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Abstract Estimates of radiative feedbacks obtained by regressing fluctuations in top-of-atmosphere
(TOA) energy imbalance and surface temperature depend critically on the sampling interval and on
assumptions about the nature of the stochastic forcing driving internal variability. Here we develop an
energy balance framework that allows us to model the different impacts of stochastic atmospheric and
oceanic forcing on feedback estimates. The contribution of different forcing components is parsed based
on their impacts on the covariance structure of near-surface air temperature and TOA energy fluxes,
and the framework is validated in a hierarchy of climate model simulations that span a range of oceanic
configurations and reproduce the key features seen in observations. We find that at least three distinct
forcing sources, feedbacks, and time scales are needed to explain the full covariance structure. Atmospheric
and oceanic forcings drive modes of variability with distinct relationships between temperature and TOA
radiation, leading to an effect akin to regression dilution. The net regression-based feedback estimate
is found to be a weighted average of the distinct feedbacks associated with each mode. Moreover, the
estimated feedback depends on whether surface temperature and TOA energy fluxes are sampled at
monthly or annual time scales. The results suggest that regression-based feedback estimates reflect
contributions from a combination of stochastic forcings and should not be interpreted as providing an
estimate of the radiative feedback governing the climate response to greenhouse gas forcing.

Plain Language Summary Climate sensitivity quantifies the long-term warming the Earth will
experience in response to the additional energy trapped in the system due to greenhouse gases. The
physical processes that ultimately determine climate sensitivity—termed climate feedbacks—have been
extensively investigated using information from natural variability in Earth’s temperature and net energy
imbalance. However, a complete physical model for what controls this natural variability has been lacking.
We derive such a physical model and calibrate it to a hierarchy of numerical climate simulations of
increasing complexity. We are able to answer several outstanding questions about previous estimates
of climate feedbacks and sensitivity drawn from natural variability, such as what is the source of this
variability, and how the estimates depend on the how the data is analyzed. We find that at least three
different mechanisms for natural variability are needed to explain the relationship between temperature
and energy imbalance and that none provide direct estimates of climate sensitivity .

1. Introduction

Joint observations of the Earth’s temperature and energy imbalance allow for a unique opportunity to empir-
ically constrain radiative feedbacks. However, the satellite record of Earth’s top-of-atmosphere (TOA) radiative
imbalance is relatively short and prone to calibration and drift errors, thus making estimates of the net
imbalance less reliable than estimates of the relatively large stochastic fluctuations (Stevens & Schwartz,
2012). Consequently, significant effort has gone into estimating radiative feedbacks by regressing unforced
fluctuations in global-mean TOA radiative imbalance against fluctuations in global-mean near-surface air
temperature. The forced component of climate change is either assumed small or removed, and estimates
of feedbacks associated with natural variability are often interpreted as either providing a direct estimate
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Figure 1. Lagged regressions between deseasonalized anomalies in global top-of-atmosphere radiation and surface
temperature. (a) Observational data sets from March 2000 to October 2017. Monthly top-of-atmosphere radiation from
Clouds and the Earth’s Radiant Energy System Energy Balanced And Filled product (CERES EBAF). (Loeb et al., 2009;
Wielicki et al., 1996) and monthly global mean surface temperature from Goddard Institute for Space Studies Surface
Temperature Analysis (GISTEMP) (Hansen et al., 2010). Greenhouse gas and aerosol forcing is removed, and data are
processed as in Donohoe et al. (2014). Shading illustrates 95% regression uncertainty estimates. (b) Same as (a) but for
annually averaged anomalies. (c) Monthly anomalies from a 1,000-year-long preindustrial control run of CESM1 (black),
and the EBM (red) prediction. Pink shading illustrates a 95% uncertainty estimates on EBM regression coefficient based
on 1,000 Monte Carlo draws. Gray lines indicate lagged-regression structures from 50 nonoverlapping segments of the
CESM1 simulation, each of equal length to the observational data set. Blue line indicates the observational
lagged-regression structure, scaled as rscaled

obs
(lag) = robs(lag ⋅ 5∕3), with the ratio of 5/3 mimicking the ratio of El

Niño–Southern Oscillation periodicity in CESM1 and observations. (d) Same as (c) but for annually averaged anomalies.
CESM1 = Community Earth System Model version 1; EBM = energy balance model.

of climate sensitivity to greenhouse gases (e.g., Chung et al., 2010; Dessler, 2010; Donohoe et al., 2014; Forster,
2016; Forster & Gregory, 2006; Trenberth et al., 2015; Tsushima & Manabe, 2013; Zhou et al., 2014) or used
as an emergent constraint on long-term climate response (e.g., Zhou et al., 2015). For both direct estimates
and emergent constraints, the interpretation of feedbacks associated with natural variability, and their appli-
cability to long-term climate change, rests fundamentally on our ability to model the rich structure in the
covariability of temperature and radiative anomalies (Klein & Hall, 2015), that is present in both models and
observations (Forster, 2016, and Figure 1). However, this ability has yet to be demonstrated.

Several other issues with regression-based feedback estimates have been identified. Regression estimates rely
on an often unstated assumption that variability in TOA radiation arises primarily as a response to variability
in surface temperature which is, in turn, driven by nonradiative processes. Spencer and Braswell (2010, 2011)
noted that if unforced TOA radiation itself plays an important role in driving surface temperature variability,
then regression-based feedback estimates will be biased toward higher sensitivity—although the impor-
tance of unforced radiation anomalies has been challenged on methodological grounds (Murphy & Forster,
2010), and on the basis that air-sea heat flux variability, particularly associated with the El Niño–Southern
Oscillation (ENSO), appears to be large relative to radiative variability (Dessler, 2011). Additionally, the net
regression-based estimate of feedbacks associated with internal variability depends on the lag at which the
regression is performed, and on whether monthly or annual data are used (Forster, 2016).
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Here we use a stochastic energy balance framework to build an analytically tractable forward model that
reproduces the full structure of the coupling between stochastic anomalies in global mean surface temper-
ature anomalies and net TOA radiative imbalance. One approach to disentangling the drivers of interannual
variability is to recognize that atmospheric and oceanic processes should operate at different characteristic
time scales, and, perhaps, with different radiative impacts. We model the spectrum, phase, and covari-
ance relationships of both temperature and radiation as seen in a hierarchy of general circulation model
(GCM) simulations spanning a range of oceanic configurations. This allows us to parse the relative contribu-
tion of different stochastic atmospheric and oceanic forcing components and to interpret the value of the
regression-based feedback as a function of the feedbacks elicited by different types of forcing on different
time scales.

2. Energy Balance Framework

The classical building blocks for understanding climate variability are simple stochastically forced linear
systems. The one-dimensional version is usually called a Hasselmann model (Hasselmann, 1976) and has
the form

C
dT
dt

= −𝜆T + F, (1)

where T here denotes global mean near-surface air temperature, C denotes heat capacity,𝜆denotes the radia-
tive feedback, and F denotes stochastic forcing. Under a standard assumption of uncorrelated (white noise)
forcing, the spectrum of temperature has the familiar Lorentzian shape transitioning from red noise at high
frequencies to white noise at low frequencies (Figures 2a and 2b).

The form of the associated equation for TOA radiation depends upon the nature of the forcing (Dessler,
2011; Forster & Gregory, 2006; Spencer & Braswell, 2010, 2011). We first consider the case when forcing, F1, is
due to oceanic heat fluxes. The resulting TOA radiation, Q1, then depends only on the radiative response to
temperature change, T1, according to

Q1 = −𝜆T1. (2)

If, on the other hand, the system is forced only by stochastic TOA radiative anomalies, such as from cloud
variability uncorrelated to T1, then the forcing, F2, will directly imprint upon TOA radiation:

Q2 = −𝜆T2 + F2 = C
dT2

dt
. (3)

The two scenarios—oceanic and radiative forcing—can be distinguished through the phase relationships
they induce between T and Q. Oceanic forcing leads to direct proportionality between T1 and Q1, and thus no
phase lag (Figure 2b). Consequently, the lagged regression between T1 and Q1 is symmetric and equal to 𝜆

at lag zero (Figure 2c). Radiative forcing, however, causes TOA fluxes to be proportional to the rate of change
of temperature, leading to a 90∘ phase lag (Figure 2e). The lagged regression then exhibits an antisymmetric
structure with a discontinuity at zero lag (Figure 2f ).

The third case we consider is that of an ENSO-type process, wherein the associated variability will be
quasi-oscillatory, with a peak in the spectrum of the associated temperature variability. Such quasi-oscillatory
behavior can be modeled either as a nonlinear oscillator (e.g., Battisti & Hirst, 1989) or as a stochastically
forced linear oscillator (Thompson & Battisti, 2000). For analytical tractability we use the latter to model tem-
perature ENSO-related temperature variability (Figure 2g). As ENSO variability is dominated by reorganization
of oceanic heat content (Jin, 1997; Wyrtki, 1985), TOA radiation will be directly proportional to temperature,
although we need to account for a possible lag between the peak in temperature and the peak in outgoing
TOA radiation (Johnson & Birnbaum, 2017; Xie et al., 2016),

Q3(t) = −𝜆T3(t − 𝜃). (4)

The lagged regression of temperature and TOA anomalies associated with ENSO variability is a shifted (by lag
𝜃), decaying, quasi-oscillatory function (Figure 2i). Similar analyses of the lagged-regression symmetry have
been used to disentangle forcing versus response relations in analyses of midlatitude sea-surface temperature
(SST) variability (e.g., Bishop et al., 2017; Frankignoul, 1985; von Storch, 2000).
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Figure 2. Spectrum, phase difference, and lagged regression of net top-of-atmosphere anomalies, Q, versus global-mean
temperature, T for the idealized cases presented in section 2. (a)–(c) depicts the case of a Hasselmann-like model forced
by uncorrelated (white noise) oceanic heat fluxes (equation (2)); (d)–(f ) depicts a similar Hasselmann-like model but
forced by top-of-atmosphere radiative anomalies (equation (3)); (g)–(i) depicts an El Niño–Southern Oscillation
(ENSO)-like quasi-oscillatory process forced by exchanges between the surface and deep ocean (equation (4)).

Key to distinguishing each type of forcing is their distinct lagged-regression structures (Figures 2c, 2f, and 2i).
When all three processes are operating at once, as in the coupled climate system, the net regression-based
feedback will be a complex blend of the covariances structure associated with each forcing. We thus turn to
GCM simulations to quantify the relative importance of each forcing type, to determine whether they may
elicit distinct radiative feedbacks (Hansen et al., 2005; Winton et al., 2010), and to interpret the net feedback
obtained by regression.

3. Model Hierarchy

The hierarchy of GCM simulations we employ consists of a set of preindustrial control simulations of the Com-
munity Earth System Model version 1 (CESM1), at 1∘ horizontal resolution, for which long integrations were
made available within the Large Ensemble project (Kay et al., 2015). In order to quantify the roles of the vari-
ous atmospheric and oceanic forcings in the regression between temperature and TOA radiation, simulations
with three distinct types of model configuration are used: a coupled simulation with full ocean dynamics
(OCN), a slab ocean simulation (SOM) using the spatially variable climatological mixed layer depth from the
coupled simulation, and a fixed SST (fSST) simulation using the climatological SST and sea ice fields from
the coupled simulation. The simulations are performed with a repeating seasonal cycle of insolation and a
constant atmospheric composition representative of conditions in the year 1850. To ensure commensurate
sampling uncertainties, we subset all simulations to a thousand years, equal to the length of the shortest
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available simulation (SOM). All data are deseasonalized by removing the annual cycle frequency and its first
three harmonics.

The fully coupled control simulation of CESM1 reproduces all salient features of the lagged regression struc-
ture in the observations (Figure 1): the relative magnitude of the regression coefficients over a range of
lags using monthly data; the amplification of the zero-lag regression feedback when using annual data; the
quasi-sinusoidal structure, the offset of the maximum covariance toward positive lags, and the sharp jump in
regression coefficient around zero. As we will show, the discrepancy in the periodicity of the sinusoidal struc-
ture in the lagged regression is attributable to the longer periodicity of CESM1’s ENSO cycle compared to the
observations. This discrepancy be accounted for by rescaling the observed lagged regression by the ratio of
model ENSO period to observed ENSO period (Figures 1c and 1f). In what follows, we build and tune an energy
balance model (EBM) to replicate the regression statistics of each simulation in the CESM1 hierarchy in order
to interpret the behavior of the coupled climate system.

3.1. fSST Simulation
The spectrum of near-surface air temperature in the fSST simulation (Figure 3a) has the expected Lorentzian
profile, flat at low frequencies and damped at high frequencies. The phase relation between T and Q is cen-
tered on zero (Figure 3b), indicating that the dominant forcing on the atmosphere is provided by heat fluxes
from the ocean, rather than from TOA radiative variability. Traditionally, the oceanic source of variance is
assumed to be associated with ENSO (Dessler, 2010, 2011, 2013; Murphy & Forster, 2010; Trenberth et al., 2011,
2015). However, the fSST simulation does not contain ocean-dynamics or ENSO-like SST variability; the source
of near-surface air temperature variability is instead provided by stochastic turbulent atmosphere-ocean
fluxes.

We thus build on previous two layer models of atmosphere-ocean exchanges (Barsugli & Battisti, 1998;
Cronin & Emanuel, 2013) and consider an atmosphere, with temperature Ta and heat capacity Ca, coupled
to a surface ocean mixed layer, with temperature To and heat capacity Co. Due to its small heat capacity,
the land is assumed to be in equilibrium with the atmosphere on monthly time scales. Heat fluxes at the
air-sea interface depend on wind speed and on atmosphere-ocean gradients in temperature and humid-
ity. For small perturbations around a steady state, humidity anomalies can be linearized and approximated
as proportional to temperature anomalies. The net atmosphere-ocean fluxes can thus be approximated as
 ∝ U(Ta − To) (e.g., Hartmann, 2015). Ignoring second order terms, anomalous air-sea fluxes can be decom-
posed to yield two terms: (i) a damping term, 𝜆ao(Ta − To) ∝ Ū(T ′

a − T ′
o), proportional to the climatological

time-mean wind speed, Ū, and temperature gradient anomalies (T ′
a − T ′

o); and (ii) a stochastic forcing term
Fao ∝ U′(Ta − To), proportional to surface wind anomalies with a white-noise spectrum (Figure S1 in the sup-
porting information), and the time-mean temperature gradient. For the remainder of the text we will drop
the apostrophe notation, such that all values are taken to represent anomalies from steady state. The tur-
bulent feedback 𝜆ao is typically an order of magnitude larger than the radiative feedbacks term, denoted
𝜆rad,aTa and 𝜆rad,oTo (Barsugli & Battisti, 1998; Cronin & Emanuel, 2013). The inclusion of a 𝜆rad,o term accounts
for the fact that land-atmosphere variability and mixed-layer variability exhibit different temperature pat-
terns and may therefore excite different radiative feedbacks (Andrews & Webb, 2018; Andrews et al., 2015;
Armour et al., 2013; Proistosescu & Huybers, 2017; Rose et al., 2014). 𝜆rad,o also accounts for radiation emitted
by the surface ocean that is not absorbed by the atmosphere. Finally, we consider stochastic radiative anoma-
lies uncorrelated with surface temperature over both land and ocean, Frad = Frad,l + Frad,o, and write the full
model as

Ca

dTa

dt
= −𝜆rad,aTa − 𝜆ao(Ta − To) + Fao + Frad,l (5)

Co

dTo

dt
= −𝜆rad,oTo + 𝜆ao(Ta − To) − Fao + Frad,o, (6)

Q = −𝜆rad,aTa − 𝜆rad,oTo + Frad. (7)

In the fSST configuration we disregard equation (6), while in equation (5) To is kept equal to 0. Additionally, the
zero phase lag (Figure 3b) indicating predominant oceanic forcing means that Fao ≫ Frad,l. This is supported
by the fact that the spectrum of TOA fluxes in the CESM1 fSST simulation is 2 orders of magnitude smaller
than that of surface heat fluxes at frequencies f ≫ 𝜆ao∕Ca ≫ 𝜆rad,a∕Ca, where the forcing terms dominate
the feedback terms in equation (5), (Figure S2 in the supporting information). Denoting C1 = Ca𝜆rad,a(𝜆rad,a +
𝜆ao)−1, F1 = Fao𝜆rad,a(𝜆rad,a+𝜆ao)−1, 𝜆1 = 𝜆rad,a, and after some reorganization, we can now write a Hasselmann
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Figure 3. Analytical spectrum, phase difference, and lagged regression coefficient, r, of net top-of-atmosphere
anomalies, Q, versus global mean near-surface air temperature, T in a CESM1 control run hierarchy. The hierarchy
consists of a fixed SST run (a–c), a slab ocean run (d–f ), as well as the fully coupled control run (g–i). The statistics are
depicted for CESM1 integrations (black), along with EBM (red) fit. A 95% range of EBM realizations is depicted, based on
1,000 Monte Carlo draws. Spectra are computed using a Multitaper algorithm with eight windows. SST = sea surface
temperature ; CESM1 = Community Earth System Model version 1; EBM = energy balance model; OCN = ocean
dynamics.

model akin to equations (1) and (2), for the atmospheric temperature, T1 = Ta, in the fSST simulation:

C1
dT1

dt
= −𝜆1T1 + F1, (8)

Q1 = −𝜆1T1 + Frad, (9)

with 𝜏1 = C1∕𝜆1 = 0.05 years, and 𝜆1 = 1.2 W ⋅ m−2 ⋅ K−1, as fit to the fSST simulation (Appendix A) and
consistent with those derived from first-order principles by Cronin and Emanuel (2013).

Since T1 is forced by atmosphere-ocean fluxes, the radiative term is not correlated with temperature, and
its presence in equation (9) introduces uncertainty in the phase relation (Figure 3b) without altering the
zero mean. The predicted lagged regression matches the fSST simulation (Figure 3c) and is consistent with
an oceanic source of variance (Figure 2c). Thus, air temperature variability driven by surface fluxes shows a
lag-zero regression of 1.2 W ⋅ m−2 ⋅ K−1.

3.2. SOM Simulation
We next consider the SOM, in which the atmosphere is coupled to a mixed layer ocean with SSTs that are
allowed to evolve thermodynamically, but without ocean dynamics. The spectrum of near-surface air tem-
perature (Figure 3d) is consistent with the spectrum of the fSST simulation at high frequencies but displays
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additional variability at frequencies lower than the atmospheric adjustment time scale. We model this addi-
tional variability associated with an active mixed layer by considering a second linear mode of variability, T2,
that is sufficient to capture the increase in variance on multiannual time scales.

The phase relation between TOA anomalies and temperature (Figure 3e) goes from zero at high frequencies,
consistent with the fSST simulation, to 90∘ on interannual time scales where the second mode dominates
the variability, indicating a radiative source of variance for T2 (compare with Figure 2e). Indeed, since this
mode arises on time scales longer than the equilibration time of the atmosphere (𝜏1 = 0.05 years), the atmo-
sphere and ocean layer will be in equilibrium with one another. On these time scales, we can approximate
T2 ≈ Ta ≈ To and sum equations (5) and (6) canceling the Fao terms. This slower mode, T2, then represents
the evolution of the joint atmosphere-mixed layer primarily driven by radiative TOA perturbations. Denoting
C2 = Ca + Co, 𝜆2 = 𝜆rad,a + 𝜆rad,o, F2 = Frad, the Hasselmann model for the second mode can be written akin to
equations (1) and (3) as

C2
dT2

dt
= −𝜆2T2 + Frad, (10)

Q2 = −𝜆2T2 + Frad, (11)

with 𝜏2 = C2∕𝜆2 = 2 years and 𝜆2 = 0.9 W ⋅ m−2 ⋅ K, as fit to the SOM simulation.

The full behavior of the SOM simulation is thus modeled as the sum of the responses of the surface flux-driven
mode, T1, and the radiative driven mode, T2. These two modes, as described by equations (8)–(11), are a good
approximation to the actual eigenmodes of the coupled system (equations (5) and (6)), since 𝜏2 ≫ 𝜏1 and
𝜆ao ≫ 𝜆rad (Cronin & Emanuel, 2013). Both the phase and the lagged regression predicted by T1 + T2 match
the SOM simulation (Figures 3e and 3f) and are consistent with a combination of ocean and radiatively forced
modes (Figures 2a and 2e, and 2c and 2f). The lagged-regression structure shows both the narrow peak at
zero lag associated with ocean-forced T1 as well as a discontinuity at zero associated with a radiatively forced
mode. Notably, the height of the zero-lag peak for the SOM simulation is lower than the height of the peak in
the fSST simulation, where it is equal to 𝜆1.

3.3. Coupled Model With Full Ocean Dynamics
The fully coupled simulation includes the same physics described above but also permits coupled
ocean-atmosphere dynamics that give rise to quasi-oscillatory interannual variability, primarily in the form of
an ENSO mode of variability. This variability is identifiable by the narrowband concentration of power in the
spectral peak centered on a frequency of fE = 1∕4.5 years (Figure 3g). Since an oscillatory solution in a linear
model requires at least two eigenmodes, we model the additional ENSO variability as a stochastically forced
damped harmonic oscillator (Thompson & Battisti, 2000, 2001). We further allow that the peak in TOA fluxes
through an ENSO cycle lags surface temperatures (Johnson & Birnbaum, 2017; Xie et al., 2016), such that the
response of the third mode becomes

1
𝜔2

E

d2T3

dt2
+ 2

𝜏3𝜔
2
E

dT3

dt
+ T3 = 𝜂, (12)

Q3(t) = 𝜆3 ⋅ T3 (t − 𝜃) , (13)

where 𝜂 is a white noise stochastic driving force (Thompson & Battisti, 2001);𝜔E = 2𝜋fE is the resonant angular
frequency of the oscillator, 𝜏3 = 4 years is a damping time that controls the width of the peak, 𝜃 = 8 months
is the lag of radiation relative to temperature, and 𝜆3 = 3.0 W ⋅ m−2 ⋅ K−1 is the radiative feedback associated
with the ENSO-related temperature variability. The larger magnitude of𝜆3 relative to𝜆1, 𝜆2, can be understood
in terms of the difference in the temperature patterns associated with each mode. Whereas land-atmosphere
and mixed-layer variability in CESM1 is dominated by the high latitudes (Xie et al., 2016), ENSO variability is
centered on the tropics and is therefore expected to lead to stronger radiative damping, and therefore a larger
𝜆3 (Rose et al., 2014; Winton et al., 2010).

Temperature and TOA variability in the fully coupled simulation (OCN) are modeled as
∑

Tj , and
∑

Qj . Con-
sistent with the CESM1 control simulation (Figure 3j), relative phase goes as 𝜙 = 𝜔𝜃 ≈ 53∘ at the resonant
frequency. The lagged-regression structure predicted by

∑
Tj and

∑
Qj match the OCN simulation (Figure 3i)

and is consistent with a combination of the three idealized modes (Figures 2b, 2e, and 2h, and 2c, 2f, and 2i)
operating at once.
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4. Regression Coefficients and Radiative Feedbacks

Having assembled a full conceptual model that reproduces the spectral characteristics of the GCM, we are
now in a position to understand the full structure of the lagged regression (Figure 1), and why it depends on
both lag and sampling interval. The lagged regression is equal to the superposition of the distinct feedbacks
associated with each mode, weighted by each mode’s relative temperature variance and its autocorrelation
(see Appendix A for derivation):

r (lag) =
∑

j

𝜆j

(
𝜎2

Tj

𝜎2
Ttotal

)
𝜌j(lag), (14)

where 𝜎2
Tj

= var
(

Tj

)
is the total variance of mode Tj and 𝜌j(t) its autocorrelation function. The regression

values at zero lag and at the ENSO lag 𝜃 can be well approximated as

r(0) = 𝜆1

(
𝜎2

T1

𝜎2
Ttotal

)
+ 𝜆3

(
𝜎2

T3

𝜎2
Ttotal

)[
e−𝜃∕𝜏3 cos

(
𝜔E𝜃

)]
, (15)

r(𝜃) ≈ 𝜆2

(
𝜎2

T2

𝜎2
Ttotal

)[
e−𝜃∕𝜏2

]
+ 𝜆3

(
𝜎2

T3

𝜎2
Ttotal

)
. (16)

For CESM1, the standard deviations for monthly samples are 𝜎T1
= 0.10, 𝜎T2

= 0.08, 𝜎T3
= 0.07 K, the feed-

back parameters are 𝜆1 = 1.2, 𝜆2 = 0.9, 𝜆3 = 3.0 W ⋅ m−2 ⋅ K−1, and net regression feedbacks are r(0) =
1.2 W ⋅ m−2 ⋅ K−1 and r(𝜃) = 1.0 W ⋅ m−2 ⋅ K−1. We repeat our analysis by performing integrations of the same
model hierarchy within an earlier version of the GCM, the Community Climate System Model version 4 (CCSM4;
Bitz et al., 2012; Gent et al., 2011). Within CCSM4, the variance is partitioned differently between the three
modes, with ENSO now the dominant mode. Standard deviations are 𝜎T1

= 0.10, 𝜎T2
= 0.08, 𝜎T3

= 0.13 K,
the feedback parameters are 𝜆1 = 1.5, 𝜆2 = 1.5, 𝜆3 = 2.2 W ⋅ m−2 ⋅ K−1. The net regression feedbacks are
r(0) = 1.2, r(𝜃) = 1.1 W ⋅ m−2 ⋅ K−1, nearly identical to CESM1, despite the significant differences in the
feedbacks and relative variances of each mode.

Equations (14)–(16) provide insight into how and why net regression feedback estimates depend on both
lag and sampling interval. At zero lag, the autocorrelation of the second, radiatively forced mode, 𝜌2(0) is 0,
but T2 still contributes to the total temperature variance. This presence of additional variance in the predictor
variable T that is not manifested in the regressed variable Q is called regression dilution (Fuller, 2009) and
biases the net feedback low relative to a scenario where all variability in T projects identically on Q. This would
imply a bias toward higher sensitivity, if one were to naively interpret it as such. Furthermore, ENSO variability
contributes fully to the temperature variance through 𝜎2

T3
, but its contribution to the covariance of T and Q at

zero lag is damped due to the lag 𝜃. The lagged regression at the ENSO lag 𝜃 suffers from similar issues. The
first mode, forced by surface fluxes, contributes to the temperature variance, but not to the covariance, since
𝜃 ≫ 𝜏1 and 𝜌1(𝜃) ≈ 0, leading to regression dilution. The bias is enhanced by the fact that the contribution of
T2 is also damped by a factor of e−𝜃∕𝜏2 (equation (16)).

The different correlation time scales 𝜏j of the different components mean that smoothing (from monthly to
annual) does not affect all modes equally. Thus, the ratio of𝜎Tj

∕
∑

𝜎Tk
is a function of sampling interval, leading

to different net regression estimates from monthly and from annual data. Using annual averages most strongly
suppresses the first mode of variability, such that in CESM1 𝜎T1

drops from 0.10 to 0.02 K on annual time scales,
while 𝜎T2

changes only slightly from 0.09 to 0.08 K, as does𝜎T3
from 0.08 to 0.07 K. Thus, the regression dilution

effect of the surface flux forced mode is greatly reduced with annual sampling, leading to a larger value of the
regression coefficient, as observed by Forster (2016) and seen in Figure 1.

5. Discussion

We find that natural variability in temperature and radiative anomalies is not dominated by a single source
of forcing. Rather, variability arises in response to different forcing components exciting different radia-
tive responses. Our results highlight the critical importance of high-frequency variability associated with
wind-forced air-sea fluxes. Consistent with previous studies suggesting a dominant ocean source for the forc-
ing (Dessler, 2011; Murphy & Forster, 2010), 70% and 81% of the near-surface air temperature variance is
attributable to ocean-forced modes T1 and T3 in CESM1 and CCSM4, respectively. However, this is the result
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of two independent modes, with no single dominant mode, such that the regression-based estimate of the
net feedback is an amalgamation of several mechanisms with different feedbacks, time scales, and lags.

In all likelihood other modes of variability may be present in the real climate system, such as centennial-scale
variability associated with Southern Ocean variability (Martin et al., 2013) or modulation of ENSO variability
(Wittenberg, 2009). Indeed, it seems fortuitous that variability in CESM1 and CCSM4 can be described using
only three dominant modes. This could partially be attributable to the fact that outside of the ENSO band,
coupled atmospheric-ocean dynamics in the OCN simulation do not excite significantly different decadal
variability from the SOM simulation (Xie et al., 2016). However, it is possible that in other models—or in
the real climate system—there may be significantly more multidecadal variability arising through coupled
ocean-atmosphere mechanisms, such as the Pacific Decadal Oscillation or Atlantic Multidecadal variability.
The framework developed here should be broadly applicable to any decomposition of variability into separate
modes of variability.

Importantly, we find the regression-based estimate of the net feedback to be a poor analog for the equilibrium
feedback in response to CO2 forcing, even in a perfect model setup. For CESM1 the feedback in response to
CO2 forcing is 𝜆CO2

= 0.9 W ⋅m−2 ⋅ K−1 (Meehl et al., 2013), compared to r(0) = 1.2 and r(𝜃) = 1.1 W ⋅m−2 ⋅ K−1.
For CCSM4, 𝜆CO2

= 1.25 W ⋅ m−2 ⋅ K−1 (Bitz et al., 2012), nearly 40% larger, despite regression-based estimates
of interannual feedback of r(0) = 1.2 and r(𝜃) = 1.0 W ⋅ m−2 ⋅ K−1, nearly identical to CESM1. The nearly
identical values of 𝜌(0) and 𝜌(𝜃) in the two models arise through compensations in the values of variances and
feedbacks of the individual modes. In particular, the ENSO mode, T3 has the lowest relative variance in CESM1
(23%), and the highest relative variance in CCSM4 (53%), but the change in relative variance is compensated
by the change in the radiative feedback magnitude of 𝜆3.

In lieu of a direct estimate from interannual variability, there is evidence that the ensemble spread in
regression-based (e.g., Zhou et al., 2015) or fluctuation-dissipation-based (e.g., Cox et al., 2018) estimates of
interannual feedbacks is strongly related to the ensemble spread in climate sensitivity across fully-coupled
models. However, any emergent constraint using a bulk regression-based feedback as their basis should be
treated with caution, as the intermodel spread is not simply a function of the radiative processes. The model
ensemble spread will be strongly influenced by the significant ensemble spread of the variance and time
scales associated with different modes of variability (e.g., Chen et al., 2017, for spread in ENSO variability).
One possible path forward is identifying commonalities between the feedbacks associated with individual
modes or time scales and the feedbacks governing long-term warming, such as has been recently done for
the radiative feedback associated with the ENSO frequency (Lutsko & Takahashi, 2018).

However, constraining these modes in the observational record is expected to provide several challenges.
A complicating factor in using observational data is that global-mean temperature measurements often con-
sist of a blend of air temperature over land and SST over the ocean. This could lead to a subsampling of the fast
mode. However, this bias could be quantified by using a blended model output that would mimic observa-
tional sampling (Richardson et al., 2016) or by only analyzing time scales longer than a year, where sea-surface
and air temperature are expected to covary. Using a hierarchy of multicentury GCM simulations allowed us to
constrain the model parameters to a high degree of accuracy. However, the large number of total EBM param-
eters and the relatively short observational record will result in trade-offs between likely parameter values
that will need to be carefully quantified. Additionally, while this work highlights the importance of the tem-
poral structure of the coupling between temperature and radiation, each of the modes of variability also has
a particular spatial pattern that could prove useful in constraining it. Future work should focus on developing
a statistical framework to fit the conceptual model to the short and noisy observational record and on making
use of the spatial structure associated with each temporal mode.

Appendix A: Analytical Derivations and Model Fitting

Here we derive analytical solutions to the EBM fit to output from the three CESM1 experiments. For zero-mean
processes, the lag-t regression of TOA anomalies relative to temperature anomalies is a ratio of the lagged
cross covariance to the zero-lag temperature autocovariance,

r(t) =
CQT (t)
CTT (0)

, (A1)
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with the lag-t autocovariance and cross covariance, CYX (t) = ⟨Y(t′)X(t′ + t)⟩, computed from the autospectra
or cross spectra SYX (𝜔) = ⟨Y(𝜔)X∗(𝜔)⟩, using the Wiener-Khinchin theorem as

CXY (t) = ∫
∞

−∞
SXY (𝜔)e−i𝜔td𝜔. (A2)

Thus, we need to compute the spectrum of temperature, STT and the cross spectrum of TOA anomalies and
temperature, SQT . The phase lag is computed as the phase of the complex cross spectrum.

A1. Fixed Sea Surface Temperatures
Taking the Fourier transform of equations (8) and (9) and denoting 𝜏1 = C1∕𝜆1, 𝜎F1

=
⟨

F1F∗
1

⟩
(𝜔), and

𝜎T1
= CT1T1

(0),

i𝜔𝜏1𝜆1T1 = −𝜆1T1 + F1 (A3)

Q1 = −𝜆1T1 + Frad (A4)

ST1T1
=

𝜎2
F1

𝜆2
1

1
1 + 𝜔𝜏2

1

(A5)

SQ1T1
=

𝜎2
F1

𝜆1

1
1 + 𝜔𝜏2

1

+ 1
𝜆1

⟨
F1 ⋅ F∗

rad

⟩
1 + i𝜔𝜏1

(A6)

Using the assumption that
⟨

F1F∗
rad

⟩
= 0,

CT1T1
(0) =

𝜎2
F1

𝜆2
1
∫

∞

−∞

e−i𝜔t

1 + 𝜔2𝜏2
1

d𝜔
|||||t=0

=
𝜎2

F1

2𝜆2
1𝜏1

= 𝜎2
T1

(A7)

CQ1T1
(t) =

𝜎2
F1

𝜆1 ∫
∞

−∞

e−i𝜔t

1 + 𝜔2𝜏2
2

d𝜔 =
𝜎2

F1

2𝜆1𝜏1
e−|t|∕𝜏1 (A8)

CQ1T1
(t) = 𝜆1𝜎T1

e−|t|∕𝜏1 (A9)

r(fSST) = 𝜆1e−|t|∕𝜏1 (A10)

A2. Slab Ocean Model
Taking the Fourier transform of equations (10) and (11) and denoting 𝜏2 = C2∕𝜆2, 𝜎F2

=
⟨

F2F∗
2

⟩
(𝜔), and

𝜎T2
= CT2T2

(0),

i𝜔𝜏2𝜆2T2 = −𝜆2T2 + F2 (A11)

Q2 = −𝜆2T2 + F2 = i𝜔𝜏2𝜆2T2 (A12)

ST2T2
=

𝜎2
F2

𝜆2
2

1
1 + 𝜔2𝜏2

2

(A13)

SQ2T2
=

𝜎2
F2

𝜆2

i𝜔𝜏2

1 + 𝜔2𝜏2
2

(A14)

CT2T2
(0) =

𝜎2
F2

𝜆2
2
∫

∞

−∞

e−i𝜔t

1 + 𝜔2𝜏2
2

d𝜔
|||||t=0

=
𝜎2

F2

2𝜆2
2𝜏2

= 𝜎2
T2

(A15)
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CQ2T2
(t) =

𝜎2
F2

𝜆2 ∫
∞

−∞

i𝜔e−i𝜔t

1 + 𝜔2𝜏2
2

d𝜔 =
𝜎2

F2

2𝜆2𝜏2
e−|t|∕𝜏2 sign(t) (A16)

CQ2T2
(t) = 𝜆2𝜎T2

e−|t|∕𝜏2 sign(t) (A17)

Since the modes are assumed independent,

S(SOM)
TT = ST1T1

+ ST2T2
(A18)

S(SOM)
QT = SQ1T1

+ SQ2T2
(A19)

C(SOM)
TQ = CQ1T1

+ CQ2T2
(A20)

C(SOM)
TT = 𝜎T1

+ 𝜎T2
(A21)

r(SOM)(t) = 𝜆1

(
𝜎2

T1

𝜎2
total

)(
e−|t|∕𝜏1

)
+ 𝜆2

(
𝜎2

T2

𝜎2
total

)(
e−|t|∕𝜏2 sign(t)

)
(A22)

A3. Coupled Run With Full Ocean Dynamics
Taking the Fourier transform of equations (12) and (13) and denoting 𝜔∗

E = 𝜔E − 1∕𝜏3, 𝜎2
𝜂
= ⟨𝜂𝜂∗⟩

− 𝜔2

𝜔2
E

T3 +
2i𝜔
𝜏3𝜔

2
E

T3 + T3 = 𝜂 (A23)

Q3 = 𝜆3T3ei𝜔𝜃 (A24)

ST3T3
=

𝜎2
𝜂(

𝜔2
E − 𝜔2

)2 + 4𝜔2𝜏−2
3

(A25)

SQ3T3
=

𝜆3𝜎
2
𝜂

ei𝜔𝜃(
𝜔2

E − 𝜔2
)2 + 4𝜔2𝜏−2

3

(A26)

The autocovariance and cross covariance are (Wang & Uhlenbeck, 1945):

CT3T3
(0) = 𝜎2

𝜂
𝜔2

E ∫
∞

−∞

e−i𝜔t(
𝜔2

E − 𝜔2
)2 + 4𝜔2𝜏−2

3

d𝜔
||||||t=0

(A27)

CT3T3
(0) = 𝜋𝜎2

𝜂
𝜔2

E (A28)

CQ3T3
(t) = 𝜆3𝜎

2
𝜂
𝜔2

E ∫
∞

−∞

e−i𝜔(t−𝜃)(
𝜔2

E − 𝜔2
)2 + 4𝜔2𝜏−2

3

d𝜔 (A29)

CQ3T3
(t) = 𝜆3𝜋𝜎

2
𝜂
𝜔2

E e−|t−𝜃|∕𝜏3

[
cos

(
𝜔∗

E (t − 𝜃)
)
+ 1

𝜔∗
E𝜏3

sin
(
𝜔∗

E (t − 𝜃)
)]

(A30)
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Using the independence of the modes,

S(OCN)
TT =

3∑
j=1

STj Tj
(A31)

C(OCN)
QT =

3∑
j=1

CQj Tj
(A32)

r(t) =
3∑

j=
𝜆j

𝜎2
Tj

𝜎2
Ttotal

𝜌j(t) (A33)

𝜌1(t) = e−|t|∕𝜏1 (A34)

𝜌2(t) = e−|t|∕𝜏2 sign(t) (A35)

𝜌3(t) = e−|t−𝜃|∕𝜏3

[
cos

(
𝜔∗

E (t − 𝜃)
)
+ 1

𝜔∗
E𝜏3

sin
(
𝜔∗

E (t − 𝜃)
)]

(A36)

At t = 0, 𝜌2(0) = 0. Since 𝜃 ≈ 8 months, and𝜔E = 2𝜋∕5 rad/years, 𝜌3(0)will be dominated by the cosine term.

𝜌3(0) ≈ e−𝜃∕𝜏3 cos
(
𝜔∗

E𝜃
)

(A37)

At t = 𝜃 it follows from 𝜏1 ≪ 𝜃 that 𝜌1(𝜃) ≈ 0.

A4. Fitting Procedure
Parameters are obtained in the following manner and order. (𝜎2

F1
𝜆−2

1 ) and 𝜏1 are obtained by a nonlinear least
squares (NLSQ) of equation (A5) to the periodogram of near-surface air temperature from the fSST simulation
(Figure 3a).𝜆1 is obtained using an NLSQ of equation (A10) to the lagged regression of TOA versus near-surface
air temperature in the fSST simulation (Figure 3c). (𝜎2

F2
𝜆−2) and 𝜏

2
are obtained by NLSQ of equation (A18) to

the periodogram of near-surface air temperature in the SOM simulation (Figure 3d). 𝜆2 is obtained using an
NLSQ of equation (A22) to the lagged regression of TOA versus near-surface air temperature in the fSST sim-
ulation (Figure 3f ). 𝜎2

𝜂
, 𝜔E , and 𝜏3 are obtained by NLSQ of equation (A31) to the periodogram of near-surface

air temperature in the OCN simulation (Figure 3d). 𝜆3 and 𝜃 are obtained using an NLSQ of equation (A33) to
the lagged regression of TOA versus near-surface air temperature in the OCN simulation.
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