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1. Introduction

1.1. A remarkable stability for the centers of the integral group algebras Z[Sn] of 
the symmetric groups Sn as n varies was established by Farahat and Higman [2]. This 
stability result can be reformulated conceptually as follows [7]. Define a notion of reflec-
tion length and modified type for permutations in Sn, so the length of a permutation 
is conjugation invariant and it is equal to the size of its modified type. The reflection 
length endows the center of Z[Sn] a filtered algebra structure; the stability result of 
Farahat-Higman states that the structure constants in the associated graded algebras of 
the centers with respect to the basis of conjugacy class sums are independent of n. This 
stability result has led to a universal stable (Farahat-Higman) ring with a distinguished 
basis, which can be further identified with the ring of symmetric functions with a new 
basis [7, pp. 131-134].

The above stability result has been generalized by the second author [10] to wreath 
products Γ �Sn for any finite group Γ. When the group Γ is a finite subgroup of SL2(C), 
the associated graded algebra of the center of the group algebra of the wreath product 
is isomorphic to the cohomology ring of Hilbert scheme of n points on the minimal 
resolution of C2/Γ; see [10]. (In case when Γ is trivial, this goes back to [5,9].) The 
same type of stability results has been established in [6] for cohomology ring of Hilbert 
scheme of n points on a large class of quasi-projective surfaces (conjecturally, on any 
non-projective surface).

1.2. The general linear groups GLn(q) over a finite field Fq form another rich and 
sophisticated family of finite groups, which are often studied besides symmetric groups 
and wreath products; cf. [7,11]. The main goal of this paper is to formulate and establish 
a stability result à la Farahat-Higman for the centers of the integral group algebras of 
GLn(q).

1.3. An element in GLn(q) is called a reflection in this paper if its fixed point subspace 
in Fn

q has codimension one. The set of reflections in GLn(q) forms a generating set for 
GLn(q), and the reflection length of a general element g ∈ GLn(q) is by definition the 
length of any reduced word of g in terms of reflections; two conjugate elements in GLn(q)
have the same reflection length. The center Zn(q) of the integral group algebra Z[GLn(q)]
of GLn(q) is a filtered algebra with a basis of conjugacy class sums with respect to the 
reflection length. Denote by Gn(q) the associated graded algebra.

Denote by Φ the set of monic irreducible polynomials in Fq[t] other than t. It is 
well known (cf. [7]) that the conjugacy classes of GLn(q) are parametrized by the types 
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λ = (λ(f))f∈Φ ∈ Pn(Φ) (which are the partition-valued functions on Φ of degree n; 
cf. (2.2)). We define a notion of modified types as follows. Let g be an element of GLn(q)
of type λ ∈ Pn(Φ). Denote by λe = λ(t −1) the partition of the unipotent Jordan blocks, 
and denote by r = �(λe) its length. We define the modified type of g to be λ̊ ∈ Pn−r(Φ), 
where ̊λ(f) = λ(f) for f �= t −1 and ̊λ(t −1) = (λe

1−1, λe
2−1, . . . , λe

r−1). This modified 
type remains unchanged for g under the embedding of GLn(q) into GLn+1(q) and it is 
also clearly conjugation invariant. It follows that the conjugacy classes of GL∞(q) are 
parametrized by the modified types in P(Φ) = ∪nPn(Φ).

As observed in [4], a basic property about the reflection length of g ∈ GLn(q) is that 
it coincides with the codimension of its fixed point subspace in Fn

q . We show that the 
reflection length of an element g ∈ GLn(q) is equal to the size of its modified type.

We parametrize the conjugacy classes (and class sums) for GLn(q) via the modified 
types λ, and denote the conjugacy classes by Kλ(n) and the corresponding class sums 
by Kλ(n), for ‖λ‖ + �(λe) ≤ n. We then write the multiplication in the center Zn(q) as

Kλ(n)Kμ(n) =
∑

ν: ‖ν‖≤‖λ‖+‖μ‖
aνλμ(n)Kν(n). (1.1)

We can now state our first main result of this paper.

Theorem 1.1 (Theorem 3.4). Let λ, μ, ν ∈ P(Φ). If ‖ν‖ = ‖λ‖ + ‖μ‖, then aνλμ(n) is 
independent of n. (In this case, we shall write aνλμ(n) as aνλμ ∈ N.)

After we proved Theorem 3.4, we found a paper by Méliot, in which the structure 
constants aνλμ(n) in (1.1) for the centers Zn(q) were studied. Inspired by Kerov-Ivanov’s 
partial permutations, Méliot [8] developed a very interesting notion of partial isomor-
phisms for GLn(q) and used it to show that aνλμ(n) are polynomials in x evaluated at 
x = qn; see however Remark 3.6. This can be viewed as an analogue of another result 
of Farahat-Higman for symmetric groups. The concepts of reflection length filtration of 
Zn(q) and modified types were not present in [8] however, and the parametrization of 
the class sums for GLn(q) therein often uses μ with μe containing no part equal to 1. 
Our paper provides an in depth study of these structure constants complementary to [8], 
focusing on arguably the more interesting and accessible ones.

A key ingredient in the proof of Theorem 1.1 is the existence of a normal form of 
triples in the following sense (see Proposition 3.3). Assume ‖ν‖ = ‖λ‖ + ‖μ‖. Any triple 
of elements (g, h, gh) in GL∞(q) of modified types λ, μ and ν is conjugate (under the 
simultaneous conjugation of GL∞(q)) to some triple (ḡ, ̄h, ̄gh̄) of elements in GLk(q)
with k = ‖ν‖ + �(νe), where we regard GLk(q) naturally as a subgroup of GL∞(q).

Theorem 1.1 can be rephrased as that the associated graded algebra Gn(q) of Zn(q)
has structure constants independent of n. We introduce a graded Z-algebra G with a 
basis given by the symbols Kλ indexed by λ ∈ P(Φ), and its multiplication has structure 
constants aνλμ as in the theorem above, for ‖ν‖ = ‖λ‖ + ‖μ‖; cf. (3.10).
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Theorem 1.2 (Theorem 3.5). The graded Z-algebra Gn(q) has the multiplication given by

Kλ(n)Kμ(n) =
∑

‖ν‖=‖λ‖+‖μ‖
aνλμKν(n),

for λ, μ ∈ P(Φ). Moreover, we have a surjective homomorphism G � Gn(q) for each n, 
which maps Kλ to Kλ(n) for all λ ∈ P(Φ).

1.4. We conjecture that the stable center Q ⊗ZG (q) is the polynomial algebra gener-
ated by the single cycle class sums; for a precise formulation see Conjecture 5.4. Similar 
structure results hold for the stable centers in the settings of symmetric groups and 
wreath products; cf. [2,10].

The computations of the structure constants aνλμ are much more difficult than in the 
symmetric group or wreath product settings; cf. [2,10]. We compute various examples of 
these structure constants (see Theorem 4.4, Proposition 4.5, Proposition 4.6) in Section 4.

All examples indicate a phenomenon (which is rather striking to us) that these struc-
ture constants aνλμ only depend on the configurations but not on the precise supports of 
the modified types λ, μ, ν; see §5.2(5) for a precise formulation. The examples have also 
motivated several conjectures on more general structure constants in Section 5, where 
we also discuss a few open problems and further directions which arise from this work.

In particular, we ask to what extent the structure constants (not merely the stable 
ones) are polynomials in q; this is a little subtle as the indexing sets for the structure 
constants rely on the conjugacy classes of GLn(q) which depend on q. We offer a possible 
formulation of generic structure constants; see Conjecture 5.3 and §5.2(6).

1.5. The paper is organized as follows. In Section 2, we review and set up notations 
for conjugacy classes and their canonical representatives of GLn(q). We introduce the 
notion of modified types. In Section 3, we formulate and establish the stability on the 
structure constants for the graded algebra Gn(q) and the universal stable center G (q). 
In Section 4, we compute various structure constants for G (q). We formulate a few 
conjectures and further research directions in Section 5.

2. Conjugacy classes and centralizers in GLn(q)

In this section, we will review the conjugacy classes of the general linear group GLn(q)
and set up notations (cf. [7]). We provide a description of the centralizers of represen-
tatives of these conjugacy classes. A notion of modified types is introduced and used to 
parametrize the conjugacy classes of GLn(q) and GL∞(q).

2.1. Conjugacy classes of GLn(q)

Denote by P the set of all partitions. For λ = (λ1, λ2, . . . , ) ∈ P, we denote its size by 
|λ| = λ1 + λ2 + · · · + λ�, its length by �(λ), and also denote
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n(λ) =
∑
i≥1

(i− 1)λi.

We will also write λ = (1m1(λ)2m2(λ) . . .), where mi(λ) is the number of parts in λ equal 
to i. For two partitions λ, μ ∈ P, we denote by λ ∪μ the partition whose parts are those 
of λ and μ. For a set Y , let P(Y ) be the set of the partition-valued functions λ : Y → P

such that only finitely many λ(y) are nonempty partitions. Given λ, μ ∈ P(Y ), we define 
λ ∪ μ ∈ P(Y ) by letting (λ ∪ μ)(y) = λ(y) ∪ μ(y) for each y ∈ Y .

Denote by Fq the finite field of q elements, where q is a prime power. We shall regard 
vectors in the n-dimensional vector space Fn

q as column vectors, that is, Fn
q = {v =

(v1, . . . , vn)ᵀ|vk ∈ Fq, 1 ≤ k ≤ n} for each n ≥ 1. Denote by Mn×m(q) the set of n ×m

matrices over the finite field Fq. The general linear group GLn(q), which consists of all 
invertible matrices in Mn×n(q), acts on Fn

q naturally via left multiplication. We shall 
abbreviate GLn(q) as Gn.

The conjugacy classes of Gn can be described as follows (cf. [7]). For g, h ∈ Gn, write 
g ∼ h if g is conjugate to h. Each element g ∈ Gn acts on the vector space Fn

q and hence 
defines a Fq[t]-module on Fn

q such that tv = gv for v ∈ Fn
q . Denote this Fq[t]-module 

by Vg. Then g ∼ h if and only if Vg
∼= Vh as Fq[t]-modules. Hence the conjugacy classes 

of Gn are in one to one correspondence with the isomorphism classes of Fq[t]-modules V
such that dimV = n and if tv = 0 then v = 0 for v ∈ V . Since Fq[t] is a principal ideal 
domain, each Fq[t]-module is isomorphic to a direct sum of cyclic modules of the form 
Fq[t]/(f)m, where m ≥ 1, f ∈ Fq[t] is a monic irreducible polynomial and (f) is the ideal 
generated by f .

Let Φ be the set of all monic irreducible polynomial in Fq[t] other than t. Then for 
each g ∈ Gn, there exists a unique λ = (λ(f))f∈Φ ∈ P(Φ) such that

Vg
∼= Vλ := ⊕f,iFq[t]/(f)λi(f), (2.1)

where we write λ(f) = (λ1(f), λ2(f), . . .) ∈ P; moreover, we have

‖λ‖ :=
∑
f∈Φ

d(f)|λ(f)| = n, (2.2)

where d(f) denotes the degree of the polynomial f . Denote by Pn(Φ) the set of λ ∈ P(Φ)
satisfying (2.2). The partition-valued function λ = (λ(f))f∈Φ ∈ P(Φ) is called the type
of g. Then any two elements of Gn are conjugate if and only if they have the same 
type, and there is a bijection between the set of conjugacy classes of Gn and the set 
Pn(Φ).

For each f = td −
∑

1≤i≤d ait
i−1 ∈ Φ, let J(f) denote the companion matrix for f of 

the form
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J(f) =

⎡⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
a1 a2 a3 · · · ad

⎤⎥⎥⎥⎥⎦ ,

and for each integer m ≥ 1 let

Jm(f) =

⎡⎢⎢⎢⎢⎢⎣
J(f) Id 0 · · · 0 0

0 J(f) Id · · · 0 0
...

...
...

...
...

0 0 0 · · · J(f) Id
0 0 0 · · · 0 J(f)

⎤⎥⎥⎥⎥⎥⎦
dm×dm

with m diagonal blocks J(f), where Id is the d ×d identity matrix. Given λ ∈ P(Φ) with 
λ(f) = (λ1(f), λ2(f), . . .), set

Jλ = diag
(
Jλi(f)(f)

)
f,i
, (2.3)

that is, Jλ is the diagonal sum of the matrices Jλi(f)(f) for all i ≥ 1 and f ∈ Φ. Then 
an element g ∈ Gn of type λ is conjugate to the canonical form Jλ (cf. [7, Chapter IV, 
§2]). For f ∈ Φ, set

Jλ(f) = diag
(
Jλi(f)(f)

)
i≥1

.

Then by (2.1), we have VJλ(f) ∼= ⊕i≥1Fq[t]/(f)λi(f) as Fq[t]-modules and moreover, we 
have Jλ = diag

(
Jλ(f)

)
f∈Φ.

Lemma 2.1 (cf. [7, IV, (2.5)]). Let λ, μ ∈ P(Φ) and f1 �= f2 ∈ Φ. Suppose A is a 
d(f2)|μ(f2)| × d(f1)|λ(f1)|-matrix over Fq satisfying AJλ(f1) = Jμ(f2)A. Then A = 0.

For any partition λ ∈ P, define

aλ(q) = q|λ|+2n(λ)
∏
i≥1

ϕmi(λ)(q−1),

where for k ≥ 0, we have denoted

ϕk(t) = (1 − t)(1 − t2) · · · (1 − tk).

For a polynomial f ∈ Φ, we set

qf = qd(f). (2.4)
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For λ ∈ Pn(Φ), denote by Aλ the centralizer of the element Jλ in Gn. It is known (cf. 
[7, II, (1.6)]) that the centralizer of the element Jλ(f) in GLd(f)|λ(f)|(q) has the order 
aλ(f)(qf ) and hence by Lemma 2.1 the centralizer of an element g ∈ Gn of type λ has 
order

|Aλ| =
∏
f∈Φ

aλ(f)(qf ). (2.5)

2.2. The group G∞

For m ≤ n, by the natural identification

Vm =
{
(a1, . . . , am, 0, . . . , 0︸ ︷︷ ︸

n−m

)ᵀ∣∣ai ∈ Fq

}
,

we regard Vm as a subspace of Vn (denoted by Vm ⊆ Vn). So we have a natural filtration 
of vector spaces 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ Vn+1 ⊂ · · · . We also denote

V ′
n−m =

{
(0, . . . , 0︸ ︷︷ ︸

m

, b1, . . . , bn−m)ᵀ∣∣bi ∈ Fq

}
,

another distinguished subspace of Vn of dimension n −m. Accordingly, via the embedding 

g �→
[
g 0
0 In−m

]
, we regard Gm as a subgroup of Gn. In this way we have a natural 

filtration of groups

1 = G0 ≤ G1 ≤ · · · ≤ Gn ≤ Gn+1 ≤ · · · .

Then the union G∞ = ∪n≥0Gn carries a natural group structure.

2.3. The modified type

For λ ∈ P(Φ), we introduce a shorthand notation

λe := λ(t− 1).

Let g be an element of Gn of type λ = (λ(f))f∈Φ ∈ Pn(Φ). If we regard g as an element 
in Gn+m by the natural embedding Gn ⊂ Gn+m for any m ≥ 1, then the type of g
changes. We define the modified type of g to be λ̊ ∈ Pn−r(Φ), where r = �(λe) and 
λ̊(f) = λ(f) for f �= t − 1 and λ̊(t − 1) = (λe

1 − 1, λe
2 − 1, . . . , λe

r − 1). This modified 
type is the same for a given element under the embedding of Gn in Gn+m. (The notion 
of modified types here is inspired by an analogous notion for symmetric groups (cf. [7, 
p. 131]) and wreath products [10, §2.3].) The following is immediate.
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Lemma 2.2. Two elements in G∞ are conjugate if and only if they have the same modified 
type.

Given μ ∈ P(Φ) with r = �(μe) and μe = (μe
1, μ

e
2, . . . , μ

e
r), we define μ↑n ∈ Pn(Φ)

for all n ≥ ‖μ‖ + r via

μ↑n(f) = μ(f), for f �= t− 1, (2.6)

μ↑n(t− 1) = (μ↑n)e = (μe
1 + 1,μe

2 + 1, . . . ,μe
r + 1, 1, . . . , 1︸ ︷︷ ︸

n−r−‖μ‖

). (2.7)

Clearly elements of type μ↑n in Gn have a modified type μ.
Given μ ∈ P(Φ), we denote by Kμ the conjugacy class in G∞ which consists of 

elements of modified type μ. For each μ ∈ P(Φ), Kμ(n) := Gn ∩Kμ is nonempty if and 
only if ‖μ‖ + �(μe) ≤ n; in this case Kμ(n) is a conjugacy class of Gn. Let Kμ(n) be the 
class sum of Kμ(n) if ‖μ‖ + �(μe) ≤ n, and be 0 otherwise. Denote by Zn(q) the center 
of the integral group algebra Z[Gn]. We summarize these discussions in the following.

Lemma 2.3. The set {Kμ(n) �= 0|μ ∈ P(Φ)} forms the class sum Z-basis for the center 
Zn(q), for each n ≥ 0.

2.4. The centralizers

Recall Jm(t − 1) is the Jordan form of size m and eigenvalue 1. The following elemen-
tary lemma (cf. [1, Lemma 2.1]) can be verified by a direct computation.

Lemma 2.4. Let k, m ≥ 1. Suppose A ∈ Mm×k(q) satisfies AJk(t − 1) = Jm(t − 1)A. 
Then A is of the form

A =

⎡⎢⎢⎢⎢⎣
0 · · · 0 a1 a2 · · · am−1 am
0 · · · 0 0 a1 · · · am−2 am−1
...

...
...

. . .
...

...
0 · · · 0 0 0 · · · a1 a2
0 · · · 0 0 0 · · · 0 a1

⎤⎥⎥⎥⎥⎦ if m ≤ k,

or

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 · · · ak−1 ak
0 a1 · · · ak−2 ak−1

. . .
0 0 a1 a2
0 0 · · · 0 a1
0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
if m ≥ k,

for some scalars a1, . . . , amin(k,m) ∈ Fq.
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The order of the centralizer of a given element of type λ in Gn is known; cf. (2.5). For 
our purpose, we need to have a more precise description of the centralizer. Recall μ↑n

from (2.6) and (2.7).

Proposition 2.5. Let n ≥ 0, μ ∈ P(Φ). Suppose k = ‖μ‖ +�(μe) ≤ n. Then the centralizer 
of Jμ↑n ∈ Gn is given by

Aμ↑n =
{[

A B
C D

] ∣∣∣A ∈ Aμ↑k , D ∈ Gn−k, Jμ↑kB = B,CJμ↑k = C

}
. (2.8)

Proof. By (2.3), (2.6) and (2.7), we have

Jμ↑n =
[
Jμ↑k 0

0 In−k

]
.

Write P ∈ Aμ↑n in a (k|n − k)-block form as

P =
[
A B
C D

]
.

Then we have PJμ↑n = Jμ↑nP if and only if

AJμ↑k = Jμ↑kA, Jμ↑kB = B, CJμ↑k = C. (2.9)

Comparing with the right hand side of (2.8), it remains to show the following.

Claim 1. A matrix 
[
A B
C D

]
satisfying (2.9) is invertible if and only if both A and D are 

invertible.

Let us reduce Claim 1 to a special case. Let 
[
A B
C D

]
∈ Gn be such that (2.9) holds. 

By (2.3), we can write

Jμ↑k = diag
(
Jμ↑k(f)

)
f∈Φ = diag

(
diag(Jμ↑k(f))f 	=t−1, J(μ↑k)e

)
.

Then by Lemma 2.1 and (2.9), we can write

[
A B
C D

]
=
[
A1 0 0
0 A2 B1
0 C1 D

]
,

where A =
[
A1 0
0 A

]
, B =

[
0
B

]
, C = [0 C1 ] satisfy
2 1
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A1diag
(
Jμ↑k(f)

)
f 	=t−1 = diag

(
Jμ↑k(f)

)
f 	=t−1A1,

A2J(μ↑k)e = J(μ↑k)eA2, J(μ↑k)eB1 = B1, C1J(μ↑k)e = C1. (2.10)

Clearly 

[
A1 0 0
0 A2 B1
0 C1 D

]
is invertible if and only if both A1 and 

[
A2 B1
C1 D

]
are invertible. 

Thus Claim 1 is reduced to the following special case when μ(f) = ∅ for all f �= t − 1.

Claim 2. A matrix M :=
[
A2 B1
C1 D

]
satisfying (2.10) is invertible if and only if both A2

and D are invertible.

Let us prove Claim 2. Thanks to (2.7), we can write (μ↑k)e = (μ1, μ2, · · · , μr), with 
μr ≥ 2. Then by (2.10) and Lemma 2.4, we can write

M =

⎡⎢⎢⎢⎢⎣
A11 A12 · · · A1r B11
A21 A22 · · · A2r B21
...

...
...

...
...

Ar1 Ar2 · · · Arr Br1
C11 C12 · · · C1r D

⎤⎥⎥⎥⎥⎦ , (2.11)

where Aij are of the form

Aij =

⎡⎢⎢⎢⎢⎣
0 · · · 0 a1 a2 · · · aμi−1 aμi

0 · · · 0 0 a1 · · · aμi−2 aμi−1
...

...
...

. . .
...

...
0 · · · 0 0 0 · · · a1 a2
0 · · · 0 0 0 · · · 0 a1

⎤⎥⎥⎥⎥⎦
μi×μj

if i ≥ j, (2.12)

or

Aij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 · · · aμj−1 aμj

0 a1 · · · aμj−2 aμj−1
. . .

0 0 a1 a2
0 0 · · · 0 a1
0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
μi×μj

if i ≤ j, (2.13)

for some scalars a1, . . . , amin(μi,μj) ∈ Fq, and Bi1, C1j are of the form

Bi1 =

⎡⎢⎢⎣
b1 b2 · · · bn−k

0 0 · · · 0
...

...
...

...
0 0 · · · 0

⎤⎥⎥⎦ ,
μi×(n−k)
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C1j =

⎡⎢⎢⎣
0 · · · 0 c1
0 · · · 0 c2
...

...
...

...
0 · · · 0 cn−k

⎤⎥⎥⎦
(n−k)×μj

, (2.14)

for some scalars bi, ci ∈ Fq, where 1 ≤ i ≤ n − k.
Denote by μ1..i = μ1 +μ2 + . . .+μi for 1 ≤ i ≤ r. Then from Equations (2.12)–(2.14)

and the fact that μi ≥ 2 for 1 ≤ i ≤ r, we make the following observations: (I) The 
nonzero elements in the rows μ1, μ1..2, . . . , μ1..r in the matrix M all lie in the columns 
μ1, μ1..2, . . . , μ1..r. (II) The nonzero elements in the matrix C = [C11 C12 . . . C1r ]
all lie in the columns μ1, μ1..2, . . . , μ1..r.

Denote by E the submatrix of A2 of rows/columns μ1, μ1..2, . . . , μ1..r, and denote 
by A′

2 the submatrix of A2 with rows/columns μ1, μ1..2, . . . , μ1..r removed. Then the 

submatrix of M with rows/columns μ1, μ1..2, . . . , μ1..r removed is of the form 
[
A′

2 ∗
0 D

]
. 

Applying the Laplace expansion formula along the rows μ1, μ1..2, . . . , μ1..r to compute 
the determinants detM (or detA2) only produces one nontrivial term, thanks to the 
observations (I)–(II) above. Hence we have

det
[
A2 B1
C1 D

]
= detE · det

[
A′

2 ∗
0 D

]
= detE · detA′

2 · detD = detA2 · detD.

Therefore the matrix 
[
A2 B1
C1 D

]
is invertible if and only if both A2 and D are invertible. 

This proves Claim 2 and hence completes the proof of Claim 1.
The proposition is proved. �

Remark 2.6. The centralizers of a different set of representatives for the conjugacy classes 
of Gn can be precisely described, following a variant of [1, Lemma 4.8 and its proof]. 
This can in particular provide another proof of Proposition 2.5. We will skip the details 
as we do not need such a result in this paper.

Corollary 2.7. Suppose g ∈ Gn is of the form g =
[
ḡ 0
0 In−k

]
and the type of ḡ ∈ Gk is 

λ for some 0 ≤ k ≤ n. If all parts of the partition λe are strictly bigger than 1, then a 

(k|n − k)-block matrix 
[
A B
C D

]
commuting with g is invertible if and only if both A and 

D are invertible.

Proof. Since the type of ḡ is λ, there exists h ∈ Gk such that hḡh−1 = Jλ. Suppose [
A B
C D

]
commutes with g. Set H =

[
h 0
0 In−k

]
. Then we have

[
h−1Ah h−1B
Ch D

]
= H−1

[
A B
C D

]
H,
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[
Jλ 0
0 In−k

]
= H−1gH,

and these two matrices commute with each other. By Proposition 2.5 and the assumption 

that all parts of λe are strictly bigger than 1, the matrix 
[
h−1Ah h−1B
Ch D

]
is invertible 

if and only if both hAh−1 and D are invertible. The corollary follows. �
We record the following corollary for later use.

Corollary 2.8. Let μ ∈ P(Φ). Suppose k = ‖μ‖ + �(μe) ≤ n. Then the cardinality of the 
centralizer Aμ↑n of Jμ↑n in Gn is equal to

∣∣Aμ↑k
∣∣ · ∣∣Gn−k

∣∣ · ∣∣{B ∈ Mk×(n−k)(q)|Jμ↑kB = B}
∣∣ · ∣∣{C ∈ M(n−k)×k(q)|CJμ↑k = C}

∣∣.
(2.15)

Remark 2.9. Observe that Corollary 2.8 provides another interpretation of the cardinality 
of Aμ↑n . It can be compared to the general formula given by (2.5) in the following way. Let 
μ ∈ P(Φ) with r = �(μe). Suppose k = ‖μ‖ +r ≤ n. Then by (2.6) and (2.7), we observe 
that aμ↑n(f)(qf ) = aμ↑k(f)(qf ), for f �= t − 1 and furthermore mi((μ↑n)e) = mi((μ↑k)e)
for i ≥ 2 and m1(μ↑k) = 0, m1(μ↑n) = n − k. This together with (2.5) implies

∣∣Aμ↑n
∣∣ = ( ∏

f∈Φ

aμ↑k(f)(qf )
)
· q2r(n−k)(qn−k − 1)(qn−k − q) · · · (qn−k − qn−k−1)

=
∣∣Aμ↑k

∣∣ · ∣∣Gn−k

∣∣ · q2r(n−k). (2.16)

On the other hand, since rank(Jμ↑k − Ik) = n − r, we obtain

∣∣{B ∈ Mk×(n−k)(q)|Jμ↑kB = B}
∣∣ = ∣∣{B ∈ Mk×(n−k)(q)|(Jμ↑k − Ik)B = 0}

∣∣ = qr(n−k),

where Ik is the k × k identity matrix. Similarly, 
∣∣{C ∈ M(n−k)×k(q)|CJμ↑k = C}

∣∣ =
qr(n−k). Therefore the equation (2.16) is compatible with the decomposition into four 
terms in (2.15).

3. Stability of the centers Zn(q)

In this section, we examine the interrelations among reflection lengths, fixed point 
subspaces, and modified types. We show that the associated graded algebra Gn(q) to 
the centers Zn(q) as filtered algebras with respect to the reflection length has structure 
constants independent of n. This leads to a formulation of a stable center, which governs 
the algebras Gn(q) for all n.
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3.1. The reflection length and modified type

Recall Vn = Fn
q . For g ∈ Gn, the fixed point subspace by g is denoted by

V g
n := ker(g − 1) = {v ∈ Vn|gv = v}.

An element s in Gn is a reflection if its fixed point subspace has codimension 1. Let 
Rn be the set of reflections in Gn. Then Rn is a generating set for the group Gn, since 
all of the elementary matrices used in Gaussian elimination are reflections and every 
invertible matrix is row equivalent to the identity matrix. The reflection length of an 
element g ∈ Gn is defined by

�(g) := min
{
k
∣∣g = r1r2 · · · rk for some ri ∈ Rn

}
. (3.1)

The combinatorics of partial orders on Gn arising from the reflection lengths has been 
studied in [4]. Recall the codimension codimV g

n = n − dimV g
n = rank(g − In). The 

reflection length has the following simple and useful geometric interpretation.

Lemma 3.1 ([4, Propositions 2.9, 2.16]).

(1) For g ∈ Gn, we have �(g) = codimV g
n .

(2) Suppose g, h ∈ Gn. Then �(gh) ≤ �(g) + �(h).
(3) If �(gh) = �(g) + �(h), then V g

n ∩ V h
n = V gh

n and Vn = V g
n + V h

n .

For g ∈ Gn ⊂ Gn+m, the fixed subspaces satisfy V g
n+m = V g

n ⊕ V ′
m. Hence by 

Lemma 3.1, the length function is compatible with the embedding Gn ⊂ Gn+m. In 
particular, a reflection s in Gn is also a reflection in Gn+m, that is, Rn ⊂ Rn+m, and 
hence accordingly the set of reflections in G∞ is the union

R := ∪n≥1Rn.

Then g ∈ G∞ has the length �(g) = min{k|g = r1r2 · · · rk, for some ri ∈ R}. It follows 
readily by (2.3) that a reflection s is similar to the canonical form⎡⎢⎢⎢⎢⎢⎢⎣

1 1 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ or

⎡⎢⎢⎢⎢⎢⎢⎣

ξ 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (for ξ ∈ Fq\{0, 1}).

Equivalently, an element in G∞ is a reflection if and only if its modified type μ satisfies 
‖μ‖ = 1.
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Lemma 3.2.

(1) If g ∈ Kμ, then �(g) = ‖μ‖.
(2) If the modified types of g, h, gh ∈ G∞ are λ, μ and ν, then ‖ν‖ ≤ ‖λ‖ + ‖μ‖.

Proof. As the reflection length is conjugation invariant, we can take g = Jμ↑n ; cf. 
(2.3) and (2.6)-(2.7) for notations. Following the definitions, one checks directly that 
codimV g

n = ‖μ‖. Hence (1) follows by using Lemma 3.1. Part (2) follows by (1) and 
Lemma 3.1(2). �
3.2. A normal form of triples

The following proposition is a crucial step in the proof of the stability as formulated 
in the subsequent subsections.

Proposition 3.3. Let g, h, gh ∈ Gn be of modified type λ, μ and ν, respectively. Suppose 
‖ν‖ = ‖λ‖ + ‖μ‖. Set k = ‖ν‖ + �(νe). Then there exists z ∈ Gn and ḡ, ̄h ∈ Gk such 
that

zgz−1 =
[
ḡ 0
0 In−k

]
, zhz−1 =

[
h̄ 0
0 In−k

]
, zghz−1 =

[
ḡh̄ 0
0 In−k

]
.

Note that ḡ, ̄h ∈ Gk above have modified types λ, μ respectively, and ḡh̄ is of type ν. 
We regard the triple of matrices in the proposition above as a normal form for the triple 
(g, h, gh) which satisfies �(g) + �(h) = �(gh).

Proof. Since the modified type of gh is ν, the type of gh is ν↑n. Then by (2.3), gh is 
conjugate to Jν↑n , and thus there exists a basis {v1, . . . , vk, vk+1, . . . , vn} of Vn = Fn

q

such that (gh)vi ∈ span-{v1, . . . , vk} for 1 ≤ i ≤ k and (gh)vi = vi for k + 1 ≤ i ≤ n. By 
Lemma 3.2, we have

�(gh) = ‖ν‖ = ‖λ‖ + ‖μ‖ = �(g) + �(h), (3.2)

and then by Lemma 3.1, gvi = vi and hvi = vi for k + 1 ≤ i ≤ n. Therefore, there exist 
elements z ∈ Gn and ḡ, ̄h ∈ Gk and g′, h′ ∈ M(n−k)×k(q) such that

zgz−1 =
[
ḡ 0
g′ In−k

]
, zhz−1 =

[
h̄ 0
h′ In−k

]
, zghz−1 =

[
ḡh̄ 0
0 In−k

]
.

It remains to show g′ = 0 = h′. It follows by zghz−1 = (zgz−1)(zhz−1) that

g′h̄ + h′ = 0. (3.3)

Furthermore, the following holds:
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�(gh) = �(zghz−1) = �(ḡh̄) ≤ �(ḡ) + �(h̄)

= rank(ḡ − Ik) + rank(h̄− Ik)

≤ rank
[
ḡ − Ik 0
g′ 0

]
+ rank

[
h̄− Ik 0
h′ 0

]
= rank(zgz−1 − In) + rank(zhz−1 − In)

= �(g) + �(h).

From this together with the equality �(gh) = �(g) + �(h) from (3.2) we conclude that all 
the inequalities above are indeed equalities:

�(ḡh̄) = �(ḡ) + �(h̄), (3.4)

rank(ḡ − Ik) = rank
[
ḡ − Ik 0
g′ 0

]
, (3.5)

rank(h̄− Ik) = rank
[
h̄− Ik 0
h′ 0

]
. (3.6)

Then by (3.5) and (3.6), there exist A, B ∈ M(n−k)×k(q) such that

g′ = A(ḡ − Ik), h′ = B(h̄− Ik). (3.7)

By (3.4) and the invertibility of h̄, we have

rank(ḡh̄− Ik) = rank(ḡ − Ik) + rank(h̄− Ik) = rank
(
(ḡ − Ik)h̄

)
+ rank(h̄− Ik),

which can then be rewritten as

rank
(
(ḡ − Ik)h̄ + (h̄− Ik)

)
= rank

(
(ḡ − Ik)h̄

)
+ rank(h̄− Ik). (3.8)

Let U1 and U2 be the subspaces of Vk spanned by the row vectors of (ḡ−Ik)h̄ and h̄−Ik, 
respectively. Then by (3.8) we have

U1 ∩ U2 = 0. (3.9)

On the other hand, by (3.3) and (3.7), we have

A(ḡ − Ik)h̄ + B(h̄− Ik) = 0.

Observe that the row vectors of A(ḡ− Ik)h̄ belong to U1 while the row vectors of h̄− Ik
belong to U2. Then by (3.9) we obtain
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A(ḡ − Ik)h̄ = 0, B(h̄− Ik) = 0.

Hence we have h′ = B(h̄− Ik) = 0, and then by (3.3), g′ = −h′h̄−1 = 0.
The proposition is proved. �

3.3. A stability property

Recall from Lemma 2.3 that the set {Kμ(n) �= 0|μ ∈ P(Φ)} forms the class sum 
Z-basis for the center Zn(q). Given λ, μ ∈ P(Φ), we can write the product in Zn(q)
as in (1.1), where the structure constants aνλμ(n) are zero unless ‖ν‖ ≤ ‖λ‖ + ‖μ‖ by 
Lemma 3.2. For ν with ‖ν‖ + �(νe) ≤ n, the coefficient aνλμ(n) is uniquely determined.

Theorem 3.4. Let λ, μ, ν ∈ P(Φ). If ‖ν‖ = ‖λ‖ + ‖μ‖, then aνλμ(n) is a nonnegative 
integer independent of n. (In this case, we shall write aνλμ(n) as aνλμ.)

Proof. Set k = ‖ν‖ + �(νe).
Observe that G∞ acts on the set of pairs

T = {(g, h) ∈ G∞ ×G∞|g ∈ Kλ, h ∈ Kμ, gh ∈ Kν}

by simultaneous conjugation: z.(g, h) = (zgz−1, zhz−1). We say (g, h) and (zgz−1, zhz−1)
are conjugate, and so the set T is a union of such conjugate classes. We claim that the 
set of conjugate classes of such pairs in T is finite. Indeed, by Proposition 3.3 each pair 
(g, h) ∈ T is conjugate to some pair lying in Gk × Gk, which is a finite set. Denote the 
conjugate classes in T by C1, . . . , Cr.

Suppose n ≥ ‖ν‖ +�(νe). Then by Proposition 3.3, there exists (gi, hi) ∈ Ci∩(Gn×Gn)
for each 1 ≤ i ≤ r. Moreover, Ci∩ (Gn×Gn) is a single conjugate class in T∩ (Gn×Gn)
under the simultaneous conjugation of Gn. By applying Proposition 3.3 once more, there 
exist gi, hi ∈ Gk such that the pair (gi, hi) is conjugate to the pair (g̃i, ̃hi), where we 
have denoted

g̃i =
[
gi 0
0 In−k

]
, h̃i =

[
hi 0
0 In−k

]
.

Let us denote the stabilizer of the pair (g̃i, ̃hi) by Gn;(g̃i,h̃i). Then for each i, we have

∣∣Gn;(g̃i,h̃i)
∣∣ =∣∣∣{z ∈ Gn

∣∣zg̃iz−1 = g̃i, zh̃iz
−1 = h̃i

}∣∣∣
(i)=

∣∣∣∣∣{z =
[
z1 z2
z3 z4

]
∈ Mn×n(q)

∣∣∣z1 ∈ Gk, z4 ∈ Gn−k, zg̃iz
−1 = g̃i, zh̃iz

−1 = h̃i

}∣∣∣∣∣
=
∣∣∣{z1 ∈ Gk

∣∣z1giz
−1
1 = gi, z1hiz

−1
1 = hi

}∣∣∣ · ∣∣∣Gn−k

∣∣∣·
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·
∣∣{z2 ∈ Mk×(n−k)(q)

∣∣giz2 = z2 = hiz2
}∣∣

·
∣∣{z3 ∈ M(n−k)×k(q)

∣∣z3gi = z3 = z3hi

}∣∣
(ii)=
∣∣∣{z1 ∈ Gk

∣∣z1giz
−1
1 = gi, z1hiz

−1
1 = hi

}∣∣∣ · ∣∣∣Gn−k

∣∣∣·
·
∣∣∣{z2 ∈ Mk×(n−k)(q)

∣∣gihiz2 = z2
}∣∣∣ · ∣∣∣{z3 ∈ M(n−k)×k(q)

∣∣z3gihi = z3
}∣∣∣,

where the equality (i) follows from Corollary 2.7 since the type of gihi is ν and the 
equality (ii) follows from the following.

Claim.

(1) For z2 ∈ Mk×(n−k)(q), then giz2 = z2 = hiz2 if and only if gihiz2 = z2.
(2) For z3 ∈ M(n−k)×k(q), then z3gi = z3 = z3hi if and only if z3gihi = z3.

We prove the Claim. Denote by C2 an arbitrary column vector of z2. Since �(gihi) =
‖ν‖ = ‖λ‖ + ‖μ‖ = �(gi) + �(hi), applying Lemma 3.1 we obtain C2 ∈ V

gi

k ∩ V hi

k if 
and only if C2 ∈ V

gihi

k , i.e., giC2 = C2 = hiC2 if and only if gihiC2 = C2, whence 
(1). Noting the reflection length is transpose invariant, we have �(hᵀ

i g
ᵀ
i ) = �(hᵀ

i ) + �(gᵀ
i ). 

Then Claim (2) follows by (1). This completes the proof of the Claim.
Using the above identity for 

∣∣Gn;(g̃i,h̃i)
∣∣ and Corollary 2.8 we obtain

aνλμ(n) =
r∑

i=1

∣∣Ci ∩ (Gn ×Gn)
∣∣∣∣Kν ∩Gn

∣∣ =
r∑

i=1

|Aν↑n |∣∣Gn;(g̃i,h̃i)
∣∣

=
r∑

i=1

|Aν |∣∣∣{z1 ∈ Gk

∣∣z1giz
−1
1 = gi, z1hiz

−1
1 = hi

}∣∣∣ ,
which is independent of n. The theorem is proved. �
3.4. The stable center

Let Km be the subspace of Zn(q) spanned by the elements Kλ(n) with ‖λ‖ ≤ m and 
λ ∈ P(Φ). Thanks to Lemma 3.2, the assignment of degree ‖λ‖ to Kλ(n) provides Zn(q)
a filtered ring structure with the filtration 0 ⊂ K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Zn(q). Then 
we can define the associated graded algebra denoted by Gn(q) as follows. As a vector 
space Gn(q) = ⊕i≥0(Ki/Ki−1) where we set K−1 = 0 and the multiplication satisfies 
(x + Ki−1)(y + Kj−1) = xy + Ki+j−1 for x ∈ Ki, y ∈ Kj and i, j ≥ 0. Meanwhile, 
introduce a graded associative Z-algebra G (q) with a basis given by the symbols Kλ

indexed by λ ∈ P(Φ), and with multiplication given by

KλKμ =
∑

aνλμKν . (3.10)

‖ν‖=‖λ‖+‖μ‖
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Note K∅ is the unit of G (q). The following summarizes the above discussions.

Theorem 3.5. The graded Z-algebra Gn(q) has the multiplication given by

Kλ(n)Kμ(n) =
∑

‖ν‖=‖λ‖+‖μ‖
aνλμKν(n),

for λ, μ ∈ P(Φ). Moreover, we have a surjective algebra homomorphism G (q) � Gn(q)
for each n, which maps Kλ to Kλ(n) for all λ ∈ P(Φ).

We will refer to G (q) as the stable center associated to the family of finite general 
linear groups. This algebra can be viewed as the inverse limit of the projective system 
of algebras {Gn(q)}n≥1.

Remark 3.6. Theorems 3.4 and 3.5 are the finite general linear group counterparts of 
analogous results for symmetric groups in [2] and for wreath products in [10]. It is shown 
by Méliot [8] that the structure constants aνλμ(n) for the center Zn defined in (1.1) are 
polynomials in qn, an analogue of another theorem of Farahat-Higmann for symmetric 
groups [2]. However, we have difficulties in verifying some key details in Méliot’s approach 
such as the equivalence between the assertions 2 and 3 in [8, Definition 2.3] as well as 
the proof of [8, Lemma 2.21].

4. Computations in the stable center

In this section, we compute various structure constants aνλμ in Theorems 3.4 and 3.5.

4.1. Multiplication of class sums of reflections

For r ≥ 1 and f ∈ Φ, we define the single cycles (r)f ∈ P(Φ) by letting (r)f (f) = (r)
and (r)f (f ′) = ∅ for f ′ �= f . Call (r)f a r-cycle of degree d(f). Denote by F∗

q = Fq\{0}.
We shall compute the structure constants arising in the product of class sums of 

reflections in Gn. We proceed in three separate cases, depending on the number of 
unipotent class sums involved in the multiplication; see Lemmas 4.1–4.3 below.

Lemma 4.1. Suppose ξ′, η′ ∈ F∗
q and η ∈ Fq\{0, 1}. Let λ = (1)t−1, μ = (1)t−η and 

f = t2 + a2t + a1 ∈ Φ. Then

a
(1)t−ξ′∪(1)t−η′
λμ =

⎧⎪⎨⎪⎩
q − 1, if ξ′η′ = η, ξ′ �= η′,

2q − 1, if {ξ′, η′} = {1, η},
0, otherwise,

a
(2)t−ξ′
λμ =

{
q, if ξ′ 2 = η,

0, otherwise,
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a
(1)f
λμ =

{
q + 1, if a1 = η,

0, otherwise.

Proof. We separate the proof into several cases.
(1) Let us compute a

(1)t−ξ′∪(1)t−η′
λμ . Clearly a

(1)t−ξ′∪(1)t−η′
λμ = 0 if ξ′η′ �= η. Assume 

ξ′η′ = η. We first consider the case {ξ′, η′} �= {1, η}. Let

Γ1 =
{
A
∣∣∣ A ∼

[
η−1 0
0 1

]
,

[
ξ′ 0
0 η′

]
A ∼

[
1 1
0 1

]}
.

Then a
(1)t−ξ′∪(1)t−η′
λμ = |Γ1|. Observe that A =

[
a11 a12
a21 a22

]
belongs to Γ1 if and only if 

the following holds:

a11 + a22 = η−1 + 1, a11a22 − a12a21 = η−1,

ξ′a11 + η′a22 = 2, a12 �= 0 or a21 �= 0.
(4.1)

Hence if ξ′ = η′ then a
(12)t−ξ′
λμ = |Γ1| = 0. Assume ξ′ �= η′. Since ξ′, η′ �= 1, a direct 

calculation shows that (4.1) is equivalent to

a11 = 2 − η′(η−1 + 1)
ξ′ − η′

, a22 = ξ′(η−1 + 1) − 2
ξ′ − η′

,

a12a21 = −η−1((ξ′ + η′) − (η + 1))2

(ξ′ − η′)2 .

Hence a
(1)t−ξ′∪(1)t−η′
λμ = |Γ1| = q − 1 since ξ′ + η′ �= η + 1.

In the situation that {ξ′, η′} = {1, η}, it is a special case of Proposition 4.5 in the 
subsequent section, which includes a detailed proof.

(2) We now compute a
(2)t−ξ′
λμ . Note a

(2)t−ξ′
λμ = 0 unless (ξ′)2 = η. Assume (ξ′)2 = η

and then clearly ξ′ �= 1. Set

Γ3 =
{
A
∣∣∣ A ∼

[
η−1 0
0 1

]
,

[
ξ′ 1
0 ξ′

]
A ∼

[
1 1
0 1

]}
.

Then a
(2)t−ξ′
λμ = |Γ3|, and A =

[
a11 a12
a21 a22

]
belongs to Γ3 if and only if the following 

holds:

a11 + a22 = η−1 + 1, a11a22 − a12a21 = η−1,

ξ′a11 + ξ′a22 + a21 = 2, a21 �= 0 or ξ′a12 + a22 �= 0.
(4.2)

Using (ξ′)2 = η, a direct calculation shows that (4.2) is equivalent to
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a22 = (η−1 + 1) − a11, a21 = 2 − ξ′(η−1 + 1), a12 =
a11
(
(η−1 + 1) − a11

)
− η−1

2 − ξ′(η−1 + 1) .

Hence the number of solutions to (4.2) is q, which implies a(2)t−ξ′
λμ = q.

(3) Suppose f(t) = t2 + a2t + a1 ∈ Φ. Let ν = (1)f and

Γ4 =
{
B
∣∣∣ B ∼

[
η 0
0 1

]
, det

(
tI2 −

[
1 1
0 1

]
B
)

= f(t)
}
.

Since f(t) is irreducible, we observe that a matrix C ∈ G2 is conjugate to J(f) if and 
only if the characteristic polynomial of C is f(t), and so

Γ4 =
{
B
∣∣∣ B ∼

[
η 0
0 1

]
,

[
1 1
0 1

]
B ∼ J(f)

}
.

Therefore we have

a
(1)f
λμ = |Kλ ∩G2| · |Γ4|

|Kν ∩G2|
= (q2 − 1) · |Γ4|

q2 − q
. (4.3)

Clearly B =
[
b11 b12
b21 b22

]
belongs to Γ4 if and only if the following holds:

b11 + b22 = η + 1, b11b22 − b12b21 = η,

b11 + b21 + b22 = −a2, b11b22 − b12b21 = a1. (4.4)

So a(1)f
λμ = 0 unless a1 = η. Now suppose a1 = η. Since f(t) = t2 + a2t + η is irreducible, 

we have a2 + (η + 1) �= 0, and hence (4.4) is equivalent

b22 = (η + 1) − b11, b21 = −a2 − (η + 1), b12 = (b11 − 1)(b11 − η)
a2 + (η + 1) .

This implies |Γ4| = q. Hence by (4.3) we obtain a(1)f
λμ = q + 1.

The lemma is proved. �
Lemma 4.2. Let λ = (1)t−1. Suppose ξ, η ∈ F∗

q and f = t2 + a2t + a1 ∈ Φ. Then

a
(1)t−ξ∪(1)t−η

λλ =

⎧⎪⎨⎪⎩
q − 1, if ξη = 1, ξ �= 1,
q2 + q, if ξ = η = 1,

0, otherwise,

a
(2)t−ξ

λλ =

⎧⎪⎨⎪⎩
q, if ξ2 = 1, ξ �= 1,
2q, if ξ = 1,
0, otherwise,



J. Wan, W. Wang / Advances in Mathematics 349 (2019) 749–780 769
a
(1)f
λλ =

{
q + 1, if a1 = 1,

0, otherwise.

Proof. The methods and calculations used in the proof of Lemma 4.1 can also be applied 
to prove the formulas in the case ξ = η = 1. To compute a(12)t−1

λμ , let

Γ5 =

⎧⎪⎨⎪⎩B

∣∣∣∣ B ∼

⎡⎢⎣1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦ ,
⎡⎢⎣1 1 0 0

0 1 0 0
0 0 1 1
0 0 0 1

⎤⎥⎦B ∼

⎡⎢⎣1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦
⎫⎪⎬⎪⎭ .

Write B =

⎡⎢⎣b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

⎤⎥⎦ ∈ G4 and B̃ =

⎡⎢⎣1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤⎥⎦ · B. Observe that B

belongs to Γ5 if and only if the following holds:

b11 + b22 + b33 + b44 = 4, rank(B− I4) = 1, rank(B̃− I4) = 1, b21 + b43 = 0. (4.5)

A direct calculation shows that (4.5) is equivalent to

b11 = b22 = b33 = b44 = 1, b13 = b21 = b23 = b24 = b31 = b41 = b42 = b43 = 0,

b14b32 = b12(q − 1 − b12), b34 = q − 1 − b12.

This implies a(12)t−1
λμ = |Γ5| = 2(2q − 1) + (q − 2)(q − 1) = q2 + q.

We omit the detailed proofs for the other cases. �
The follow formulas can be proved by using arguments similar to the proof of 

Lemma 4.1. We omit the details which can be found in arXiv version 1 of this paper. 
This coincides with the computation in [8, Theorem 4.1]; see however Remark 3.6.

Lemma 4.3. Let ξ, η ∈ Fq \ {0, 1} and ξ′, η′ ∈ F∗
q . Let λ = (1)t−ξ, μ = (1)t−η and 

f = t2 + a2t + a1 ∈ Φ. Then

a
(1)t−ξ′∪(1)t−η′
λμ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q − 1, if ξ′η′ = ξη, ξ′ �= η′, {ξ′, η′} �= {ξ, η},
2q − 1, if ξ′η′ = ξη, ξ′ �= η′, {ξ′, η′} = {ξ, η},
q2 + q, if ξ′ = η′ = ξ = η,

0, otherwise,

a
(2)t−ξ′
λμ =

⎧⎪⎨⎪⎩
q, if ξ′ 2 = ξη, ξ′ /∈ {ξ, η}
2q, if ξ′ = ξ = η,

0, otherwise,

a
(1)f
λμ =

{
q + 1, if a1 = ξη,

0, if a1 �= ξη.
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While the computations to derive the formulas in Lemmas 4.1-4.3 have to be carried 
out separately and the sizes of the matrices involved are different, we find it rather 
remarkable that these formulas afford a uniform reformulation. This is summarized in 
the following theorem.

Theorem 4.4. Suppose ξ, η, ξ′, η′ ∈ F∗
q and f ∈ Φ with deg f = 2. Let λ = (1)t−ξ, μ =

(1)t−η. Then aνλμ = 0 if det Jν �= det Jλ · detJμ for ν ∈ P(Φ) with ‖ν‖ = 2. Otherwise, 
we have the following complete list:

a
(1)t−ξ′∪(1)t−η′
λμ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q − 1, if ξ′ �= η′, {ξ′, η′} �= {ξ, η},
2q − 1, if ξ′ �= η′, {ξ′, η′} = {ξ, η},
q2 + q, if ξ′ = η′ = ξ = η,

0, otherwise,

a
(2)t−ξ′
λμ =

⎧⎪⎨⎪⎩
q, if ξ′ /∈ {ξ, η},
2q, if ξ′ ∈ {ξ, η},
0, otherwise,

a
(1)f
λμ = q + 1.

4.2. Computation on aλ∪μ
λμ

In the setting of symmetric groups [2] and wreath products [10], the structure con-
stants aλ∪μ

λμ are among the easiest to compute. In our setting, these structure constants 
are not as straightforward to compute in general. We shall present aλ∪μ

λμ in some simplest 
nontrivial cases.

4.2.1. We first compute some cases when λ is a single 1-cycle of degree 1 and μ is a 
disjoint union of 1-cycles of degree 1.

Proposition 4.5. Suppose ξ1, ξ2, . . . , ξd ∈ F∗
q and ξi �= ξj for 1 ≤ i �= j ≤ d. Let λ =

(1)t−ξ1 , μ = (1)t−ξ2 ∪ · · · ∪ (1)t−ξd . Then

aλ∪μ
λμ = (2q − 1)d−1.

Proof. We separate the proof in three cases.
(1) Assume 1 /∈ {ξ1, ξ2, . . . , ξd}. Let

Π =
{
A
∣∣ A ∼ diag

(
ξ−1
1 , 1, . . . , 1

)
, diag

(
ξ1, . . . , ξd

)
A ∼ diag

(
ξ2, . . . , ξd, 1

)}
.

Since ξi �= 1 for 1 ≤ i ≤ d, we have

aλ∪μ
λμ =

∣∣Π∣∣. (4.6)



J. Wan, W. Wang / Advances in Mathematics 349 (2019) 749–780 771
Suppose A ∈ Π. Write A = (aij)1≤i,j≤d. Let Ã = diag
(
ξ1, . . . , ξd

)
A. Since A ∼

diag
(
ξ−1
1 , 1, . . . , 1

)
and Ã ∼ diag

(
ξ2, . . . , ξd, 1

)
, we have

rank(A− Id) = 1, (4.7)

a11 + a22 + · · · + add = ξ−1
1 + (d− 1), (4.8)

det(Ã− ξiId) = 0, for 2 ≤ i ≤ d. (4.9)

Claim. We have a22 = a33 = · · · = add = 1 and a11 = ξ−1
1 .

Let us prove the claim by contradiction. Assume a22 �= 1. Then by (4.7), there exist 
α1, α2, α3, . . . , αd with α2 = 1 such that

aij − δij = αi(a2j − δ2j), for 1 ≤ i, j ≤ d. (4.10)

Since Ã = diag
(
ξ1, . . . , ξd

)
A, a direct calculation using (4.10) shows that

det(Ã− ξ2Id) = (ξ1 − ξ2)ξ2(a22 − 1)(ξ3 − ξ2) · · · (ξd − ξ2) �= 0

since ξi �= ξj for i �= j. This contradicts (4.9). Hence a22 = 1. Similarly, we can prove 
a33 = · · · = add = 1. Now it follows by (4.8) that a11 = ξ−1. The Claim is proved.

Observe that ξ−1
1 �= 1. This means the first row of A − Id is nonzero and then again 

by (4.7), each A ∈ Π is of the following form:

A =

⎡⎢⎢⎢⎢⎢⎢⎣

ξ−1
1 a2 a3 a4 · · · ad

β2(ξ−1
1 − 1) 1 β2a3 β2a4 · · · β2ad

β2(ξ−1
1 − 1) β3a2 1 β3a4 · · · β3ad
...

...
...

...
...

...
βd(ξ−1

1 − 1) βda2 βda3 βda4 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.11)

where a2, . . . , ad, β2, . . . , βd ∈ Fq satisfy

aiβi = 0, for 2 ≤ i ≤ d. (4.12)

Conversely, let A ∈ Md×d(q) be of the form (4.11). Then we have A ∼ diag
(
ξ−1
1 , 1,

. . . , 1
)
. Let Ã = diag

(
ξ1, . . . , ξd

)
A. A direct computation using (4.12) shows that

det(Ã− ξiId) = 0. (4.13)

Observe that the trace of Ã is tr(Ã) = 1 + ξ2 + . . .+ ξd. This together with (4.13) implies 
det(Ã−Id) = 0. Therefore we have Ã = diag

(
ξ1, . . . , ξd

)
A ∼ diag

(
ξ2, . . . , ξd, 1

)
. Putting 

these together we obtain
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Π =
{
A
∣∣ A is of the form (4.11), where ai, βi ∈ Fq (2 ≤ i ≤ d) satisfy (4.12)

}
.

Thus, by (4.6) we have aλ∪μ
λμ =

∣∣Π∣∣ = (2q − 1)d−1.
(2) Assume ξ1 = 1. Set

B =

⎡⎢⎢⎢⎢⎢⎣
1 −1 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0

. . .
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎢⎢⎣
1 1 0 · · · 0
0 1 0 · · · 0
0 0 ξ2 · · · 0

. . .
0 0 0 0 ξd

⎤⎥⎥⎥⎥⎥⎦ , D =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 · · · 0
0 1 0 · · · 0
0 0 ξ2 · · · 0

. . .
0 0 0 0 ξd

⎤⎥⎥⎥⎥⎥⎦ ,

where B, C, D are (d + 1) × (d + 1)-matrices. Then let

Π =
{
A
∣∣ A ∼ B, CA ∼ D

}
.

Clearly aλ∪μ
λμ = |Π|. Suppose A ∈ Π. Write A = (aij)1≤i,j≤d+1. Let Ã = CA. Since 

A ∼ B and Ã ∼ D, we have

rank(A− Id+1) = 1, (4.14)

a11 + a22 + · · · + ad+1,d+1 = d + 1, (4.15)

det(Ã− ξiId+1) = 0, for 2 ≤ i ≤ d, (4.16)

rank(Ã− Id+1) = d− 1, (4.17)

a11 + a21 + a22 + ξ2a33 + · · · + ξdad+1,d+1 = ξ2 + · · · + ξd + 2. (4.18)

Then by a similar proof of the claim in Case (1), we can show a33 = a44 = · · · =
ad+1,d+1 = 1 using (4.14) and (4.16) and hence a11 + a22 = 2 and a21 = 0 by (4.15) and 
(4.18). Then using (4.17) we can deduce that a31 = a41 = · · · = ad+1,1 = 0 and hence 
a11 = a22 = 1 by (4.14). Moreover, one can show a12 + 1 = 0 by (4.16) and (4.17). This 
means the first row of A − Id+1 is nonzero and again by (4.14), each A ∈ Π has the form

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 a3 a4 a5 · · · ad+1

0 1 0 0 0 · · · 0
0 −β3 1 β3a4 a5 · · · β3ad+1

0 −β4 β4a3 1 β4a5 · · · β4ad+1
...

...
...

...
...

...
...

0 −βd+1 βd+1a3 βd+1a4 βd+1a5 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.19)

where a3, a4, . . . , ad+1, β3, . . . , βd+1 ∈ Fq satisfy

aiβi = 0, for 3 ≤ i ≤ d + 1. (4.20)
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Again similar to the proof of Case (1), we can show that a matrix A of the form (4.19)
satisfying (4.20) belongs to Π. Hence we obtain

Π = {A | A is of the form (4.19), where ai, βi ∈ Fq (3 ≤ i ≤ d + 1) satisfy (4.20)}.

Therefore we have aλ∪μ
λμ = |Π| = (2q − 1)d−1.

(3) Assume 1 ∈ {ξ2, ξ3, . . . , ξd}. Without loss of generality, we can assume ξ2 = 1. Set

C =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 · · · 0
0 1 0 0 · · · 0
0 0 ξ1 0 · · · 0
0 0 0 ξ3 · · · 0

. . .
0 0 0 0 0 ξd

⎤⎥⎥⎥⎥⎥⎥⎦ , D =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 ξ3 · · · 0

. . .
0 0 0 0 0 ξd

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then let

Π =
{
A
∣∣ A ∼ diag

(
ξ−1
1 , 1, . . . , 1

)
, CA ∼ D

}
.

Clearly aλ∪μ
λμ = |Π|. Suppose A ∈ Π. Write A = (aij)1≤i,j≤d+1. Let Ã = CA. Since 

A ∼ diag
(
ξ−1
1 , 1, . . . , 1

)
and Ã ∼ D, we have

rank(A− Id+1) = 1, (4.21)

a11 + a22 + · · · + ad+1,d+1 = ξ−1
1 + d, (4.22)

det(Ã− ξiId+1) = 0, for 3 ≤ i ≤ d, (4.23)

rank(Ã− Id+1) = d− 1, (4.24)

a11 + a21 + a22 + ξ1a33 + ξ3a44 + · · · + ξdad+1,d+1 = ξ3 + · · · + ξd + 3. (4.25)

Again by a similar proof of the claim in Case (1), we have a44 = a55 = · · · = ad+1,d+1 = 1. 
Then by (4.22) and (4.25) we have

a11 + a22 + a33 = ξ−1
1 + 2, a11 + a21 + a22 + ξ1a33 = 3. (4.26)

We claim a21 = a23 = a24 = · · · = a2,d+1 = 0, a22 = 1. Otherwise, the second row of the 
matrix A − Id+1 is nonzero and by (4.21) there exist α1, . . . , αd+1 with α2 = 1 such that

aij − δij = αi(a2j − δ2j), for 1 ≤ i, j ≤ d + 1. (4.27)

Then we have
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rank(Ã− Id+1) = rank

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0
a21 a22 − 1 a23 a24 · · · a2,d+1

0 0 ξ1 − 1 0 · · · 0
0 0 0 ξ3 − 1 · · · 0

. . .
0 0 0 0 · · · ξd − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ d,

which contradicts with (4.24). So the claim holds. Then by (4.26) we obtain a11 = 1 and 
a33 = ξ−1

1 �= 1. This means the third row of the matrix A − Id+1 is nonzero and hence 
by (4.21), each A ∈ Π has the following form:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 β1a2 β1(ξ−1
1 − 1) β1a4 · · · β1ad+1

0 1 0 0 · · · 0
0 a2 ξ−1

1 a4 · · · ad+1

0 β4a2 β4(ξ−1
1 − 1) 1 · · · β4ad+1

. . .
0 βd+1a2 βd+1(ξ−1

1 − 1) βd+1a4 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.28)

where a2, a4, a5, · · · , ad+1, β1, β4, β5, . . . , βd+1 ∈ Fq such that βiai = 0 for 4 ≤ i ≤ d + 1. 
Then using (4.24) one can deduce that β1a2 = 0. Therefore each A ∈ Π has the form 
(4.28) with

β1a2 = 0, βiai = 0, for 4 ≤ i ≤ d + 1. (4.29)

Conversely, by a similar argument as for Case (1), we can show that a matrix of the form 
(4.28) satisfying (4.29) must belong to Π, and hence

Π =
{
A |A is of the form (4.28), where a2, ai, β1, βi ∈ Fq (4 ≤ i ≤ d+1) satisfy (4.29)

}
.

Therefore we have aλ∪μ
λμ = |Π| = (2q − 1)d−1. The proposition is proved. �

For m, b ∈ N, define the q-integers, q-factorials, and q-binomial coefficients

[m] = [m]q = qm − 1
q − 1 , [m]! = [m]q! = [m][m− 1] · · · [1],[

m
b

]
=
[
m
b

]
q

= [m][m− 1] · · · [m− b + 1]
[b]! .

(4.30)

Proposition 4.6. Let c, d ≥ 1. Then a(1c+d)t−ξ

(1c)t−ξ(1d)t−ξ
= qcd

[
c + d
c

]
, if ξ ∈ Fq \ {0, 1}.
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�
����������
Proof. Let

C = diag (ξ, . . . , ξ︸ ︷︷ ︸
c

, 1, . . . , 1︸ ︷︷ ︸
d

), D = diag (ξ, . . . , ξ︸ ︷︷ ︸
d

, 1, . . . , 1︸ ︷︷ ︸
c

).

Set

Π = {(A,B) | A ∼ C, B = ξA−1 ∼ D}.

Then a(1c+d)t−ξ

(1c)t−ξ(1d)t−ξ
= |Π|. Observe that if a matrix A is conjugate to C then ξA−1 must 

be conjugate to D, and hence Π = {(A, ξA−1) | A ∼ C}. This and (2.5) give us

|Π| = |Kλ(c + d)| = |GLc+d(q)|
|Aλ↑c+d | = q

(c+d)((c+d)−1)
2 [c + d]!

q
c(c−1)

2 [c]! · q d(d−1)
2 [d]!

= qcd
[
c + d
c

]
,

where λ = (1c)t−ξ. The proposition is proved. �
4.2.2. For convenience, we shall denote by �g� the class sum corresponding to g ∈ Gn.
Regarding Proposition 4.5, here are some examples for aλ∪μ

λμ when λ is a single 1-cycle 
of degree 1 and μ is union of 1-cycles of degree 1.

Example 4.7. (1) Suppose q = 3. Then

�
�������

2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

�
������	
·

�
�������

1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

�
������	

= 17

�
������

2 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

�
�����	

+ other terms.

�
�������

1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

�
������	
·

�
�������

1 1 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 1

�
������	

= 60

�
������

2 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

�
�����	

+ other terms.

2 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

�
���������	
·

�
����������

2 0 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 0 1 0
0 0 0 0 0 1

�
���������	

= 204

�
��������

2 0 0 0 0 0
0 2 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

�
�������	

+ other terms.
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(2) Suppose q = 5. Then

�
��

2 0 0
0 1 0
0 0 1

�
�	 ·

�
��

3 0 0
0 3 0
0 0 1

�
�	 = 49

�
��

2 0 0
0 3 0
0 0 3

�
�	 + other terms.

�
����

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�
���	 ·

�
����

3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 1

�
���	 = 249

�
����

2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3

�
���	 + other terms.

�
����

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�
���	 ·

�
����

3 0 0 0
0 3 0 0
0 0 4 0
0 0 0 1

�
���	 = 441

�
����

2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 4

�
���	 + other terms.

�
����

4 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�
���	 ·

�
����

4 0 0 0
0 3 0 0
0 0 3 0
0 0 0 1

�
���	 = 1470

�
����

4 0 0 0
0 4 0 0
0 0 3 0
0 0 0 3

�
���	 + other terms.

4.3. More examples

Here we present examples for aνλμ, where λ = (1)t−ξ for ξ ∈ Fq\{0, 1}, μ = (1)f ′ for 
f ′ ∈ Φ of degree 2, and ν = (1)f for f ∈ Φ of degree 3.

Example 4.8. Suppose q = 3. Then

�
��

2 0 0
0 1 0
0 0 1

�
�	 ·

�
��

0 1 0
1 2 0
0 0 1

�
�	

= 13

�
��

0 1 0
0 0 1
1 1 0

�
�	 + 13

�
��

0 1 0
0 0 1
1 0 2

�
�	 + 13

�
��

0 1 0
0 0 1
1 2 2

�
�	 + 13

�
��

0 1 0
0 0 1
1 1 1

�
�	

+ other terms.

Example 4.9. Suppose q = 5. Then

�
��

2 0 0
0 1 0
0 0 1

�
�	 ·

�
��

0 1 0
3 1 0
0 0 1

�
�	
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= 31

�
��

0 1 0
0 0 1
4 4 0

�
�	 + 31

�
��

0 1 0
0 0 1
4 3 0

�
�	 + 31

�
��

0 1 0
0 0 1
4 0 4

�
�	 + 31

�
��

0 1 0
0 0 1
4 2 4

�
�	 + 31

�
��

0 1 0
0 0 1
4 1 4

�
�	

+ 31

�
��

0 1 0
0 0 1
4 0 3

�
�	 + 31

�
��

0 1 0
0 0 1
4 4 2

�
�	 + 31

�
��

0 1 0
0 0 1
4 1 2

�
�	 + 31

�
��

0 1 0
0 0 1
4 4 1

�
�	 + 31

�
��

0 1 0
0 0 1
4 2 1

�
�	

+ other terms.

Note that det
[2 0 0

0 1 0
0 0 1

]
= 2, and det

[0 1 0
3 1 0
0 0 1

]
= −3. Observe that all irreducible 

polynomial in F5[t] of degree 3 with constant term equal to −2 × (−3) = 1 appear on 
the right hand side of the above equation.

5. Conjectures and discussions

Motivated by the examples computed in the previous section, we formulate in this 
section several conjectures on the structure constants of the stable center, and discuss 
various problems arising from this work.

5.1. Conjectures

We present several conjectures on the structure constants aνλμ and the structure of 
the stable center Q ⊗Z G . Recall the q-integers [m] from (4.30).

Conjecture 5.1.

(1) Suppose ξ1, ξ2, . . . , ξd ∈ F∗
q are distinct, and let c1, . . . , cd ∈ N for 1 ≤ i ≤ d. Let 

λ = (1)t−ξ1 , μ = (1c1)t−ξ1(1c2)t−ξ2 ∪ · · · ∪ (1cd)t−ξd . Then

aλ∪μ
λμ = qc1 [c1 + 1]

d∏
i=2

(2qci − 1).

(2) Suppose ξ ∈ F∗
q and f ∈ Φ. Let λ = (1)t−ξ and μ = (1)f . Recall qf from (2.4). Then 

aλ∪μ
λμ = 2qf − 1.

(3) Suppose ξ ∈ F∗
q , f2, . . . , fd ∈ Φ and c1, c2, . . . , cd ∈ N with fi �= t − ξ for 2 ≤ i ≤ d. 

Let λ = (1)t−ξ, μ = (1c1)t−ξ(1c2)f2 ∪ · · · ∪ (1cd)fd . Then

aλ∪μ
λμ = qc1 [c1 + 1]

d∏
i=2

(2(qfi)ci − 1).



778 J. Wan, W. Wang / Advances in Mathematics 349 (2019) 749–780
Conjecture 5.1(1) is supported by Example 4.7. Note that in Example 4.7 we have 
17 = 2q2 − 1, 60 = q(1 + q)(2q − 1) and 204 = q(1 + q)(2q2 − 1) with q = 3 and 49 =
2q2 − 1, 249 = 2q3 − 1, 441 = (2q− 1)(2q2 − 1) and 1470 = q(1 + q)(2q2 − 1) with q = 5. 
Conjecture 5.1(2) is supported by Lemma 4.2 and Proposition 4.5. Conjecture 5.1(3) is 
a combination of Conjecture 5.1(1)-(2) and it is supported by some further examples 
which we omit here.

Conjecture 5.2. Suppose λ = (1)t−ξ for ξ ∈ F∗
q , μ = (1)f ′ for f ′ ∈ Φ of degree d −1 with 

constant term a.

(1) For each irreducible polynomial f ∈ Fq[t] of degree d with constant term equal to 
−ξa, there exist elements g, h ∈ Gd of modified types λ and μ, respectively, such 
that the modified type of gh is (1)f .

(2) Suppose f ∈ Φ of degree d ≥ 3 with constant term b. If b = −ξa, then a(1)f
λμ = [d].

Conjecture 5.2(1) holds when ‖μ‖ = 1 by Theorem 4.4. Conjecture 5.2(2) is supported 
by Theorem 4.4, where deg f = 2, and it is also supported by Examples 4.8 and 4.9. 
Note in Example 4.8 we have 13 = q2 + q + 1 with q = 3, while in Example 4.9 we have 
31 = q2 + q + 1 with q = 5.

It will be interesting to understand how the structure constants aνλμ depend on q as 
q varies. To that end, write Φq = Φ below to indicate its dependence on q. For each 
λ ∈ P(Φq), we set

Φq(λ) = {f ∈ Φq | λ(f) �= ∅},

and call it the support of λ. Denote by ΦZ the set of monic irreducible polynomials in 
Z[t] other than t. The support ΦZ(λ) is defined similarly for each λ ∈ P(ΦZ). We shall 
regard a polynomial in Z[t] as a polynomial in Fq[t] by reduction modulo q. Observe that 
for each f(t) ∈ ΦZ we have f(t) ∈ Φq for q any power of a large enough prime. Thus any 
λ ∈ P(ΦZ) with its support ΦZ(λ) ⊂ Φq can be viewed an element in P(Φq). Our next 
conjecture concerns about a generic version of the structure constants aνλμ of G (q) as q
varies.

Conjecture 5.3. Suppose λ, μ, ν ∈ P(ΦZ). There exists an integer polynomial in one 
variable q, Aν

λμ(q) ∈ Z[q], such that aνλμ = Aν
λμ(q), for each prime power q with 

ΦZ(λ), ΦZ(μ), ΦZ(ν) ⊂ Φq. Moreover define Aνλμ ∈ Z[q] such that Aνλμ(q) = Aν
λμ(q+1), 

i.e., aνλμ = Aνλμ(q−1) for all prime powers q as above. Then the following positivity holds: 
Aνλμ ∈ N[q].

Conjecture 5.3 is supported by all examples computed in Section 4.
We formulate the following conjecture on the stable center. Let Q denote the field of 

rational numbers.
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Conjecture 5.4. The stable center Q ⊗Z G (q) is the polynomial algebra generated by the 
single cycle class sums K(r)f , for all r ≥ 1 and f ∈ Φ.

In the setting of symmetric groups [2] and wreath products [10], the stable center 
(after a base change from Z to Q) is known to be the polynomial algebras generated by 
the single cycles. As Q ⊗Z G (q) has the size of the ring of symmetric functions indexed 
by Φ, we can ask for a symmetric function interpretation of the class sum basis {Kλ}. 
(This was achieved for the stable center of the symmetric groups in [7].)

5.2. Further directions

There are several further directions and problems arising from our work which may 
be worth pursuing.

(1) It is challenging but important to compute more examples of the structure constants 
aνλμ, in particular when λ is a general single cycles, i.e., λ = (r)f for all r, f , and 
ν = λ∪μ. It is likely that Conjecture 5.4 would follow from such detailed information.

(2) We ask for similar stability phenomena for other infinite families of finite groups of 
Lie type, such as unitary, symplectic, or orthogonal groups.

(3) We ask for similar stability phenomena for various families of subgroups of GLn(q), 
including the affine groups.

(4) The associated graded of the center of the complex group algebra of wreath product 
Γ � Sn for a subgroup Γ of SL2(C) is isomorphic to the cohomology ring of Hilbert 
scheme of n points on the minimal resolution ˜C2/Γ; see [10] (also cf. [5,9,6]). It 
can also be regarded as the Chen-Ruan orbifold cohomology ring of the orbifold 
C2n/Γ � Sn. Does the graded algebra Gn(q) in this paper afford similar geometric 
interpretation and generalization?

(5) Let λ, μ, ν, ̃λ, μ̃, ̃ν ∈ P(Φ) with ‖ν‖ = ‖λ‖ + ‖μ‖. Assume that there exists a 
degree preserving bijection Φ(λ) ∪ Φ(μ) ∪ Φ(ν) ↔ Φ(λ̃) ∪ Φ(μ̃) ∪ Φ(ν̃), f �→ f̃

(deg f̃ = deg f), such that λ(f) = λ̃(f̃), μ(f) = μ̃(f̃), ν(f) = ν̃(f̃), for all f , f̃ . 
Then from all the examples we have computed, the structure constants aνλμ only 
depend on the configurations of λ, μ, ν in the sense that aνλμ = aν̃

λ̃μ̃
. We ask if this 

remarkable phenomenon holds in general.
(6) Regarding the structure constants aνλμ(n) in (1.1) for the center Zn(q) with λ, μ, ν ∈

P(Φq), [8, Theorem 3.7] states that there exist polynomials pνλμ(x) with rational coef-
ficients such that aνλμ(n) = pνλμ(qn); see however Remark 3.6. (The parametrization 
in [8] used μ↑k as in (2.6), and we can replace them by the modified type μ etc. 
here.) Thanks to qn = (q − 1)[n]q + 1, this can be reformulated as that there exist 
polynomials pνλμ(x) with rational coefficients such that aνλμ(n) = pνλμ([n]q). We ask 
if the following integrality holds: pνλμ(x) ∈ Z[x] for any λ, μ, ν.
In light of Conjecture 5.3, we ask whether there exist polynomials φν

λμ(q, x) ∈
Q(q)[x], for λ, μ, ν ∈ P(ΦZ), such that aνλμ(n) = φν

λμ(q, [n]q) for any prime power q
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with ΦZ(λ), ΦZ(μ), ΦZ(ν) ⊂ Φq. Furthermore, we ask if the polynomials φν
λμ(q, x)

are Z[q]-linear combination of x(x− [1]q) · · · (x− [k − 1]q)
q
(k
2
)
[k]q!

for k ≥ 0; cf. [3, Propo-

sition 1.2]. For each fixed n, we ask if there exist positive integer polynomials 
Aνλμ;n(q) ∈ N[q] such that Aνλμ;n(q − 1) = aνλμ(n) for all prime powers q as above. 
This generalizes Conjecture 5.3.
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