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ABSTRACT

Heterogeneities in natural porous formations, mainly manifested through the hydraulic conductivity (K) and, to a lesser degree, the porosity (¢), largely control
subsurface flow and solute transport. The influence of the heterogeneous structure of K on transport processes has been widely studied, whereas less attention is
dedicated to the joint heterogeneity of conductivity and porosity fields. Our study employs Monte Carlo simulations to investigate the coupled effect of K — ¢
spatial variability on the transport behavior (and uncertainty) of conservative and reactive plumes within a 3D aquifer domain. We explore multiple scenarios,
characterized by different levels of heterogeneity of the geological properties, and compare the computational results from the joint K — ¢ heterogeneous system
with the results originating from generally adopted constant ¢ conditions. In our study, the spatially variable K — ¢ fields are positively correlated. We statistically
analyze key Environmental Performance Metrics: first arrival times and peak mass fluxes for non-reactive species and increased lifetime cancer risk for reactive
chlorinated solvents. The conservative transport simulations show that considering coupled K — ¢ fields decreases the plume dispersion, increases both the first
arrival times of solutes and the peak mass fluxes at the observation planes. A positive correlation between aquifer connectivity and peak mass fluxes is identified
for both homogeneous and heterogeneous ¢. Our conservative transport results indicate that the relevance of ¢ variability can depend on the metric of interest,
the control plane-source distance as well as the level of heterogeneity of the conductivity field. The analysis on reactive transport shows that ¢ variability only
slightly affects the mean increased lifetime cancer risk at the control planes but leads to a considerable reduction of the cancer risk uncertainty. We also see that the
sensitivity of cancer risk towards ¢ heterogeneity can be influenced by the level of variability of the conductivity field, the source-to-control plane distance, but is
not affected by the manner in which the contaminant concentration is computed.

1. Introduction

It is well established that heterogeneities in natural porous forma-
tions largely control subsurface groundwater flow and contaminant
transport. These heterogeneities are mainly manifested through the hy-
draulic conductivity (K) and, to a lesser degree, the porosity (¢). The
influence of the heterogeneous K-field on flow and solute transport
processes has been widely studied (see Rubin, 2003, and references
therein), whereas less attention is dedicated to the effect of heteroge-
neous ¢. Hydraulic conductivity is commonly modeled as a random
space function (RSF) in the stochastic hydrogeology community because
of its erratic spatial variability and the large uncertainty associated with
incomplete site characterization (Dagan, 1986; Gelhar, 1986). ¢ vari-
ability is commonly regarded as a secondary factor when compared to
K heterogeneity. Indeed, most studies in the field of stochastic hydroge-
ology assume that aquifers are characterized by spatially heterogeneous
K and homogeneous ¢. This is partially justified because K can vary
in space by 3-4 orders of magnitude within small distances while the
range of variability of ¢ in unconsolidated granular aquifers is generally
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between 0.1 and 0.55 (Atkins and McBride, 1992; Freeze and Cherry,
1979; Hu et al., 2009).

Because of the limited availability of K and ¢ measurements, it is dif-
ficult to establish a clear correlation between the two geological prop-
erties. However, in specific formations, a level of correlation is likely
to be present (Hassan et al., 1998). The literature presents different
studies exploring the relationship between K and ¢. Archie (1950) and
Doyen (1988) found positive correlation between the variables. Addi-
tionally, different authors investigating the estimation of K from ¢ and
other measurable parameters (e.g. grain size, pore surface area, pore di-
mension) established positive correlation between K and ¢ for different
types of soil (e.g., Aimrun et al., 2004; Fallico, 2014; Franzmeier, 1991,
Nelson et al., 1994; Panda and Lake, 1994; Riva et al., 2014; Scholz et al.,
2012). Among them, Nelson et al. (1994) analyzed different models to
predict permeability in sedimentary rocks and concluded that, in most
cases, the permeability is related to a power of ¢ and to the square of
a measure of surface area or a characteristic length. It is typically as-
sumed that K and ¢ are positively correlated in unconsolidated aquifers
(Hu et al., 2009), however some studies observed negative correlation
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between the two properties under specific packing arrangements and
grain size distributions (Morin, 2006).

Only a small number of studies investigated the effects of spa-
tially variable ¢ fields on transport predictions. Among them,
Warren et al. (1964) did not consider a correlation between K and ¢ and
concluded that the impact of ¢ variations on macroscopic dispersion is
minor with respect to the effect of K variability. Lin (1977) analyzed
various porosity functions to represent ¢ spatial variability in porous
media and indicated that the solute concentration predictions are
within 15% of the concentration resulting from an average ¢ when a
linear or slightly curved equation that expresses porosity as a function
of the spatial coordinate, is employed. The author pointed out that
the discrepancies of solute concentrations become very substantial as
the deviation of the porosity function from linearity increases. A few
numerical modeling studies (e.g., Hassan, 2001; Hassan et al., 1998;
Hu et al., 2009) showed that the consideration of correlated hetero-
geneous K and ¢ fields significantly impacts contaminant transport
for two-dimensional domains. Hassan et al. (1998) indicated that a
positive correlation between ¢ and K decreases dispersion whereas a
negative correlation enhances plume spreading, particularly along the
longitudinal direction. Hassan et al. (1998) also considered reactive
transport and indicated that reaction rates impact the relative impor-
tance of ¢ variability on concentration estimation, which appears to
be amplified in the presence of slow reactions. Along the same line of
work, Hassan (2001) highlighted that ¢ spatial variability, correlated
to heterogeneous K, impacts the longitudinal velocity covariance as
well as its cross covariance with the head and the log-conductivity
(Y=In[K]) fields. Riva et al. (2006) studied the influence of K het-
erogeneities on solute transport with constant effective ¢, and later
expanded their analysis in Riva et al. (2008), where both K and ¢ were
considered random variables. Riva et al. (2008) highlighted that con-
sidering the spatial distribution of ¢ is fundamental to mimic the early
arrival of breakthrough curves (BTCs). The studies of Riva et al. (2008,
2006) showed that the site description of transport processes highly
profits from the incorporation of the spatial variability of the ¢ field.

In light of the mentioned findings, the influence of heterogeneous K
coupled with spatially variable ¢ fields, especially when the two prop-
erties are correlated, as shown in most cases, should be further inves-
tigated to increase the reliability of contaminant transport and associ-
ated human health risk predictions. In this context, our work aims to
study the significance of spatial variability in the porous medium’s ¢ to
conservative and reactive solute transport predictions in the context of
probabilistic risk analysis. Through the use of stochastic numerical sim-
ulations we systematically illustrate the impact of K — ¢ spatial vari-
ability on key Environmental Performance Metrics (EPMs) such as solute
arrival times, peak mass fluxes, increased lifetime cancer risk and cor-
responding uncertainties at environmentally sensitive locations. For our
illustrations, we consider three-dimensional (3D) heterogeneous aquifer
systems. In particular, the objectives of this work are twofold. First,
we systematically investigate the coupled influence of ¢ and K hetero-
geneity on the statistical characterization of non-reactive transport. Sec-
ond, within an application-oriented context, we show the implications
of these coupled effects when estimating adverse human health effects
(e.g. cancer risk) due to exposure to chlorinated solvents in groundwa-
ter. Through extensive stochastic computational analysis, we explore
different scenarios that, to the best of our knowledge, have not been
investigated, with the goal of identifying conditions where the role of
spatially variable ¢, correlated to heterogeneous K, is relevant. Our anal-
ysis simulates contaminant transport through an unconsolidated sandy
aquifer where, given the likelihood (Hassan, 2001; Hu et al., 2009; Lui-
jendijk and Gleeson, 2015), positive K — ¢ correlation is adopted, to-
gether with different levels of heterogeneity of the K system. Our study
addresses fundamental questions such as: is the uncertainty associated
with transport in the subsurface increased or decreased when variable
¢ fields are considered? Does the relative importance of variable ¢ de-
pend on the level of heterogeneity of the K-field? What is the impact of
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this joint heterogeneity on the flow connectivity structure of the aquifer?
How are the effects of heterogeneity propagated to decision making met-
rics such as human health risk?

The paper is structured as follows. We present the problem under in-
vestigation in Section 2. In Section 3, we illustrate the methodology em-
ployed in our study and provide details on the computational implemen-
tation. Next, Section 4 is devoted to the analysis of the results for conser-
vative tracers (Section 4.1) and reactive contaminants (Section 4.2). We
finally summarize our study and outline the key findings in Section 5.

2. Problem statement

In this work we consider a contaminated, fully saturated 3D het-
erogeneous aquifer whose Cartesian coordinate system is indicated
by x=(x,y,z). We are interested in understanding the impact of
heterogeneity, stemming from both K and ¢, on a series of EPMs
(de Barros et al., 2012).

Let Q denote a generic EPM. For example, Q can represent solute ar-
rival times or solute peak concentrations at an environmentally sensitive
location. If the contaminant is toxic, then Q can denote, for instance, an
adverse health effect. Due to incomplete characterization of the subsur-
face, hydrogeological properties such as K and ¢ are modeled as spatially
random. As a consequence, the quantity Q is subject to uncertainty and
quantified through its statistical moments, such as its mean (Q) (where
the angled brackets denote ensemble expectation), its variance 6%, and
its probability density function (PDF) p(£2) or cumulative density func-
tion (CDF) P(Q).

We are primarily interested in analyzing the effect of K — ¢ variabil-
ity on different EPMs with the goal of: (a) improving our fundamental
understanding of the significance of these variabilities to contaminant
transport and (b) exploring how the latter variabilities propagate to de-
cision making metrics relevant to human health risk analysis. In this
study we perform both conservative and reactive contaminant transport
simulations and select the specific EPMs indicated below:

o We statistically analyze the first arrival times and peak mass fluxes
through control planes (CPs) resulting from conservative tracer sim-
ulations. The first arrival time is defined as the time of arrival of
5% of the initial injected mass (i.e., t5q,) at the CP of interest. An
accurate detection of tsy, is of fundamental importance for risk and
water entities in charge of accurately planning aquifer remediation,
risk analysis and managing water resources. Moreover, peak mass
fluxes at an environmentally sensitive location can be viewed as an
indicator of the risks associated with groundwater contamination
and can also serve as a proxy for dilution (Fiori, 2001).

o We then explore the increased lifetime cancer risk estimates associ-
ated with chronic exposure to chlorinated solvents that are the re-
active contaminants of interest in our study. The latter metric is of
fundamental importance for public health authorities and its quan-
tification provides useful insights for risk and remediation experts in
order to characterize risk of real-life operations.

2.1. K — ¢ model

The interdependence between the heterogeneous K and ¢ fields is
largely uncertain as explained in Section 1. However a positive corre-
lation is likely to be present in unconsolidated sandy aquifers (e.g., Hu
et al., 2009; Luijendijk and Gleeson, 2015). With the goal of systemati-
cally exploring the influence of spatially variable ¢ and K on the EPMs
described before, we model our aquifer system as being characterized
by (a) spatially heterogeneous K and homogeneous ¢, and (b) spatially
heterogeneous K correlated to spatially heterogeneous ¢.

In order to illustrate the possible relationship between K and ¢ data,
we report in Fig. 1 permeability (k) and ¢ data for different formations.
Data presented in purple refer to experimental measurements of a se-
quence of seven samples of Fountainebleau sandstone (Doyen, 1988),
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Fig. 1. Log-log plot of permeability (k) as a function of porosity (¢) for different
formations showing a positive correlation trend: Fontainebleau sandstone data
from the study of Doyen (1988) in purple, Upper Jurassic Brae Formation, East
Brae field Offshore United Kingdom, North Sea (Grau, 2000; Nelson, 2004) in
blue light, Permian-Triassic sandstones, Ivishak Formation, Sadlerochit Group,
Prudhoe Bay Field, Alaska (Atkinson et al., 1990; Nelson, 2004) in red, core-
plug samples of Cenozoic sediments from geothermal well AST-02 in the Roer
Valley Graben, southern Netherlands (Luijendijk and Gleeson, 2015) in green.
(For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

in blue light we show samples from a turbidite reservoir of Late Jurassic
age located in the North Sea (Grau, 2000; Nelson, 2004). Furthermore,
data from Permian-Triassic sandstones from Prudhoe Bay Field, Alaska,
USA, are pictured in red (Atkinson et al., 1990; Nelson, 2004), whereas
core-plug samples of Cenozoic sediments from the southern Netherlands
(Luijendijk and Gleeson, 2015) are shown in green in Fig. 1. We recall
that permeability, k, is directly proportional to K through K = kpg/u
(Bear, 1979), where p indicates water density (1000 g/m?3), g is the grav-
ity acceleration (9.8 m/s2) and u is the dynamic viscosity of water. We
adopted a value of u equal to 8.84 x 10™* Pa s, i.e., a temperature of
25° C. Note that k in Fig. 1 is expressed in md, 1 md being equivalent
to0 9.87 x 107! m2. Interpolation of ¢ and k data of Fig. 1 suggests a
positive correlation for all the formations presented.

In our work we consider a porous formation composed by unconsol-
idated sandy material and we assume positive correlation between the
heterogeneous K and ¢ fields. For the purpose of illustration we estimate
that the relationship among ¢ and K can be described by the well-known
Kozeny-Carman (KC) empirical equation (Carman, 1937; 1956; Kozeny,
1927):

2
ke ¥ 4

W (1—¢)? 180° M

where d, indicates the representative diameter of grains and the remain-
ing parameters have been previously defined. The literature presents dif-
ferent interpretations for d, (e.g., Koltermann and Gorelick, 1995) and
we assume that the latter corresponds to d,, i.e., the grain diameter at
which 10% of the particles are smaller, in our study.

The KC equation has been proven effective in predicting the perme-
ability of sand from porosity data and generally gives good predictions
of hydraulic conductivity when the value of d; is within the range 0.1
3mm (Barahona-Palomo et al., 2011). The KC formula has been em-
ployed in different studies (e.g., Barahona-Palomo et al., 2011; Bianchi
and Zheng, 2016; Luijendijk and Gleeson, 2015; Odong, 2007; Riva
et al., 2010). Luijendijk and Gleeson (2015) concluded that permeabil-
ity of pure sand can be predicted with high confidence (R? > 0.9) using
the KC equation. Bianchi and Zheng (2016) used the relationship to first
estimate the K values of lithofacies during three-dimensional stochastic
flow and transport modeling at the MADE site. Odong (2007) tested the
reliability of different empirical formulas to estimate the hydraulic con-
ductivity of unconsolidated aquifers by particle size analysis and iden-
tified the KC equation as the overall best estimator. Other authors, as
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Barr (2005) and Carrier IIT (2003), also encouraged the use of the KC
formula.

We point out that the scope of our work is to explore the influence
of possible combinations of spatially variable ¢ and K on the transport
of tracers and reactive contaminants. Our goal is to assess the impact
of neglecting the joint variability of ¢ and K on the probabilistic as-
sessment of the risks associated with groundwater contamination. The
estimation of the ¢ fields from K through the KC relationship is chosen
for the purpose of illustration and given its suitability to unconsolidated
sandy aquifers, shown in different studies (e.g., Hu et al., 2009; Lui-
jendijk and Gleeson, 2015). However, we point out the KC equation
implies a full positive correlation between ¢ and K but, in reality, the
correlation between the two hydrogeological properties is partial and
nonlinear (e.g., Hu et al., 2009). Therefore, the KC equation can be a
reliable predictor of K from ¢ only for some cases and is used in this
work for the purpose of illustration. We emphasize that other empirical
relationships between ¢ and K, which are site-specific, for example ob-
tained through borehole geophysics techniques, can be utilized within
the methodological framework adopted in this study.

2.2. Flow and transport model

Groundwater flow A steady state uniform-in-the mean base flow (q,)
takes place along the longitudinal x-direction within the 3D heteroge-
neous aquifer in the absence of sinks and sources. Constant head condi-
tions are established at the west and east boundaries and no-flow condi-
tions are set at the remaining boundaries. The steady-state groundwater
flow is governed by the following partial differential equation:

V-qx) =0, 2
with
qQ(x) = —K(x)Vh(x), 3)

where q [m/d] is the specific discharge vector and h [m] is the hydraulic
head. Note that (3) is written in terms of q, therefore the spatial variabil-
ity of the ¢ field does not play a role in the solution of the groundwa-
ter flow problem. After solving (3), groundwater velocity is obtained
from v(x) = —K(X)Vh(x)/¢p(x), and used as input to the contaminant
transport model. The contaminant transport equation is then includ-
ing the ¢ field variability for both conservative and reactive chemical
species.

As previously mentioned, to improve our understanding of the joint
K — ¢ heterogeneity on transport and its role in contaminated ground-
water management, we simulate contaminant transport for non-reactive
and reactive species. The latter case will be linked to a dose-response
model to evaluate the adverse health effects associated with contami-
nant exposure.

Reactive transport A contaminant is released along a vertical 2D plane
of areal extent A;. Contaminant mass fluxes or concentrations are mea-
sured at multiple control planes (CPs) located at different longitudinal
distances from the source zone. Fig. 2 illustrates a sketch of the prob-
lem under investigation. Following the work of Henri et al. (2015), the
aquifer is contaminated by tetrachloroethylene (PCE), a DNAPL prod-
uct often identified in groundwater (Fay and Mumtaz, 1996). We as-
sume that PCE is entrapped in the source area and slowly dissolves in
time, originating a long-term contamination that moves downgradient.
In the presence of an anaerobic environment, PCE undergoes chemical
degradation that generates trichloroethylene (TCE), a byproduct that in
turn reacts and degrades into cis-Dichloroethylene (DCE). DCE degrates
then into vinyl chloride (VC), which will finally produce ethene. The US
Environmental Protection Agency (EPA) classifies PCE, TCE and DCE as
probable human carcinogenic products, whereas categorizes VC as a hu-
man carcinogen (U.S. Environmental Protection Agency, 1997).

The reactive transport of PCE and its daughter products can be de-
scribed by the following system of equations, where subscript i indicates
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Fig. 2. Schematic illustration of the problem under investigation: the contami-
nant is released within the areal source zone, A,. A uniform-in-the average nat-
ural base flow, g, takes place along the x—direction, contaminant mass fluxes
or concentrations are measured at control planes (CPs).

a specific contaminant within the toxic PCE degradation chain (i.e., i=1:
PCE,; i=2: TCE; i=3: DCE and i=4: VC):

aC;
¢R,~—t' -V (¢DVC) + V- (qQC)) = y;k;_19C;_; — k;pC; + 5(X,1)6;1,
Vi=1,...,4, “4)

where C; [g/m?] is the resident contaminant concentration of the ith
species, D [m2/d] represents the hydrodynamic dispersion tensor whose
components along the x-, y- and z- direction are respectively D,, = a, v,
Dy, =ayu and D,, = a,v, with v [m/d] indicating groundwater veloc-
ity of the grid block. Here, a,, @, and «, are respectively the longi-
tudinal (along x), transverse horizontal (along y) and transverse ver-
tical (along 2) dispersivity coefficients, assumed to be constant for all
the contaminant species. Furthermore, R; represents the retardation fac-
tor, k; [d~'] indicates the first-order contaminant degradation rate and
y; [g g~'1 symbolizes the effective yield coefficient for any reactant or
product pair. The latter represents the ratio between the generated mass
of species i and the degraded mass of species i — 1. We assume that
biodegradation does not occur in the sorbed phase and that sorption
reactions follow a linear sorption isotherm (see Henri et al., 2015, and
references therein). §;; indicates the Kronecker delta function.

Note that in our study we account for the main characteristics of
DNAPL mass discharge by linking the DNAPL source strength to the
DNAPL mass remaining in the source zone (Falta et al., 2005). The
source zone is then conceptualized as a control plane from which the
temporal evolution of the contaminant fluxes is simulated using integra-
tive parameters in line with the architecture of the DNAPL. We consider
a time-dependent dissolution rate s(x, ) of PCE leaving the areal source,
A, starting from no contamination at initial time ¢ = 0. Following the ap-
proach described in Henri et al. (2015), we employ the mass-depletion
model proposed in the literature (Parker and Park, 2004; Rao et al.,
2001):

&0 _ (m)r )

€ mg

where ¢, is the flux-averaged concentration of the dissolved DNAPL
species, i.e., PCE, leaving A, c, is the initial contaminant concentration
at the source zone, m is the mass of DNAPL remaining in the source zone
and I' represents the mass-depletion constant accounting for changes of
the interfacial surface area while the mass at the source diminishes. The
flux concentration of PCE leaving the areal source is then expressed as
in Parker and Park (2004):

I
¢ O.c O.c =r
(1) = _(; _Zs 1(1 + mol—r+ s (11 eT=Dast , ©6)
m Asmg Asmg

where my, is the initial contaminant mass at the source, Q represents the
groundwater volumetric discharge rate through the source zone while A
is the first-order degradation constant of PCE at the source (Henri et al.,
2015). The function s(x, t), i.e., the time-dependent dissolution rate at
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the source, is given by:

s(X,1) = qoeg()0(x — x;, )QAUX € Ay), 7

inj
where ¢, = O, /A, and Q(x € A,) is an indicator function equal to one
if x € A; and equal to zero elsewhere.

In Section 2.3, we present the dose-response model employed to com-
pute the adverse health risk caused by the reactive chemicals degrada-
tion chain (i.e., PCE - TCE — DCE — VC).

Non-reactive transport With the goal of isolating the influence of het-
erogeneity in the aquifer geological properties K and ¢ on transport
from the chemical reactions component, we also simulate transport of
a non-reactive tracer. In this case, similarly to the reactive transport
simulations, groundwater flow is also governed by Egs. (2) and (3),
whereas contaminant transport through the porous media is expressed
by (4) with chemical reactions set to zero. During the conservative con-
taminant transport simulations the tracer is instantaneously and homo-
geneously released within A; and we investigate the first arrival times
and peak mass fluxes through the control planes and corresponding un-
certainties.

2.3. Health risk model

Being the human health risk the EPM of concern for the reactive
transport case, we follow the work of Maxwell and Kastenberg (1999),
Henri et al. (2015), and Zarlenga et al. (2016) and adopt a Poisson model
(U.S. Environmental Protection Agency, 1989) to evaluate the human
incremental lifetime cancer risk (ILCR), R;(x) associated to an exposure
to the contaminant i at the CP location x:

R;(x) = 1 — exp[~ADD,(x) x CPF]], 8)

where CPF; [kg d/mg] indicates the metabolized cancer potency factor
related to contaminant i and ADD; [mg/(kg d)] is the average daily dose.
In this work, risk is due to human exposure by direct ingestion and:

ADD,(x) = (05 T EL ©
In Eq. (9), IR is the water ingestion rate [L/d], BW is the body weight
[kgl, ED symbolizes the exposure duration [y], EF is the daily exposure
frequency [d/y] and AT indicates the expected lifetime [d].

In our study, ¢;(x) [g/m3] in (9) represents the flux-averaged concen-
tration (Kreft and Zuber, 1979) at a CP situated at a given longitudinal
distance x. This variable is identified both as: (a) the peak flux-averaged
concentration and (b) the maximum exposure duration (ED) averaged
(flux-averaged) concentration. The manner in which ¢;(x) is evaluated
can lead to different groundwater management strategies (de Barros and
Rubin, 2008). It is therefore important to evaluate both cases (a) and
(b) above, the first case being the worst scenario that can provide a
conservative risk estimate. In the second case (b) ¢;(x) is equal to the
maximum running averaged concentration, over the ED interval, of the
contaminant concentration BTC at the CP (Henri et al., 2015; Maxwell
and Kastenberg, 1999) and is mathematically given by:

1 +ED
¢i(x) = r¥1>aox { ED / c;(t; x)dr}, (10)
'

where ¢;(z; x) is the flux-averaged concentration observed at the CP
location.

Given that we consider the degradation of PCE into sub-products,
parent and daughter species are likely to be present simultaneously in
the aquifer. The total risk of the chemical mixture (denoted by Ry), in the
presence of low concentrations (less than 300 ppm), can then be identi-
fied as the summation of the individual risks caused by each chemical
product (Feron et al., 1981) as follows:

4
Rp(x) =Y R(x). an
i=1
The health risk model parameters employed to compute the total
ILCR, i.e., Ry (11), at the CPs, are listed in Table 1.
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Table 1 Table 2
Risk model parameters used in the numerical simulations. Parameter set used for the numerical flow and transport simulations.
Parameter Symbol Value Parameter Symbol Value
Ingestion rate IR 1.41/d Aquifer domain @y, Ly, L,) (700 m, 400 m, 100 m)
Body weight BW 70kg Grid discretization (A Ay, A) (2m, 2m, 1 m)
Exposure duration ED 30y Y ranges Ay Ays A7) (35m, 35m, 10 m)
Exposure frequency EF 350 d/y Variance of Y of, 1,3
Average time of expected lifetime AT 25550 d Average porosity () 0.23
PCE TCE DCE vC Average hydraulic head gradient J 0.07
Cancer potency factor CPF; 0.0021 0.011 0.6 1.5 Geometric mean of K Kg 4.48m/d
Water density P 1000 kg/m?
Gravity acceleration g 9.81 m/s?
Dynamic viscosity U 8.84 x 107* Pa x s
3. Methodology Mean particles diameter d, 2 x 10 m
Source area dimensions Ly x Ly 70m x 20m
X Source area location along x Xinj 50m
General set-up In order to analyze contaminant transport and corre- Longitudinal dispersivity ay 0.2m
sponding uncertainties throughout the 3D aquifer we employ a stochas- Transversal horizontal dispersivity  a, 0.02m
tic Monte Carlo (MC) framework that accounts for uncertain K and ¢ Transversal vertical dispersivity a, 0.02m
Control planes location along x Xcp 85m, 100m, 120 m, 200 m,

distributions. Five hundred equally likely K and ¢ fields are generated
and, for each field, the groundwater flow and contaminant transport
equations are numerically solved. Results are then statistically analyzed
over the ensemble of MC realizations.

The 3D computational domain is characterized by dimensions L, X
L,xL,=700m x 400 m x 100 m and discretized into 350 x 200 x 100
cells (i.e., cells dimensions of A, = A,=2m and A, =1 m). A large
number of particles (10*) is uniformly injected within the source area
Ay =L, X L;; =70 m x 20 m, located at x = X;;; = 50m and trans-
versely centered within the aquifer domain. Note that the choice of
the number of particles used in our simulations is based on a conver-
gence analysis (not shown). In order to compute the BTCs, we employ a
Kernel density estimator method that allows the automatization of the
BTCs’ reconstruction process and provides a better quality of results for
the same number of injected particles (Fernandez-Garcia and Sanchez-
Vila, 2011). A set of 7 CPs are positioned at different distances along the
x- direction (henceforth denoted by xp): 85m, 100m, 120 m, 200 m,
300m, 400 m and 600 m.

The log-conductivity field Y=1n [K] is spatially heterogeneous and
represented by a Multi-Gaussian RSF, characterized by a Gaussian co-
variance function of ranges 4,, 4, and A, respectively along the x-, y-
and z-direction, mean (Y) and variance o-f,. For the computational anal-
ysis, we set A, = 4, = 35m and 4, = 10m. A sequential multi-Gaussian
simulator (Remy et al., 2009) is employed to produce the ensemble of
Y field realizations.

Based on the data reported in Section 2.1, we assume that the het-
erogeneous K field is positively correlated to the heterogeneous ¢ field
and that the relationship between the two geological attributes can be
described through the KC relationship (1). From each heterogeneous K
field realization, we then obtain the corresponding spatially variable ¢
field, by applying the KC Eq. (1). To do so we invert the KC relation-
ship by means of the Matlab solver. Note that all the parameters of the
KC relationship (1) are constant (see Table 2) and that the representa-
tive diameter of grains (d,), in our case corresponding to d,, is chosen
within the range 0.1-3 mm given the suitability to obtain a good predic-
tion of the permeability of sand from porosity data when d; is within
this range (Barahona-Palomo et al., 2011). We also point out that the
possible K — ¢ field combinations considered in our analysis are un-
conditional since we are not referring to a specific site. We analyze the
influence of heterogeneity on transport in the presence of (a) constant
¢ and heterogeneous K and (b) spatially variable ¢ positively correlated
to heterogeneous K. The outputs of scenarios (a) and (b) can be com-
pared since the constant value of ¢ in case (a) coincides with the average
value of the heterogeneous ¢ field realizations (i.e., (¢)). The average
porosity, (¢), is roughly constant for all the MC realizations and can,
therefore, be obtained by applying the geometric mean of K (indicated
as K;;) in the KC equation above (1). This leads to a mean ¢ value of 0.23.
In order to give a better idea of the range of ¢ values of our simulations,
we present in Fig. 3 the histogram of ¢ for one random realization of
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Fig. 3. Histogram of porosity values obtained by applying the KC Eq. (1) to
one random realization of the conductivity field characterized by o7 = 1. The
average porosity is 23.9%.

the K field. The latter is characterized by o-)z, =1 and the mean value of
¢ obtained is 0.239 (i.e., 23.9%).

Furthermore, different levels of heterogeneity of the Y field are ex-
plored: we consider both a mildly heterogeneous aquifer, represented by
f, =1 and a more heterogeneous system, characterized by 0'12, =3 for
both the inert tracer and the reactive transport simulations. In each case,

the variance of the In (¢) field, i.e., "12n @ is one order of magnitude less

that 0)2(, which is in agreement with the work of Hassan et al. (1998).

Groundwater fluxes are computed by means of the widely tested nu-
merical model (finite-difference) MODFLOW (Harbaugh, 2005). Con-
servative and multispecies reactive transport are simulated through
the RW3D code (Fernandez-Garcia et al., 2005; Henri and Fernandez-
Garcia, 2014) using the random walk particle tracking method. The
RW3D method uses the velocity field to advectically move particles and
disturbs the motion by adding a random displacement to simulate dis-
persion. In order to obtain a continuous velocity field that fulfills the lo-
cal solute mass balance, a hybrid scheme based on bilinear interpolation
to handle the dispersion terms and on linear interpolation for the advec-
tive term is applied to the RWPT method. LaBolle et al. (1996) showed
that this scheme can solve solute transport quite accurately within het-
erogeneous systems (Salamon et al., 2006). Given that we are employing
heterogenous ¢ fields, the transport is also controlled by the spatially
variable ¢ distribution (see Eq. (4)) and the values of the longitudinal,
transverse horizontal, transverse vertical dispersivities, which are ap-
propriately selected to account for sub-grid heterogeneity. The main in-
put parameters used in the numerical solution of the flow and transport
models are reported in Table 2.

[op
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Table 3
Reaction parameters.
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Parameter Symbol  Value
PCE

First-order decay k; 0.005 d"!

Yield coefficient Yi

Retardation factor ~ R; 7.1

Reactive transport As far as the chemical parameters chosen for the reac-
tive transport simulations, we employ constant values of biodegradation
rates, which we select accordingly to the range of observed values listed
by the US EPA (U.S. Environmental Protection Agency, 1999). Addi-
tionally, the choice of the retardation factors is based on the expected
differences in mobility between the chlorinated solvents species (Henri
et al.,, 2015; Lu et al., 2011). As explained in Henri and Fernandez-
Garcia (2014) the particle tracking algorithm represents the distribution
of mass of each species by a different cloud of particles. The challenge is
to define, from initial conditions, the species and position that a given
particle will be associated with after a given time. To do so, each par-
ticle is defined by its position and species state at a given time and we
aim to define the condition of the particle at a later time. The change in
chemical state is determined from the species state transition probability
matrix, whereas the corresponding particle motion is given by the first
and second spatial moments. The motion of particles follows a standard
random walk with time-dependent effective retardation and dispersion
parameters that depend on the initial and final chemical state of the par-
ticle. Basically, the approach is based on the development of transition
probabilities that describe the likelihood that particles belonging to a
given species and location at a given time will be transformed into and
moved to another species and location later on and these probabilities
are derived from the solution matrix of the spatial moments govern-
ing equations (Henri and Fernandez-Garcia, 2014). Table 3 shows the
chemical reaction parameters adopted in our study.

During the reactive transport simulations particles are instanta-
neously and uniformly released within A,. The first arrival time of the
particles at the CPs is recorded and cumulative concentration BTCs are
computed to obtain cih(t; x). The flux-averaged concentration of any
reacting species i, ¢;(t; x), caused by the time-dependent injection de-
scribed in (7), is computed through the principle of superposition as
follows:

t

ci(t;x) = /cs(r)cf(l - r;x)dr, (12)
0

where clf5 (r; x) represents the Dirac-input solution (i.e., instantaneous in-
jection), of the concentration associated with the ith species. For numer-
ical purposes, the source concentration cy(t) can be discretized in step
functions according to:

() =c,ogHM+ Y Acg  H(t—1)), 13)
j=1

with H(?) indicating the Heaviside step function and Ac;; = ¢, ; — ¢, ;_;.
Eq. (12) is then given by:

1<t

ci(t;x) = cs_ocih(t;x) + Z Acw-c’.h(t —1;3%). (14)
j=1

In (14), cl."(t; x) indicates the cumulative BTC of the ith species com-
puted from an unitary mass source (Henri et al., 2015). Table 4 presents
the mass transfer parameters adopted in the reactive case study.

The contaminant concentration BTCs, recorded from the MC ensem-
ble at the observation CPs, are then employed to compute ¢;(x) in the
two ways previously illustrated (see Section 2.3) and to compute the
associated increased lifetime cancer risk.

TCE DCE VvC

0.004 d~! 0.003 d! 0.001 d-!

0.79gg™! 074gg! 064gg’!

2.9 2.8 1.4
Table 4

Mass transfer parameters of the source zone selected for the re-
active transport simulations.

Parameter Symbol Value

Mass depletion constant r 0.1

Initial contaminant mass my 900 kg
Initial contaminant concentration Co 0.02g/1 m3
Source first-order degradation constant A 5x 107 4!

Non-reactive transport In the conservative tracer simulations we instan-
taneously inject 1 gr of contaminant mass uniformly within A; and ob-
serve the contaminant mass flux, indicated as i [g/d] at the CPs, from
which the EPMs under investigation are computed. We recall that con-
taminant concentrations can then be obtained by the ratio between the
contaminant mass flux (measured at the control plane) and the volumet-
ric water flux through the CP.

The results of the conservative and reactive transport MC simulations
are post-processed to evaluate the impact of ¢ heterogeneity on risk
statistics and illustrated in Section 4.

4. Results
4.1. Analysis for non-reactive contaminants

In this Section we show the effect of K — ¢ heterogeneity on the
transport of an inert tracer over the ensemble of MC realizations. We
first present the Cumulative Distribution Function (CDF) of early arrival
times of contaminants and of peak contaminant mass fluxes at the CPs.
We then quantify the relative difference between first and late arrival
times of the tracer at the observation locations. We finally show the
impact of aquifer connectivity on peak contaminant mass fluxes.

In order to understand the importance of realistically accounting for
heterogeneous ¢, we consider different scenarios: heterogeneous ¢ fields
correlated to spatially variable K characterized by 5)2, =1 and 0)2, =3,
and corresponding spatially averaged homogeneous ¢ coupled with het-
erogeneous K with 6)2, =1and 0'}2, =3.

4.1.1. CDF of first arrival times and peak mass fluxes

We present in Fig. 4 the CDF of dimensionless first arrival times,
normalized by the mean advective time required to travel a distance of
1 range along the longitudinal direction, i.e., t5o,U/4,, where U is the
longitudinal mean velocity, given by U = K;J /(¢), with J being the
hydraulic head gradient. For simplicity, we only show the CDFs at two
CPs located, respectively, at x = 200 m, corresponding to dimensionless
distance ¢ = 4.29 (in green) and x = 600 m, corresponding to ¢ = 15.71
(in red), with { = (xcp — x;,;)/ A, Results at the other CPs are alike.
Fig. 4(a) and (b) refers to 512( =1land o-)z, = 3, respectively. Dashed curves
correspond to heterogeneous correlated K — ¢ fields and solid curves
indicate simplified homogeneous ¢ and heterogeneous K.

Fig. 4 clearly illustrates that spatially variable ¢ has a strong im-
pact on the conservative tracer first arrival time statistics. Accounting
for ¢ heterogeneity increases the probability of detecting larger ts,, at
the CPs, for both levels of heterogeneity of the Y field. In particular,
the importance of including the spatial variability of ¢ increases as the
CPs’ distance from the contaminant injection source increases (compare
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Fig. 4. Cumulative distribution function (CDF) of the first arrival times, ts,,
of the contaminant mass at the CPs for 2 = 1 (a) and 62 = 3 (b). The CDF of
dimensionless ts, is indicated with dashed lines for heterogeneous ¢ fields and
with solid lines for homogeneous ¢ fields. The green color indicates results at
the CP located at dimensionless distance ¢ = 4.29 whereas the red color pictures
results at the CP located at dimensionless distance ¢ = 15.71. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

red curves versus green curves). Indeed, as the distance between the
source and CP grows, the plume samples more heterogeneity of the sys-
tem and the effect of considering variable ¢ strengthens. We also no-
tice that increasing the heterogeneity of Y (see Fig. 4(b)) generally de-
creases tgo,. Indeed larger af, increases the probability of occurrence of
fast flow channels which leads to a decrease of first arrival times (com-
pare Fig. 4(a) and (b)).

Subsequent Fig. 5 pictures the CDF of dimensionless peak mass fluxes
(i), normalized by the initial injected mass (M) over the time required
to travel one range along x, indicated as 1,4, /(MyU), at the two CPs
located at dimensionless distances ¢ = 4.29 (in green) and ¢ = 15.71 (in
red). Fig. 5(a) refers to of, = 1 whereas Fig. 5(b) to o-)z, = 3. As before,
dashed curves correspond to heterogeneous ¢ while solid curves indicate
the outcome of considering homogeneous ¢. Results at the remaining
CPs show comparable outcomes.

From Fig. 5 we observe that the significance of accounting for cou-
pled heterogeneous K — ¢ fields on transport predictions decreases
when the EPM of interest is i, as compared to ts, (Fig. 4). This ef-
fect is more evident when the heterogeneity of the K-field is higher
(compare Fig. 5(a) with (b)). We generally observe that the presence
of heterogeneous ¢ fields increases the chance of observing higher peak
mass fluxes as compared to homogeneous ¢ realizations for both obser-
vation locations and levels of heterogeneity of the Y field. In fact the
positive correlation between the K — ¢ fields decreases the macrodis-
persion of the plume along the longitudinal direction, which produces
higher peak mass fluxes at the observation locations. The decrease of
plume dispersion is a result of a diminished variance of the groundwa-
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Fig. 5. Cumulative distribution function (CDF) of the contaminant mass peak,
i, at the CPs for 67 =1 (a) and 6% =3 (b). The CDF of s, is indicated with
dashed lines for heterogeneous ¢ fields and with solid lines for homogeneous
¢ fields. The green color indicates results at the CP located at dimensionless
distance ¢ = 4.29 whereas the red color pictures results at the CP located at
dimensionless distance ¢ = 15.71. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

ter velocity field in the presence of a positive correlation between ¢ and
K. In fact lower velocity variance implies smaller velocity fluctuations
which are the main factors driving dispersion. Lower plume dispersion
along the longitudinal direction in the presence of positive K — ¢ cor-
relation is in line with the findings of Hassan et al. (1998). Reduced
longitudinal dispersion is also in agreement with the detection of later
first arrival times when ¢ is modeled as heterogeneous and positively
correlated to K (see dashed curves in Fig. 4) (Hassan et al., 1998). More-
over the effect of porosity variability on 1, increases for mildly hetero-
geneous aquifers (i.e., 012, = 1), as compared to an aquifer with higher
Y heterogeneity (i.e., af, = 3). This is also in agreement with the work
of Hassan et al. (1998). We also notice lower peak mass fluxes at the
CP located further away from A; (i.e., at { = 15.71, in red) according to
the fact that plume dispersion increases as the plume travels longer and
samples more aquifer heterogeneity. The results presented in Figs. 4 and
5 show the importance of incorporating the spatial variability in ¢ when
predicting early arrival times and peak mass fluxes.

Since the heterogeneity of the ¢ field impacts the plume macrodis-
persion, we analyze the relative plume dispersion for the different sce-
narios investigated in the following Section 4.1.2.

4.1.2. Relative plume dispersion

The macro-scale dispersive behavior of the solute plume under uni-
form or spatially random ¢ fields, coupled with heterogeneous K real-
izations, is additionally explored in Fig. 6. In the latter, we present box
plots of Az, defined as:

Ar = Tosq, — ’5%_

(15)
T959%
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Fig. 6. Box plots of Az (15) for homogeneous and heterogeneous ¢ and for
o‘f, =1 (a) and 012, =3 (b). The green and red colors respectively indicate the
results at the CP located at dimensionless distance ¢ = 4.29 and ¢ = 15.71. (For
interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

tose, is identified as the time of arrival of 95% of the initial injected
mass, My. A7 can represent a measure of the relative plume dispersion
since it quantifies the relative difference between the first (i.e., t5,) and
late arrival times (i.e., tgg0,) of the tracer at the CPs. In Fig. 6 the green
boxes indicate the results at the CP located at dimensionless distance
¢ = 4.29 whereas the red boxes refer to the outcomes at the CP situated
at ¢ = 15.71, results at the additional CPs being similar. The thickness
of the box plots equals the lag between the first and third quartiles of
the probability distribution of Az. Fig. 6(a) refers to a?, =1 whereas
Fig. 6(b) to af, =3.

When we compare the box plots of Az for homogeneous and het-
erogeneous ¢, for both CPs locations and 0')2, values, we observe that
Az values are lower when ¢ is modeled as heterogeneous. This is be-
cause, as explained before, the longitudinal dispersion of the plume de-
creases when ¢ is positively correlated to K, leading to a smaller dif-
ference between first (ts5o,) and late (tg50,) arrival times of the plume at
the CPs. Accordingly, the range of Az presents higher values for all sce-
narios (homogeneous and heterogeneous ¢ and different CPs locations)
when 0)2, = 3, i.e., under higher heterogeneity of the Y field we observe
a higher chance of fast flow channels (which decrease tso,) as well as
increased longitudinal dispersion. Finally, in agreement with previous
results, the difference between the range of Az values between the con-
stant ¢ and heterogeneous ¢ cases increases for the CP located further
away from the injection area (red box plots) for both levels of hetero-
geneity of Y. This confirms that the importance of modeling ¢ variability
increases as the tracer travels longer through the heterogeneous aquifer
domain.

4.1.3. Impact of connectivity on risk
Our analysis on the importance of accounting for ¢ spatial variability
on the inert tracer transport statistics ends with analyzing the effect of
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aquifer connectivity on peak mass fluxes for the different scenarios con-
sidered. Previous results (see Figs. 4 and 6) showed how heterogeneity
in ¢ and K affected solute arrival times. As a consequence, these hetero-
geneities can be expected to impact flow connectivity. We analyze here
how K — ¢ variability affects connectivity and its predictive capabili-
ties on the peak mass flux at a given CP. Connectivity can be described
by different metrics (Knudby and Carrera, 2005; Rizzo and de Barros,
2017) and, in line with the work of Henri et al. (2015), we employ a
dynamic connectivity metric, which depends on both groundwater flow
and contaminant transport parameters (Knudby and Carrera, 2005). The
selected connectivity metric, indicated as CI [-], is given by the ratio be-
tween the effective hydraulic conductivity, K4, and the geometric mean
of K, Kg:

Keff - L (ch - xinj)<¢>

CI = ~
Ke 1509 KgJ

; (16)

with t5q, being the time of arrival of 50% of the initial injected mass
at the CP of interest. The remaining parameters have been defined in
Table 2. Note that the average ¢ value (i.e., (¢)) has been employed to
compute CI for both the homogeneous and heterogeneous ¢ simulations.
In this analysis, we identify the peak contaminant mass flux (1) at the
observation location (i.e., CP) as a measure of risk.

Fig. 7 shows scatter plots of dimensionless w, versus CI (16). Ev-
ery circle in Fig. 7 corresponds to a different MC realization and for
simplicity only results at CPs located at dimensionless distance ¢ = 1
(in red) and ¢ = 4.29 (in green) are reported as the observations at the
remaining CPs are similar. Full circles correspond to the outcome of
considering homogeneous ¢, whereas empty circles indicate the output
of more realistic heterogeneous ¢ conditions. Fig. 7(a) refers to 012, =1
while Fig. 7(b) reports the results of 0')2, =3.

A linear regression between r, and CI is identified for both homo-
geneous (full circles) and heterogeneous (empty circles) ¢ fields, CP
location and 012( value. Indeed, under higher CI values, corresponding
to the presence of preferential flow channels, ergo lower tgqy, (16),
a higher chance of detecting higher 1, values at the CPs under in-
vestigation is identified. We observe that the slope of the linear re-
gression line, whose equation is reported in gray for homogeneous ¢
and in black for heterogeneous ¢, is higher when ¢ is heterogeneous
and positively correlated to K as compared to simplified homogeneous
¢ for both CPs and for both levels of heterogeneity of Y. Therefore,
under realistic heterogeneous ¢ conditions and under the assumption
that the K — ¢ relationship can be described through the KC Eq. (1),
an increased chance of observing higher s, i.e. having higher risk,
emerges as compared to constant ¢ conditions, for the same CI value.
This could be attributed to the lower macro-scale spreading/dispersion
of the contaminant plume under positive K — ¢ correlation, which re-
sults in higher i, at the sensitive location. We also notice that a larger o‘%
(Fig. 6(b)) favors the formation of preferential channels, hence higher
CI values and corresponding i, values (compare Fig. 7(a) and (b)).
Results at the remaining CPs locations are similar and we generally
observe a decrease of the coefficient of determination (R2) of the re-
gression line between CI and m, values as the CP distance from Ag
increases.

Our results suggest that realistic heterogeneous ¢ conditions are as-
sociated with higher values of r1,, corresponding to higher health risk
at sensitive locations, therefore considering simplified constant ¢ con-
ditions could be misleading, i.e. lead to underestimated risks. We also
foresee that the effects of incorporating porosity variability on transport
observables could potentially be emphasized in the presence of non-
Gaussian K fields which present higher probability of well-connected
zones of high K values (Gomez-Hernandez and Wen, 1998; Henri et al.,
2015). For example, the work of Libera et al. (2017b) showed that
higher solute peak concentrations are detected at extraction wells as
the departure of the non-Gaussian Y fields from a Gaussian structure
increases.

P
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Fig. 7. Peak mass flux, 1, versus connectivity metric, CI (16), for a§ =1 (a)
and Uf, = 3 (b). The red color indicates results at the CP located at dimension-
less distance ¢ = 1 whereas the green color pictures results at the CP located at
dimensionless distance ¢ = 4.29. Full circles indicate homogeneous ¢ and empty
circles indicate heterogeneous ¢. The regression line is plotted in gray for ho-
mogeneous ¢ and in black for heterogeneous ¢ for both CPs locations. The coef-
ficient of determination (R?) of the regression line for 62 = 1 at the CP located
at dimensionless distance ¢ = 1 are R> = 0.778 for homogeneous ¢, R*> = 0.599
for heterogeneous ¢ and R?> = 0.656 for homogeneous ¢, R*> = 0.444 for hetero-
geneous ¢ at the CP located at dimensionless distance ¢ = 4.29. The coefficient
of determination (R?) of the regression line for 0}2, = 3 at the CP located at di-
mensionless distance ¢ = 1 are R*> = 0.871 for homogeneous ¢, R> = 0.816 for
heterogeneous ¢ and R? = 0.845 for homogeneous ¢, R?> = 0.728 for heteroge-
neous ¢ at the CP located at dimensionless distance ¢ = 4.29. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

4.2. Analysis for reactive contaminants: Implications in increased lifetime
cancer risk

Results in this Section refer to the reactive contaminant transport
simulations, i.e. to the degradation chain of chlorinated solvents (PCE
— TCE - DCE — VC). We analyze the statistics of the total increased
lifetime cancer risk, Rr(x) (11), for the scenarios under investigation.
We first present the spatial distribution of the low-order moments, i.e.
the ensemble mean and the coefficient of variation, of Ry, and we then
show the complete statistical characterization of the PDF of Ry.

The outcomes of accounting for heterogeneous ¢ are represented
with dashed lines while the results of constant ¢ are illustrated with
solid lines in Figs. 8-10. The results of considering o> = 1 are pictured

Y
in magenta and the outcomes for 012, = 3 are illustrated in blue.

4.2.1. Low order moments of Ry(x)

Fig. 8 shows the spatial evolution of the mean value of Ry (11), de-
noted as (Rr), over the ensemble of MC simulations, when the peak
concentration of the contaminant i at the CP (Fig. 8(a)) or the maxi-
mum running averaged concentration over the ED time (10) (Fig. 8(b))
is adopted to compute Ry(x). (Ry(x)) quantifies the expected threat to
the exposed community.
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Fig. 8. Longitudinal spatial distribution of the mean total increased lifetime
cancer risk, (Ry), when the maximum concentration (a) or the maximum run-
ning averaged concentration over the exposure duration (ED) time (b) are con-
sidered to compute Ry. The results for 62 = 1 are represented in magenta and
the results for 62 = 3 are pictured in blue. Dashed curves correspond to hetero-
geneous ¢ fields and solid curves picture homogeneous ¢. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web

version of this article.)

We first notice that, for the current numerical set-up, the formula
adopted to compute the flux-averaged contaminant concentration in Eq.
(9) has only a very minor influence on the spatial evolution of (R) (com-
pare Fig. 8(a) and (b)). We indeed notice that (Ry) is just slightly lower
when we employ the maximum running averaged concentration to com-
pute the risk (Fig. 8(b)), according to the fact that adopting the peak con-
centration represents the most conservative approach. We observe that
(Ry) increases with CP distance since more toxic species are produced
with time along the chemical degradation chain of PCE (Henri et al.,
2015) in Fig. 8(a) and (b). In fact, cancer potency factors (CPF;) in-
crease during the degradation of PCE until VC is produced (see Table 1).
In general, the influence of heterogeneity on the mean ILCR is almost
unnoticeable in Fig. 8 (see dashed lines versus solid lines). The fact that
accounting for ¢ heterogeneity has only a small impact on (Rp(x)) con-
firms that, also in the presence of reactive contaminants, the influence
of incorporating ¢ variability depends on the metric of interest. Increas-
ing the heterogeneity of the Y field (i.e., af, = 3, blue lines) decreases
the magnitude of the mean ILCR along the longitudinal direction be-
cause of enhanced dispersion of the plume and subsequent dilution at
CPs (Henri et al., 2015).

Fig. 9 shows the spatial evolution of the coefficient of variation of
the total ILCR (i.e., CVRT(x)). We recall that CVg, (x) = 0, (x) J{Rp(x)),
with oy, (x) indicating the standard deviation of the total ILCR. Fig. 9(a)
refers to the computation of Ry(x) by considering the maximum contam-
inant concentration whereas Fig. 9(b) shows the same results when the
maximum ED flux-averaged concentration (10) is adopted to compute
Rp(x). The coefficient of variation, CViy (x), measures the uncertainty
associated with the risk estimate.

In agreement with what observed in Fig. 9, we also point out that
the approach adopted to compute the flux-averaged concentration in Eq.
(9) does not influence the risk uncertainty and the differences between
Fig. 9(a) and (b) are imperceptible. We note that this remark is applica-
ble to the current numerical set-up. We generally observe that the spatial
evolution of CV . presents an inverse correlation with (R7(x)), in agree-
ment with Henri et al. (2015). Therefore we identify lower mean total
ILCR and more uncertain risk predictions close to the source while we
observe higher mean risk and lower risk uncertainty further away for all
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Fig. 9. Longitudinal spatial distribution of the coefficient of variation of the to-
tal increased lifetime cancer risk, CVg , when the maximum concentration (a)
or the maximum running averaged concentration over the exposure duration
(ED) time (b) are considered to compute R;. The results for af, =1 are repre-
sented in magenta and the results for 67 = 3 are pictured in blue. Dashed curves
correspond to heterogeneous ¢ fields and solid curves picture homogeneous ¢.
(For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

the simulated scenarios. Larger risk uncertainty close to the source is ex-
pected since the plume is mainly controlled by advection at that stage
(de Barros et al., 2009). Our results indicate that accounting for the
heterogeneity in ¢ affects the risk uncertainty. Indeed, the positive cor-
relation between ¢ and K leads to a reduction of the sample-to-sample
fluctuation of the risk, and therefore to a reduction of CVr, ) for both
levels of heterogeneity of the Y field (see dashed lines versus solid lines
in both Fig. 9(a) and (b). This effect is emphasized when 012, =3.

The results presented in Figs. 8 and 9 show that the influence of ¢
heterogeneity is higher on risk uncertainty, i.e., CVg_(x) (Fig. 9) than
on the mean total ILCR, (R(x)), (Fig. 8). This can be justified by the fact
that mean mass fluxes at large CPs are not significantly affected by local
fluctuations of the flow field, as explained in Fiori et al. (2002). On the
other hand, the first order analysis provided in Fiori et al. (2002) and
Andricevi¢ and Cvetkovi¢ (1998) shows that the variance of the mass
flux over a control plane is sensitive to local heterogeneity.

4.2.2. PDF of Ry

We conclude the discussion on the influence of ¢ spatial heterogene-
ity on reactive transport by presenting the PDF of the ILCR in Fig. 10.
The results in Fig. 10 refer to the computation of Ry(x) by employing
the maximum running averaged concentration over ED (10). Results at
the CP located at { = 10 are reported in Fig. 10(a), while the outcomes
at ¢ = 15.71 are presented in Fig. 10(b).

The PDFs of Ry present a similar “Gaussian”-like shape under con-
stant or random ¢. These results are consistent with the findings of Henri
et al. (2015, 2016). We observe that the impact of ¢ heterogeneity on
the PDF of the ILCR, described below, is more pronounced when the CP
is situated closer to the source for the case of 0)2, = 3 (compare Fig. 10(a)
with (b). In general accounting for ¢ heterogeneity (dashed PDFs) only
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Fig. 10. Probability distribution function (PDF) of the total increased lifetime
cancer risk, Ry, at the CP located at ¢ = 10 (a) and ¢ = 15.71 (b). The results
for 62 =1 are represented in magenta and the results for o2 =3 are pictured
in blue. Dashed curves correspond to heterogeneous ¢ fields and solid curves
picture homogeneous ¢. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

slightly influences the mean value of R} but significantly affects the un-
certainty of Ry. We indeed notice that the Ry PDF is less spread when
the heterogeneity of ¢ is modeled as compared to assuming constant ¢
(dashed PDFs versus solid PDFs). In particular the probability of observ-
ing values of R around (Ry) increases of more than 30% when the vari-
ability of ¢ is included in models’ predictions for all scenarios considered
except for the case of o-)z, = 3 at the CP located at ¢{ = 15.71, where this
probability is around 20% higher under heterogeneous ¢. Moreover, the
full risk PDFs show the probability of observing extreme values of Ry.
We observe that modeling the ¢ heterogeneity has influence on both the
highest and lowest values of Ry and the probability of detecting extreme
values of Ry decreases in the presence of spatially variable ¢.

5. Conclusions

In this study we analyze the impact of the coupled spatial variabil-
ity of ¢ and K on contaminant transport and probabilistic risk analysis.
We employ a Monte Carlo framework to statistically analyze key EPMs,
detected at observation locations. We analyze the impact of ¢ hetero-
geneity on contaminant arrival times and peak mass fluxes of tracers
at control planes as well as on risk and on connectivity. We then show
the implications of accounting for ¢ variability in probabilistic human
health cancer risk analysis by considering human exposure to chlori-
nated solvents through the ingestion pathway. Our work leads to the
following main key conclusions:

o The positive correlation between ¢ and K leads to a decrease of the
plume macrodispersion with consequent higher peak mass fluxes,
later first arrival times and earlier late arrivals at control planes.
Higher peak mass fluxes correspond to higher health risk there-
fore including the spatial variability of ¢ in models’ predictions is
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essential for risk assessment associated with aquifer contamination
and remediation. Moreover, a more accurate quantification of early
and late arrival times is fundamental to respectively detect the po-
tential hazard of a contaminant and to control the end-point of re-
mediation (see e.g., Andricevi¢ and Cvetkovi¢, 1996; de Barros and
Rubin, 2008).

o The relevance of incorporating the spatial variability of the ¢ field
can depend on the metric of interest, for example our study shows
that this relevance is emphasized when investigating contaminants’
arrival times over peak mass fluxes at the observation control planes.
This has important implications both to set-up modeling studies and
in decision making processes (e.g., in risk assessment or aquifer
remediation activities) in the context of a better allocation of re-
sources. Indeed, available resources need to be prioritized and as-
signed in a defensible manner to ensure that unacceptable identified
risks are reduced to acceptable levels.

e Modeling the ¢ field spatial variability as positively correlated to
the heterogeneous K field significantly reduces the cancer risk un-
certainty but only minorly influences the mean value of the total
cancer risk at control planes. Our findings constitute then an impor-
tant contribution for cancer risk uncertainty quantification however,
adoptng more simplified and conservative models which assume ho-
mogeneous porosity does not highly impact the mean value of the
total cancer risk.

We finally noticed that the effect of considering ¢ heterogeneity can
be affected by the level of heterogeneity of the K field and by the source-
to-CP distance. We recall that the results of our work are limited to pos-
itive correlation between ¢ and K expressed through the KC Eq. (1).
Other empirical models can be adopted to compute the K — ¢ relation-
ship and could potentially lead to different conclusions. Furthermore,
other factors such as pumping operations (Libera et al., 2017a) and so-
lute mass release rates at the source zone (de Barros, 2018) can impact
the relative importance of hydrogeological heterogeneity. On a final
note, we emphasize that our work represents a first step towards a more
comprehensive global sensitivity analysis (GSA) that could lead to more
general conclusions. Using polynomial chaos expansion (PCE) within a
GSA can reduce the computational burden associated with Monte Carlo
simulations. Utilizing PCE to perform GSA would allow to better under-
stand the relevance of heterogeneous porosity with respect to heteroge-
neous hydraulic conductivity. Under the context of risk, PCE-based GSA
was employed by different authors (e.g., Ciriello et al., 2013a; 2013b;
Oladyshkin et al., 2012). Ciriello et al. (2013a) employed GSA to identify
the influence of uncertain hydrogeological parameters on the first two
statistical moments of the peak concentration. Ciriello et al. (2013b) ap-
plied a GSA through PCE to three transport models to identify the rel-
ative importance of model-dependent parameters, the space-time loca-
tions where the models are more sensitive to these parameters and to
assist with parameters estimation. Oladyshkin et al. (2012) illustrated
their GSA approach, based on arbitrary polynomial chaos expansion
(aPC), on a 3D groundwater quality and health risk problem in a het-
erogeneous aquifer. Incorporating a GSA through PCE into the problem
investigated in this work is topic of future research with the goal of re-
ducing the computational burden normally associated with Monte Carlo
simulations and to investigate the impact of considering different soil
types on risk (e.g., Moore and Doherty, 2005).
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