the kernel patches for mitigating Meltdown and
Spectre launched by user-space attackers incurred 1% to 8% over-
head on the wide range of applications tested, including HPC,
JavaVM and database benchmarks [11]. Nikolay et al. evaluated the
overhead of these kernel patches on HPC applications and found
their overhead was 2% to 3% for single node jobs and 5% to 11% for
two node jobs [23].

10 FUTURE WORK AND CONCLUSIONS

SFI with bit masking generally has the best performance of our three
defenses; SFI with MPX and 1fence has the worst performance.
Average application execution time overheads for SFI with bit mask-
ing, MPX coupled with 1fence, and separate address spaces range
from 1.00X to 2.43X, 1.05X to 4.46X, and 1.00X to 1.59X%, respectively.
Our hypothetical SFI utilizing our MPX improvements has similar
or better performance compared to bit-masking SFI.

There are several directions for future work. First, we can ex-
plore the use of type-safety optimizations [6] to remove unneeded
speculation barriers and evaluate the development cost of such op-
timizations. Second, we will prototype and evaluate our proposed
improvements to Intel MPX [12].

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments
and suggestions. This work was funded by NSF Awards CNS-1319353,
CNS-1618497, CNS-1618588, CNS-1629770, and CNS-1652280.

REFERENCES

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009. Control-flow
integrity principles, implementations, and applications. ACM Transactions on
Information Systems Security 13, Article 4 (November 2009), 40 pages. Issue 1.

[2] ARM. 2014. ARM Architecture Reference Manual: ARMvS, for ARMvS-A Architec-
ture Profile.

[3] ARM. 2018. ARM speculation barrier header.
software/speculation-barrier.

https://github.com/ARM-

Spectres, Virtual Ghosts, and Hardware Support

(4]
(5]

(6]

~
[

[9

=

[10]

(11

[12]

[13

[14]

(16

[17

(18]

[19

™
A=A

[21]

[22
[23]

[24]

[25]

D. P. Bovet and Marco Cesati. 2006. Understanding the LINUX Kernel (3’d ed.).
O’Reilly, Sebastopol, CA.

John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. Virtual Ghost:
Protecting Applications from Hostile Operating Systems. In Proceedings of the
Nineteenth International Conference on Architectural Support for Programming
Languages and Operating Systems.

John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve. 2007.
Secure Virtual Architecture: A Safe Execution Environment for Commodity
Operating Systems. In Proceedings of the ACM SIGOPS Symposium on Operating
System Principles. Stevenson, WA, USA.

Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox, and Sandhya Dwarkadas.
2018. Shielding Software From Privileged Side-Channel Attacks. To appear in
the 27th USENIX Security Symposium.

Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Maurice,
and Stefan Mangard. 2017. KASLR is Dead: Long Live KASLR. In Engineering
Secure Software and Systems. Springer International Publishing, Cham.

Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan
Mangard. 2016. Prefetch Side-Channel Attacks: Bypassing SMAP and Ker-
nel ASLR. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’16). ACM, New York, NY, USA, 368-379.
https://doi.org/10.1145/2976749.2978356

John L. Hennessy and David A. Patterson. 2002. Computer Architecture: A Quan-
titative Approach (3”4 ed.). Morgan Kaufmann, San Francisco, CA.

Red Hat Inc. 2018. Speculative Execution Exploit Performance Impacts - Describ-
ing the performance impacts to security patches for CVE-2017-5754 CVE-2017-
5753 and CVE-2017-5715. https://access.redhat.com/articles/3307751.

Intel. 2016. Intel 64 and IA-32 Architectures Software Developer’s Manual.
(September 2016).

Intel. 2018. Intel Analysis of Speculative Execution Side Channels. Technical Report
336983-001.

Intel. 2018. Speculative Execution Side Channel Mitigations. Technical Report
336996-001.

Alex Tonescu. 2017. Windows 17035 Kernel ASLR/VA Isolation In Practice (like
Linux KAISER). (2017).

Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. (2018).

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. In Proceedings of the Conference
on Code Generation and Optimization. San Jose, CA, USA, 75-88.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. (2018).

Marshall Kirk McKusick, George V. Neville-Neil, and Robert N. M. Watson. 2015.
The Design and Implementation of the FreeBSD Operating System (second ed.).
Pearson Education.

Larry McVoy and Carl Staelin. 1996. Imbench: portable tools for performance
analysis. In Proceedings of the 1996 USENIX Annual Technical Conference (ATC’96).
USENIX Association, Berkeley, CA, USA, 16. http://dl.acm.org/citation.cfm?id=
1268299.1268322

Andrew Pardoe. 2018. Spectre mitigations in MSVC.
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-
in-msvc/.

Postmark. 2013. Email delivery for web apps. https://postmarkapp.com/.
Nikolay A. Simakov, Martins D. Innus, Matthew D. Jones, Joseph P. White,
Steven M. Gallo, Robert L. DeLeon, and Thomas R. Furlani. 2018. Effect of
Meltdown and Spectre Patches on the Performance of HPC Applications. (2018).
https://arxiv.org/abs/1801.04329.

The OpenBSD Project. 2014. OpenSSH. http://www.openssh.com
http://www.openssh.com.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.
Efficient Software-based Fault Isolation. In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles (SOSP *93). ACM, New York, NY, USA,
14. https://doi.org/10.1145/168619.168635

HASP ’18, June 2, 2018, Los Angeles, CA, USA

