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Abstract. Due to the current limitations of sequencing technologies,
de novo genome assembly is typically carried out in two stages, namely
contig (sequence) assembly and scaffolding. While scaffolding is com-
putationally easier than sequence assembly, the scaffolding problem
can be challenging due to the high repetitive content of eukaryotic
genomes, possible mis-joins in assembled contigs and inaccuracies in
the linkage information. Genome scaffolding tools either use paired-
end/mate-pair/linked/Hi-C reads or genome-wide maps (optical, physi-
cal or genetic) as linkage information. Optical maps (in particular Bio-
nano Genomics maps) have been extensively used in many recent large-
scale genome assembly projects (e.g., goat, apple, barley, maize, quinoa,
sea bass, among others). However, the most commonly used scaffolding
tools have a serious limitation: they can only deal with one optical map
at a time, forcing users to alternate or iterate over multiple maps. In this
paper, we introduce a novel scaffolding algorithm called OMGS that for
the first time can take advantages of multiple optical maps. OMGS solves
several optimization problems to generate scaffolds with optimal conti-
guity and correctness. Extensive experimental results demonstrate that
our tool outperforms existing methods when multiple optical maps are
available, and produces comparable scaffolds using a single optical map.
OMGS can be obtained from https://github.com/ucrbioinfo/OMGS.
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1 Introduction

Genome assembly is a fundamental problem in genomics and computational
biology. Due to the current limitations of sequencing technologies, the assembly
is typically carried out in two stages, namely contig (sequence) assembly and
scaffolding. Scaffolds are arrangements of oriented contigs with gaps represent-
ing the estimated distance separating them. The scaffolding process can vastly
improve the assembly contiguity and can produce chromosome-level assemblies.
Despite significant algorithmic progress, the scaffolding problem can be challeng-
ing due to the high repetitive content of eukaryotic genomes, possible mis-joins
in assembled contigs and the inaccuracies of the linkage information.
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Genome scaffolding tools either use paired-end/mate-pair/linked/Hi-C reads
or genome-wide maps. The first group includes scaffolding tools for second
generation sequencing data, such as Bambus [17,29], GRASS [13], MIP [31],
Opera [12], SCARPA [11], SOPRA [8] and SSPACE [5] and the scaffolding
modules from assemblers ABySS [35], SGA [34] and SOAPdenovo2 [22]. Since
the relative orientation and approximate distance between paired-end/mate-
pair/linked/Hi-C reads are known, the consistent alignment of a sufficient num-
ber of reads to two contigs can indicate their relative order, their orientation and
the distance between them. An extensive comparison of scaffolding methods in
this first group of tools can be found in [14].

The second group uses genome-wide maps such as genetic maps [37], physical
maps, or optical maps. According to the markers provided by these maps, contigs
can be anchored to specific positions so that their order and orientations can be
determined. The distance between contigs can also be estimated with varying
degree of accuracy depending on the density of the map.

The optical mapping technologies currently on the market (e.g., BioNano
Genomics Irys systems, OpGen Argus) allow computational biologists to pro-
duce genome-wide maps by fingerprinting long DNA molecules (up to 1 Mb),
via nicking restriction enzymes [32]. Linear DNA fragments are stretched on a
glass surface or in a nano-channel array, then the locations of restriction sites are
identified with the help of dyes or fluorescent labels. The results are imaged and
aligned to each other to map the locations of the restriction sites relative to each
other. While the assembly process for optical molecules is highly reliable, there
is clear evidence that a small fraction of the optical molecules is chimeric [15].

A few scaffolding algorithms that use optical maps are available. SOMA

appears to be the first published tool that can take advantage of optical maps
but it can only deal with a non-fragmented optical map [25]. The scaffolding tool
proposed in [30] was used for two bacterial genomes Yersinia pestis and Yersinia
enterocolitica, but the software is no longer publicly available. In the last few
years, Bionano optical maps have become very popular, and have been used to
improve the assembly contiguity in many large-scale de novo genome assembly
projects (e.g., goat, apple, barley, maize, quinoa, sea bass [4,7,23,28]). To the
best of our knowledge, the main tools used to generate scaffolds using Bionano
optical maps are SewingMachine from KSU [33] and HybridScaffold from
Bionano Genomics (unpublished, 2016). SewingMachine seems to be favored
by practitioners over HybridScaffold.

Both HybridScaffold and SewingMachine have, however, a serious lim-
itation: they can only deal with one optical map at a time, forcing users to
alternate or iterate over optical maps when multiple maps are available. In this
paper, we introduce a novel scaffolding algorithm called OMGS that for the
first time can take advantage of any number of optical maps. OMGS solves
several optimization problems to generate scaffolds with optimal contiguity and
correctness.
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2 Problem Definition

The input to the problem is the genome assembly to be scaffolded (represented
by a set of assembled contigs), and one or more optical maps (represented by a
set of sets of genomic distances). We use C = {ci|i = 1, . . . , l} to denote the set
of contigs in the genome assembly, where each ci is a string over the alphabet
{A,C,G, T}. Henceforth, we assume that the contigs in C are chimera-free.

An optical map is composed by a set of optical molecules, each of which is
represented by an ordered set of positions for the restriction enzyme sites. As
said, optical molecules are obtained by an assembly process similar to sequence
assembly, but we will reserve the term contig for sequenced contigs. We use
M = {mi|i = 1, . . . , n} to denote the optical map, where each optical molecule
mi is an ordered set of integers, corresponding to the distances in base pairs
between two adjacent restriction enzyme sites on molecule mi. By digesting in
silico the contigs in C using the same restriction enzyme used to produce the
optical map and matching the sequence of adjacent distances between sites, one
can align the contigs in C to the optical map M . If one is given multiple optical
maps obtained using different restriction enzymes, M will be the union of the
molecules from all optical maps. In this case, each genomic location is expected
to be covered by multiple molecules in M . As said, high quality alignments
allows one to anchor and orient contigs to specific coordinates on the optical
map. When multiple contigs align to the same optical map molecule, one can
order them and estimate the distance between them. By filling these gaps with
a number of N ’s equal to the estimated distance, longer DNA sequences called
scaffolds can be obtained.

A series of practical factors make the problem of scaffolding non-trivial. These
factors include imprecisions in optical maps (e.g., mis-joins introduced during
the assembly of the optical map [15]), unreliable alignments between contigs and
optical molecules, and multiple inconsistent anchoring positions for the same
contigs. As a consequence, it is appropriate to frame this scaffolding problem as
an optimization problem.

We are now ready to define the problem. We are given an assembly repre-
sented by a set of contigs C, a set of optical map molecules M and a set of
alignments A = {a1,1, a1,2, . . . al,n} of C to M , where ai,j is the alignment of
contig ci to optical map molecule oj . The problem is to obtain a set of scaffolds
S = {s1, s2, . . . sk} where each si is a string over the alphabet {A,C,G, T,N},
such that (i) each contig ci is contained/assigned to exactly one scaffold, (ii)
the contiguity of S is maximized and (iii) the conflicts of S with respect to A
are minimized. This optimization problem is not rigorously defined unless one
defines precisely the concepts of contiguity and conflict, but this description
captures the spirit of what we want to accomplish. In genome assembly, the
assembly contiguity is usually captured by statistical measures like the N50/L50
or the NG50/LG50. The notion of conflict is not easily quantified, and even if it
was made precise, this multi-objective optimization problem would be hard to
solve. We decompose this problem into two separate steps, namely (a) scaffold
detection and (b) gap estimation, as explained below.
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3 Method

As said, our proposed method is composed of two phases: scaffold detection and
gap estimation. In the first phase, contigs are grouped into scaffolds and the
order of contigs in each scaffold is determined. In the second phase, distances
between neighboring contigs assigned to scaffolds are estimated. The pipeline of
the proposed algorithm is illustrated in Fig. 1.

3.1 Phase 1: Detecting Scaffolds

Phase 1 has three major steps. In Step 1, we align in silico-digested chimeric-
free contigs to the optical maps (e.g., for a Bionano optical map, we use
RefAligner), but not all alignments are used in Step 2. We only consider
alignments that (i) exceed a minimum confidence level (e.g., confidence 15 in
the case of RefAligner); (ii) do not overlap each other more than a given
genomic distance (e.g., 20 kbp) and (iii) do not create conflict with each other.
The method we use here to select conflict-free alignments was introduced in our
previous work [27]. In Step 2, we compute candidate scaffolds by building the
order graph and formulating an optimization problem on it. In Step 3, either
the exhaustive algorithm or a log n-approximation algorithm is used to solve the
optimization problem (depending on the size of the graph) and produce the final
scaffolds.

input 
contigs

aligned 
contigs

order subgraphs of all molecules

conflict-free 
aligned 
contigs

merged 
order graph

contig listsoutput 
scaffolds

Phase 1, Step1: Pre-process data

Phase 1, Step 3: Solve Min-EUL

Phase 1, 
Step 2: Build 
order graph

align to 
optical map

build order 
graph

resolve
conflict

solve Min-EUL

merge order 
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repetitive 
regions

recognize
repeats

estimate gaps

Phase 2: Estimate gaps

Fig. 1. Pipeline of the proposed algorithm
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3.1.1 Building the Order Graph
The order graph O is a directed weighted graph in which each vertex represents
a contig. Given two contigs ci and cj aligned to an optical molecule o with
alignments ai and aj , we create a directed edge (ci, cj) in O if (i) the starting
coordinate of alignment ai (that we call ai.start henceforth) is smaller than the
starting coordinate of alignment aj (that we call aj .start henceforth) and (ii)
there is no other alignment ak such that ak.start is between ai.start and aj .start
and (iii) there are no conflict sites between ai.end and aj .start on the optical
molecule, as defined below. For each alignment a between optical molecule o
and contig c, we compute the left overhang lo and right overhang ro from o and
the left overhang lc and right overhang rc from c. The left-end of alignment a
is declared a conflict site if (i) both lo and lc are longer than some minimum
length (e.g., 50 kbp) and (ii) at least one restriction enzyme sites appear in both
lo and lc. A symmetric argument applies to the right-end of the alignment, which
determines the values for ro and rc.

Directed edge (ci, cj) is assigned a weight equal to qual(o, ai.end, aj .start) *
(conf(ai)+conf(aj)), where (i) qual(o, ai.end, aj .start) is the quality of the region
between ai.end and aj .start on molecule o (higher is better, defined next) and
(ii) conf(a) is the confidence score provided by RefAligner alignment a (higher
is better). The quantity qual(o, s, t) is defined based on the length of a repetitive
region between coordinates (s, t). Based on our experience, assembly mis-joins on
optical molecule almost always happen in repetitive regions [15]. Given the length
of repetitive region len rep(o, s, t) in base pairs (defined below), we define the
quality of o in the interval (s, t) as qual(o, s, t) = e−len rep(o,s,t)/100000. When ai

and aj have a small overlap (e.g., shorter than 20 kbp), we set len rep(o, s, t) = 0.
We recognize repetitive regions in optical molecules based on the distribution

of restriction enzyme sites. For a molecule o with n sites, let mi be the coordinate
of the i-th site for i = 1, . . . , n. As said, molecule o can be represented as a list
of positions {mi|i = 1, . . . , n}. In order to determine the repetitive regions in
o, we slide a window that covers k sites (e.g., k = 10 sites). At each position
j = 1, . . . , n− k +1, we select window wj = {mj , . . . ,mj+k−1}. While repetitive
regions in genome can be highly complex (see, e.g., [40]), we observed only
two types of repetitive regions in optical molecules, namely single-site repetitive
region (see Fig. 2-A) and two-site repetitive region (see Fig. 2-B). It is entirely
possible that more complex repetitive regions exist: if they do, they seem rare.
Based on this observation, in order to decide whether window wj is repetitive,
we first compute two lists of pairwise distances between sites, namely Dj,1 =
{mj+l −mj+l−1|l = 1, . . . , k −1} and Dj,2 = {mj+l+1 −mj+l−1|l = 1, . . . , k −2}
that we call distance lists, then we apply the statistical test described next.

In our statistical test we assume that the values in the distance lists that
belong to repetitive regions are independent and identically distributed as a
Gaussian. We further assume that each specific distance list (Dj,1 or Dj,2) is asso-
ciated with a Gaussian with a specific mean μj,q (q ∈ {1, 2}). Finally, we assume
that the variance σ2 is globally shared by all molecules. An estimator of the mean
is μj,q is μ̂j,q =

∑k−q
i=1 di/(k − q), where di ∈ Dj,q and k is the window size. To
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(A)

(B)

Fig. 2. Examples of single-site repetitive region (A) and two-site repetitive region (B)
in optical maps. Observe the small variations in the repetitive patterns in (B)

estimate σ2, we first get an initial (rough) estimate of the repetitive regions on
all molecules. Given a particular Dj,q, let dmax and dmin be the maximum and
minimum distance in Dj,q. We declare a distance list Dj,q to be estimated repet-
itive if dmax −dmin is smaller than a given distance (e.g., 1.5 kbp). We collect all
estimated repetitive lists in set R = {Dp is estimated repetitive|p = 1, . . . , P}
and the estimated mean μ̂p for each distance list Dp in the set R, where P is
the total number of estimated repetitive lists. Then, we define the log likelihood
function L as follows (additional details can be found in Appendix, Sect.B)

log L(σ2) = − log σ2

2

P∑

p=1

|Dp| − 1
2σ2

P∑

p=1

∑

di∈Dp

(di − μ̂p)2.

By maximizing log L(σ2), the estimator for the variance becomes

σ̂2 =
P∑

p=1

∑

di∈Dp

(di − μ̂p)2/
P∑

p=1

|Dp|.

Then, we carry out the test on the statistic dmax −dmin for each Dj,q. The joint
density function of (dmax, dmin) is

fdmax,dmin
(u, v) = n(n − 1)fdi

(u)fdi
(v)[Fdi

(v) − Fdi
(u)]n−2

for −∞ < u < v < +∞, where Fdi
and fdi

are the distribution function and
density function of di ∼ N(μ̂j,q, σ̂

2), respectively. The density function of dmax−
dmin is

fdmax−dmin
(x) =

∫ +∞

−∞
n(n − 1)fdi

(y)fdi
(x + y)[Fdi

(x + y) − Fdi
(y)]n−2dy,

defined when x ≥ 0 (additional details can be found in Appendix, Sect.C). Let
now X be a random variable associated with the distribution fdmax−dmin

. If the
p-value P (X > dmax −dmin) is greater than a predefined threshold (e.g., 0.001),
we accept the null hypothesis and declare that window wj is repetitive. The
repetitive regions for the entire molecule o is the union of all the windows wj ’s
recognized as repetitive according to the test above.

Once the order graph of each optical molecule is built, we connect all the
order graphs which share the same contigs using the association graph intro-
duced in [27]. The association graph is an undirected graph in which each vertex
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represents an optical molecule and an edge indicates that the two molecules share
at least one contig aligned to both of them. We use depth first search (DFS) to
first build a spanning forest of the association graph. Then, we traverse each
spanning tree and connect the corresponding order subgraph to the final order
graph. Every time we add a new graph, new vertices and new edges might be
added. If an edge already exist, the weights of the new edges are added to the
weights of existing edges.

3.1.2 Generating Scaffolds
Once the order graph O is finalized, we generate the ordered sequence of contigs
in each scaffold. In the ideal case, each connected component Oi of O is a directed
acyclic graph (DAG) because the genome is one-dimensional and the order of any
pair of contigs is unique. In practice however, Oi may contain cycles caused by
the inaccuracy of the alignments and mis-joins in optical molecules. To convert
each cyclic component Oi into a DAG, we solve the Minimum Feedback Arc

Set problem on Oi. In this problem, the objective is to find the minimum subset
of edges (called feedback arc set) containing at least one edge of every cycle in
the input graph. Since the minimum feedback edge set problem is APX-hard,
we use the greedy local heuristics introduced in [2] to solve it.

We then break each DAG Gi of connected component Oi into subgraphs as
follows. In each subgraph, we require that the order of every pair of vertices
to be uniquely determined by the directed edges. This allows us to uniquely
determine the order of the contigs for each scaffold. The formal definition of this
optimization problem is as follows.

Definition 1 (Minimum Edge Unique Linearization problem). Input: A
weighted directed acyclic graph G = (V,E). Output: A subset of edges E′ ⊆ E
such that (i) in each connected component G′

i of the graph G′ = (V,E − E′)
obtained after removing E′, the order of all vertices can be uniquely determined,
and (ii) the total weights of the edges in E′ is the minimum among all the subset
of edges satisfying (i).

In Theorem 1 below, we show that the Minimum Edge Unique Lineariza-

tion problem (Min-EUL) is NP-hard by proving that it is equivalent to the
Minimum Edge Clique Partition problem (Min-ECP), which is know to be
NP-hard [10]. In Min-ECP, we are given a general undirected graph, and we
need to partition its vertices into disjoint clusters such that each cluster forms
a clique and the total weight of the edges between clusters is minimized.

Theorem 1. Min-EUL is equivalent to Min-ECP.

Proof. First, we show that Min-EUL polynomially reduces to Min-ECP. Given
an instance G = (V,E) of Min-EUL, we build an instance G′ = (V ′, E′) of
Min-ECP as follows. Let V ′ = V . For each pair of vertices u, v ∈ V ′ where v
is reachable from u, define an undirected edge between u and v in E′. For each
directed edge (u, v) ∈ E, set the weight of the corresponding undirected edge
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(u, v) ∈ E′ as 1. Set the weights of the other edges in E′ as 0. Then it is easy to
see that a Min-EUL solution to G′ is equivalent to a Min-ECP solution to G
and vice versa.

Now we show that Min-ECP polynomially reduces to Min-EUL. Given
an instance G′ = (V ′, E′) (assuming G′ is connected) of Min-ECP, we build
an instance G = (V,E) of Min-EUL as follows. Let V = V ′. Pick any total
linear order O of all vertices in V ′. For each undirected edge (u, v) ∈ E′ where
rank(u) < rank(v) in O, define a directed edge from u to v in E and set its
weight to be the same as its corresponding undirected edge in E′. For any two
vertices u, v ∈ V , where rank(u) < rank(v) and (u, v) �∈ E′, add a new vertex
xuv ∈ V with rank(xuv) = rank(v) and a directed edge u to xuv of weight 1 in E.
Now for each pair of vertices u, v ∈ V where rank(u) < rank(v) and (u, v) �∈ E,
add a directed edge u to v with weight zero in E. Then it is easy to see that
a Min-EUL solution to G corresponds to a Min-ECP solution to G′ and vice
versa. �

Given the complexity of Min-EUL, we propose an exponential time exact
algorithm and a polynomial time log n-approximation algorithm for solving it. To
describe the exact algorithm, we need to introduce some notations. A conjunction
vertex in a DAG is a vertex which has more than one incoming edge or outgoing
edge. A candidate edge is an edge which connects at least one conjunction vertex.
In Theorem 2 below, we prove that the optimal solution E′ of Min-EUL must
only contain candidate edges. Let Ec be the set of all candidate edges in the
DAG G, for each subset E′

j of Ec, we check whether the graph G′ = (V,E −E′
j)

satisfies requirement (i) in Definition 1 after removing E′
j from G. Among all the

feasible E′
j , we produce the set of edges with minimum total weights. To check

whether E′
j is feasible, we use a variant of topological sorting which requires

one to produce a unique topological ordering. To do so, we require that in every
iteration of topological sorting, the candidate node to be added to sorted graph is
always unique. Details of this algorithm are shown as Algorithm1 in AppendixA.

Theorem 2. The optimal solution E′ of Min-EUL only contains candidate
edges.

Proof. For sake of contradiction, we assume that E′ contains a non-candidate
edges (u, v). Since E′ is optimal, G′ = (V,E − E′) satisfies condition (i) in
Definition 1. Since both u and v are conjunction vertices, u has only one incoming
edge and v has only one outgoing edge. Therefore, by adding (u, v) to G′ =
(V,E − E′), we still satisfy condition (i) in Definition 1. Since the weight of
(u, v) is positive, the total weight of E − E′ + {(u, v)} is larger than E − E′.
Therefore E′ − {(u, v)} is optimal, contradicting the optimality of E′. �

As said, Min-EUL is equivalent to Min-ECP (Theorem 1). In addition, the
authors of [10] showed that for any instance of Min-ECP one can find an equiv-
alent instance of the Minimum Disagreement Correlation Clustering

problem. As a consequence, any algorithm for the Minimum Disagreement

Correlation Clustering problem could be used to solve Min-EUL. In our
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tool OMGS, we implemented a O(log n)-approximation algorithm based on lin-
ear programming, originally proposed in [9]. Standard linear programming pack-
ages (e.g., GLPK or CPLEX) are used to solve the linear program. We use the
exact algorithm for DAGs with no more than twenty candidate edges, and the
approximation algorithm for larger DAGs.

3.2 Phase 2: Estimating Gaps

Let s = {ci|i = 1, . . . , h} be one of the scaffold generated in Phase 1 where each
ci is a contig. In Phase 2, we estimate the length li of the gap between each
pair ci and ci+1 of adjacent contigs. We estimate all gap lengths L = {li|i =
1, . . . , h − 1} at the same time using the distances between the contigs provided
by the alignments and the corresponding order subgraphs. We assume that each
li is chi-square distributed with αi degrees of freedom. The choice of chi-square
distribution is due to its additive properties, namely the sum of independent chi-
squared variables is also chi-squared distributed. Recall that each order subgraph
Ok provides an unique ordering xk = {cj |j = 1, . . . , r} of the contigs aligned
to molecule ok, while the coordinates of the alignment provide the distances
between all pairs of adjacent contigs cj and cj+1 as yk = {dj |j = 1, . . . , r − 1}.
We use the distances dj as samples to estimate gap lengths li. If edge (cj , cj+1)
in Ok is removed in the order graph O when solving Min-EUL in Phase 1, dj

will be considered not reliable and removed from yk.
In the ideal case, dj should be a sample of a single li (i.e., cjcj+1 in xk

corresponds to cpcp+1 in s). In practice however, cjcj+1 in xk will corresponds
to a different pair cpcq in s where q > p + 1 (i.e., cp+1 . . . cq−1 are missing from
the order subgraph because some alignments with low confidence were removed
in Step 1 of Phase 1). In this situation, after subtracting the length of missing
contigs from dj , dj − ∑cq−1

c=cp+1
|c| is a sample of

∑q−1
i=p li where |c| represents the

length of contig c. Since lp, . . . , lq−1 are independent chi-square random variables,
∑q−1

i=p li is chi-square distributed with degree of freedom
∑q−1

i=p αi, so that the
log likelihood of this sample is

log l = (β − 1) log γ − γ

2
− β log 2 − log Γ(β).

where β =
∑q−1

i=p
αi

2 , γ = dj − ∑cq−1
c=cp+1

|c| and Γ is the gamma function (addi-
tional details can be found in Appendix, Sect.D). The total log likelihood is
the sum of the log likelihoods across all samples. To find the αi maximizing
the total log likelihood, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [1]. Since the mean of a chi-square distribution equals its degree of
freedom, we obtain the estimated gaps l̂i = α̂i. For the case in which the li are
pre-estimated as negative in the first step, the second and third steps are ignored
and the pre-estimated distances are used as final estimates.

Finally, we add �l̂i	 nucleotides (represented by Ns) between each pair of
contigs ci and ci+1. When l̂i < 0, we add exactly 100 Ns between ci and ci+1,
which is the convention for a gap of unknown length.
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4 Experimental Results

We compared OMGS against KSU SewingMachine (version 1.0.6, released in
2015) and Bionano HybridScaffold (version 4741, released in 2016) which,
to the best of our knowledge, are the only available scaffolding tools for Bio-
nano Genomics optical maps. All tools were run with default parameters, unless
otherwise specified. We collected experimental results on scaffolds of (i) cowpea
(Vigna unguiculata) and (ii) fruit fly (Drosophila melanogaster).

4.1 Experimental Results on Cowpea

Cowpea is a diploid with a chromosome number 2n = 22 and an estimated
genome size of 620 Mb. We sequenced the cowpea genome using single-molecule
real-time sequencing (Pacific Biosciences RSII). A total of 87 SMRT cells yielded
about 6M reads for a total of 56.84 Gbp (91.7x genome equivalent). We tested
the three scaffolding tool on a high-quality assembly produced by Canu [3,18]
with parameters corMhapSensitivity=high and corOutCoverage=100, then
polished it with Quiver. We used Chimericognizer to detect and break
chimeric contigs, using seven other assemblies generated by Canu, Falcon [6]
and ABruijn [20] as explained in [26].

In addition to standard contiguity statistics (N501, L502), total assembled
size and scaffold length distribution, we determined incorrect/chimeric scaffolds
by comparing them against the high-density genetic map available from [24].
We BLASTed 121bp-long design sequence for the 51,128 genome-wide SNPs
described in [24] against each assembly, then we identified which contigs had
SNPs mapped to them, and what linkage group (chromosome) of the genetic
map those mapped SNPs belonged to. Chimeric contigs were revealed when
their mapped SNPs belonged to more than one linkage group. The last line of
Tables 1 and 2 report the total size of contigs in each assembly for which (i)
they have at least one SNPs mapped to it and (ii) all SNPs belong to the same
linkage group (i.e., likely to be non-chimeric).

As said, the three scaffolding tools were run on a chimera-free assembly of
cowpea described above using two available Bionano Genomics optical maps
(the first obtained using the BspQI nicking enzyme, and the second obtained
with the BssSI nicking enzyme). Since SewingMachine can only use a single
optical map, we alternated the optical maps in input (BspQI map first, then
BssSI and vice versa). SewingMachine provides two outputs depending on
the minimum allowed alignment confidence, namely ‘default’ and ‘relax’. Mode
‘relax’ considers more alignments than ‘default’, but it has a higher chance of
introducing mis-joins. HybridScaffold failed on the BssSI map, so we could
not test it on alternating maps.

Table 1 shows that when using a single optical map, OMGS can generate
comparable or better scaffolds than SewingMachine and HybridScaffold.
1 Length for which the set of contigs/scaffolds of that length or longer accounts for at

least half of the assembly size.
2 Minimum number of contigs/scaffolds accounting for at least half of the assembly.
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With two optical maps, OMGS’ correctness (“contigs/scaffolds with 100% con-
sistent LG”) and contiguity (N50) are significantly better than other two tools.
Observe that OMGS’ correctness (“contigs/scaffolds with 100% consistent LG”)
is even better than the input assembly. This can happen when contigs with SNPs
belonging to same linkage group are scaffolded with contigs that have no SNP.

We also compared the performance of OMGS, SewingMachine and
HybridScaffold when using optical maps corrected by Chimericognizer

(on the same cowpea assembly). Observe in Table 2 that OMGS, SewingMa-

chine and HybridScaffold increased the correctness but decreased the con-
tiguity when the corrected BspQI optical map was used. The results on the
corrected BssSI optical map or both corrected optical maps did not change sig-
nificantly. But again, OMGS produced better scaffolds than SewingMachine

and HybridScaffold.

4.2 Experimental Results on D. Melanogaster

D. melanogaster has four pairs of chromosomes: three autosomes, and one pair of
sex chromosomes. The fruit fly’s genome is about 139.5 Mb. We downloaded three
D. melanogaster assemblies generated in [36] (https://github.com/danrdanny/
Nanopore ISO1). The first assembly (295 contigs, total size 141 Mb, N50 = 3 Mb)
was generated using Canu [3,18] on Oxford Nanopore (ONT) reads longer than
1 kb. The second assembly (208 contigs, total size 132 Mb, N50 = 3.9 Mb) was
generated using MiniMap and MiniAsm [19] using only ONT reads. The third
assembly (339 contigs, total size 134 Mb, N50 = 10 Mb) was generated by Pla-

tanus [16] and Dbg2Olc [39] using 67.4x of Illumina paired-end reads and
the longest 30x ONT reads. The first and third assemblies were polished using
nanopolish [21] and Pilon [38]. The Bionano optical for D. melanogaster map
was provided by the authors of [36]. This BspQI optical map (363 molecules, total
size = 246 Mb, N50 = 841 kb) was created using IrysSolve 2.1 from 78,397 raw
Bionano molecules (19.9 Gb of data with a mean read length 253 kb).

As said, all tools were run with default parameters, with the exception of
OMGS’ minimum confidence, which was set at 20 (default is 15). To evalu-
ate the performance of OMGS, HybridScaffold and SewingMachine, we
compared their output scaffolds to the high-quality reference genome of D.
melanogaster (release 6.21, downloaded from FlyBase). We reported the total
length of correct/non-chimeric scaffolds as a measure of the overall correctness.
To determine which scaffolds were incorrect/chimeric we first selected BLAST

alignments of the scaffolds against the reference genome which had an e-value
lower than 1e-50 and an alignment length higher than 30 kbp. We defined a scaf-
fold S to be chimeric if S had at least two high-quality alignments which satisfied
one or more of the following conditions: (i) S aligned to different chromosomes;
(ii) the orientation of S’s alignments were different; or (iii) the difference between
the distance of alignments on the scaffold and the distance of alignments on the
reference sequence was larger than 100 Kbp.

https://github.com/danrdanny/Nanopore_ISO1
https://github.com/danrdanny/Nanopore_ISO1
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Table 1. Comparing OMGS, SewingMachine (SM) and HybridScaffold (HS) on
a cowpea assembly using one or two optical maps. Numbers in boldface highlight the
best N50 and scaffold consistency with the genetic map for one map (BspQI and BssSI)
or two maps (‘A + B’ refers to the use of map A followed by map B, ‘A&B’ refers to
the use of both maps at the same time).

One optical map
BspQI BssSI

Input SM (default) SM (relax) HS OMGS SM (default) SM (relax) HS OMGS
contig/scaffold N50 (bp) 5,633,882 13,154,336 13,154,336 12,211,658 14,339,314 10,620,326 10,886,079 N/A 11,536,649

contig/scaffold L50 28 15 15 17 14 18 17 N/A 15
total assembled (bp) 511,101,122 521,209,608 521,210,640 516,455,893 518,265,608 518,987,660 518,945,404 N/A 518,252,638
# contigs/scaffolds 948 863 863 877 847 849 846 N/A 832

# contigs/scaffolds ≥100kbp 269 185 185 198 170 177 174 N/A 165
# contigs/scaffolds ≥1Mbp 94 59 59 63 56 63 62 N/A 59

# contigs/scaffolds ≥10Mbp 10 20 20 21 20 18 18 N/A 17
contigs/scaffolds with consistent LG (bp) 425,812,490 404,408,642 404,409,674 381,974,417 410,552,582 425,572,265 425,530,009 N/A 424,143,108

Two optical maps
BspQI+BssSI BspQI+BssSI BssSI+BspQI BssSI+BspQI BspQI&BssSI

Input SM (default) SM (relax) SM (default) SM (relax) OMGS
contig/scaffold N50 (bp) 5,633,882 14,892,230 14,892,230 13,527,997 14,892,235 16,364,046

contig/scaffold L50 28 13 13 14 13 12
total assembled (bp) 511,101,122 525,577,823 525,198,231 525,827,900 525,105,345 521,324,385
# contigs/scaffolds 948 822 823 816 814 802

# contigs/scaffolds ≥100kbp 269 149 150 145 143 137
# contigs/scaffolds ≥1Mbp 94 46 46 48 46 44

# contigs/scaffolds ≥10Mbp 10 21 21 22 22 21
contigs/scaffolds with consistent LG (bp) 425,812,490 385,449,577 385,069,985 425,678,421 403,637,207 432,639,234

Table 2. Comparing OMGS, SewingMachine (SM) and HybridScaffold (HS) on
a cowpea assembly using optical maps corrected by Chimericognizer. Numbers in
boldface highlight the best N50 and scaffold consistency with the genetic map for one
map (BspQI and BssSI) or two maps (‘A + B’ refers to the use of map A followed by
map B, ‘A&B’ refers to the use of both maps at the same time).

One optical map
BspQI BssSI

Input SM (default) SM (relax) HS OMGS SM (default) SM (relax) HS OMGS
contig/scaffold N50 (bp) 5,633,882 12,487,373 12,487,373 12,495,655 13,505,314 9,420,899 10,886,079 N/A 11,256,770

contig/scaffold L50 28 16 16 15 14 19 17 N/A 16
total assembled (bp) 511,101,122 519,785,777 519,785,777 515,519,585 518,405,022 517,678,278 517,636,022 N/A 517,318,151
# contigs/scaffolds 948 863 863 871 849 854 851 N/A 837

# contigs/scaffolds ≥100kbp 269 185 185 192 172 182 179 N/A 169
# contigs/scaffolds ≥1Mbp 94 60 60 60 58 66 65 N/A 62

# contigs/scaffolds ≥10Mbp 10 19 19 19 19 17 17 N/A 17
contigs/scaffolds with consistent LG (bp) 425,812,490 413,819,557 413,819,557 402,840,302 421,466,164 424,262,883 424,220,627 N/A 423,117,331

Two optical maps
BspQI+BssSI BspQI+BssSI BssSI+BspQI BssSI+BspQI BspQI&BssSI

Input SM (default) SM (relax) SM (default) SM (relax) OMGS
contig/scaffold N50 (bp) 5,633,882 14,354,752 14,354,752 13,527,997 14,892,235 16,364,046

contig/scaffold L50 28 14 14 14 13 12
total assembled (bp) 511,101,122 523,520,329 523,139,705 521,540,185 525,105,345 520,697,623
# contigs/scaffolds 948 823 824 817 814 805

# contigs/scaffolds ≥100kbp 269 150 151 146 143 139
# contigs/scaffolds ≥1Mbp 94 48 48 48 46 46

# contigs/scaffolds ≥10Mbp 10 21 21 21 22 21
contigs/scaffolds with consistent LG (bp) 425,812,490 402,344,751 401,964,127 420,269,616 403,637,207 431,921,182

Table 3 reports the main statistics for the three D. melanogaster scaffolded
assemblies. Even with one map, OMGS’ scaffolds are better than SewingMa-

chine and HybridScaffold.
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Table 3. Comparing OMGS, SewingMachine (SM) and HybridScaffold (HS)
on three D. melanogaster assemblies (produced by MiniAsm, Canu, and Dbg2Olc)
using the BspQI optical map. Numbers in boldface highlight the best N50 and the best
scaffold consistency with the reference genome

MiniAsm assembly
Input SM (default) SM (relax) HS OMGS

contig/scaffold N50 (bp) 3,866,686 4,494,241 4,906,224 3,866,686 4,906,224
contig/scaffold L50 9 8 8 9 8

total assembled (bp) 131,856,353 132,480,826 133,233,999 132,138,056 132,838,677
# contigs/scaffolds 208 205 203 206 206

# contigs/scaffolds ≥100kbp 85 82 80 83 83
# contigs/scaffolds ≥1Mbp 26 26 25 26 25

# contigs/scaffolds ≥10Mbp 2 2 2 2 2
non-chimeric contigs/scaffolds (bp) 131,317,873 125,305,638 132,695,519 131,174,201 132,300,197

Canu assembly
Input SM (default) SM (relax) HS OMGS

contig/scaffold N50 (bp) 3,004,953 3,004,953 3,004,953 3,918,649 5,336,340
contig/scaffold L50 11 11 11 10 7

total assembled (bp) 140,720,404 140,923,974 140,923,974 140,867,226 140,960,395
# contigs/scaffolds 295 291 291 286 280

# contigs/scaffolds ≥100kbp 111 107 107 102 96
# contigs/scaffolds ≥1Mbp 31 31 31 29 27

# contigs/scaffolds ≥10Mbp 1 1 1 1 5
non-chimeric contigs/scaffolds (bp) 140,720,404 140,923,974 140,923,974 140,867,226 140,960,395

Dbg2Olc assembly
Input SM (default) SM (relax) HS OMGS

contig/scaffold N50 (bp) 10,113,899 11,223,142 11,223,142 12,785,467 12,928,771
contig/scaffold L50 6 5 5 5 4

total assembled (bp) 134,109,164 134,164,629 134,164,629 134,162,857 134,208,377
# contigs/scaffolds 339 337 337 331 327

# contigs/scaffolds ≥100kbp 78 76 76 70 66
# contigs/scaffolds ≥1Mbp 22 22 22 17 16

# contigs/scaffolds ≥10Mbp 6 6 6 5 7
non-chimeric contigs/scaffolds (bp) 134,109,164 134,164,629 134,164,629 134,162,857 134,208,377

5 Conclusions

We presented a scaffolding tool called OMGS for improving the contiguity of
de novo genome assembly using one or multiple optical maps. OMGS solves
several optimization problems to generate scaffolds with optimal contiguity and
correctness. Experimental results on V. unguiculata and D. melanogaster clearly
demonstrate that OMGS outperforms SewingMachine and HybridScaf-

fold both in contiguity and correctness using multiple optical maps.
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Appendix

A DAG Unique Ordering

Algorithm 1. Sketch of the algorithm for checking whether a DAG provides
an unique ordering
1: procedure Order Uniqueness Check(G = (V,E))
2: S = nodes with no incoming edges
3: while S �= ∅ do
4: if |S| > 1 then
5: return False
6: remove a node n from S
7: for each node m with an edge e = (n,m) do
8: remove edge e from the E
9: if m has no other incoming edges then

10: insert m into S
11: return True

B Statistical Test for Repetitive Regions

Here we provide additional details for the estimation of σ2 during the analysis
of repetitive regions. Recall that we collect all estimated repetitive lists in set
R = {Dp is estimated repetitive|p = 1, . . . , P} and the estimated mean μ̂p for
each distance list Dp in the set R, where P is the total number of estimated
repetitive lists. For each Dp, the distances di’s are distributed as a Gaussian
with mean μ̂p and variance σ2. According to the density function of Gaussian
distribution, the log likelihood of one Dp is

−|Dp|
2

log(2π) − |Dp|
2

log σ2 − 1
2σ2

∑

di∈Dp

(di − μ̂p)2.

The total log likelihood is the sum of the log likelihoods across all Dp’s in R,
which is

log L(σ2) = −
∑P

p=1 |Dp|
2

log σ2 − 1
2σ2

P∑

p=1

∑

di∈Dp

(di − μ̂p)2,

after ignoring all terms not related to σ2. To maximize log L(σ2), we require
that the derivative of total log likelihood

∂ log L(σ2)
∂σ2

= 0,
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that is,

−
∑P

p=1 |Dp|
2σ2

+
1

2(σ2)2

P∑

p=1

∑

di∈Dp

(di − μ̂p)2 = 0.

After some simplification, the estimator for variance becomes

σ̂2 =

∑P
p=1

∑
di∈Dp

(di − μ̂p)2
∑P

p=1 |Dp|
.

C Density Function of dmax − dmin

Here we provide additional details for calculating the density function of dmax −
dmin. It is well-known that the joint density function of order statistics is

fX(i),X(j)(u, v) =
n!

(i − 1)!(j − 1 − i)!(n − j)!
fx(u)fx(v)[Fx(u)]

i−1
[Fx(v) − Fx(u)]

j−1−i
[1 − Fx(v)]

n−j

(1)

for −∞ < u < v < +∞, where X(i) and X(j) are the i-th and j-th order
statistics in X1, . . . , Xn and Fx and fx are the distribution function and den-
sity function of each Xi, respectively. Using (1), the joint density function of
(dmax, dmin) can be expressed as

fdmax,dmin
(u, v) = n(n − 1)fdi

(u)fdi
(v)[Fdi

(v) − Fdi
(u)]n−2

for −∞ < u < v < +∞, where Fdi
and fdi

are the distribution function and
density function of di ∼ N(μ̂j,q, σ̂

2), respectively.
Now, let X = dmax−dmin and Y = dmin. Then dmax = X+Y and dmin = Y ,

and the corresponding Jacobian determinant is

J =
∣
∣
∣
∣
∂dmax/∂X ∂dmax/∂Y
∂dmin/∂X ∂dmin/∂Y

∣
∣
∣
∣ =

∣
∣
∣
∣
1 1
0 1

∣
∣
∣
∣ = 1.

Thus, the joint density function of (X, Y ) is given by

fX,Y (x, y) = fdmax,dmin(x+y, y)|J | = n(n−1)fdi(y)fdi(x+y)[Fdi(x+y)−Fdi(y)]
n−2,

where x ≥ 0 and −∞ < y < +∞. By integrating over Y , the density function
of X = dmax − dmin becomes

fdmax−dmin
(x) =

∫ +∞

−∞
n(n−1)fdi

(y)fdi
(x+y)[Fdi

(x+y)−Fdi
(y)]n−2dy, x ≥ 0.
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D Gap Estimation

Here we provide additional details for calculating the log likelihood function
when estimating gaps. Recall that lp, . . . , lq−1 are independent chi-square ran-
dom variables, and

∑q−1
i=p li is chi-square distributed with degree of freedom

∑q−1
i=p αi. Since the density function of a chi-square random variable X with

degree of freedom k is

fX(x) =
1

2k/2Γ(k/2)
xk/2−1e−x/2

where Γ is the gamma function, the likelihood of
∑q−1

i=p li with observation

γ = dj −
cq−1∑

c=cp+1

|c|

is
1

2βΓ(β)
γβ−1e−γ/2,

where β =
∑q−1

i=p
αi

2 . Therefore, the log likelihood function for one sample is

log l = (β − 1) log γ − γ

2
− β log 2 − log Γ(β).

The total log likelihood is the sum of the log likelihoods across all samples.
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