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a b s t r a c t 

Heterogeneities in natural porous formations, mainly manifested through the hydraulic conductivity ( K ) and, to a lesser degree, the porosity ( 𝜙), largely control 
subsurface flow and solute transport. The influence of the heterogeneous structure of K on transport processes has been widely studied, whereas less attention is 
dedicated to the joint heterogeneity of conductivity and porosity fields. Our study employs Monte Carlo simulations to investigate the coupled effect of 𝐾 − 𝜙
spatial variability on the transport behavior (and uncertainty) of conservative and reactive plumes within a 3D aquifer domain. We explore multiple scenarios, 
characterized by different levels of heterogeneity of the geological properties, and compare the computational results from the joint 𝐾 − 𝜙 heterogeneous system 

with the results originating from generally adopted constant 𝜙 conditions. In our study, the spatially variable 𝐾 − 𝜙 fields are positively correlated. We statistically 
analyze key Environmental Performance Metrics: first arrival times and peak mass fluxes for non-reactive species and increased lifetime cancer risk for reactive 
chlorinated solvents. The conservative transport simulations show that considering coupled 𝐾 − 𝜙 fields decreases the plume dispersion, increases both the first 
arrival times of solutes and the peak mass fluxes at the observation planes. A positive correlation between aquifer connectivity and peak mass fluxes is identified 
for both homogeneous and heterogeneous 𝜙. Our conservative transport results indicate that the relevance of 𝜙 variability can depend on the metric of interest, 
the control plane-source distance as well as the level of heterogeneity of the conductivity field. The analysis on reactive transport shows that 𝜙 variability only 
slightly affects the mean increased lifetime cancer risk at the control planes but leads to a considerable reduction of the cancer risk uncertainty. We also see that the 
sensitivity of cancer risk towards 𝜙 heterogeneity can be influenced by the level of variability of the conductivity field, the source-to-control plane distance, but is 
not affected by the manner in which the contaminant concentration is computed. 
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. Introduction 

It is well established that heterogeneities in natural porous forma-
ions largely control subsurface groundwater flow and contaminant
ransport. These heterogeneities are mainly manifested through the hy-
raulic conductivity ( K ) and, to a lesser degree, the porosity ( 𝜙). The
nfluence of the heterogeneous K -field on flow and solute transport
rocesses has been widely studied (see Rubin, 2003 , and references
herein), whereas less attention is dedicated to the effect of heteroge-
eous 𝜙. Hydraulic conductivity is commonly modeled as a random
pace function (RSF) in the stochastic hydrogeology community because
f its erratic spatial variability and the large uncertainty associated with
ncomplete site characterization ( Dagan, 1986; Gelhar, 1986 ). 𝜙 vari-
bility is commonly regarded as a secondary factor when compared to
 heterogeneity. Indeed, most studies in the field of stochastic hydroge-
logy assume that aquifers are characterized by spatially heterogeneous
 and homogeneous 𝜙. This is partially justified because K can vary

n space by 3–4 orders of magnitude within small distances while the
ange of variability of 𝜙 in unconsolidated granular aquifers is generally
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etween 0.1 and 0.55 ( Atkins and McBride, 1992; Freeze and Cherry,
979; Hu et al., 2009 ). 

Because of the limited availability of K and 𝜙measurements, it is dif-
cult to establish a clear correlation between the two geological prop-
rties. However, in specific formations, a level of correlation is likely
o be present ( Hassan et al., 1998 ). The literature presents different
tudies exploring the relationship between K and 𝜙. Archie (1950) and
oyen (1988) found positive correlation between the variables. Addi-

ionally, different authors investigating the estimation of K from 𝜙 and
ther measurable parameters (e.g. grain size, pore surface area, pore di-
ension) established positive correlation between K and 𝜙 for different

ypes of soil (e.g., Aimrun et al., 2004 ; Fallico, 2014; Franzmeier, 1991;
elson et al., 1994; Panda and Lake, 1994; Riva et al., 2014 ; Scholz et al.,
012) . Among them, Nelson et al. (1994) analyzed different models to
redict permeability in sedimentary rocks and concluded that, in most
ases, the permeability is related to a power of 𝜙 and to the square of
 measure of surface area or a characteristic length. It is typically as-
umed that K and 𝜙 are positively correlated in unconsolidated aquifers
 Hu et al., 2009 ), however some studies observed negative correlation
arch 2019 
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etween the two properties under specific packing arrangements and
rain size distributions ( Morin, 2006 ). 

Only a small number of studies investigated the effects of spa-
ially variable 𝜙 fields on transport predictions. Among them,

arren et al. (1964) did not consider a correlation between K and 𝜙 and
oncluded that the impact of 𝜙 variations on macroscopic dispersion is
inor with respect to the effect of K variability. Lin (1977) analyzed

arious porosity functions to represent 𝜙 spatial variability in porous
edia and indicated that the solute concentration predictions are
ithin 15% of the concentration resulting from an average 𝜙 when a

inear or slightly curved equation that expresses porosity as a function
f the spatial coordinate, is employed. The author pointed out that
he discrepancies of solute concentrations become very substantial as
he deviation of the porosity function from linearity increases. A few
umerical modeling studies (e.g., Hassan, 2001; Hassan et al., 1998;
u et al., 2009 ) showed that the consideration of correlated hetero-
eneous K and 𝜙 fields significantly impacts contaminant transport
or two-dimensional domains. Hassan et al. (1998) indicated that a
ositive correlation between 𝜙 and K decreases dispersion whereas a
egative correlation enhances plume spreading, particularly along the
ongitudinal direction. Hassan et al. (1998) also considered reactive
ransport and indicated that reaction rates impact the relative impor-
ance of 𝜙 variability on concentration estimation, which appears to
e amplified in the presence of slow reactions. Along the same line of
ork, Hassan (2001) highlighted that 𝜙 spatial variability, correlated

o heterogeneous K , impacts the longitudinal velocity covariance as
ell as its cross covariance with the head and the log-conductivity
 Y ≡ ln [ K ]) fields. Riva et al. (2006) studied the influence of K het-
rogeneities on solute transport with constant effective 𝜙, and later
xpanded their analysis in Riva et al. (2008) , where both K and 𝜙 were
onsidered random variables. Riva et al. (2008) highlighted that con-
idering the spatial distribution of 𝜙 is fundamental to mimic the early
rrival of breakthrough curves (BTCs). The studies of Riva et al. (2008,
006) showed that the site description of transport processes highly
rofits from the incorporation of the spatial variability of the 𝜙 field. 

In light of the mentioned findings, the influence of heterogeneous K
oupled with spatially variable 𝜙 fields, especially when the two prop-
rties are correlated, as shown in most cases, should be further inves-
igated to increase the reliability of contaminant transport and associ-
ted human health risk predictions. In this context, our work aims to
tudy the significance of spatial variability in the porous medium’s 𝜙 to
onservative and reactive solute transport predictions in the context of
robabilistic risk analysis. Through the use of stochastic numerical sim-
lations we systematically illustrate the impact of 𝐾 − 𝜙 spatial vari-
bility on key Environmental Performance Metrics (EPMs) such as solute
rrival times, peak mass fluxes, increased lifetime cancer risk and cor-
esponding uncertainties at environmentally sensitive locations. For our
llustrations, we consider three-dimensional (3D) heterogeneous aquifer
ystems. In particular, the objectives of this work are twofold. First,
e systematically investigate the coupled influence of 𝜙 and K hetero-
eneity on the statistical characterization of non-reactive transport. Sec-
nd, within an application-oriented context, we show the implications
f these coupled effects when estimating adverse human health effects
e.g. cancer risk) due to exposure to chlorinated solvents in groundwa-
er. Through extensive stochastic computational analysis, we explore
ifferent scenarios that, to the best of our knowledge, have not been
nvestigated, with the goal of identifying conditions where the role of
patially variable 𝜙, correlated to heterogeneous K , is relevant. Our anal-
sis simulates contaminant transport through an unconsolidated sandy
quifer where, given the likelihood ( Hassan, 2001; Hu et al., 2009; Lui-
endijk and Gleeson, 2015 ), positive 𝐾 − 𝜙 correlation is adopted, to-
ether with different levels of heterogeneity of the K system. Our study
ddresses fundamental questions such as: is the uncertainty associated
ith transport in the subsurface increased or decreased when variable
fields are considered? Does the relative importance of variable 𝜙 de-

end on the level of heterogeneity of the K -field? What is the impact of
2 
his joint heterogeneity on the flow connectivity structure of the aquifer?
ow are the effects of heterogeneity propagated to decision making met-

ics such as human health risk? 
The paper is structured as follows. We present the problem under in-

estigation in Section 2 . In Section 3 , we illustrate the methodology em-
loyed in our study and provide details on the computational implemen-
ation. Next, Section 4 is devoted to the analysis of the results for conser-
ative tracers ( Section 4.1 ) and reactive contaminants ( Section 4.2 ). We
nally summarize our study and outline the key findings in Section 5 . 

. Problem statement 

In this work we consider a contaminated, fully saturated 3D het-
rogeneous aquifer whose Cartesian coordinate system is indicated
y x = ( 𝑥, 𝑦, 𝑧 ) . We are interested in understanding the impact of
eterogeneity, stemming from both K and 𝜙, on a series of EPMs
 de Barros et al., 2012 ). 

Let Ω denote a generic EPM. For example, Ω can represent solute ar-
ival times or solute peak concentrations at an environmentally sensitive
ocation. If the contaminant is toxic, then Ω can denote, for instance, an
dverse health effect. Due to incomplete characterization of the subsur-
ace, hydrogeological properties such as K and 𝜙 are modeled as spatially
andom. As a consequence, the quantity Ω is subject to uncertainty and
uantified through its statistical moments, such as its mean ⟨Ω⟩ (where
he angled brackets denote ensemble expectation), its variance 𝜎2 Ω, and
ts probability density function (PDF) p ( Ω) or cumulative density func-
ion (CDF) P ( Ω). 

We are primarily interested in analyzing the effect of 𝐾 − 𝜙 variabil-
ty on different EPMs with the goal of: (a) improving our fundamental
nderstanding of the significance of these variabilities to contaminant
ransport and (b) exploring how the latter variabilities propagate to de-
ision making metrics relevant to human health risk analysis. In this
tudy we perform both conservative and reactive contaminant transport
imulations and select the specific EPMs indicated below: 

• We statistically analyze the first arrival times and peak mass fluxes
through control planes (CPs) resulting from conservative tracer sim-
ulations. The first arrival time is defined as the time of arrival of
5% of the initial injected mass (i.e., t 5% 

) at the CP of interest. An
accurate detection of t 5% 

is of fundamental importance for risk and
water entities in charge of accurately planning aquifer remediation,
risk analysis and managing water resources. Moreover, peak mass
fluxes at an environmentally sensitive location can be viewed as an
indicator of the risks associated with groundwater contamination
and can also serve as a proxy for dilution ( Fiori, 2001 ). 

• We then explore the increased lifetime cancer risk estimates associ-
ated with chronic exposure to chlorinated solvents that are the re-
active contaminants of interest in our study. The latter metric is of
fundamental importance for public health authorities and its quan-
tification provides useful insights for risk and remediation experts in
order to characterize risk of real-life operations. 

.1. K − 𝜙 model 

The interdependence between the heterogeneous K and 𝜙 fields is
argely uncertain as explained in Section 1 . However a positive corre-
ation is likely to be present in unconsolidated sandy aquifers (e.g., Hu
t al., 2009; Luijendijk and Gleeson, 2015 ). With the goal of systemati-
ally exploring the influence of spatially variable 𝜙 and K on the EPMs
escribed before, we model our aquifer system as being characterized
y (a) spatially heterogeneous K and homogeneous 𝜙, and (b) spatially
eterogeneous K correlated to spatially heterogeneous 𝜙. 

In order to illustrate the possible relationship between K and 𝜙 data,
e report in Fig. 1 permeability ( k ) and 𝜙 data for different formations.
ata presented in purple refer to experimental measurements of a se-
uence of seven samples of Fountainebleau sandstone ( Doyen, 1988 ),
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Fig. 1. Log-log plot of permeability ( k ) as a function of porosity ( 𝜙) for different 
formations showing a positive correlation trend: Fontainebleau sandstone data 
from the study of Doyen (1988) in purple, Upper Jurassic Brae Formation, East 
Brae field Offshore United Kingdom, North Sea ( Grau, 2000; Nelson, 2004 ) in 
blue light, Permian-Triassic sandstones, Ivishak Formation, Sadlerochit Group, 
Prudhoe Bay Field, Alaska ( Atkinson et al., 1990; Nelson, 2004 ) in red, core- 
plug samples of Cenozoic sediments from geothermal well AST-02 in the Roer 
Valley Graben, southern Netherlands ( Luijendijk and Gleeson, 2015 ) in green. 
(For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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n blue light we show samples from a turbidite reservoir of Late Jurassic
ge located in the North Sea ( Grau, 2000; Nelson, 2004 ). Furthermore,
ata from Permian-Triassic sandstones from Prudhoe Bay Field, Alaska,
SA, are pictured in red ( Atkinson et al., 1990; Nelson, 2004 ), whereas
ore-plug samples of Cenozoic sediments from the southern Netherlands
 Luijendijk and Gleeson, 2015 ) are shown in green in Fig. 1 . We recall
hat permeability, k , is directly proportional to K through 𝐾 = 𝑘𝜌𝑔∕ 𝜇
 Bear, 1979 ), where 𝜌 indicates water density (1000 g/m 

3 ), g is the grav-
ty acceleration (9.8 m/s 2 ) and 𝜇 is the dynamic viscosity of water. We
dopted a value of 𝜇 equal to 8.84 × 10 −4 Pa s, i.e., a temperature of
5 ∘ C. Note that k in Fig. 1 is expressed in md, 1 md being equivalent
o 9.87 × 10 −16 m 

2 . Interpolation of 𝜙 and k data of Fig. 1 suggests a
ositive correlation for all the formations presented. 

In our work we consider a porous formation composed by unconsol-
dated sandy material and we assume positive correlation between the
eterogeneous K and 𝜙 fields. For the purpose of illustration we estimate
hat the relationship among 𝜙 and K can be described by the well-known
ozeny–Carman (KC) empirical equation ( Carman, 1937; 1956; Kozeny,
927 ): 

 = 

𝜌𝑔 

𝜇

𝜙3 

(1 − 𝜙) 2 
𝑑 2 
𝑒 

180 
, (1)

here d e indicates the representative diameter of grains and the remain-
ng parameters have been previously defined. The literature presents dif-
erent interpretations for d e (e.g., Koltermann and Gorelick, 1995 ) and
e assume that the latter corresponds to d 10 , i.e., the grain diameter at
hich 10% of the particles are smaller, in our study. 

The KC equation has been proven effective in predicting the perme-
bility of sand from porosity data and generally gives good predictions
f hydraulic conductivity when the value of d 10 is within the range 0.1–
 mm ( Barahona-Palomo et al., 2011 ). The KC formula has been em-
loyed in different studies (e.g., Barahona-Palomo et al., 2011; Bianchi
nd Zheng, 2016; Luijendijk and Gleeson, 2015; Odong, 2007; Riva
t al., 2010 ). Luijendijk and Gleeson (2015) concluded that permeabil-
ty of pure sand can be predicted with high confidence ( R 

2 ≥ 0.9) using
he KC equation. Bianchi and Zheng (2016) used the relationship to first
stimate the K values of lithofacies during three-dimensional stochastic
ow and transport modeling at the MADE site. Odong (2007) tested the
eliability of different empirical formulas to estimate the hydraulic con-
uctivity of unconsolidated aquifers by particle size analysis and iden-
ified the KC equation as the overall best estimator. Other authors, as
3 
arr (2005) and Carrier III (2003) , also encouraged the use of the KC
ormula. 

We point out that the scope of our work is to explore the influence
f possible combinations of spatially variable 𝜙 and K on the transport
f tracers and reactive contaminants. Our goal is to assess the impact
f neglecting the joint variability of 𝜙 and K on the probabilistic as-
essment of the risks associated with groundwater contamination. The
stimation of the 𝜙 fields from K through the KC relationship is chosen
or the purpose of illustration and given its suitability to unconsolidated
andy aquifers, shown in different studies (e.g., Hu et al., 2009; Lui-
endijk and Gleeson, 2015 ). However, we point out the KC equation
mplies a full positive correlation between 𝜙 and K but, in reality, the
orrelation between the two hydrogeological properties is partial and
onlinear (e.g., Hu et al., 2009 ). Therefore, the KC equation can be a
eliable predictor of K from 𝜙 only for some cases and is used in this
ork for the purpose of illustration. We emphasize that other empirical

elationships between 𝜙 and K , which are site-specific, for example ob-
ained through borehole geophysics techniques, can be utilized within
he methodological framework adopted in this study. 

.2. Flow and transport model 

roundwater flow A steady state uniform-in-the mean base flow ( q 0 )
akes place along the longitudinal x -direction within the 3D heteroge-
eous aquifer in the absence of sinks and sources. Constant head condi-
ions are established at the west and east boundaries and no-flow condi-
ions are set at the remaining boundaries. The steady-state groundwater
ow is governed by the following partial differential equation: 

 ⋅ q ( x ) = 0 , (2) 

ith 

 ( x ) = − 𝐾( x )∇ ℎ ( x ) , (3) 

here q [m/d] is the specific discharge vector and h [m] is the hydraulic
ead. Note that (3) is written in terms of q , therefore the spatial variabil-
ty of the 𝜙 field does not play a role in the solution of the groundwa-
er flow problem. After solving (3) , groundwater velocity is obtained
rom v ( x ) = − 𝐾( x )∇ ℎ ( x )∕ 𝜙( x ) , and used as input to the contaminant
ransport model. The contaminant transport equation is then includ-
ng the 𝜙 field variability for both conservative and reactive chemical
pecies. 

As previously mentioned, to improve our understanding of the joint
 − 𝜙 heterogeneity on transport and its role in contaminated ground-
ater management, we simulate contaminant transport for non-reactive
nd reactive species. The latter case will be linked to a dose-response
odel to evaluate the adverse health effects associated with contami-
ant exposure. 

eactive transport A contaminant is released along a vertical 2D plane
f areal extent A s . Contaminant mass fluxes or concentrations are mea-
ured at multiple control planes (CPs) located at different longitudinal
istances from the source zone. Fig. 2 illustrates a sketch of the prob-
em under investigation. Following the work of Henri et al. (2015) , the
quifer is contaminated by tetrachloroethylene (PCE), a DNAPL prod-
ct often identified in groundwater ( Fay and Mumtaz, 1996 ). We as-
ume that PCE is entrapped in the source area and slowly dissolves in
ime, originating a long-term contamination that moves downgradient.
n the presence of an anaerobic environment, PCE undergoes chemical
egradation that generates trichloroethylene (TCE), a byproduct that in
urn reacts and degrades into cis-Dichloroethylene (DCE). DCE degrates
hen into vinyl chloride (VC), which will finally produce ethene. The US
nvironmental Protection Agency (EPA) classifies PCE, TCE and DCE as
robable human carcinogenic products, whereas categorizes VC as a hu-
an carcinogen ( U.S. Environmental Protection Agency, 1997 ). 

The reactive transport of PCE and its daughter products can be de-
cribed by the following system of equations, where subscript i indicates
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Fig. 2. Schematic illustration of the problem under investigation: the contami- 
nant is released within the areal source zone, A s . A uniform-in-the average nat- 
ural base flow, q 0 , takes place along the 𝑥 − direction, contaminant mass fluxes 
or concentrations are measured at control planes (CPs). 

a  

P

𝜙

∀  

w  

s  

c  

𝐷  

i  

t  

t  

t  

t  

y  

p  

o  

b  

r  

r
 

D  

D  

s  

t  

t  

a  

A  

p  

m  

2

 

w  

s  

a  

a  

t  

fl  

i

𝑐  

w  

g
i  

2  

t

𝑠  

w  

i
 

p  

t

N  

e  

f  

a  

s  

w  

b  

t  

g  

a  

c

2

 

t  

H  

(  

i  

t

𝑅  

w  

r  

I

𝐴  

I  

[  

f
 

t  

d  

c  

(  

c  

R  

(  

c  

m  

c  

a

𝑐  

w  

l
 

p  

t  

p  

fi  

p

𝑅  

 

I

 specific contaminant within the toxic PCE degradation chain (i.e., i = 1:
CE; i = 2: TCE; i = 3: DCE and i = 4: VC): 

𝑅 𝑖 

𝜕𝐶 𝑖 

𝜕𝑡 
− ∇ ⋅ ( 𝜙D ∇ 𝐶 𝑖 ) + ∇ ⋅ ( q 𝐶 𝑖 ) = 𝑦 𝑖 𝑘 𝑖 −1 𝜙𝐶 𝑖 −1 − 𝑘 𝑖 𝜙𝐶 𝑖 + 𝑠 ( x , 𝑡 ) 𝛿𝑖 1 , 

𝑖 = 1 , … , 4 , (4)

here C i [g/m 

3 ] is the resident contaminant concentration of the i th
pecies, D [m 

2 / d ] represents the hydrodynamic dispersion tensor whose
omponents along the x -, y - and z - direction are respectively 𝐷 𝑥𝑥 = 𝛼𝑥 𝑣,

 𝑦𝑦 = 𝛼𝑦 𝑣 and 𝐷 𝑧𝑧 = 𝛼𝑧 𝑣, with v [m/d] indicating groundwater veloc-
ty of the grid block. Here, 𝛼x , 𝛼y and 𝛼z are respectively the longi-
udinal (along x ), transverse horizontal (along y ) and transverse ver-
ical (along z ) dispersivity coefficients, assumed to be constant for all
he contaminant species. Furthermore, R i represents the retardation fac-
or, k i [d 

−1 ] indicates the first-order contaminant degradation rate and
 i [g g 

−1 ] symbolizes the effective yield coefficient for any reactant or
roduct pair. The latter represents the ratio between the generated mass
f species i and the degraded mass of species 𝑖 − 1 . We assume that
iodegradation does not occur in the sorbed phase and that sorption
eactions follow a linear sorption isotherm (see Henri et al., 2015 , and
eferences therein). 𝛿i 1 indicates the Kronecker delta function. 

Note that in our study we account for the main characteristics of
NAPL mass discharge by linking the DNAPL source strength to the
NAPL mass remaining in the source zone ( Falta et al., 2005 ). The

ource zone is then conceptualized as a control plane from which the
emporal evolution of the contaminant fluxes is simulated using integra-
ive parameters in line with the architecture of the DNAPL. We consider
 time-dependent dissolution rate 𝑠 ( x , 𝑡 ) of PCE leaving the areal source,
 s , starting from no contamination at initial time 𝑡 = 0 . Following the ap-
roach described in Henri et al. (2015) , we employ the mass-depletion
odel proposed in the literature ( Parker and Park, 2004; Rao et al.,
001 ): 

𝑐 𝑠 ( 𝑡 ) 
𝑐 0 

= 

( 

𝑚 ( 𝑡 ) 
𝑚 0 

) Γ
, (5)

here c s is the flux-averaged concentration of the dissolved DNAPL
pecies, i.e., PCE, leaving A s , c 0 is the initial contaminant concentration
t the source zone, m is the mass of DNAPL remaining in the source zone
nd Γ represents the mass-depletion constant accounting for changes of
he interfacial surface area while the mass at the source diminishes. The
ux concentration of PCE leaving the areal source is then expressed as

n Parker and Park (2004) : 

 𝑠 ( 𝑡 ) = 

𝑐 0 

𝑚 

Γ
0 

{ 

− 

𝑄 𝑠 𝑐 0 

𝜆𝑠 𝑚 

Γ
0 
+ 

( 

𝑚 0 
1−Γ + 

𝑄 𝑠 𝑐 0 

𝜆𝑠 𝑚 

Γ
0 

) 

𝑒 (Γ−1) 𝜆𝑠 𝑡 

} 

Γ
1−Γ

, (6)

here m 0 is the initial contaminant mass at the source, Q s represents the
roundwater volumetric discharge rate through the source zone while 𝜆s 

s the first-order degradation constant of PCE at the source ( Henri et al.,
015 ). The function s ( x, t ), i.e., the time-dependent dissolution rate at
4 
he source, is given by: 

 ( x , 𝑡 ) = 𝑞 𝑠 𝑐 𝑠 ( 𝑡 ) 𝛿( 𝑥 − 𝑥 𝑖𝑛𝑗 )Ω( x ∈ 𝐴 𝑠 ) , (7)

here 𝑞 𝑠 = 𝑄 𝑠 ∕ 𝐴 𝑠 , and Ω( x ∈ 𝐴 𝑠 ) is an indicator function equal to one
f x ∈A s and equal to zero elsewhere. 

In Section 2.3 , we present the dose-response model employed to com-
ute the adverse health risk caused by the reactive chemicals degrada-
ion chain (i.e., PCE → TCE → DCE → VC). 

on-reactive transport With the goal of isolating the influence of het-
rogeneity in the aquifer geological properties K and 𝜙 on transport
rom the chemical reactions component, we also simulate transport of
 non-reactive tracer. In this case, similarly to the reactive transport
imulations, groundwater flow is also governed by Eqs. (2) and (3) ,
hereas contaminant transport through the porous media is expressed
y (4) with chemical reactions set to zero. During the conservative con-
aminant transport simulations the tracer is instantaneously and homo-
eneously released within A s and we investigate the first arrival times
nd peak mass fluxes through the control planes and corresponding un-
ertainties. 

.3. Health risk model 

Being the human health risk the EPM of concern for the reactive
ransport case, we follow the work of Maxwell and Kastenberg (1999) ,
enri et al. (2015) , and Zarlenga et al. (2016) and adopt a Poisson model
 U.S. Environmental Protection Agency, 1989 ) to evaluate the human
ncremental lifetime cancer risk (ILCR), R i ( x ) associated to an exposure
o the contaminant i at the CP location x : 

 𝑖 ( 𝑥 ) = 1 − exp [− 𝐴𝐷𝐷 𝑖 ( 𝑥 ) × 𝐶𝑃 𝐹 𝑖 ] , (8)

here CPF i [kg d/mg] indicates the metabolized cancer potency factor
elated to contaminant i and ADD i [mg/(kg d)] is the average daily dose.
n this work, risk is due to human exposure by direct ingestion and: 

𝐷𝐷 𝑖 ( 𝑥 ) = 𝑐 𝑖 ( 𝑥 ) 
𝐼𝑅 

𝐵𝑊 

𝐸 𝐷 × 𝐸 𝐹 

𝐴𝑇 
. (9)

n Eq. (9) , IR is the water ingestion rate [L/d], BW is the body weight
kg], ED symbolizes the exposure duration [y], EF is the daily exposure
requency [d/y] and AT indicates the expected lifetime [d]. 

In our study, 𝑐 𝑖 ( 𝑥 ) [g/m 

3 ] in (9) represents the flux-averaged concen-
ration ( Kreft and Zuber, 1979 ) at a CP situated at a given longitudinal
istance x . This variable is identified both as: (a) the peak flux-averaged
oncentration and (b) the maximum exposure duration ( ED ) averaged
flux-averaged) concentration. The manner in which 𝑐 𝑖 ( 𝑥 ) is evaluated
an lead to different groundwater management strategies ( de Barros and
ubin, 2008 ). It is therefore important to evaluate both cases (a) and
b) above, the first case being the worst scenario that can provide a
onservative risk estimate. In the second case (b) 𝑐 𝑖 ( 𝑥 ) is equal to the
aximum running averaged concentration, over the ED interval, of the

ontaminant concentration BTC at the CP ( Henri et al., 2015; Maxwell
nd Kastenberg, 1999 ) and is mathematically given by: 

̄ 𝑖 ( 𝑥 ) = max 
𝑡> 0 

{ 

1 
𝐸𝐷 

∫
𝑡 + 𝐸𝐷 

𝑡 

𝑐 𝑖 ( 𝜏; 𝑥 ) 𝑑𝜏
} 

, (10)

here c i ( 𝜏; x ) is the flux-averaged concentration observed at the CP
ocation. 

Given that we consider the degradation of PCE into sub-products,
arent and daughter species are likely to be present simultaneously in
he aquifer. The total risk of the chemical mixture (denoted by R T ), in the
resence of low concentrations (less than 300 ppm), can then be identi-
ed as the summation of the individual risks caused by each chemical
roduct ( Feron et al., 1981 ) as follows: 

 𝑇 ( 𝑥 ) = 

4 ∑
𝑖 =1 
𝑅 𝑖 ( 𝑥 ) . (11)

The health risk model parameters employed to compute the total
LCR, i.e., R (11) , at the CPs, are listed in Table 1 . 
T 
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Table 1 

Risk model parameters used in the numerical simulations. 

Parameter Symbol Value 

Ingestion rate IR 1.4 l/d 
Body weight BW 70 kg 
Exposure duration ED 30 y 
Exposure frequency EF 350 d/y 
Average time of expected lifetime AT 25550 d 

PCE TCE DCE VC 
Cancer potency factor CPF i 0.0021 0.011 0.6 1.5 
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Table 2 

Parameter set used for the numerical flow and transport simulations. 

Parameter Symbol Value 

Aquifer domain ( L x , L y , L z ) (700 m, 400 m, 100 m) 
Grid discretization ( Δx , Δy , Δz ) (2 m, 2 m, 1 m) 
Y ranges ( 𝜆x , 𝜆y , 𝜆z ) (35 m, 35 m, 10 m) 
Variance of Y 𝜎2 

𝑌 
1, 3 

Average porosity ⟨𝜙⟩ 0.23 
Average hydraulic head gradient J 0.07 
Geometric mean of K K G 4.48 m/d 
Water density 𝜌 1000 kg/m 

3 

Gravity acceleration g 9.81 m/s 2 

Dynamic viscosity 𝜇 8.84 × 10 −4 Pa × s 
Mean particles diameter d e 2 × 10 −4 m 

Source area dimensions L sy x L sz 70 m × 20 m 

Source area location along x x inj 50 m 

Longitudinal dispersivity 𝛼x 0.2 m 

Transversal horizontal dispersivity 𝛼y 0.02 m 

Transversal vertical dispersivity 𝛼z 0.02 m 

Control planes location along x x CP 85 m, 100 m, 120 m, 200 m, 
300 m, 400 m, 600 m 

Fig. 3. Histogram of porosity values obtained by applying the KC Eq. (1) to 
one random realization of the conductivity field characterized by 𝜎2 

𝑌 
= 1 . The 

average porosity is 23.9%. 
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. Methodology 

eneral set-up In order to analyze contaminant transport and corre-
ponding uncertainties throughout the 3D aquifer we employ a stochas-
ic Monte Carlo (MC) framework that accounts for uncertain K and 𝜙
istributions. Five hundred equally likely K and 𝜙 fields are generated
nd, for each field, the groundwater flow and contaminant transport
quations are numerically solved. Results are then statistically analyzed
ver the ensemble of MC realizations. 

The 3D computational domain is characterized by dimensions 𝐿 𝑥 ×
 𝑦 × 𝐿 𝑧 = 700 m × 400 m × 100 m and discretized into 350 ×200 ×100
ells (i.e., cells dimensions of Δ𝑥 = Δ𝑦 = 2 m and Δ𝑧 = 1 m). A large
umber of particles (10 4 ) is uniformly injected within the source area
 𝑠 = 𝐿 𝑠𝑦 × 𝐿 𝑠𝑧 = 70 m × 20 m, located at x = x inj = 50 m and trans-
ersely centered within the aquifer domain. Note that the choice of
he number of particles used in our simulations is based on a conver-
ence analysis (not shown). In order to compute the BTCs, we employ a
ernel density estimator method that allows the automatization of the
TCs’ reconstruction process and provides a better quality of results for
he same number of injected particles ( Fernàndez-Garcia and Sanchez-
ila, 2011 ). A set of 7 CPs are positioned at different distances along the
 - direction (henceforth denoted by x CP ): 85 m, 100 m, 120 m, 200 m,
00 m, 400 m and 600 m. 

The log-conductivity field Y ≡ ln [ K ] is spatially heterogeneous and
epresented by a Multi-Gaussian RSF, characterized by a Gaussian co-
ariance function of ranges 𝜆x , 𝜆y and 𝜆z respectively along the x -, y -
nd z -direction, mean ⟨Y ⟩ and variance 𝜎2 

𝑌 
. For the computational anal-

sis, we set 𝜆x = 𝜆y = 35 m and 𝜆𝑧 = 10 m. A sequential multi-Gaussian
imulator ( Remy et al., 2009 ) is employed to produce the ensemble of
 field realizations. 

Based on the data reported in Section 2.1 , we assume that the het-
rogeneous K field is positively correlated to the heterogeneous 𝜙 field
nd that the relationship between the two geological attributes can be
escribed through the KC relationship (1) . From each heterogeneous K
eld realization, we then obtain the corresponding spatially variable 𝜙
eld, by applying the KC Eq. (1) . To do so we invert the KC relation-
hip by means of the Matlab solver. Note that all the parameters of the
C relationship (1) are constant (see Table 2 ) and that the representa-

ive diameter of grains ( d e ), in our case corresponding to d 10 , is chosen
ithin the range 0.1–3 mm given the suitability to obtain a good predic-

ion of the permeability of sand from porosity data when d 10 is within
his range ( Barahona-Palomo et al., 2011 ). We also point out that the
ossible 𝐾 − 𝜙 field combinations considered in our analysis are un-
onditional since we are not referring to a specific site. We analyze the
nfluence of heterogeneity on transport in the presence of (a) constant

and heterogeneous K and (b) spatially variable 𝜙 positively correlated
o heterogeneous K . The outputs of scenarios (a) and (b) can be com-
ared since the constant value of 𝜙 in case (a) coincides with the average
alue of the heterogeneous 𝜙 field realizations (i.e., ⟨𝜙⟩). The average
orosity, ⟨𝜙⟩, is roughly constant for all the MC realizations and can,
herefore, be obtained by applying the geometric mean of K (indicated
s K G ) in the KC equation above (1) . This leads to a mean 𝜙 value of 0.23.
n order to give a better idea of the range of 𝜙 values of our simulations,
e present in Fig. 3 the histogram of 𝜙 for one random realization of
5 
he K field. The latter is characterized by 𝜎2 
𝑌 
= 1 and the mean value of

obtained is 0.239 (i.e., 23.9%). 
Furthermore, different levels of heterogeneity of the Y field are ex-

lored: we consider both a mildly heterogeneous aquifer, represented by
2 
𝑌 
= 1 and a more heterogeneous system, characterized by 𝜎2 

𝑌 
= 3 for

oth the inert tracer and the reactive transport simulations. In each case,
he variance of the ln ( 𝜙) field, i.e., 𝜎2 ln ( 𝜙) , is one order of magnitude less

hat 𝜎2 
𝑌 
, which is in agreement with the work of Hassan et al. (1998) . 

Groundwater fluxes are computed by means of the widely tested nu-
erical model (finite-difference) MODFLOW ( Harbaugh, 2005 ). Con-

ervative and multispecies reactive transport are simulated through
he RW3D code ( Fernàndez-Garcia et al., 2005; Henri and Fernàndez-
arcia, 2014 ) using the random walk particle tracking method. The
W3D method uses the velocity field to advectically move particles and
isturbs the motion by adding a random displacement to simulate dis-
ersion. In order to obtain a continuous velocity field that fulfills the lo-
al solute mass balance, a hybrid scheme based on bilinear interpolation
o handle the dispersion terms and on linear interpolation for the advec-
ive term is applied to the RWPT method. LaBolle et al. (1996) showed
hat this scheme can solve solute transport quite accurately within het-
rogeneous systems ( Salamon et al., 2006 ). Given that we are employing
eterogenous 𝜙 fields, the transport is also controlled by the spatially
ariable 𝜙 distribution (see Eq. (4) ) and the values of the longitudinal,
ransverse horizontal, transverse vertical dispersivities, which are ap-
ropriately selected to account for sub-grid heterogeneity. The main in-
ut parameters used in the numerical solution of the flow and transport
odels are reported in Table 2 . 
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Table 3 

Reaction parameters. 

Parameter Symbol Value 

PCE TCE DCE VC 

First-order decay k i 0.005 d −1 0.004 d −1 0.003 d −1 0.001 d −1 

Yield coefficient y i 0.79 g g −1 0.74 g g −1 0.64 g g −1 

Retardation factor R i 7.1 2.9 2.8 1.4 
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Table 4 

Mass transfer parameters of the source zone selected for the re- 
active transport simulations. 

Parameter Symbol Value 

Mass depletion constant Γ 0.1 
Initial contaminant mass m 0 900 kg 
Initial contaminant concentration C 0 0.02 g/m 

3 

Source first-order degradation constant 𝜆s 5 × 10 −5 d −1 
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eactive transport As far as the chemical parameters chosen for the reac-
ive transport simulations, we employ constant values of biodegradation
ates, which we select accordingly to the range of observed values listed
y the US EPA ( U.S. Environmental Protection Agency, 1999 ). Addi-
ionally, the choice of the retardation factors is based on the expected
ifferences in mobility between the chlorinated solvents species ( Henri
t al., 2015; Lu et al., 2011 ). As explained in Henri and Fernàndez-
arcia (2014) the particle tracking algorithm represents the distribution
f mass of each species by a different cloud of particles. The challenge is
o define, from initial conditions, the species and position that a given
article will be associated with after a given time. To do so, each par-
icle is defined by its position and species state at a given time and we
im to define the condition of the particle at a later time. The change in
hemical state is determined from the species state transition probability
atrix, whereas the corresponding particle motion is given by the first

nd second spatial moments. The motion of particles follows a standard
andom walk with time-dependent effective retardation and dispersion
arameters that depend on the initial and final chemical state of the par-
icle. Basically, the approach is based on the development of transition
robabilities that describe the likelihood that particles belonging to a
iven species and location at a given time will be transformed into and
oved to another species and location later on and these probabilities

re derived from the solution matrix of the spatial moments govern-
ng equations ( Henri and Fernàndez-Garcia, 2014 ). Table 3 shows the
hemical reaction parameters adopted in our study. 

During the reactive transport simulations particles are instanta-
eously and uniformly released within A s . The first arrival time of the
articles at the CPs is recorded and cumulative concentration BTCs are
omputed to obtain c i 

h ( t ; x ). The flux-averaged concentration of any
eacting species i, c i ( t ; x ), caused by the time-dependent injection de-
cribed in (7) , is computed through the principle of superposition as
ollows: 

 𝑖 ( 𝑡 ; 𝑥 ) = 

𝑡 

∫
0 

𝑐 𝑠 ( 𝜏) 𝑐 𝛿𝑖 ( 𝑡 − 𝜏; 𝑥 ) 𝑑𝜏, (12)

here 𝑐 𝛿
𝑖 
( 𝜏; 𝑥 ) represents the Dirac-input solution (i.e., instantaneous in-

ection), of the concentration associated with the i th species. For numer-
cal purposes, the source concentration c s ( t ) can be discretized in step
unctions according to: 

 𝑠 ( 𝑡 ) = 𝑐 𝑠, 0 𝐻( 𝑡 ) + 

∑
𝑗=1 

Δ𝑐 𝑠,𝑗 𝐻( 𝑡 − 𝑡 𝑗 ) , (13)

ith H ( t ) indicating the Heaviside step function and Δ𝑐 𝑠,𝑗 = 𝑐 𝑠,𝑗 − 𝑐 𝑠,𝑗−1 .
q. (12) is then given by: 

 𝑖 ( 𝑡 ; 𝑥 ) = 𝑐 𝑠, 0 𝑐 
ℎ 
𝑖 
( 𝑡 ; 𝑥 ) + 

𝑡 𝑗 <𝑡 ∑
𝑗=1 

Δ𝑐 𝑠,𝑗 𝑐 ℎ 𝑖 ( 𝑡 − 𝑡 𝑗 ; 𝑥 ) . (14)

In (14) , 𝑐 ℎ 
𝑖 
( 𝑡 ; 𝑥 ) indicates the cumulative BTC of the i th species com-

uted from an unitary mass source ( Henri et al., 2015 ). Table 4 presents
he mass transfer parameters adopted in the reactive case study. 

The contaminant concentration BTCs, recorded from the MC ensem-
le at the observation CPs, are then employed to compute 𝑐 𝑖 ( 𝑥 ) in the
wo ways previously illustrated (see Section 2.3 ) and to compute the
ssociated increased lifetime cancer risk. 
6 
on-reactive transport In the conservative tracer simulations we instan-
aneously inject 1 gr of contaminant mass uniformly within A s and ob-
erve the contaminant mass flux, indicated as 𝑚̇ [g/d] at the CPs, from
hich the EPMs under investigation are computed. We recall that con-

aminant concentrations can then be obtained by the ratio between the
ontaminant mass flux (measured at the control plane) and the volumet-
ic water flux through the CP. 

The results of the conservative and reactive transport MC simulations
re post-processed to evaluate the impact of 𝜙 heterogeneity on risk
tatistics and illustrated in Section 4 . 

. Results 

.1. Analysis for non-reactive contaminants 

In this Section we show the effect of 𝐾 − 𝜙 heterogeneity on the
ransport of an inert tracer over the ensemble of MC realizations. We
rst present the Cumulative Distribution Function (CDF) of early arrival
imes of contaminants and of peak contaminant mass fluxes at the CPs.

e then quantify the relative difference between first and late arrival
imes of the tracer at the observation locations. We finally show the
mpact of aquifer connectivity on peak contaminant mass fluxes. 

In order to understand the importance of realistically accounting for
eterogeneous 𝜙, we consider different scenarios: heterogeneous 𝜙 fields
orrelated to spatially variable K characterized by 𝜎2 

𝑌 
= 1 and 𝜎2 

𝑌 
= 3 ,

nd corresponding spatially averaged homogeneous 𝜙 coupled with het-
rogeneous K with 𝜎2 

𝑌 
= 1 and 𝜎2 

𝑌 
= 3 . 

.1.1. CDF of first arrival times and peak mass fluxes 

We present in Fig. 4 the CDF of dimensionless first arrival times,
ormalized by the mean advective time required to travel a distance of
 range along the longitudinal direction, i.e., t 5% 

U / 𝜆x , where U is the
ongitudinal mean velocity, given by 𝑈 = 𝐾 𝐺 𝐽∕ ⟨𝜙⟩, with J being the
ydraulic head gradient. For simplicity, we only show the CDFs at two
Ps located, respectively, at 𝑥 = 200 m, corresponding to dimensionless
istance 𝜁 = 4 . 29 (in green) and 𝑥 = 600 m, corresponding to 𝜁 = 15 . 71
in red), with 𝜁 = ( 𝑥 𝐶𝑃 − 𝑥 𝑖𝑛𝑗 )∕ 𝜆𝑥 . Results at the other CPs are alike.
ig. 4 (a) and (b) refers to 𝜎2 

𝑌 
= 1 and 𝜎2 

𝑌 
= 3 , respectively. Dashed curves

orrespond to heterogeneous correlated 𝐾 − 𝜙 fields and solid curves
ndicate simplified homogeneous 𝜙 and heterogeneous K . 

Fig. 4 clearly illustrates that spatially variable 𝜙 has a strong im-
act on the conservative tracer first arrival time statistics. Accounting
or 𝜙 heterogeneity increases the probability of detecting larger t 5% 

at
he CPs, for both levels of heterogeneity of the Y field. In particular,
he importance of including the spatial variability of 𝜙 increases as the
Ps’ distance from the contaminant injection source increases (compare
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Fig. 4. Cumulative distribution function (CDF) of the first arrival times, t 5% , 
of the contaminant mass at the CPs for 𝜎2 

𝑌 
= 1 (a) and 𝜎2 

𝑌 
= 3 (b). The CDF of 

dimensionless t 5% is indicated with dashed lines for heterogeneous 𝜙 fields and 
with solid lines for homogeneous 𝜙 fields. The green color indicates results at 
the CP located at dimensionless distance 𝜁 = 4 . 29 whereas the red color pictures 
results at the CP located at dimensionless distance 𝜁 = 15 . 71 . (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Fig. 5. Cumulative distribution function (CDF) of the contaminant mass peak, 
𝑚̇ 𝑝 , at the CPs for 𝜎2 

𝑌 
= 1 (a) and 𝜎2 

𝑌 
= 3 (b). The CDF of 𝑚̇ 𝑝 is indicated with 

dashed lines for heterogeneous 𝜙 fields and with solid lines for homogeneous 
𝜙 fields. The green color indicates results at the CP located at dimensionless 
distance 𝜁 = 4 . 29 whereas the red color pictures results at the CP located at 
dimensionless distance 𝜁 = 15 . 71 . (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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ed curves versus green curves). Indeed, as the distance between the
ource and CP grows, the plume samples more heterogeneity of the sys-
em and the effect of considering variable 𝜙 strengthens. We also no-
ice that increasing the heterogeneity of Y (see Fig. 4 (b)) generally de-
reases t 5% 

. Indeed larger 𝜎2 
𝑌 

increases the probability of occurrence of
ast flow channels which leads to a decrease of first arrival times (com-
are Fig. 4 (a) and (b)). 

Subsequent Fig. 5 pictures the CDF of dimensionless peak mass fluxes
 ̇𝑚 𝑝 ), normalized by the initial injected mass ( M 0 ) over the time required
o travel one range along x , indicated as 𝑚̇ 𝑝 𝜆𝑥 ∕( 𝑀 0 𝑈 ) , at the two CPs
ocated at dimensionless distances 𝜁 = 4 . 29 (in green) and 𝜁 = 15 . 71 (in
ed). Fig. 5 (a) refers to 𝜎2 

𝑌 
= 1 whereas Fig. 5 (b) to 𝜎2 

𝑌 
= 3 . As before,

ashed curves correspond to heterogeneous 𝜙while solid curves indicate
he outcome of considering homogeneous 𝜙. Results at the remaining
Ps show comparable outcomes. 

From Fig. 5 we observe that the significance of accounting for cou-
led heterogeneous 𝐾 − 𝜙 fields on transport predictions decreases
hen the EPM of interest is 𝑚̇ 𝑝 , as compared to t 5% 

( Fig. 4 ). This ef-
ect is more evident when the heterogeneity of the K -field is higher
compare Fig. 5 (a) with (b)). We generally observe that the presence
f heterogeneous 𝜙 fields increases the chance of observing higher peak
ass fluxes as compared to homogeneous 𝜙 realizations for both obser-

ation locations and levels of heterogeneity of the Y field. In fact the
ositive correlation between the 𝐾 − 𝜙 fields decreases the macrodis-
ersion of the plume along the longitudinal direction, which produces
igher peak mass fluxes at the observation locations. The decrease of
lume dispersion is a result of a diminished variance of the groundwa-
7 
er velocity field in the presence of a positive correlation between 𝜙 and
 . In fact lower velocity variance implies smaller velocity fluctuations
hich are the main factors driving dispersion. Lower plume dispersion
long the longitudinal direction in the presence of positive 𝐾 − 𝜙 cor-
elation is in line with the findings of Hassan et al. (1998) . Reduced
ongitudinal dispersion is also in agreement with the detection of later
rst arrival times when 𝜙 is modeled as heterogeneous and positively
orrelated to K (see dashed curves in Fig. 4 ) ( Hassan et al., 1998 ). More-
ver the effect of porosity variability on 𝑚̇ 𝑝 increases for mildly hetero-
eneous aquifers (i.e., 𝜎2 

𝑌 
= 1 ), as compared to an aquifer with higher

 heterogeneity (i.e., 𝜎2 
𝑌 
= 3 ). This is also in agreement with the work

f Hassan et al. (1998) . We also notice lower peak mass fluxes at the
P located further away from A s (i.e., at 𝜁 = 15 . 71 , in red) according to
he fact that plume dispersion increases as the plume travels longer and
amples more aquifer heterogeneity. The results presented in Figs. 4 and
 show the importance of incorporating the spatial variability in 𝜙when
redicting early arrival times and peak mass fluxes. 

Since the heterogeneity of the 𝜙 field impacts the plume macrodis-
ersion, we analyze the relative plume dispersion for the different sce-
arios investigated in the following Section 4.1.2 . 

.1.2. Relative plume dispersion 

The macro-scale dispersive behavior of the solute plume under uni-
orm or spatially random 𝜙 fields, coupled with heterogeneous K real-
zations, is additionally explored in Fig. 6 . In the latter, we present box
lots of Δ𝜏, defined as: 

𝜏 = 

𝑡 95% − 𝑡 5% 
𝑡 

. (15) 

95% 
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Fig. 6. Box plots of Δ𝜏 (15) for homogeneous and heterogeneous 𝜙 and for 
𝜎2 
𝑌 
= 1 (a) and 𝜎2 

𝑌 
= 3 (b). The green and red colors respectively indicate the 

results at the CP located at dimensionless distance 𝜁 = 4 . 29 and 𝜁 = 15 . 71 . (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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 95% 

is identified as the time of arrival of 95% of the initial injected
ass, M 0 . Δ𝜏 can represent a measure of the relative plume dispersion

ince it quantifies the relative difference between the first (i.e., t 5% 

) and
ate arrival times (i.e., t 95% 

) of the tracer at the CPs. In Fig. 6 the green
oxes indicate the results at the CP located at dimensionless distance
= 4 . 29 whereas the red boxes refer to the outcomes at the CP situated

t 𝜁 = 15 . 71 , results at the additional CPs being similar. The thickness
f the box plots equals the lag between the first and third quartiles of
he probability distribution of Δ𝜏. Fig. 6 (a) refers to 𝜎2 

𝑌 
= 1 whereas

ig. 6 (b) to 𝜎2 
𝑌 
= 3 . 

When we compare the box plots of Δ𝜏 for homogeneous and het-
rogeneous 𝜙, for both CPs locations and 𝜎2 

𝑌 
values, we observe that

𝜏 values are lower when 𝜙 is modeled as heterogeneous. This is be-
ause, as explained before, the longitudinal dispersion of the plume de-
reases when 𝜙 is positively correlated to K , leading to a smaller dif-
erence between first ( t 5% 

) and late ( t 95% 

) arrival times of the plume at
he CPs. Accordingly, the range of Δ𝜏 presents higher values for all sce-
arios (homogeneous and heterogeneous 𝜙 and different CPs locations)
hen 𝜎2 

𝑌 
= 3 , i.e., under higher heterogeneity of the Y field we observe

 higher chance of fast flow channels (which decrease t 5% 

) as well as
ncreased longitudinal dispersion. Finally, in agreement with previous
esults, the difference between the range of Δ𝜏 values between the con-
tant 𝜙 and heterogeneous 𝜙 cases increases for the CP located further
way from the injection area (red box plots) for both levels of hetero-
eneity of Y . This confirms that the importance of modeling 𝜙 variability
ncreases as the tracer travels longer through the heterogeneous aquifer
omain. 

.1.3. Impact of connectivity on risk 

Our analysis on the importance of accounting for 𝜙 spatial variability
n the inert tracer transport statistics ends with analyzing the effect of
8 
quifer connectivity on peak mass fluxes for the different scenarios con-
idered. Previous results (see Figs. 4 and 6 ) showed how heterogeneity
n 𝜙 and K affected solute arrival times. As a consequence, these hetero-
eneities can be expected to impact flow connectivity. We analyze here
ow 𝐾 − 𝜙 variability affects connectivity and its predictive capabili-
ies on the peak mass flux at a given CP. Connectivity can be described
y different metrics ( Knudby and Carrera, 2005; Rizzo and de Barros,
017 ) and, in line with the work of Henri et al. (2015) , we employ a
ynamic connectivity metric, which depends on both groundwater flow
nd contaminant transport parameters ( Knudby and Carrera, 2005 ). The
elected connectivity metric, indicated as CI [-], is given by the ratio be-
ween the effective hydraulic conductivity, K eff, and the geometric mean
f K, K G : 

𝐼 = 

𝐾 𝑒𝑓𝑓 

𝐾 𝐺 

≃ 1 
𝑡 50% 

( 𝑥 𝑐𝑝 − 𝑥 𝑖𝑛𝑗 ) ⟨𝜙⟩
𝐾 𝐺 𝐽 

, (16)

ith t 50% 

being the time of arrival of 50% of the initial injected mass
t the CP of interest. The remaining parameters have been defined in
able 2 . Note that the average 𝜙 value (i.e., ⟨𝜙⟩) has been employed to
ompute CI for both the homogeneous and heterogeneous 𝜙 simulations.
n this analysis, we identify the peak contaminant mass flux ( ̇𝑚 𝑝 ) at the
bservation location (i.e., CP) as a measure of risk. 

Fig. 7 shows scatter plots of dimensionless 𝑚̇ 𝑝 versus CI (16) . Ev-
ry circle in Fig. 7 corresponds to a different MC realization and for
implicity only results at CPs located at dimensionless distance 𝜁 = 1
in red) and 𝜁 = 4 . 29 (in green) are reported as the observations at the
emaining CPs are similar. Full circles correspond to the outcome of
onsidering homogeneous 𝜙, whereas empty circles indicate the output
f more realistic heterogeneous 𝜙 conditions. Fig. 7 (a) refers to 𝜎2 

𝑌 
= 1

hile Fig. 7 (b) reports the results of 𝜎2 
𝑌 
= 3 . 

A linear regression between 𝑚̇ 𝑝 and CI is identified for both homo-
eneous (full circles) and heterogeneous (empty circles) 𝜙 fields, CP
ocation and 𝜎2 

𝑌 
value. Indeed, under higher CI values, corresponding

o the presence of preferential flow channels, ergo lower t 50% 

(16) ,
 higher chance of detecting higher 𝑚̇ 𝑝 values at the CPs under in-
estigation is identified. We observe that the slope of the linear re-
ression line, whose equation is reported in gray for homogeneous 𝜙
nd in black for heterogeneous 𝜙, is higher when 𝜙 is heterogeneous
nd positively correlated to K as compared to simplified homogeneous
for both CPs and for both levels of heterogeneity of Y . Therefore,

nder realistic heterogeneous 𝜙 conditions and under the assumption
hat the 𝐾 − 𝜙 relationship can be described through the KC Eq. (1) ,
n increased chance of observing higher 𝑚̇ 𝑝 , i.e. having higher risk,
merges as compared to constant 𝜙 conditions, for the same CI value.
his could be attributed to the lower macro-scale spreading/dispersion
f the contaminant plume under positive 𝐾 − 𝜙 correlation, which re-
ults in higher 𝑚̇ 𝑝 at the sensitive location. We also notice that a larger 𝜎2 

𝑌 

 Fig. 6 (b)) favors the formation of preferential channels, hence higher
I values and corresponding 𝑚̇ 𝑝 values (compare Fig. 7 (a) and (b)).
esults at the remaining CPs locations are similar and we generally
bserve a decrease of the coefficient of determination ( R 

2 ) of the re-
ression line between CI and 𝑚̇ 𝑝 values as the CP distance from A s 

ncreases. 
Our results suggest that realistic heterogeneous 𝜙 conditions are as-

ociated with higher values of 𝑚̇ 𝑝 , corresponding to higher health risk
t sensitive locations, therefore considering simplified constant 𝜙 con-
itions could be misleading, i.e. lead to underestimated risks. We also
oresee that the effects of incorporating porosity variability on transport
bservables could potentially be emphasized in the presence of non-
aussian K fields which present higher probability of well-connected
ones of high K values ( Gómez-Hernández and Wen, 1998; Henri et al.,
015 ). For example, the work of Libera et al. (2017b) showed that
igher solute peak concentrations are detected at extraction wells as
he departure of the non-Gaussian Y fields from a Gaussian structure
ncreases. 
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Fig. 7. Peak mass flux, 𝑚̇ 𝑝 , versus connectivity metric, CI (16) , for 𝜎2 
𝑌 
= 1 (a) 

and 𝜎2 
𝑌 
= 3 (b). The red color indicates results at the CP located at dimension- 

less distance 𝜁 = 1 whereas the green color pictures results at the CP located at 
dimensionless distance 𝜁 = 4 . 29 . Full circles indicate homogeneous 𝜙 and empty 
circles indicate heterogeneous 𝜙. The regression line is plotted in gray for ho- 
mogeneous 𝜙 and in black for heterogeneous 𝜙 for both CPs locations. The coef- 
ficient of determination ( R 2 ) of the regression line for 𝜎2 

𝑌 
= 1 at the CP located 

at dimensionless distance 𝜁 = 1 are 𝑅 2 = 0.778 for homogeneous 𝜙, 𝑅 2 = 0.599 
for heterogeneous 𝜙 and 𝑅 2 = 0.656 for homogeneous 𝜙, 𝑅 2 = 0.444 for hetero- 
geneous 𝜙 at the CP located at dimensionless distance 𝜁 = 4 . 29 . The coefficient 
of determination ( R 2 ) of the regression line for 𝜎2 

𝑌 
= 3 at the CP located at di- 

mensionless distance 𝜁 = 1 are 𝑅 2 = 0.871 for homogeneous 𝜙, 𝑅 2 = 0.816 for 
heterogeneous 𝜙 and 𝑅 2 = 0.845 for homogeneous 𝜙, 𝑅 2 = 0.728 for heteroge- 
neous 𝜙 at the CP located at dimensionless distance 𝜁 = 4 . 29 . (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Fig. 8. Longitudinal spatial distribution of the mean total increased lifetime 
cancer risk, ⟨R T ⟩, when the maximum concentration (a) or the maximum run- 
ning averaged concentration over the exposure duration ( ED ) time (b) are con- 
sidered to compute R T . The results for 𝜎2 

𝑌 
= 1 are represented in magenta and 

the results for 𝜎2 
𝑌 
= 3 are pictured in blue. Dashed curves correspond to hetero- 

geneous 𝜙 fields and solid curves picture homogeneous 𝜙. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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.2. Analysis for reactive contaminants: Implications in increased lifetime 

ancer risk 

Results in this Section refer to the reactive contaminant transport
imulations, i.e. to the degradation chain of chlorinated solvents (PCE

TCE → DCE → VC). We analyze the statistics of the total increased
ifetime cancer risk, R T ( x ) (11) , for the scenarios under investigation.

e first present the spatial distribution of the low-order moments, i.e.
he ensemble mean and the coefficient of variation, of R T , and we then
how the complete statistical characterization of the PDF of R T . 

The outcomes of accounting for heterogeneous 𝜙 are represented
ith dashed lines while the results of constant 𝜙 are illustrated with

olid lines in Figs. 8 –10 . The results of considering 𝜎2 
𝑌 
= 1 are pictured

n magenta and the outcomes for 𝜎2 
𝑌 
= 3 are illustrated in blue. 

.2.1. Low order moments of R T ( x ) 

Fig. 8 shows the spatial evolution of the mean value of R T (11) , de-
oted as ⟨R T ⟩, over the ensemble of MC simulations, when the peak
oncentration of the contaminant i at the CP ( Fig. 8 (a)) or the maxi-
um running averaged concentration over the ED time (10) ( Fig. 8 (b))

s adopted to compute R T ( x ). ⟨R T ( x ) ⟩ quantifies the expected threat to
he exposed community. 
9 
We first notice that, for the current numerical set-up, the formula
dopted to compute the flux-averaged contaminant concentration in Eq.
9) has only a very minor influence on the spatial evolution of ⟨R T ⟩ (com-
are Fig. 8 (a) and (b)). We indeed notice that ⟨R T ⟩ is just slightly lower
hen we employ the maximum running averaged concentration to com-
ute the risk ( Fig. 8 (b)), according to the fact that adopting the peak con-
entration represents the most conservative approach. We observe that
R T ⟩ increases with CP distance since more toxic species are produced
ith time along the chemical degradation chain of PCE ( Henri et al.,
015 ) in Fig. 8 (a) and (b). In fact, cancer potency factors ( CPF i ) in-
rease during the degradation of PCE until VC is produced (see Table 1 ).
n general, the influence of heterogeneity on the mean ILCR is almost
nnoticeable in Fig. 8 (see dashed lines versus solid lines). The fact that
ccounting for 𝜙 heterogeneity has only a small impact on ⟨R T ( x ) ⟩ con-
rms that, also in the presence of reactive contaminants, the influence
f incorporating 𝜙 variability depends on the metric of interest. Increas-
ng the heterogeneity of the Y field (i.e., 𝜎2 

𝑌 
= 3 , blue lines) decreases

he magnitude of the mean ILCR along the longitudinal direction be-
ause of enhanced dispersion of the plume and subsequent dilution at
Ps ( Henri et al., 2015 ). 

Fig. 9 shows the spatial evolution of the coefficient of variation of
he total ILCR (i.e., 𝐶𝑉 𝑅 𝑇 ( 𝑥 ) ). We recall that 𝐶𝑉 𝑅 𝑇 ( 𝑥 ) = 𝜎𝑅 𝑇 

( 𝑥 )∕ ⟨𝑅 𝑇 ( 𝑥 ) ⟩,
ith 𝜎𝑅 𝑇 ( 𝑥 ) indicating the standard deviation of the total ILCR. Fig. 9 (a)

efers to the computation of R T ( x ) by considering the maximum contam-
nant concentration whereas Fig. 9 (b) shows the same results when the
aximum ED flux-averaged concentration (10) is adopted to compute
 T ( x ). The coefficient of variation, 𝐶𝑉 𝑅 𝑇 ( 𝑥 ) , measures the uncertainty
ssociated with the risk estimate. 

In agreement with what observed in Fig. 9 , we also point out that
he approach adopted to compute the flux-averaged concentration in Eq.
9) does not influence the risk uncertainty and the differences between
ig. 9 (a) and (b) are imperceptible. We note that this remark is applica-
le to the current numerical set-up. We generally observe that the spatial
volution of 𝐶𝑉 𝑅 𝑇 presents an inverse correlation with ⟨R T ( x ) ⟩, in agree-
ent with Henri et al. (2015) . Therefore we identify lower mean total

LCR and more uncertain risk predictions close to the source while we
bserve higher mean risk and lower risk uncertainty further away for all
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Fig. 9. Longitudinal spatial distribution of the coefficient of variation of the to- 
tal increased lifetime cancer risk, 𝐶𝑉 𝑅 𝑇 , when the maximum concentration (a) 
or the maximum running averaged concentration over the exposure duration 
( ED ) time (b) are considered to compute R T . The results for 𝜎2 

𝑌 
= 1 are repre- 

sented in magenta and the results for 𝜎2 
𝑌 
= 3 are pictured in blue. Dashed curves 

correspond to heterogeneous 𝜙 fields and solid curves picture homogeneous 𝜙. 
(For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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Fig. 10. Probability distribution function (PDF) of the total increased lifetime 
cancer risk, R T , at the CP located at 𝜁 = 10 (a) and 𝜁 = 15 . 71 (b). The results 
for 𝜎2 

𝑌 
= 1 are represented in magenta and the results for 𝜎2 

𝑌 
= 3 are pictured 

in blue. Dashed curves correspond to heterogeneous 𝜙 fields and solid curves 
picture homogeneous 𝜙. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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he simulated scenarios. Larger risk uncertainty close to the source is ex-
ected since the plume is mainly controlled by advection at that stage
 de Barros et al., 2009 ). Our results indicate that accounting for the
eterogeneity in 𝜙 affects the risk uncertainty. Indeed, the positive cor-
elation between 𝜙 and K leads to a reduction of the sample-to-sample
uctuation of the risk, and therefore to a reduction of 𝐶𝑉 𝑅 𝑇 ( 𝑥 ) for both

evels of heterogeneity of the Y field (see dashed lines versus solid lines
n both Fig. 9 (a) and (b). This effect is emphasized when 𝜎2 

𝑌 
= 3 . 

The results presented in Figs. 8 and 9 show that the influence of 𝜙
eterogeneity is higher on risk uncertainty, i.e., 𝐶𝑉 𝑅 𝑇 ( 𝑥 ) ( Fig. 9 ) than
n the mean total ILCR, ⟨R T ( x ) ⟩, ( Fig. 8 ). This can be justified by the fact
hat mean mass fluxes at large CPs are not significantly affected by local
uctuations of the flow field, as explained in Fiori et al. (2002) . On the
ther hand, the first order analysis provided in Fiori et al. (2002) and
ndri čevi ć and Cvetkovi ć (1998) shows that the variance of the mass
ux over a control plane is sensitive to local heterogeneity. 

.2.2. PDF of R T 

We conclude the discussion on the influence of 𝜙 spatial heterogene-
ty on reactive transport by presenting the PDF of the ILCR in Fig. 10 .
he results in Fig. 10 refer to the computation of R T ( x ) by employing
he maximum running averaged concentration over ED (10) . Results at
he CP located at 𝜁 = 10 are reported in Fig. 10 (a), while the outcomes
t 𝜁 = 15 . 71 are presented in Fig. 10 (b). 

The PDFs of R T present a similar “Gaussian ”-like shape under con-
tant or random 𝜙. These results are consistent with the findings of Henri
t al. (2015, 2016) . We observe that the impact of 𝜙 heterogeneity on
he PDF of the ILCR, described below, is more pronounced when the CP
s situated closer to the source for the case of 𝜎2 

𝑌 
= 3 (compare Fig. 10 (a)

ith (b). In general accounting for 𝜙 heterogeneity (dashed PDFs) only
10 
lightly influences the mean value of R T but significantly affects the un-
ertainty of R T . We indeed notice that the R T PDF is less spread when
he heterogeneity of 𝜙 is modeled as compared to assuming constant 𝜙
dashed PDFs versus solid PDFs). In particular the probability of observ-
ng values of R T around ⟨R T ⟩ increases of more than 30% when the vari-
bility of 𝜙 is included in models’ predictions for all scenarios considered
xcept for the case of 𝜎2 

𝑌 
= 3 at the CP located at 𝜁 = 15 . 71 , where this

robability is around 20% higher under heterogeneous 𝜙. Moreover, the
ull risk PDFs show the probability of observing extreme values of R T .

e observe that modeling the 𝜙 heterogeneity has influence on both the
ighest and lowest values of R T and the probability of detecting extreme
alues of R T decreases in the presence of spatially variable 𝜙. 

. Conclusions 

In this study we analyze the impact of the coupled spatial variabil-
ty of 𝜙 and K on contaminant transport and probabilistic risk analysis.

e employ a Monte Carlo framework to statistically analyze key EPMs,
etected at observation locations. We analyze the impact of 𝜙 hetero-
eneity on contaminant arrival times and peak mass fluxes of tracers
t control planes as well as on risk and on connectivity. We then show
he implications of accounting for 𝜙 variability in probabilistic human
ealth cancer risk analysis by considering human exposure to chlori-
ated solvents through the ingestion pathway. Our work leads to the
ollowing main key conclusions: 

• The positive correlation between 𝜙 and K leads to a decrease of the
plume macrodispersion with consequent higher peak mass fluxes,
later first arrival times and earlier late arrivals at control planes.
Higher peak mass fluxes correspond to higher health risk there-
fore including the spatial variability of 𝜙 in models’ predictions is
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essential for risk assessment associated with aquifer contamination
and remediation. Moreover, a more accurate quantification of early
and late arrival times is fundamental to respectively detect the po-
tential hazard of a contaminant and to control the end-point of re-
mediation (see e.g., Andri čevi ć and Cvetkovi ć, 1996; de Barros and
Rubin, 2008 ). 

• The relevance of incorporating the spatial variability of the 𝜙 field
can depend on the metric of interest, for example our study shows
that this relevance is emphasized when investigating contaminants’
arrival times over peak mass fluxes at the observation control planes.
This has important implications both to set-up modeling studies and
in decision making processes (e.g., in risk assessment or aquifer
remediation activities) in the context of a better allocation of re-
sources. Indeed, available resources need to be prioritized and as-
signed in a defensible manner to ensure that unacceptable identified
risks are reduced to acceptable levels. 

• Modeling the 𝜙 field spatial variability as positively correlated to
the heterogeneous K field significantly reduces the cancer risk un-
certainty but only minorly influences the mean value of the total
cancer risk at control planes. Our findings constitute then an impor-
tant contribution for cancer risk uncertainty quantification however,
adoptng more simplified and conservative models which assume ho-
mogeneous porosity does not highly impact the mean value of the
total cancer risk. 

We finally noticed that the effect of considering 𝜙 heterogeneity can
e affected by the level of heterogeneity of the K field and by the source-
o-CP distance. We recall that the results of our work are limited to pos-
tive correlation between 𝜙 and K expressed through the KC Eq. (1) .
ther empirical models can be adopted to compute the 𝐾 − 𝜙 relation-

hip and could potentially lead to different conclusions. Furthermore,
ther factors such as pumping operations ( Libera et al., 2017a ) and so-
ute mass release rates at the source zone ( de Barros, 2018 ) can impact
he relative importance of hydrogeological heterogeneity. On a final
ote, we emphasize that our work represents a first step towards a more
omprehensive global sensitivity analysis (GSA) that could lead to more
eneral conclusions. Using polynomial chaos expansion (PCE) within a
SA can reduce the computational burden associated with Monte Carlo

imulations. Utilizing PCE to perform GSA would allow to better under-
tand the relevance of heterogeneous porosity with respect to heteroge-
eous hydraulic conductivity. Under the context of risk, PCE-based GSA
as employed by different authors (e.g., Ciriello et al., 2013a; 2013b;
ladyshkin et al., 2012 ). Ciriello et al. (2013a) employed GSA to identify

he influence of uncertain hydrogeological parameters on the first two
tatistical moments of the peak concentration. Ciriello et al. (2013b) ap-
lied a GSA through PCE to three transport models to identify the rel-
tive importance of model-dependent parameters, the space-time loca-
ions where the models are more sensitive to these parameters and to
ssist with parameters estimation. Oladyshkin et al. (2012) illustrated
heir GSA approach, based on arbitrary polynomial chaos expansion
aPC), on a 3D groundwater quality and health risk problem in a het-
rogeneous aquifer. Incorporating a GSA through PCE into the problem
nvestigated in this work is topic of future research with the goal of re-
ucing the computational burden normally associated with Monte Carlo
imulations and to investigate the impact of considering different soil
ypes on risk (e.g., Moore and Doherty, 2005 ). 
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