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Abstract—Due to the large computational cost of data classi-
fication using deep learning, resource-limited devices, e.g., smart
phones, PCs, etc., offload their classification tasks to a cloud
server, which offers extensive hardware resources. Unfortunately,
since the cloud is an untrusted third-party, users may be reluctant
to share their private data with the cloud for data classification.
Differential privacy has been proposed as a way of securely
classifying data at the cloud using deep learning. In this approach,
users conceal their data before uploading it to the cloud using
a local obfuscation deep learning model, which is based on a
data classification model hosted by the cloud. However, as the
obfuscation model assumes that the pre-trained model at the
cloud is static, it leads to significant performance degradation
under realistic classification models that are constantly being
updated. In this paper, we investigate the performance of
differentially-private data classification under a dynamic pre-
trained model, and a constant obfuscation model. We find that
the classification performance decreases as the pre-trained model
evolves. We then investigate the classification performance under
an obfuscation model that is updated alongside the pre-trained
model. We find that with a modest computational effort the
obfuscation model can be updated to significantly improve the
classification performance. under a dynamic pre-trained model.

I. INTRODUCTION

Deep learning is a machine learning technique based on
neural networks that has been successfully used to solve a
myriad of problems that are difficult to formalize. For example,
by employing easily accessible deep learning models such as
MobileNet [1], developers have been able to perform facial
recognition-based authentication, and speech recognition [2].
Due to the large computational cost of deep learning, resource-
limited devices, e.g., smart phones, PCs, etc., offload their
classification tasks to a cloud server, which offers extensive
hardware resources [3] that lead to fast response times with
high accuracy. In fact, some companies have started to train
deep learning models, which is the most computationally
intensive task in deep learning, at the cloud, and making them
publicly available. For example, Google’s Cloud Vision API
[4] allows users to classify images with a pre-trained deep
learning model that is hosted at the cloud.

However, since the cloud is an untrusted third-party, users
may be reluctant to share their private data with the cloud
to use the deep learning models. As an example, offload-
ing medical images to a cloud-hosted deep learning model
to diagnose diseases could compromise the patient privacy.
Ultimately, once the private data is uploaded to the cloud there
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Fig. 1. Offloading classification scenario.

is no assurance that the cloud will solely use it for the user’s
intended purpose.

To address this issue, researchers have proposed several
techniques including data partitioning, homomorphic encryp-
tion and differential privacy. Schlitter [S] proposes a privacy-
preserving data partition scheme by utilizing secure matrix
addition on horizontally partitioned data used in neural net-
work learning from multiple parties. Each party trains their
own network, then the parameters are shared and securely
combined. Shokri et al. [6] build on [5] by having each
party share only a small amount of their private network’s
parameters to improve overall accuracy and privacy.

Under homomorphic encryption, Rivest et al. [7] and Gilad-
Bachrach et al. [8] encrypt users’ data before offloading it to
the cloud, and then use a special deep learning model at the
cloud, which is also based on homomorphic cryptography, to
perform classification over the encrypted data [9]. Yuan and
Yu [10] utilize BGN homomorphic encryption for multi-party
collaborative network learning over arbitrarily partitioned data.
However, this scheme requires ciphertext to be sent back to
their respective party multiple times. Zhang et al. [11] offer
an improvement to the scheme by using BGV homomorphic
encryption and approximate the Sigmoid function as a polyno-
mial function. A common thread between these works is the
very high computational expense of homomorphic encryption
and the requirement for several rounds of communication
between the user and the cloud in which the data is decrypted
and re-encrypted to ensure a minimum level of accuracy.

Under differential privacy [12], the users’ privacy is pre-
served by adding randomness to its uploaded data in such
a way that values cannot be singled out. For example, Ren
et al. [13] implements a privacy-preserving deep learning
model that selectively obfuscates faces while retaining the
ability to classify the images later with a special deep learning
model. Leroux et al. [14] expounds the obfuscation deep
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Fig. 2. High-level view of the system.

learning model in [13] to fully obfuscate the entire image while
being able to use a generic deep learning model for image
classification. The classification model in [14] assumes the
generic classification model is static, which is not a reasonable
assumption under current publicly available models which are
constantly being trained.

Although differential privacy offers a computationally effi-
cient alternative to homomorphic encryption, current differ-
ential privacy approaches, e.g., [13], and [14], establish a
dependency between the obfuscation model and the classifi-
cation model. This dependency influences the accuracy of the
system when either one of the models is modified. Specifically,
when an obfuscation neural network is trained using a specific
classification model at an specific state, the obfuscation model
learns to retain the attributes of this particular classification
model. If the classification model is later modified, as is
the case when further training occurs, the attributes in the
classification model may change. This leads to a dramatic
impact on the accuracy of the classification based on the
obfuscated images.

In this paper, we implement and evaluate the differentially-
private neural network proposed by [14]. In particular, we first
implement a local obfuscation neural network to distort input
images before offloading them to a cloud-hosted pre-trained
classification neural network at the cloud. The obfuscation
model must retain the image attributes observed by the pre-
trained classification model, so that the obfuscated image can
be properly classified with a high degree of accuracy. Once the
obfuscated image is classified, the remote server responds with
the classification results. We thoroughly evaluate our imple-
mentation, and find that additional training on the classification
neural network has a significant impact on the accuracy of the
obfuscation model resulting in a decrease in accuracy of nearly
50%.

II. SYSTEM ARCHITECTURE

We consider a resource-rich cloud server and a resource-
limited mobile client who aims to use deep learning neural net-
works to classify images as seen in Figure 2. The classification
neural network is assumed to be previously trained and located
in the cloud. The cloud may observe the uploaded data, and
it may further train the classification neural network without
notification. The obfuscation neural network is implemented
by the user and it is assumed to be previously trained, but
available for as further training.

TABLE I
OBFUSCATOR AND DEOBFUSCATOR NETWORK ARCHITECTURE

Input Size Module Output Channels  Stride
3x32x32 Conv2D 32 1
32x 16 x 16  Bottleneck 32 2
64 x 16 x 16  Bottleneck 64 2
128 x 4 x 4 Bottleneck 128 2
128 x4 x4 Upsample Bottleneck 64 1
64 x 8x8 Upsample Bottleneck 32 1
32 x 16 x 16  Upsample Bottleneck 3 1

III. PERFORMANCE EVALUATION OF A
DIFFERENTIALLY-PRIVATE NEURAL NETWORK

A. Experiment Setup

In this section, we empirically quantify the dependency
between the obfuscation model and the classification model
outlined by Leroux et al. [14] to investigate the feasibility of
relying on a potentially mutable third-party model. Specifi-
cally, their obfuscation neural network is implemented using
a Generative Adversarial Network (GAN) [15] which use
two neural networks to compete against each other to further
improve the models as seen in Figure 3. Leroux et al. uses a
deobfuscation neural network that trains alongside the obfus-
cation neural network, whose sole purpose is to reconstruct the
original image closely as possible from the obfuscated image.
The obfuscation neural network then considers the accuracy of
the classification from the obfuscated image, and the accuracy
of the reconstructed image to improve its obfuscation. The
result is an obfuscation model that produces an obfuscated
image that can still be classified while not being able to be
restored by the deobfuscation model. The network architecture
for the obfuscation and deobfuscation models can be seen in
Table I and is taken directly from [14]. The classification
model uses the ResNetl8 [17] neural network and resides
locally to simulate a cloud platform since the training results
will be the same. All models are implemented using PyTorch
[18].

The dataset used to train the neural networks is the CIFAR-
10 dataset [16], which consists of 32x32 RGB images, each
containing 1 of 10 different objects or animals with its
associated label. There are 40,000 images for training and
10,000 images for testing the accuracy. To allow for further
improvement, the baseline models are trained using only the
first 20,000 unaltered images of the CIFAR-10 dataset. For
a baseline, he classification model is trained for 50 epochs
to reach an accuracy of 70.82%. The obfuscation model is
also implemented using PyTorch with the GAN introduced by
Leroux et al., and for a baseline, is trained for 100 epochs to
reach an accuracy of 40.68%. To evaluate the impact of the
baseline obfuscation accuracy when the baseline classification
model is further trained, the baseline classification model
is trained for another 50 epochs using the full CIFAR-10
dataset including random horizontal image flips. Each five
epochs, the accuracy of the baseline obfuscation model is
tested and recorded with the updated classification model.
Then the impact of the recovery rate of the obfuscation model
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Fig. 3. Training via Generative Adversarial Network (GAN).
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Fig. 4. Sample images processed by obfuscation and deobfuscation models.

is evaluated by training the baseline obfuscation model using
the final classification model for another 100 epochs with
the full CIFAR-10 dataset including random horizontal image
flips. This will result in a new final classification model and
a final obfuscation model, both with a different accuracy than
their baseline equivalents which can be seen in Figure 5.

B. Results

We quantify the dependency of the obfuscation model using
two metrics:

1) The impact of the baseline obfuscation accuracy when
the baseline classification model is further trained.

2) The recovery rate of the obfuscation model as it is
further trained with the final classification model.

For the first experiment, the accuracy of the classification
model, as seen in Figure 6, jumped from 70.82% to approx-
imately 80% within the first 5 epochs trained with the new
dataset. The final accuracy after 50 epochs is 81.53% which
is a jump of approximately 10%. The baseline obfuscation
model’s accuracy dramatically decreased from 40.68% to
20.52% within the first 10 epochs of the classification training,
resulting in nearly a 50% decrease.

The second experiment demonstrated how quickly the base-
line obfuscation model can recover after further training using
the latest classification model as seen in Figure 7. After 5
epochs of training, the accuracy surpassed the original baseline
obfuscation accuracy using the baseline classification model,
then after 100 epochs, the accuracy increased to 73%. Figure
5 displays the baseline accuracy of the models after being
trained for the initial epochs, and the accuracy of the final
models after the continued training. The final result of the
obfuscated images and restored images produced by the GAN
can be seen in Figure 4.
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Fig. 5. Accuracy of models before and after further training.
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Fig. 6. Experiment 1: Obfuscation model accuracy while Classification model
is trained.
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Fig. 7. Experiment 2: Obfuscation model accuracy while training with final
Classification model.

IV. CONCLUSION

The results obtained clearly show that the even small
changes in the classification model result in significant ac-
curacy degradation for the the obfuscation model. However,
the obfuscation model can quickly recover if it is possible to
re-train it with the latest classification model. In the future,
the baseline obfuscation accuracy is too low to be viable in
a realistic sense, so another baseline obfuscation model with
a more realistic accuracy would provide better results. That
is, given more time and resources, the user could create a
better obfuscation model. Another area of interest would be



to conduct the experiments on other models, whether that be
with various obfuscation models or entirely new systems that
which contain dependent neural networks.
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