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ABSTRACT: A heterobimetallic rhodium-pincer complex bearing a phenylzinc ligand was synthesized and characterized by
multinuclear NMR, COSY, NOESY, and X-ray crystallography. The crystal structure of this complex shows that it possesses a
bridging Rh-Zn-C fragment with a geometry similar to the Rh-H-C fragment in a proposed transition state for metal-to-ligand
proton transfer during redox-neutral C-H activation with dearomatized rhodium pincer complexes. Bonding analysis
indicates that these fragments are isolobal, suggesting that the transition state analogue models not only the structure but
also the bonding interactions that underlie metal-ligand cooperativity in the C-H activation transition state. The similarity of
the transition state and its analogue prompted re-evaluation of the relevant rate equations to determine relative contributions
of viable proton transfer pathways. Parallel analysis of the transition state and its isolobal analogue thus serves as a bridge
between theory and experiment that is rarely available in studies of bonding in transition states.
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tivity of transition metal complexes.2 Complexes designed (A) 1 2

to harness bifunctional bond activation pathways— G /\N\ /P‘Bug tBUOK 1 \I\L /PtBug
wherein both metal and ligand participate in bond for- Rh.q — HL _Rh
mation and bond cleavage—have enabled the activation P'Bu, P'B

and catalytic functionalization of inert substrates.39 Our Ph H¢

group and others have been investigating the reactivity of 3
2,6-bis(di-t-butyl-phosphinomethyl)pyridine (PNP) com- PB H. .
plexes due to their ability to mediate challenging bond acti- 2 — ! \ P'Bu,

vations via metal-ligand cooperativity.19-1¢ [n particular,
(PNP)Rh complexes are capable of cleaving aromatic C-H
bonds at room temperature without the assistance of di- (
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recting groups (Figure 1A).1517-20 This reactivity is uniquely
enabled by deprotonation of the benzylic methylene in the
PNP ligand (e.g. 1 to 2), which leads to a dearomatized,
strongly pi donating ligand. The increased electron density
on rhodium from the dearomatized pi system promotes C-
H cleavage via greater donation to the substrate C-H o* or-
bital to generate Rh(III) hydride 3.21-23 After C-H oxidative
addition, the deprotonated methylene acts as a base and re-
ductant by accepting a proton to give Rh(I) complex 4.17
Without assistance from metal-ligand cooperativity, how-
ever, complex 1 is inert toward C-H activation.
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Figure 1. (A) Mechanism of C-H activation via metal-ligand co-
operation; (B) Transition state 5 and transition state analogue
6; (C) Representation of hypothesized isolobal relationship be-
tween bridging fragments in 5 and 6.
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The ability of metal-ligand cooperativity to enable other-
wise inaccessible C-H bond activation by (PNP)Rh com-
plexes has motivated detailed investigations into how metal
and ligand act in concert to promote new reactivity in these
systems. An essential aspect of this cooperative activation,
the mechanism of metal-to-ligand proton transfer (tautom-
erization of 3 to 4) , remains poorly understood. Perhaps
the most direct pathway for tautomerization is through the
proton-bridged transition state 5 (Figure 1B). The geome-
try of 5, however, is qualitatively similar to the strained
transition state that prevents B-hydride elimination in
metallacylopentanes.2+2¢ Indeed, a computational investi-
gation of the corresponding iridium complexes evaluated
the viability of a transition state analogous to 5 but found
that the strained geometry of the proton-bridged metallabi-
cycle resulted in a high barrier to direct proton transfer.27.28

Given the high energy of the proton-bridged transition
state, the authors also examined pathways involving bridg-
ing water(s) and found that these resulted in a lower calcu-
lated barriers to proton transfer.27.28 Intrigued by this re-
sult, we wondered whether these lower barriers would
translate to increased relative rates for conversion of 3 to 4
when water concentration was considered (Figure S7).
Analysis of the relevant rate equations involving 0-2 water
molecules indicates that water-mediated pathways only be-
come favorable when water concentration approaches 1
ppm. Below this water concentration, which can be readily
achieved using molecular sieves,? direct proton transfer in-
volving transition state 5 becomes favorable (Figure S8).

Given the relevance and unique geometry of transition
state 5, isolation of transition state analogue 6 (Figure 1B)
during a study of direct arylation catalyzed by 1'® piqued
our interest. We hypothesized that the same orbital interac-
tions that mediate metal-to-ligand proton transfer in 5
might also be responsible for stabilizing the unusual geom-
etry of 6 (Figure 1C). If the isolobal analogy held between
these complexes, then 6 would serve as a model for bonding
and metal-ligand cooperativity in transition state 5.

Complex 6 was prepared by heating 4 with diphenylzinc
at 70 °C for 18 hours (Figure 2A).1920 There are many exam-
ples of Rh-Zn3%-% complexes, which have been reviewed343°
in the context of metal-metal bonding in metal-only Lewis
acid/base pairs. There are notable instances of Rh-Zn com-
plexes supported by (PNP) pincer ligands.'®2%%¢ The struc-
ture of 6 in solution was determined by multinuclear NMR,
COSY, and NOESY. The solid-state structure of 6 was deter-
mined by single crystal X-ray diffraction (Figure 2B). The
contracted C1-C2 interatomic distance (C1-C2 1.44A vs C3-
C4 1.514) is consistent with partial double bond character
and supports the assigned dearomatized structure.3” The
most notable structural feature of 6 is the zinc fragment
which bridges between C1 and Rh.34353841 The C1-Zn dis-
tance (2.20A) is greater than the sum of the covalent radii
(1.98A4)%2 and the geometry about C1 is distorted away from
sp3 and most closely resembles an sp2? carbon with a lone
pair localized in a p orbital donating to Zn (C2-C1-Zn 89°,
P1-C1-Zn 87°,P1-C1-C2 114°). The long C1-Zn distance po-
sitions Zn in proximity to rhodium (Rh-Zn 2.524) and
within the sum of Rh and Zn covalent radii (2.644).42
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Figure 2. (A) Synthesis of complex 6 from complex 4 with
ZnPhz; (B) ORTEP of complex 6 with 50% thermal ellipsoids
and non-essential hydrogens removed for clarity: selected
bond distance (A) and angles (deg) C1-C2 1.44, C3-C4 1.51, Rh-
Zn 2.52, C1-Zn 2.20, Zn-C5 1.97, Rh-C6 2.04, C2-C1-Zn 89, P1-
C1-Zn 87, P1-C1-C2 114, C1-Zn-Rh 79.

To compare bonding between the Coenzy1-Z-Rh fragments
in compound 6 and transition state 5, the structures of both
compounds were optimized using density functional theory
(Z=Hor Zn in 5 and 6, respectively). The calculated struc-
ture of 6 agreed well with the observed solid state geometry
(Fig. 2b) (See table S1 for a comparison of geometric param-
eters and figure S3 for and image of overlaid structures).
The structure of 5 was also similar to the previously calcu-
lated transition state of the iridium congener.2’ The calcu-
lated wave functions of these compounds were analyzed us-
ing the quantum theory of atoms in molecules (QTAIM),
which holds that bonded atoms are linked by a bond path (a
vector defined by maximal electron density, p(r)) and that
on the bond path lies a bond critical point (BCP) at which
the first derivative of p(r) is zero.*>% Importantly, the top-
ological features of p(r) and the Laplacian of this value,
V2p(r), offer insight into the nature of bonding interac-
tions.** As shown in Figure 3, bond paths and BCPs between
C-~Z and Rh-Z (Z = H and Zn) were successfully located, in-
dicating that the Rh-H, Rh-Zn, C-H, and C-Zn interactions
are bonding in nature. Based on their positive V2p(r) values
and negative total energy densities, H(r)’s, bonding be-
tween these atoms can be classified as electrostatic with
partial covalence (Table 1). These data suggest that transi-
tion state analogue 6 bears qualitatively similar bonding
features with 5.



Figure 3. Contour line diagram of V2p(r) for (A) complex 6 in
the Rh-Zn-C plane and (B) transition state 5 in the Rh-H-C
plane. Green lines connecting atoms in blue are bond paths and
red circles are bond critical points.

Charge density may also be used to assess bonding
strength in similar systems, with stronger bonds usually
having larger p(r) and shorter bond distance.*® This allows
for comparison of 5 to other complexes in which a hydrogen
atom interacts with a transition metal, including metal hy-
drides and complexes that exhibit hydrogen bonding,*’
preagostic, or agostic interactions.*® The p(r) data in Table
1 show that the Rh-H interaction in 5 has greater charge
density at the BCP than typical M-H interactions and is
more similar to a metal hydride, consistent with relatively
little M-H bond cleavage in the metal-to-ligand proton
transfer transition state. The magnitude of the charge den-
sity at the BCP for the Rh-Zn interaction in 6 is less than that
for the Rh~H interaction in 5. Overall, however, the topology
of the charge density at the BCPs between Rh-Z and C-Z in-
dicates similar bonding in 5 and 6.

Table 1. Selected Bond Critical Point Properties.2

Com- Bond R (A) p(r) (au) V2p(r) (au)  H(r)(aw)

plex

5 Rh---H 1.742 0.10277 0.03316 -0.0489

6 Rh--Zn 2.582 0.04897 0.06868 -0.0172

7i) Preagostic 23~3.0  0.01~0.03  0.03~0.07 -0.001
C-H..M ~0.001

8icl Agostic 1.8~23  0.04~0.05  0.15~0.25 n/a
C-H..M

91l M-H 14~19  013~0.16  0.01~0.2 n/a

[a]See SI for full list of properties. [b]Data are for M...H prea-
gostic and hydrogen bonding (HB) interactions from Ref:49
[c]Geometric data and AIM results are from Ref.5? and Ref.5" re-
spectively. [d]Geometric and QTAIM data for metal hydrides
are from Ref®2 and Ref 3253 54 respectively.

Given the similar geometry and bonding about the bridg-
ing Cbenzyi-Z-Rh fragments in 5 and 6, we sought to assess
whether the orbital interactions that stabilize the unusual

geometry of the transition state analogue (6) are similar to
those that promote metal-ligand cooperativity in 5.
Whereas transition state analogues mimic structure, they
need not reflect the bonding of the corresponding transition
state.®® Toward this end, the isolobal analogy describes
bonding similarities between structurally diverse molecu-
lar fragments.%® Specifically, Hoffmann defined two frag-
ments as being isolobal "if the number, symmetry proper-
ties, approximate energy, and shape of the frontier orbitals
and the number of electrons in them are similar-not identi-
cal, but similar".5¢ Thus, we wanted to establish whether 5
and 6 are isolobal, as introduced qualitatively in Fig. 1C, and
thus whether 6 serves as a model for not only the structure
but also bonding in 5. The relevant bonding interactions
were assessed using second order natural bond orbital
(NBO) perturbation theory to identify stabilizing donor-ac-
ceptor pairs of NBOs (Figure 4).5”

The bridging fragments in both 5 and 6 are stabilized by
two major donor-acceptor interactions. In transition state 5
arhodium d orbital donates to the 1s orbital on the bridging
hydrogen: 4d(Rh) — 1s(H) (Figure 5B — C). The second
stabilizing pair in transition state 5 involves donation from
a 1(C-C) bonding NBO on the dearomatized ligand to the
LUMO of the bridging proton: m(C-C) = 1s(H) (Figure 5D
— (). These donor-acceptor interactions to the bridging
hydrogen in transition state 5 are overlaid in Figure 5E. In
complex 6, a rhodium d orbital donates to the empty non-
bonding orbital on the bridging Zn: 4d(Rh) = 4s(Zn) (Fig-
ure 5G — H). The second stabilizing pair in complex 6 in-
volves donation from a lone pair localized in a primarily p
orbital on the deprotonated ligand to the LUMO of the bridg-
ing Zn: 2p(C) — 4s(Zn) (Figure 51 = H). These donor-ac-
ceptor interactions to the bridging Zn fragment in transition
state analog 6 are overlaid in Figure 5].

As hypothesized above, this analysis is consistent with an
isolobal relationship between the NBOs localized on the
bridging fragments in 5 and 6 that contribute to the largest
stabilizing interactions on those fragments. Specifically, in
both interactions (and in both structures) the acceptor is an
s type NBO localized on the bridging atom; namely, a low
occupancy 1s type NBO on H* in 5 and a low occupancy 4s
type NBO on PhZn* in 6. The four NBOs which donate into
bridging s-type NBOs, on the other hand, are somewhat var-
ied. It is worth noting, however, that despite the variation in
their composition, all four donor NBOs interact with the
bridging acceptors with the same (o) symmetry.
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Figure 4. Summary of stabilizing donor acceptor pairs from second order NBO perturbation theory (A) representation of transition
state 5 (B) Donor NBO in 5, 4d(Rh) (C) Acceptor NBO in 5, 1s(H) (D) Donor NBO in 5, (C-C) (E) Overlaid NBO donors and acceptor
that contribute to stabilizing the bridging proton in 5 (F) representation of transition state analog 6 (G) Donor NBO in 6, 4d(Rh) (H)
Acceptor NBO in 6, 4s(Zn) (I) Donor NBO 6, 2p(C) (J) Overlaid NBO donors and acceptor that contribute to stabilizing the bridging

Znin 6.

The structures of transition states cannot be experimen-
tally characterized for any but the simplest reactions.5%%°
Transition state analogues, however, can be experimentally
characterized to provide insight into the nature of transi-
tion state structures®®-%? as evidenced by the exquisite bind-
ing affinities of transition state analogues toward target en-
zymes.®® As previously noted, however, transition state an-
alogues typically do not serve as models for bonding in the
transition states that they mimic. Because transition state
structures are experimentally elusive, our understanding of
bonding interactions in transition states is therefore limited
to analysis of calculated structures that possess intuitively
reasonable geometries. Differing opinions of what consti-
tutes "reasonable" and the accuracy of computed energies
are critical considerations in this approach to understand-
ing transitions states.

In this report, observation of a transition state analogue
that mimics the strained geometry of transition state 5 led
us to re-evaluate the relevant rate equations for various
pathways to proton transfer (supporting information Fig-
ure S7). This analysis suggests that multiple pathways (wa-
ter-mediated and direct proton transfer) are relevant to co-
operative C-H activation and that, despite its strained geom-
etry, transition state 5 is the favored pathway for metal-to-
ligand proton transfer under rigorously anhydrous reaction
conditions (<1 ppm water). A bonding analysis of the puta-
tive transition state and the corresponding transition state
analogue revealed that the same type of orbital interactions
that stabilize the unusual geometry of 6 also support metal-
to-ligand proton transfer during C-H activation involving 5.
More generally, experimental observation of the geometry
of an isolobal transition state analogue, in parallel with
computational analysis of bonding in the transition state
and the analogue, provides a means to achieve the synergis-
tic feedback between observation and computation during
mechanistic studies that can both motivate and validate our
understanding of the unique geometries and bonding inter-
actions present in transition states.
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