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Climate constraint reflects forced signal

ARISING FROM P. M. Cox, C. Huntingford & M. S. Williamson Nature 553,

A recent paper by Cox et al.! introduces ¥, “a theoretically informed
metric of global temperature variability”, which scales with equilibrium
climate sensitivity (ECS) across 16 general circulation models (GCMs).
Cox et al.! report that ¥ provides a strong constraint on ECS, ruling
out both high and low values. Our analysis shows that this constraint
is sensitive to the GCMs considered, primarily reflects the forced cli-
mate response rather than climate variability and does not narrow the
uncertainty in ECS. It is therefore premature to rule out the possibility
of large ECS values. There is a Reply to this Comment by Cox, P. M.
et al. Nature 563, https://doi.org/10.1038/s41586-018-0641-x (2018).

Cox et al.! build on fundamental physical principles, making use of
the fluctuation—dissipation theorem, which relates the statistical prop-
erties of a system in thermal equilibrium to the sensitivity of the system
to forcing. The authors apply the fluctuation-dissipation theorem to
the ‘Hasselmann model’ of global climate under white-noise forcing.
Using this highly idealized model, they define ¥ as the ratio of tem-
perature variability to a measure of the one-year-lag autocorrelation
of annual-mean temperature and show ¥ to be proportional to ECS.
Their work extends previous research on the fluctuation-dissipation
theorem and climate?~> by demonstrating that ¥ scales with ECS in
historical simulations performed with GCMs. Using the instrumental
surface-temperature record as an observational constraint on ¥, Cox
et al.! propose bounds on ECS that are narrower than in previous
assessments. They provide what appear to be the essential ingredi-
ents® for an emergent constraint on climate sensitivity: their metric
¥ is observable, scales with ECS values in GCMs and has a sound
theoretical basis.

An implicit assumption by Cox et al.! is that ¥ primarily reflects
internal climate variability. In simulations and observations of historical
climate change, ¥ is also influenced by natural (volcanic and solar) and
anthropogenic forcings. To determine whether ¥ scales with ECS in
simulations without changes in external forcing, we use pre-industrial
control experiments, in which global temperature variations are due to
internal climate variability alone. Following Cox et al.!, we calculate ¥
using de-trended, overlapping 55-year windows of global-mean surface
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temperature. The average of the individual windows in an entire control
simulation of a model is denoted by ¥. Consistent with the findings of
Cox et al.! for historical simulations, a strong relationship exists
between ¥ and ECS in GCM control experiments (Fig. 1a). B

However, there is substantial spread in the regression between ¥ and
ECS in individual segments of the control simulations. For consistency
with the length of the historical record (1880-2016), we randomly
sample 137-year periods from each pre-industrial control simulation,
compute ¥ and then calculate the correlation between ¥ and ECS.
Repeating this calculation, we find that only about 7% of our samples
yield a relationship that rivals or exceeds the correlation coefficient
found by Cox et al.! (r=0.77). This result suggests that the observa-
tional record is too short to act as a strong ECS constraint” and that
forced temperature changes probably enhance the strength of the
W-ECS relationship in historical simulations.

Compared to the historical simulations used by Cox et al." (Fig. 1b),
the pre-industrial control simulations exhibit a different #~ECS scaling
(Fig. 1a), with a narrower range of ¥ values across GCMs. This differ-
ence in scaling has important implications. Applying the observational
U estimate to the pre-industrial control simulations yields a 95% con-
fidence interval for the ECS of 2.6-5.4°C (Fig. 1a). This is substantially
higher than that found by Cox et al.' using historical simulations
(1.6-4.0°C; Fig. 1b). We therefore infer that the strong constraint on
the high end of ECS reported by Cox et al.! arises primarily from the
response to historical forcing, not from internal variability.

The physical derivation of the relationship between ¥ and ECS by
Cox et al.! is valid only for stationary white-noise forcing. It is therefore
important to remove forced temperature signals. Cox et al.' assume that
forced temperature variability can be removed by linearly de-trending
the temperature time series. An alternative method (which does not
require this assumption) is to remove the ensemble-mean response of
amodel to external forcing. We contrast these two methods for signal
removal using ten realizations of historical climate change from the
CSIRO-Mk3-6-0 model (Fig. 2a). The approach of Cox et al.! yields
W values that are inflated after about 1950 relative to those based on
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Fig. 1 | The ECS constraint depends on the underlying forcing.

a, Relationship between ¥ and ECS derived from the entire length of the
pre-industrial control simulation available for each model. b, As in a, but
for simulations of historical climate change over the period 1880-2016.
¢, As in b, but considering only global temperature data before 1963. In
each panel, the black circles represent the original 16-model subset
highlighted by Cox et al.!. The black line is a linear fit and the vertical
blue shading is the observational ¥ value (41 standard deviation). In
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a and b, the observational range is derived from the entire temperature
record (1880-2016), whereas the instrumental record before 1963 is used
in ¢ (¥ values ending between 1934 and 1962). The implied probability
distribution of ECS is displayed on the vertical axis. The median ECS value
and 95% confidence interval for a—c are 4.0+ 1.4°C,2.8 £1.2°Cand

3.3+ 1.4°C, respectively. The corresponding 95% confidence interval is
denoted by horizontal lines along the y axis.
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Fig. 2 | Forced temperature changes contaminate W. a, Annual
temperature anomaly of the CSIRO-Mk3-6-0 model for a single realization
(black) and the ensemble average of ten realizations (red). The blue

line shows the single realization de-trended using the ensemble average
and the cyan line shows the first and last 55-year period of the single

the removal of the ensemble-mean forced signal (figure 2a in Cox
et al.’; Fig. 2b). The increase in ¥ occurs when there is a pronounced
change in anthropogenic radiative forcing. Our results suggest that late
twentieth-century forcing contaminates this variability-based
constraint on ECS, undermining the physical interpretation of ¥.

To understand the sensitivity of the ECS constraint to the time period
selected, we consider the implications of using ¥ values from the early
part of the historical record, before the rapid increase in anthropogenic
forcing. We calculate ¥ from observational temperature data for the
period 1880-1962, thus excluding forcing from the eruption of Mt
Agung in 1963 (Fig. 1c). The resulting ¥ values are relatively small
during the early historical period. The median ECS estimate is larger
(3.3°C; 95% confidence interval of 1.9-4.7°C) than the result of Cox
et al.! for the full historical record (2.8 °C). This indicates that the
central ECS estimate and its bounds are sensitive to the time period
considered.

The strength of the -ECS correlation is also sensitive to the subset
of GCMs considered. If we include six additional models that were
listed in extended data table 1 of Cox et al.' but were not included in
the primary analysis, then the W-ECS correlation decreases both in
historical simulations (72 =0.59 to 7 =0.42) and in pre-industrial
control simulations (r* = 0.63 to r* = 0.43; Extended Data Fig. 1).
Including additional GCMs that were not considered in the original
research further degrades the W-ECS relationship (Extended Data
Fig. 1), indicating that the ECS variance explained by ¥ depends on
the models considered. The justification for the smaller, 18-model
subset was “to avoid biasing the emergent constraint towards the
centres with the most model runs”. However, different models devel-
oped at the same centre can have widely varying ¥ and ECS values
(Extended Data Fig. 1), so the inclusion of multiple models from the
same institution does not necessarily weight ¥ and ECS values towards
a particular centre. Our finding that the use of larger model subsets
degrades the correlation between ¥ and ECS undermines the robust-
ness of the constraint®.

Emergent constraints are most convincing when they are based on
a solid theoretical understanding of the underlying physical mecha-
nisms. The constraint presented by Cox et al.! was developed assuming
that forced changes are negligible. As we have shown, their constraint
is influenced by climate forcings in the latter half of the twentieth cen-
tury. This introduces ambiguity in the interpretation of ¥. Despite this
ambiguity, the fact remains that GCM:s exhibit a relationship between
¥ and ECS. This suggests that ¥ may reflect an indirect constraint on
ECS through a dependence on aerosol forcing?, volcanic response® and
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realization de-trended using a linear fit. The blue and cyan lines are offset
by —1 Kand —2 K for clarity. b, ¥ values for the end of each 55-year period
using a moving linear fit to remove forced temperature changes (cyan),
and ¥ values calculated after first removing forced temperature variability
(as represented by the ensemble average, blue).

transient warming'®. Although the original! ¥ constraint implies an
ECS value near the centre of the likely range found by the
Intergovernmental Panel on Climate Change (IPCC; 1.5-4.5°C)!},
credible emergent-constraint studies!? suggest ECS values that are
greater than the likely estimate of Cox et al.". In the absence of addi-
tional efforts to understand the dependence of the constraint of Cox
etal.! on climate forcing and model selection, ¥ alone does not provide
a sufficient basis for narrowing the range of ECS reported by the IPCC,
which is based on multiple lines of evidence!®.

Data availability
The datasets generated during this study are available from the
corresponding author on reasonable request.

Code availability
The Python code used to produce the figures in this paper is availa-
ble from the corresponding author on reasonable request.
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Extended Data Fig. 1 | The strength of the W-ECS relationship depends
on the models considered. a, ¥ versus ECS for the pre-industrial control
experiment (as in Fig. 1a), but including six additional models listed in
extended data table 1 of Cox et al.! (grey) and five additional models not
included in their original analysis (red; see Supplementary Information).
The black line represents the regression obtained with the original
16-model subset of Cox et al.}, the grey line represents the regression with
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the 22-model subset (grey and black dots) and the red line represents the
regression using all 27 models. The dotted grey lines connect models from
a common modelling centre. The correlation coefficient is listed in
parentheses for each set of models considered. b, As in a, but for the
historical experiment. Using all models and the early historical period
(1880-1962) to compute ¥ (asin Fig. 1c), we arrive at a median ECS of
3.4°C (95% confidence interval of 1.9-4.9 °C).
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