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Abstract.—A major goal of evolutionary biology is to identify key evolutionary transitions that correspond with shifts in
speciation and extinction rates. Stochastic character mapping has become the primary method used to infer the timing,
nature, and number of character state transitions along the branches of a phylogeny. The method is widely employed for
standard substitution models of character evolution. However, current approaches cannot be used for models that specifically
test the association of character state transitions with shifts in diversification rates such as state-dependent speciation
and extinction (SSE) models. Herein, we introduce a new stochastic character mapping algorithm that overcomes these
limitations, and apply it to study mating system evolution over a time-calibrated phylogeny of the plant family Onagraceae.
Utilizing a hidden state SSE model we tested the association of the loss of self-incompatibility (SI) with shifts in diversification
rates. We found that self-compatible lineages have higher extinction rates and lower net-diversification rates compared with
self-incompatible lineages. Furthermore, these results provide empirical evidence for the “senescing” diversification rates
predicted in highly selfing lineages: our mapped character histories show that the loss of SI is followed by a short-term spike
in speciation rates, which declines after a time lag of several million years resulting in negative net-diversification. Lineages
that have long been self-compatible, such as Fuchsia and Clarkia, are in a previously unrecognized and ongoing evolutionary
decline. Our results demonstrate that stochastic character mapping of SSE models is a powerful tool for examining the timing
and nature of both character state transitions and shifts in diversification rates over the phylogeny. [Bayesian inference;
Onagraceae; state-dependent speciation and extinction; self-incompatibility; stochastic character mapping.]

Evolutionary biologists have long sought to identify
key evolutionary transitions that drive the diversific-
ation of life (Szathmary and Smith 1995; Sanderson
and Donoghue 1996). One method frequently used
to test hypotheses about evolutionary transitions is
stochastic character mapping on a phylogeny (Nielsen
2002; Huelsenbeck et al. 2003). While most ancestral
state reconstruction methods estimate states only at
the nodes of a phylogeny, stochastic character mapping
explicitly infers the timing and nature of each evolu-
tionary transition along the branches of a phylogeny.
However, current approaches to stochastic character
mapping have two major limitations: the commonly
used rejection sampling approach proposed by Nielsen
(2002) is inefficient for characters with large state spaces
(Huelsenbeck et al. 2003; Hobolth and Stone 2009),
and more importantly current methods only apply
to models of character evolution that are finite state
substitution processes. While the first limitation has been
partially overcome through uniformization techniques
(Rodrigue et al. 2008; Irvahn and Minin 2014; Landis
et al. 2018), a novel approach is needed for models with
infinite state spaces, such as models that specifically
test the association of character state transitions with
shifts in diversification rates. These models describe the
joint evolution of both a character and the phylogeny
itself, and define a class of widely used models called
state-dependent speciation and extinction models (SSE
models; Maddison et al. 2007; FitzJohn et al. 2009;
FitzJohn 2010, 2012; Goldberg and Igić 2012; Magnuson-
Ford and Otto 2012; Freyman and Höhna 2018).

In this work, we introduce a method to sample
character histories directly from their joint probability
distribution, conditional on the observed tip data and
the parameters of the model of character evolution. The
method is applicable to standard finite state Markov
processes of character evolution and also more com-
plex models, such as SSE model, that are infinite
state Markov processes. The method does not rely on
rejection sampling and does not require complex data
augmentation (Van Dyk and Meng 2001) schemes to
handle unobserved speciation/extinction events. Our
implementation directly simulates the number, type, and
timing of diversification rate shifts and character state
transitions on each branch of the phylogeny. Thus, when
applying our method together with a Markov chain
Monte Carlo (MCMC; Metropolis et al. 1953; Hastings
1970) algorithm we can sample efficiently from the
posterior distribution of both character state transitions
and shifts in diversification rates over the phylogeny.

To illustrate the usefulness of our method to sample
stochastic character maps from SSE models, we applied
the method to examine the association of diversification
rate shifts with mating system transitions in the plant
family Onagraceae. The majority of flowering plants
are hermaphrodites, and the loss of self-incompatibility
(SI), the genetic system that encourages outcrossing and
prevents self-fertilization, is a common evolutionary
transition (Stebbins 1974; Grant 1981; Barrett 2002).
Independent transitions to self-compatibility (SC) have
occurred repeatedly across the angiosperm phylogeny
(Igic et al. 2008) and within Onagraceae (Raven 1979).
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Despite the repeated loss of SI, outcrossing is wide-
spread and prevalent in plants, an observation that led
Stebbins to hypothesize that selfing was an evolutionary
dead-end (Stebbins 1957). Stebbins proposed that over
evolutionary time selfing lineages will have higher
extinction rates due to reduced genetic variation and
an inability to adapt to changing conditions. However,
Stebbins also speculated that selfing is maintained
by providing a short-term advantage in the form of
reproductive assurance. The ability of selfing lineages
to self reproduce has long been understood to be poten-
tially beneficial in droughts and other conditions where
pollinators are rare (Darwin 1876), or after long distance
dispersal when a single individual can establish a new
population (Baker 1955). These short-term advantages
led Ho and Agrawal (2017) to propose that primarily
selfing lineages may at first diversify at higher rates than
primarily outcrossing lineages but over time slow down
due to elevated extinction rates.

Recent studies have reported higher net-
diversification rates for SI lineages, supporting
Stebbins’ dead-end hypothesis (Ferrer and Good
2012; Goldberg et al. 2010; de Vos et al. 2014; Gamisch
et al. 2015). Explicit phylogenetic tests for increased
extinction rates in SC lineages have been performed
in Solanceae (Goldberg et al. 2010), Primulaceae
(de Vos et al. 2014), and Orchidaceae (Gamisch et al.
2015), and all of these studies reported lower overall
rates of net-diversification in SC lineages compared
with SI lineages. In these studies, the association of
mating system transitions with shifts in extinction
and speciation rates was tested using the Binary State
Speciation and Extinction model (BiSSE; Maddison
et al. 2007). More recently, BiSSE has been shown to
be prone to falsely identifying a positive association
when diversification rate shifts are associated with
another character not included in the model (Maddison
and FitzJohn 2015; Rabosky and Goldberg 2015). One
approach to reduce the possibility of falsely associating
a character with diversification rate heterogeneity is to
incorporate a second, unobserved character into the
model (i.e., a Hidden State Speciation and Extinction
(HiSSE) model; Beaulieu and O’Meara 2016; Caetano
et al. 2018). The changes in the unobserved character’s
state represent background diversification rate changes
that are not correlated with the observed character. Our
work here is the first to apply a HiSSE-type model to
test Stebbins’ dead-end hypothesis. We additionally
use simulations and Bayes factors (Kass and Raftery
1995) to evaluate the false positive error rate of our
model. Most notably, we employ our novel stochastic
character mapping method to reconstruct the timing
of both diversification rate shifts and transitions in
mating system over a fossil-calibrated phylogeny of
Onagraceae. We test the hypothesis that SC lineages
have higher extinction and speciation rates yet lower
net-diversification rates compared with SI lineages,
and investigate the short-term versus long-term
macroevolutionary consequences of the loss of SI.

MATERIALS AND METHODS

Stochastic Character Mapping Method
Figure 1 gives a side by side comparison of the

standard stochastic character mapping algorithm as
originally described by Nielsen (2002) and the approach
introduced in this work. In standard stochastic character
mapping, the first step is to traverse the tree post-order
(tip to root) calculating the conditional likelihood of
the character being in each state at each node using
Felsenstein’s pruning algorithm (Fig. 1a; Felsenstein
1981). Transition probabilities are computed along each
branch using matrix exponentiation. Ancestral states are
then sampled at each node during a pre-order (root to
tip) traversal (Fig. 1b). Finally, character histories are
repeatedly simulated using rejection sampling for each
branch of the tree (Fig. 1c).

A detailed pseudocode formulation of our new
stochastic character mapping algorithm is provided in
Algorithm 1. In this algorithm, we begin similarly by
traversing the tree post-order and calculating condi-
tional likelihoods. However, instead of using matrix
exponentiation we calculate the likelihood using a set
of differential equations similar to Maddison et al.
(2007). We numerically integrate these equations for
every arbitrarily small time interval along each branch,
however, unlike Maddison et al. (2007), we store a
vector of conditional likelihoods for the character being
in each state for every small time interval (Fig. 1e).
Letting X represent the observed tip data, � an observed
phylogeny, and �q a particular set of character evolution
model parameters, the likelihood at the root of the tree
is then given by:

P(X ,�|�q)=
∑

i

�iDR,i(t),

where �i is the root frequency of state i and DR,i(t) is the
likelihood of the root node being in state i conditional on
having given rise to the observed tree � and the observed
tip data X (Freyman and Höhna 2018).

We then sample a complete character history during a
pre-order tree traversal. First, the root state is drawn from
probabilities proportional to the marginal likelihood of

each state at the root

(
pi= �iDR,i(t)∑

i
�iDR,i(t)

)
. Then, states are

drawn for each small time interval moving toward the
tip of the tree conditioned on the state of the previous
small time interval (Fig. 1f). To compute the probability
of a state at the end of each small time interval, we
integrate numerically over a set of differential equations
during this root-to-tip tree traversal (see Fig. 1f). This
integration, however, is performed in forward-time,
thus a different and new set of differential equations
must be used (defined below). When sampling a state
at the end of each small time interval, the forward-
time probabilities are weighted by the backward-time
conditional likelihoods computed and stored for this
same time interval during the earlier post-order tree
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FIGURE 1. Schematic and comparison of stochastic character mapping methods. On the left (a, b, c, d) is an illustration of the standard
stochastic character mapping algorithm as originally described by Nielsen (2002). On the right (e, f, g) is the approach introduced in this work.
The first step in standard stochastic character mapping is (a) traversing the tree post-order (tip to root) calculating conditional likelihoods for
each node. Next, ancestral states are sampled at each node during a pre-order (root to tip) traversal (b). Branch by branch, character histories are
then repeatedly simulated using rejection sampling (c), resulting in a full character history (d). The first step in the stochastic character mapping
method introduced in this work is (e) traversing the tree post-order calculating conditional likelihoods for every arbitrarily small time interval
along each branch and at nodes. Here, the vector [ln0,ln1,ln2] represents the conditional likelihoods of the process at node n in states 0, 1, and 2,
and the vector [lni0,lni1,lni2] represents the conditional likelihoods of the process in the small time interval i along the branch leading to node
n. Next, during a pre-order traversal ancestral states are sampled for each time interval (f). The grey dashed loop represents the forward-time
equations (Equations 4 and 6) conditioning on a state sampled during each small time interval. The result is a full character history (g) without
the need for a rejection sampling step. See the main text for more details.
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FIGURE 2. Alternative scenarios of events in a small time interval �t looking backwards in time. The top row shows the different scenarios
for a lineage that goes extinct before the present. Case 1: The lineage goes extinct in the time interval �t. Case 2: There is no event in the time
interval �t and the lineage goes extinct before the present. Case 3: The lineage undergoes a state-shift event to state j in the time interval �t and
the lineage goes extinct before the present. Case 4: The lineage speciates and leaves a left daughter lineage in state j and a right daughter lineage
in state k and both daughter lineages go extinct before the present. Case 5: The lineage speciates and leaves a left daughter lineage in state k and
a right daughter lineage in state j and both daughter lineages go extinct before the present. The bottom row shows the different scenarios for an
observed lineage. Case 1: There is no event in the time interval �t. Case 2: The lineage undergoes a state-shift event to state j in the time interval
�t. Case 3: The lineage speciates and leaves a left daughter lineage in state j and a right daughter lineage in state k and only the left daughter
lineage survives. Case 4: The lineage speciates and leaves a left daughter lineage in state j and a right daughter lineage in state k and only the
right daughter lineage survives.

traversal. With this approach, we can directly sample
character histories from a SSE process in forward-
time, resulting in a complete stochastic character map
sample without the need for rejection sampling or
uniformization (see Fig. 1).

Derivation of Our Differential Equations
The two functions we integrate numerically are

DN,i(t), which is defined as the probability that a lineage
in state i at time t evolves into the observed clade N, and
Ei(t), which is the probability that a lineage in state i at
time t goes extinct before the present, or is not sampled
at the present.

In the following section, we will derive the differential
equations for our algorithm to compute the probability
of the observed lineages and the extinction probabilities
both backwards and forwards in time. We additionally
show how the forward-time equations must be modified
to handle non-reversible models of character evolution
when sampling ancestral states or stochastic character
maps.

Differential Equations Backwards in Time. The ori-
ginal derivation of the differential equations for
the SSE process are defined backward in time

(Maddison et al. 2007). Here, we use a generalization of
the SSE process to allow for cladogenetic events where
daughter lineages may inherit different states, as derived
by Goldberg and Igić (2012), see also (Magnuson-Ford
and Otto 2012) and Ng and Smith (2014). We repeat
this known derivation of the backwards process to show
the similarities to our forward in time derivation. We
present an overview of the possible scenarios of what
can happen in a small time interval �t in Figure 2. We
need to consider all these scenarios in our differential
equations.

First, let us start with the computation of the extinction
probability. That is, we want to compute the probability
of a lineage going extinct at time t+�t, denoted by
E(t+�t), before the present time t=0. We assume that
we know the extinction probability of a lineage at time
t, denoted by E(t), which is provided by our initial
condition that E(t=0)=0 because the probability of a
lineage alive at the present cannot go extinct before
the present, or E(t=0)=1−� in the case of incomplete
taxon sampling. We have five different cases (top row in
Fig. 2): (1) the lineage goes extinct within the interval �t;
(2) nothing happens in the interval �t but the lineage
eventually goes extinct before the present; (3) a state-
change to state j occurs and the lineage now in state j
goes extinct before the present; (4) the lineage speciates,
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Algorithm 1 Stochastic character mapping algorithm. DNi(t) is the probability that a lineage in state i at time t evolves into the observed clade
N. Ei(t) is the probability that a lineage in state i at time t goes extinct or is not sampled before the present.

1. Inputs:
X : the vector of observed tip states.
tr : the starting time of the process.
�: the vector of root state frequencies.
�: the vector of speciation rates.
�: the vector of extinction rates.
�: the probability of sampling a lineage in the present.
Q: The matrix of transition rates between states.

2. Initialize:
t←0 // start at the present
Ei(t=0)←1−� // extinction probability at present time
if i=Xobserved then

DN,i(t=0)←� // probability of observed character
else

DN,i(t=0)←0

3. while t≤ tr do // post-order tree traversal
4. if node L is reached then
5. DL,i(t)←∑

j
∑

k �ijkDM,j(t)DN,k(t) // combine descendant probabilities
6. else
7. LN,i(t)←DN,i(t) // store the conditional likelihoods for this time interval
8. Ei(t+�t)←Ei(t)+ // compute conditional likelihoods for next time interval[

�i−
(∑

j
∑

k �ijk+
∑

j �=i Qij+�i

)
Ei(t)

+∑j �=i QijEj(t)+∑j
∑

k �ijkEj(t)Ek(t)

]
�t // backward-time Equation (1)

9. DN,i(t+�t)←DN,i(t)+[
−
(∑

j
∑

k �ijk+
∑

j �=i Qij+�i

)
DN,i(t)+∑j �=i QijDN,j(t)

+∑j
∑

k �ijk

(
DN,k(t)Ej(t)+DN,j(t)Ek(t)

)]
�t // backward-time Equation (2)

10. t← t+�t // increment the current t
11. end if
12. end while
13. st∼Multinomial

(
n=1,DN (tr)×�

)
// draw character state at the root

14. while t≥0 do // pre-order tree traversal
15. DN,st←1 // condition on the sampled character state
16. DN,i �=st←0
17. Ei(t−�t)←Ei(t)−[

�i−
(∑

j
∑

k �ijk+
∑

j �=i Qij+�i

)
Ei(t)

+∑j �=i QijEj(t)+∑j
∑

k �ijkEj(t)Ek(t)

]
�t // forward-time Equation (4)

18. DN,i(t−�t)←DN,i(t)+[
−
(∑

j
∑

k �ijk+
∑

j �=i Qij+�i

)
DN,i

+∑j �=i QjiDN,j(t)+∑j
∑

k �jikDN,j(t)Ek(t)+∑j
∑

k �jkiDN,j(t)Ek(t) // forward-time Equation (6)
19. t← t−�t // decrement the current t
20. st∼Multinomial

(
n=1,DN (t)×LN (t)

)
// draw character state for time t

21. end while
22. return vector of all sampled character states s

giving birth to a left daughter lineage in state j and a right
daughter lineage in state k and both lineages eventually
go extinct before the present; or (5) the lineage speciates,

giving birth to a left daughter lineage in state k and a right
daughter lineage in state j and both lineages eventually
go extinct before the present. With this description of
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all possible scenarios we can derive the differential
equation.

Ei(t+�t)

=Ei(t)+ (1)[
�i Case (1)

−
(∑

j

∑
k

�ijk+
∑
j �=i

Qij+�i

)
Ei(t) Case (2)

+
∑
j �=i

QijEj(t) Case (3)

+
∑

j

∑
k

�ijkEj(t)Ek(t)

]
�t Case (4) and (5)

Similarly, we can consider all possible scenarios for an
observed lineage. We have four different cases (bottom
row in Fig. 2): (1) nothing happens in the interval �t; (2)
a state-change to state j occurs; (3) the lineage speciates,
giving birth to a left daughter lineage in state j and a right
daughter lineage in state k and only the left daughter
lineage survives until the present; or (4) the lineage
speciates, giving birth to a left daughter lineage in state j
and a right daughter lineage in state k and only the right
daughter lineage survives until the present. Again, these
scenarios are sufficient to derive the differential equation
for the probability of an observed lineage, denoted D(t).

DN,i(t+�t)

=DN,i(t)+ (2)[
−
(∑

j

∑
k

�ijk+
∑
j �=i

Qij+�i

)
DN,i(t) Case (1)

+
∑
j �=i

QijDN,j(t) Case (2)

+
∑

j

∑
k

�ijk

(
DN,k(t)Ej(t)+DN,j(t)Ek(t)

)]
�t Case (3) and (4)

Differential Equations Forward in Time. Next, we want
to compute the probability of extinction and the prob-
ability of an observed lineage forward in time. For the
probability of extinction this is, in principle, almost
identical to the backward in time equations. However,
now we assume that we know E(t) and want to compute
E(t−�t). We already computed E(troot) and D(troot) in our
post-order tree traversal (from the tips to root). We use
E(troot) as the initial conditions to approximate E(t−�t).
Again, we have the same five different cases (top row in
Fig. 2): (1) the lineage goes extinct within the interval �t;

(2) nothing happens in the interval �t but the lineage
eventually goes extinct before the present; (3) a state-
change to state j occurs and the lineage now in state j
goes extinct before the present; (4) the lineage speciates,
giving birth to a left daughter lineage in state j and a right
daughter lineage in state k and both lineages eventually
go extinct before the present, or; (5) the lineage speciates,
giving birth to a left daughter lineage in state k and a right
daughter lineage in state j and both lineages eventually
go extinct before the present. However, these are the
events that can happen in the future and we included
the probabilities of these events already in E(t). Thus, we
need to subtract instead of adding all possible scenarios
that lead to the extinction of the lineage in the time
interval �t from E(t) to obtain E(t−�t). This gives us
the differential equation for the extinction probability as

Ei(t−�t)

=Ei(t)− (3)[
�i Case (1)

−
(∑

j

∑
k

�ijk+
∑
j �=i

Qij+�i

)
Ei(t) Case (2)

+
∑
j �=i

QijEj(t−�t) Case (3)

+
∑

j

∑
k

�ijkEj(t−�t)Ek(t−�t)

]
�t Case (4) and (5)

Unfortunately, we cannot solve Equation (3) directly
because we do not know Ej(t−�t) and Ek(t−�t).
Instead, we will approximate Equation (3) by using
Ej(t) instead of Ej(t−�t), and Ek(t) instead of Ek(t−
�t), respectively. Our approximation yields the new
differential equation of the extinction probability by

Ei(t−�t)

≈Ei(t)− (4)[
�i Case (1)

−
(∑

j

∑
k

�ijk+
∑
j �=i

Qij+�i

)
Ei(t) Case (2)

+
∑
j �=i

QijEj(t) Case (3)

+
∑

j

∑
k

�ijkEj(t)Ek(t)

]
�t Case (4) and (5)

The derivation of the probability of an observed
lineage in forward time is slightly different. When
sampling a character history from the process we must
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compute D(t−�t) conditioned upon the character state
sampled at time t. This does not effect the probability of
a lineage going extinct before the present, so we can use
E(troot) as the initial conditions to approximate E(t−�t).
The initial conditions for the probability of an observed
lineage, on the other hand, must account for the sampled
character state. For example, if we sample the state a at
time t our initial conditions to compute D(t−�t) must
be Da(t)=1.0 and Db(t)=0.0 for all other character states
b. Additionally, we must consider the process in forward
time with all possible scenarios instead of backwards
in time and subtracting the possible scenarios. We
have four different cases that are similar to the cases
for the backward in time computation (bottom row in
Fig. 2), however, here the character state transitions
are reversed since we are looking forward in time: (1)
nothing happens in the interval �t; (2) with probability
DN,j(t) the lineage was in state j and then a state-change
to state i occurs; (3) with probability DN,j(t) the lineage
was in state j and then speciates, giving birth to a left
daughter lineage in state i and a right daughter lineage
in state k and only the left daughter lineage survives
until the present (the probability of extinction of the
right daughter lineage is given by Ek(t−�t)); or (4) with
probability DN,j(t) the lineage was in state j and then
speciates, giving birth to a left daughter lineage in state
k and a right daughter lineage in state i and only the
right daughter lineage survives until the present (the
probability of extinction of the left daughter lineage is
given by Ek(t−�t)). From these four scenarios, we derive
the differential equation.

DN,i(t−�t)

=DN,i(t)+ (5)[
−
(∑

j

∑
k

�ijk+
∑
j �=i

Qij+�i

)
DN,i(t) Case (1)

+
∑
j �=i

QjiDN,j(t) Case (2)

+
∑

j

∑
k

�jikDN,j(t)Ek(t−�t)

+
∑

j

∑
k

�jkiDN,j(t)Ek(t−�t)

]
�t Case (3) and (4)

As before, we cannot solve Equation (5) directly because
we do not know Ek(t−�t). Thus, we use the same
approximation as before and substitute Ek(t) for Ek(t−
�t). This substitution gives our approximated differen-
tial equation.

DN,i(t−�t)

≈DN,i(t)+ (6)[
−
(∑

j

∑
k

�ijk+
∑
j �=i

Qij+�i

)
DN,i(t) Case (1)

+
∑
j �=i

QjiDN,j(t) Case (2)

+
∑

j

∑
k

�jikDN,j(t)Ek(t)

+
∑

j

∑
k

�jkiDN,j(t)Ek(t)

]
�t Case (3) and (4)

To sample character histories from an SSE process in
forward-time during Algorithm (1) we calculate E(t−
�t) using the approximation given by Equation (4) and
D(t−�t) using Equation (6).

Correctness of the Forward Time Equations
Validation of the Forward Time Extinction Probabilities.
For the purpose of demonstrating our forward time
equations, we will use a non-symmetrical BiSSE model
with states 0 and 1, which have the speciation rates �0=1
and �1=2, the extinction rates �0=0.5 and �1=1.5, and
the transition rates Q01=0.2 and Q10=2.0. For simplicity,
we assume that there are no state changes at speciation
events. We will first show that the approximations given
by Equation (4) actually converge to the true probability
of extinction if the time interval �t is very small (goes
to zero). Note that we cannot show the same behavior
for the forward in time probabilities of the observed
lineage, D(t), because when conditioning on a sampled
character state the forward in time probabilities will
be different than the backward in time probabilities.
For these probabilities, we provide a different type of
validation in “Validation of the forward time equations
against diversitree” section.

We start by computing the probability of extinction
and the probability of an observed lineage backward
in time for a total time interval of 1.0. We initialize the
computation with Ei(t=0)=0 and then compute E0(t)
and E1(t) backward in time. Then, we use the computed
values of Ei(t=1) as the initial values for our forward
in time computation. If our approximation is correct,
then we should get identical values for the extinction
probabilities Ei(t) for any value of t.

Figure 3 shows our computation using three different
values for �t: 0.1, 0.01, and 0.001. We observe that
our approximation of the forward in time computa-
tion of the probabilities converges to the backward in
time computation when �t≤0.001, which confirms our
expectation. An explanation for the convergence is that
E0(t) will be approximately equal to E0(t−�t), (and
E1(t) to E1(t−�t)) the smaller �t becomes. In our actual
implementation in RevBayeswe use an initial step-size
of �t=10−7 but apply an adaptive numerical integration
routine to minimize the error in the integrated function.

Validation of the Forward Time Equations against
diversitree. Second, we validate our method
of sampling character histories from an SSE process
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FIGURE 3. The probability of extinction computed backward and forward in time. Here, we compute the extinction probabilities E0(t) and
E1(t) for a BiSSE model backward and forward in time. Details about the parameters of the BiSSE model are given in the text. We varied the
step-size �t for the numerical integration between 0.1, 0.01, and 0.001 to show that both computations give the same probabilities once �t is
small enough.

FIGURE 4. Comparing marginal posterior ancestral state
estimates from diversitree to those calculated in RevBayes. Each
point represents the posterior probability of a given node having
the ancestral state 0. On the y-axis are the posterior probabilities
as analytically calculated by diversitree. On the x-axis are the
posterior probabilities as calculated byRevBayesusing Algorithm (1).
Our approximation given in Equation (6) yields highly similar
posterior probabilities of the ancestral states as diversitree. Scripts
to repeat this test with various parameter settings are provided in
https://github.com/wf8/anc_state_validation.

in forward-time by testing it against the analytical
marginal ancestral state estimation implemented in the
R package diversitree (FitzJohn 2012). Our method
as implemented in RevBayes works for sampling both
ancestral states and stochastic character maps, however,
diversitree cannot sample stochastic character
maps. Thus we limit our comparison to ancestral states
estimated at the nodes of a phylogeny. Though our
method works for all SSE models nested within ClaSSE,

ancestral state estimation for ClaSSE is not implemented
in diversitree, so we further limit our comparison
to ancestral state estimates for a BiSSE model. Note
that as implemented in RevBayes the BiSSE, ClaSSE,
MuSSE (FitzJohn 2012), HiSSE (Beaulieu and O’Meara
2016), ChromoSSE (Freyman and Höhna 2018), and
GeoSSE (Goldberg et al. 2011) models use the same C++
classes and algorithms for parameter and ancestral state
estimation, so validating under BiSSE should provide
confidence in estimates made by RevBayes for all these
SSE models.

Our method samples character histories from SSE
models from their joint distribution conditioned on the
tip states and the model parameters during MCMC.
In contrast, diversitree computes marginal ancestral
states analytically. Thus to directly compare results
from these two approaches we calculated the marginal
posterior probability of each node being in each state
from a set of 10,000 samples drawn by our Monte Carlo
method. Figure 4 compares these estimates under a non-
reversible BiSSE model where the tree and tip data were
simulated in diversitree with the following para-
meters: �0=0.2,�1=0.4,�0=0.01,�1=0.1, and q01=
0.1,q10=0.4. Figure 4 shows that using the approxim-
ation of E(t−�t) given by Equation (4) and the approx-
imation to compute D(t−�t) in Equation (6) during
Algorithm (1) results in marginal posterior estimates for
the ancestral states that are nearly identical (up to some
expected numerical and sampling errors) to those calcu-
lated analytically by diversitree. Scripts to perform
this test with various parameter settings are provided in
https://github.com/wf8/anc_state_validation.

Implementation, MCMC Sampling and Computation
Efficiency

The stochastic character mapping method
described here is implemented in C++ in
the software RevBayes (Höhna et al. 2014,
2016). The RevGadgets R package (available at
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https://github.com/revbayes/RevGadgets) can be
used to generate plots from RevBayes output.
Scripts to run all RevBayes analyses presented
here can be found in the repository at https://
github.com/wf8/onagraceae.

Our method approximates the posterior distribution
of the timing and nature of all character transitions
and diversification rate shifts by sampling a large
number of stochastically mapped character histories
using MCMC. Uncertainty in the phylogeny and other
parameters are incorporated by integrating over all
possible phylogenetic trees and other parameters jointly.
From these sampled character histories the maximum
a posteriori character history can be summarized in a
number of ways. The approach presented here is to
calculate the marginal probabilities of character states
for every small time interval along each branch, however
one could also calculate the joint posterior probability of
an entire character history.

During Algorithm (1) the rate-limiting step is writing
conditional likelihood vectors for every small time
interval along every branch on the tree, particularly
when the state space of the model is large. The time
required is of order O(n×m×r), where n is the number
of taxa in the tree, m is the number of character states,
and r is the number of time intervals. This is reduced by
only storing conditional likelihood vectors for all time
intervals during the MCMC iterations that are sampled.
During unsampled (i.e., thinned) MCMC iterations the
likelihood is calculated in the standard way storing
conditional likelihood vectors only at the nodes, thus the
use of the stochastic mapping algorithm has little impact
on the overall computation time.

Onagraceae Phylogenetic Analyses
DNA sequences for Onagraceae and Lythraceae were

mined from GenBank using SUMAC (Freyman 2015).
Lythraceae was selected as an outgroup since previ-
ous molecular phylogenetic analyses place it sister to
Onagraceae (Sytsma et al. 2004). In total, eight gene
regions were used (seven chloroplast loci plus the
nuclear ribosomal internal transcribed spacer region)
representing a total of 340 taxa (292 Onagraceae taxa
and 48 Lythraceae taxa). Information about the align-
ments and GenBank accessions used can be found in
the Supplementary Section S1.1 available on Dryad
at http://dx.doi.org/10.5061/dryad.9jj428f. Phylogeny
and divergence times were inferred using RevBayes
(Höhna et al. 2016). Node ages were calibrated using
five fossil calibrations and one secondary calibration.
Details regarding the calibrations, the models of molecu-
lar evolution, and MCMC analyses are given in the
Supplementary Section S1.1 available on Dryad.

Analyses of Mating System Evolution
The mating systems of Onagraceae species were

scored as either SC or SI following (Wagner et al. 2007).

Most of the SC/SI assignments in Wagner et al.
(2007) come from detailed family-level surveys such
as Raven (1979), in which the outcrossing/selfing
modes of 283 Onagraceae species were examined, and
Heslop-Harrison (1990), in which compatibility tests of
48 Onagraceae species were performed. Other SC/SI
assignments come from the many genus- and section-
level studies cited in Wagner et al. (2007) such as Lewis
and Lewis (1955), Plitmann et al. (1973), and Seavey et al.
(1977).

For the analysis of mating system evolution, all
outgroup (Lythraceae) lineages were pruned off our
phylogeny, leaving 292 Onagraceae species. The species
sampling fraction of extant Onagraceae species was
thus �=292/650=0.45, which is the number of species
sampled divided by the approximate total number of
Onagraceae species reported in Wagner et al. (2007).
We use this sampling fraction of extant Onagraceae as
the uniform taxon sampling probability �, assuming
that missing species are uniformly distributed over the
phylogeny (Nee et al. 1994; Yang and Rannala 1997;
Höhna et al. 2011; Höhna 2014). We assumed there
was no state-dependent sampling bias since we lacked
complete SC/SI assignments for all Onagraceae taxa that
would indicate such a bias. Finally, we accounted for
uncertainty in the phylogeny and divergence times by
sampling 200 trees from the posterior distribution of
trees.

HiSSE Model. To test whether diversification rate het-
erogeneity is associated with shifts in mating system or
changes in other unmeasured traits, we used a model
with four states that describes the joint evolution of
mating system as well as an unobserved character with
hidden states a and b (Fig. 5). For each of the four states
we estimated speciation (�) and extinction (�) rates. For
details on priors used and the MCMC analyses see the
Supplementary Section S2.1 available on Dryad.

The system of SI found in Onagraceae is S-RNase-
based gametophytic SI (Raven 1979; Franklin et al. 1995;
Igic et al. 2008). This system of SI evolved once in
the common ancestor of the Asteridae and Rosidae
(Steinbachs and Holsinger 2002; Igic et al. 2008; Vieira
et al. 2008; Niu et al. 2017; Ramanauskas and Igić
2017), the clade that contains Onagraceae. Raven (1979)
writes the system of SI in Onagraceae “is gametophytic,
and involves a series of S-a1leles, with inhibition of
pollen-tube growth normally in the surface layers of the
stigma.” Furthermore, Raven writes that SI “seems to
have been characteristic of the original common ancestor
of Onagraceae, judged by the occurrence of SI in four of
the seven tribes of the family. There is no evidence for
the evolution of SI within the family once it has been
lost.” Following Raven (1979), we used an irreversible
model that only allowed transitions from SI to SC.
However, to test the assumption of irreversibility on our
results, we additionally used a model that allowed for
the possibility of secondary gains of SI by permitting
both transitions from SI to SC and transitions from SC to
SI (see Supplementary Section S2.3 available on Dryad).
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FIGURE 5. SSE model depicting states and rate parameters used
to infer mating system evolution. The states are labeled ca, cb, ia,
and ib, representing self-compatible hidden state a, self-compatible
hidden state b, self-incompatible hidden state a, and self-incompatible
hidden state b, respectively. Independent extinction � and speciation
� rates were estimated for each of the four states, as well as the rate
of transitioning from self-incompatible to self-compatible Qic and the
rates of transitioning between the hidden states Qab and Qba.

Model Comparisons, Incomplete Sampling, and Error Rates.
To test whether diversification-rate heterogeneity was
not associated with shifts in mating system, we calcu-
lated a Bayes factor (Kass and Raftery 1995) to compare
the mating system-dependent diversification model
described above with a mating system-independent
diversification model. The independent model had four
states and the same parameters as the dependent model,
except that the speciation and extinction rates were fixed
so they only varied between the hidden states a and b.
Hence, �ca was fixed to equal �ia, �cb was fixed to �ib, �ca
was fixed to �ia, and �cb was fixed to �ib.

To evaluate the false positive error rate and the effect
of incomplete taxon sampling, we performed a series of
simulations that tested the power of our models to reject
false associations between shifts in mating system and
diversification rate shifts. Trees were simulated under a
BiSSE model, and then diversification independent binary
characters representing mating system were simulated
over the trees. To test the effect of missing data on
our power to detect state-dependent diversification, the
simulated data sets were pruned to have the same pro-
portion of taxon sampling as our empirical Onagraceae
data set (45%). For each simulation replicate, Bayes
factors were calculated to compare the fit of the mating
system-dependent diversification model and mating
system-independent diversification model. Details on
the simulations are provided in the Supplementary
Section S3.1 available on Dryad.

All Bayes factors were calculated using the stepping
stone method (Xie et al. 2010; Höhna et al. 2017), as imple-
mented in RevBayes. Marginal likelihood estimates
were run for 50 path steps and 19,000 generations within
each step. The Bayes factor was then calculated as twice
the difference in the natural log marginal likelihoods
(Kass and Raftery 1995).

RESULTS

Onagraceae Phylogeny
In our estimated phylogeny, all currently recognized

Onagraceae genera (Wagner et al. 2007) were strongly
supported to be monophyletic with posterior probabilit-
ies >0.98. The crown age of Onagraceae was estimated
to be 98.8 Ma (94.0 Ma–107.3 Ma 95% HPD; Fig. 6), and a
summary of the divergence times of major clades within
Onagraceae can be found in Supplementary Table S3
available on Dryad.

Stochastic Character Maps
Since the results from the analysis allowing for

secondary gains of SI were essentially identical to the
results from the analysis that assumed irreversibility and
disallowed secondary gains of SI, we report here only the
results from the irreversible analysis. See Supplementary
Section S2.3 available on Dryad for results of the analysis
allowing for secondary gains.

Under the state-dependent diversification model,
repeated independent losses of SI across the Onagraceae
phylogeny were found to be associated with shifts in
diversification rates (Fig. 6). Additionally, transitions
between the unobserved character states a and b were
also associated with diversification rate heterogeneity.
Uncertainty in the timing of diversification-rate shifts
and character state transitions was generally low, but
increased along long branches where there was relatively
little information regarding the exact timing of trans-
itions (Fig. 7). Following the loss of SI, there was an evolu-
tionary time lag (mean 1.97 My) until net-diversification
(speciation minus extinction) turned negative (Fig. 8).
Since SC hidden state b was estimated to have positive
net-diversification and SC hidden state a was estimated
to have negative net-diversification, we calculated the
time lag from the loss of SI until an evolutionary decline
as the time spent following the loss of SI in hidden
state b until transitioning to hidden state a. In many
cases, the loss of SI occurred in an ancestral lineage with
positive net-diversification (hidden state b) followed by
multiple shifts to negative net-diversification (hidden
state a) in descendant lineages. To account for these non-
independent time lags and avoid double counting the
time the ancestral lineage spent in SC state b, we average
over all (partially) dependent events. For example, the
ancestral lineage spent time ta in state b and the left
and right descendant lineages spent time tl and tr in
state b before switching to state a, respectively. Then, we
counted the time as t= ta+ tl+tb

2 .

Diversification Rate Estimates
Within either hidden state (a or b) SC lineages

had generally higher speciation and extinction rates
compared with SI lineages (Table 1 and Fig. 6). Despite
higher speciation and extinction rates, SC lineages had
lower net-diversification compared with SI lineages.
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FIGURE 6. Maximum a posteriori reconstruction of mating system evolution and shifts in diversification rates in Onagraceae. Divergence times
in millions of years are indicated by the axis at the top. Note that in this marginal summary reconstruction some transitions are displayed such as
the loss and regain of self-incompatibility that were impossible in any single sampled character history. This indicates high uncertainty in the exact
timing of transitions (see Fig. 7). The inset panels show posterior densities of net-diversification (�−�), speciation (�), and extinction (�) rates
in millions of years. Changes in mating system and an unobserved character (hidden states a and b) are both associated with diversification rate
heterogeneity. Within either hidden state (a or b) self-compatible lineages have higher extinction and speciation rates yet lower net-diversification
rates compared with self-incompatible lineages. (The color version of this figure is available online.)

Net-diversification was found to be negative for most
but not all extant SC lineages.

Model Comparisons, Incomplete Sampling, and Error Rates.
For the Onagraceae data set, the state-dependent diver-
sification model of mating system evolution (Fig. 5)

was “decisively” supported over the state-independent
diversification model with a Bayes factor (2lnBF) of 19.9
(Jeffreys 1961). Bayes factors calculated using simulated
data sets showed that the false positive error rate was
low even despite the poor taxon sampling present in
our empirical data set (Fig. 9). The false positive rate for
“strong” support (2lnBF > 6; Kass and Raftery 1995) was
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TABLE 1. Posterior parameter estimates of the HiSSE mating system evolution model depicted in Figure 5

Parameters X Mating system Hidden state Mean 95% HPD interval

Speciation �ca SC a 0.12 0.02–0.23
�ia SI a 0.16 0.09–0.24
�cb SC b 1.66 0.98–2.41
�ib SI b 0.65 0.45–0.85

Extinction �ca SC a 0.35 0.25–0.48
�ia SI a 0.04 0.00–0.09
�cb SC b 1.36 0.65–2.19
�ib SI b 0.10 0.00–0.29

Net-diversification rca SC a −0.23 −0.32 to −0.14
ria SI a 0.13 0.05–0.19
rcb SC b 0.30 0.15–0.46
rib SI b 0.55 0.39–0.71

Transition Qic SI→ SC a/b 0.22 0.16–0.28
Qab SI/SC a→b 0.01 0.00–0.02
Qba SI/SC b→a 0.33 0.16–0.52

FIGURE 7. Posterior probabilities of the maximum a posteriori
reconstruction of mating system evolution and shifts in diversification
rates in Onagraceae. Marginal posterior probabilities of the character
states shown in Figure 6. Uncertainty was highest along long branches
where there was relatively little information regarding the timing of
transitions. (The color version of this figure is available online.)

0.05, and the false positive rate for “very strong” support
(2lnBF > 10; Kass and Raftery 1995) was 0.0.

DISCUSSION AND CONCLUSION

The stochastic character map results reveal that the
loss of SI has different short-term and long-term mac-
roevolutionary consequences. Lineages with relatively
recent losses of SI like Epilobium are undergoing a
burst in both speciation and extinction rates with a
positive net-diversification rate. However, lineages that
have long been SC such as Fuchsia (Tribe Circaeeae) and

FIGURE 8. The time lag from the loss of self-incompatibility until
the onset of evolutionary decline. The time in millions of years after
the loss of self-incompatibility until the net-diversification rate became
negative measured over 10,000 stochastic character map samples.
The mean time lag until evolutionary decline was 1.97 million years
(indicated by a dashed line).

Clarkia are in a previously unrecognized evolutionary
decline. These lineages went through an increase in both
speciation and extinction rates a long time ago—after
the loss of SI—but now only the extinction rates remain
elevated and the speciation rates have declined, resulting
in a negative net-diversification rate. The time lag until
this evolutionary decline was measured as the time
spent following the loss of SI in hidden state b (positive
net-diversification) until transitioning to hidden state
a (negative net-diversification). By mapping the time
spent in each hidden state, the stochastic character maps
quantified the speed of the evolutionary decline in
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FIGURE 9. Bayes factors (2lnBF) comparing the fit of the state-
dependent diversification model of mating system evolution with the
state-independent diversification model. The red arrow indicates the
“decisive” support found for the empirical Onagraceae data (2lnBF
= 19.9; Jeffreys 1961). The dark grey bars represent Bayes factors
calculated for 100 data sets simulated under a state-independent
diversification model and pruned to have the same proportion of
missing species as the empirical Onagraceae data set. The dotted light
grey line indicates “strong” support (2lnBF > 6; Kass and Raftery 1995),
and the dashed light grey line indicates “very strong” support (2lnBF >
10; Kass and Raftery 1995). Even with the poor taxon sampling present
in the Onagraceae data set, our power to reject false positives was high.

SC lineages. These results are robust to phylogenetic
uncertainty (by averaging over a posterior distribution
of trees), to assumptions of mating system irreversiblity
(Supplementary material available on Dryad for results
allowing for secondary gains of SI), and to the effect
of missing species sampling (false positive error rate
calculated using simulations).

While the mean time from the loss of SI until
evolutionary decline was 1.97 million years, there was
a large amount of variation in time estimates (Fig. 8).
This variation could be due to differences in the real-
ized selfing/outcrossing rates of different SC lineages.
Lineages with higher selfing rates likely build up load
due to weakly deleterious mutations more quickly,
leading to a more rapid mutational meltdown and
eventual evolutionary decline (Lynch et al. 1995a,b;
Wright et al. 2008). Furthermore, even if mutational
load is low, the loss of genetic variation in highly
selfing lineages will reduce the probability that such
lineages can respond adequately to natural selection,
such as imposed by a changing or new environment,
thus increasing the potential for extinction. SC lineages
with high outcrossing rates and less inbreeding, on
the other hand, likely have larger effective population
sizes and lower genetic load (Wright et al. 2008),

thus delaying the onset of higher extinction rates. A
limitation of our analysis is that our species data was
coded simply SI or SC, a more nuanced exploration of
the macroevolutionary impact of selfing would require
hard to measure selfing/outcrossing rates from a large
number of species across the phylogeny.

These results confirm theory about the macroevolu-
tionary consequences of selfing (Stebbins 1957; Grant
1981). These consequences include the increased probab-
ility of going extinct due to the accumulation of harmful
mutations (Lynch et al. 1995a,b; Wright et al. 2008) and
an increased rate of speciation which may be driven
by higher among-population differentiation and repro-
ductive assurance that facilitates colonization of new
habitats (Baker 1955; Hartfield 2016). The advantages
of reproductive assurance may explain why transitions
to SC occur repeatedly (Igic et al. 2008; Lande and
Schemske 1985). However, our results reveal that this
advantage in Onagraceae is short-lived; the burst of
increased speciation following the loss of SI eventually
declines, possibly due to failing to adapt to changing
conditions and the accumulation of deleterious muta-
tions. The overall macroevolutionary pattern is one in
which SC Onagraceae lineages undergo rapid bursts
of increased speciation that eventually decline, doomed
by intensified extinction and thus supporting Stebbins’
hypothesis of selfing as an evolutionary dead-end
(Stebbins 1957). These results provide empirical evidence
for the “senescing” diversification rates predicted in
highly selfing lineages by Ho and Agrawal (2017), who
proposed that primarily selfing lineages may at first
diversify at higher rates than outcrossing lineages but
over time slow down due to elevated extinction rates.
Similar results were previously found in Primulaceae by
de Vos et al. (2014), where SC non-heterostylous lineages
were found to “live fast and die young” compared with
SI heterostylous lineages.

Our findings corroborate previous analyses per-
formed in the plant families Solanceae (Goldberg et al.
2010), Primulaceae (de Vos et al. 2014), and Orchidaceae
(Gamisch et al. 2015) where SC lineages were also
found to have lower net-diversification rates than SI
lineages. Our results, however, are the first to use a
HiSSE model to show that this pattern is supported even
when other unmeasured factors affect diversification
rate heterogeneity. Intuitively, it is clear that no single
factor drives all diversfication rate heterogeneity in
diverse and complex clades such as Onagraceae. Indeed,
in some lineages of Oenothera the loss of sexual recom-
bination and segregation due to extensive chromosome
translocations (a condition called Permanent Trans-
location Heterozygosity) is associated with increased
diversification rates (Johnson et al. 2011). Furthermore,
other factors such as polyploidy and shifts in habitat,
growth form, or life cycle may impact diversification
rates (Mayrose et al. 2011; Donoghue 2005; Eriksson
and Bremer 1992). Interpretating the hidden states of
an SSE model can be challenging (Caetano et al. 2018).
Depending on the diversification rates estimated, there
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were different but equally valid ways to make sense of
the hidden states in our analysis: (1) if the diversification
rates varied between SC and SI, but not between hidden
states a and b, we could conclude that shifts in mating
system explained all diversification rate heterogeneity;
(2) if the diversification rates did not vary between SC
and SI, but did vary between hidden states a and b
we could conclude that there were background rate
changes unassociated with mating system and that
mating system evolution was not associated with rate
shifts; or (3) if the diversification rates varied both
between SC/SI and between hidden states a/b, then
depending on the phylogenetic pattern of the hidden
states they could represent the different long- and short-
term consequences of the loss of SI. Our results are
congruent with this last interpretation, and we interpret
the phylogenetic pattern of the hidden states to represent
the temporal decay of diversification rates in SC lineages.
It is important to note, however, that our HiSSE-based
analysis allowed for any of those three outcomes unlike
BiSSE-based analyses.

Stochastic character mapping of state-dependent
diversification can be a powerful tool for examining the
timing and nature of both shifts in diversification rates
and character state transitions on a phylogeny. Char-
acter mapping reveals which stages of the unobserved
character a lineage goes through; e.g. after the loss of
SI transitions are predominantly from hidden state b to
a, representing shifts from positive net-diversification
to negative net-diversification. Furthermore, character
mapping infers the state of the lineages in the present
and so reveals which tips of the phylogeny are currently
undergoing positive or negative net-diversification. If
stochastic character mapping is used with an SSE model
in which some or even all states are hidden (no observed
states), then our method will “paint” the location of
shifts in diversification rate regimes over the tree.
Distributions of character map samples could be used
for posterior predictive assessments of model fit (Nielsen
2002; Bollback 2006; Höhna et al. 2018) and for testing
whether multiple characters coevolve (Huelsenbeck et al.
2003; Bollback 2006). Our hope is that these approaches
enable researchers to examine the macroevolutionary
impacts of the diverse processes shaping the tree of life
with increasing quantitative rigor.
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B. 2010. Species selection maintains self-incompatibility. Science.
330:493–495.

Goldberg E.E., Lancaster L.T., Ree R.H. 2011. Phylogenetic inference
of reciprocal effects between geographic range evolution and
diversification. Syst. Biol. 60:451–465.

Grant, V. 1981. Plant Speciation. New York: Columbia University Press.
Hartfield M. 2016. Evolutionary genetic consequences of facultative sex

and outcrossing. J. Evol. Biol. 29:5–22.
Hastings W.K. 1970. Monte carlo sampling methods using markov

chains and their applications. Biometrika. 57:97–109.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article-abstract/68/3/505/5200730 by U

niversity of M
innesota Law

 Library user on 20 M
ay 2019



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[18:08 22/3/2019 Sysbio-OP-SYSB180079.tex] Page: 519 505–519

2019 FREYMAN AND HÖHNA—STOCHASTIC CHARACTER MAPPING OF STATE-DEPENDENT DIVERSIFICATION 519

Heslop-Harrison Y. 1990. Stigma form and surface in relation to self-
incompatibility in the Onagraceae. Nordic J. Bot. 10:1–19.

Ho E.K., Agrawal A.F. 2017. Aging asexual lineages and the evolution-
ary maintenance of sex. Evolution 71(7):1865–1875.

Hobolth A., Stone E.A. 2009. Efficient simulation from finite-state,
continuous-time Markov chains with incomplete observations.
Ann. Appl. Stat. 3:1204–1231.

Höhna S. 2014. Likelihood inference of non-constant diversification
rates with incomplete taxon sampling. PLoS One. 9:e84184.

Höhna S., Coghill L.M., Mount G.G., Thomson R.C., Brown J.M. 2018.
P3: Phylogenetic posterior prediction in RevBayes. Mol. Biol. Evol.
35:1028–1034.

Höhna S., Heath T.A., Boussau B., Landis M.J., Ronquist F., Huelsen-
beck J.P. 2014. Probabilistic graphical model representation in
phylogenetics. Syst. Biol. 63:753–771.

Höhna S., Landis M.J., Heath T.A., Boussau B., Lartillot N., Moore
B.R., Huelsenbeck J.P., Ronquist F. 2016. RevBayes: Bayesian
phylogenetic inference using graphical models and an interactive
model-specification language. Syst. Biol. 65:726–736.

Höhna S., Landis M.L., Huelsenbeck J.P. 2017. Parallel power pos-
terior analyses for fast computation of marginal likelihoods in
phylogenetics. bioRxiv 104422.

Höhna S., Stadler T., Ronquist F., Britton T. 2011. Inferring speciation
and extinction rates under different species sampling schemes. Mol.
Biol. Evol. 28:2577–2589.

Huelsenbeck J.P., Nielsen R., Bollback J.P. 2003. Stochastic mapping of
morphological characters. Syst. Biol. 52:131–158.

Igic B., Lande R., Kohn J.R. 2008. Loss of self-incompatibility and its
evolutionary consequences. Int. J. Plant Sci. 169:93–104.

Irvahn J., Minin V.N. 2014. Phylogenetic stochastic mapping without
matrix exponentiation. J. Comput. Biol. 21:676–690.

Jeffreys H. 1961. Theory of probability. 3rd ed. Oxford, UK: Oxford
University Press.

Johnson M.T., FitzJohn R.G., Smith S.D., Rausher M.D., Otto S.P.
2011. Loss of sexual recombination and segregation is associated
with increased diversification in evening primroses. Evolution.
65:3230–3240.

Kass R.E., Raftery A.E. 1995. Bayes factors. J. Am. Stat. Assoc.
90:773–795.

Lande R., Schemske D.W. 1985. The evolution of self-fertilization
and inbreeding depression in plants. I. Genetic models. Evolution.
39:24–40.

Landis M.J., Freyman W.A., Baldwin B.G. 2018. Retracing the Hawaiian
silversword radiation despite phylogenetic, biogeographic, and
paleogeographic uncertainty. Evolution 72(11):2343–2359.

Lewis H., Lewis M.E. 1955. The genus Clarkia. University of California
Publications in Botany 20:241–392.

Lynch M., Conery J., Burger R. 1995a. Mutation accumulation and the
extinction of small populations. Am. Nat. 146:489–518.

Lynch M., Conery J., Burger R. 1995b. Mutational meltdowns in sexual
populations. Evolution. 49:1067–1080.

Maddison W.P., FitzJohn R.G. 2015. The unsolved challenge to
phylogenetic correlation tests for categorical characters. Syst. Biol.
64:127–136.

Maddison W.P., Midford P.E., Otto S.P. 2007. Estimating a binary
character’s effect on speciation and extinction. Syst. Biol. 56:701–
710.

Magnuson-Ford K., Otto S.P. 2012. Linking the investigations of
character evolution and species diversification. Am. Nat. 180:225–
245.

Mayrose I., Zhan S.H., Rothfels C.J., Magnuson-Ford K., Barker M.S.,
Rieseberg L.H., Otto S.P. 2011. Recently formed polyploid plants
diversify at lower rates. Science. 333:1257–1257.

Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller
E. 1953. Equation of state calculations by fast computing machines.
J. Chem. Phys. 21:1087–1092.

Nee S., May R.M., Harvey P.H. 1994. The reconstructed evolutionary
process. Philos. Trans. Biol. Sci. 344:305–311.

Ng J. Smith S.D. 2014. How traits shape trees: new approaches for
detecting character state-dependent lineage diversification. J. Evol.
Biol. 27:2035–2045.

Nielsen R. 2002. Mapping mutations on phylogenies. Syst. Biol. 51:729–
739.

Niu S.-C., Huang J., Zhang Y.-Q., Li P.-X., Zhang G.-Q., Xu Q.,
Chen L.-J., Wang J.-Y., Luo Y.-B., Liu Z.-J. 2017. Lack of S-RNase-
based gametophytic self-incompatibility in orchids suggests that
this system evolved after the monocot-eudicot split. Front. Plant
Sci. 8:1106.

Plitmann U., Raven P.H., Breedlove D.E. 1973. The systematics
of Lopezieae (Onagraceae). Ann. Mo. Bot. Gard.
60:478–563.

Rabosky D.L., Goldberg E.E. 2015. Model inadequacy and mistaken
inferences of trait-dependent speciation. Syst. Biol. 64:340–355.
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