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1. Introduction

1.1. A remarkable stability for the centers of the integral group algebras Z[S,] of
the symmetric groups S,, as n varies was established by Farahat and Higman [2]. This
stability result can be reformulated conceptually as follows [7]. Define a notion of reflec-
tion length and modified type for permutations in S, so the length of a permutation
is conjugation invariant and it is equal to the size of its modified type. The reflection
length endows the center of Z[S,] a filtered algebra structure; the stability result of
Farahat-Higman states that the structure constants in the associated graded algebras of
the centers with respect to the basis of conjugacy class sums are independent of n. This
stability result has led to a universal stable (Farahat-Higman) ring with a distinguished
basis, which can be further identified with the ring of symmetric functions with a new
basis [7, pp. 131-134].

The above stability result has been generalized by the second author [10] to wreath
products ' S,, for any finite group I'. When the group T is a finite subgroup of SLs(C),
the associated graded algebra of the center of the group algebra of the wreath product
is isomorphic to the cohomology ring of Hilbert scheme of n points on the minimal
resolution of C2/T'; see [10]. (In case when I is trivial, this goes back to [5,9].) The
same type of stability results has been established in [6] for cohomology ring of Hilbert
scheme of n points on a large class of quasi-projective surfaces (conjecturally, on any
non-projective surface).

1.2. The general linear groups GL,(¢q) over a finite field F, form another rich and
sophisticated family of finite groups, which are often studied besides symmetric groups
and wreath products; cf. [7,11]. The main goal of this paper is to formulate and establish
a stability result a la Farahat-Higman for the centers of the integral group algebras of

GLy(q).

1.3. Anelement in GL,(q) is called a reflection in this paper if its fixed point subspace
in Fy* has codimension one. The set of reflections in GL,(q) forms a generating set for
GL,(q), and the reflection length of a general element g € GL,(q) is by definition the
length of any reduced word of g in terms of reflections; two conjugate elements in G L, (q)
have the same reflection length. The center %, (¢) of the integral group algebra Z[G L, (q)]
of GL,(q) is a filtered algebra with a basis of conjugacy class sums with respect to the
reflection length. Denote by %,(q) the associated graded algebra.

Denote by @ the set of monic irreducible polynomials in F,[t] other than ¢. It is
well known (cf. [7]) that the conjugacy classes of GL,(q) are parametrized by the types
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A = (A(f))few € Pn(®) (which are the partition-valued functions on @ of degree n;
cf. (2.2)). We define a notion of modified types as follows. Let g be an element of GL,(q)
of type A € P,,(®). Denote by A® = A(t—1) the partition of the unipotent Jordan blocks,
and denote by r = £(X\°) its length. We define the modified type of g to be A€ Prr (D),
where A(f) = A(f) for f #t—1and A(t—1) = (AS—1,A5—1,...,A° —1). This modified
type remains unchanged for g under the embedding of GL,(gq) into GL,+1(q) and it is
also clearly conjugation invariant. It follows that the conjugacy classes of GLo(q) are
parametrized by the modified types in P(®) = U, P, (P).

As observed in [4], a basic property about the reflection length of g € GL,(q) is that
it coincides with the codimension of its fixed point subspace in F;'. We show that the
reflection length of an element g € GL,(q) is equal to the size of its modified type.

We parametrize the conjugacy classes (and class sums) for GL,(q) via the modified
types A, and denote the conjugacy classes by J#(n) and the corresponding class sums
by Kx(n), for ||[A|| + £(A®) < n. We then write the multiplication in the center %, (q) as

Kx(n)Ku(n) = Z axu(n) Ky (n). (1.1)
ve [ <A+ el

We can now state our first main result of this paper.

Theorem 1.1 (Theorem 3./). Let A, p,v € P(®). If [[v]| = A + [[ul, then aX,,(n) ds
independent of n. (In this case, we shall write aX ,(n) as a, € N.)

After we proved Theorem 3.4, we found a paper by Méliot, in which the structure
constants a¥,,(n) in (1.1) for the centers 2;,(¢) were studied. Inspired by Kerov-Ivanov’s
partial permutations, Méliot [8] developed a very interesting notion of partial isomor-
phisms for GL,(g) and used it to show that a¥,(n) are polynomials in z evaluated at
x = ¢"; see however Remark 3.6. This can be viewed as an analogue of another result
of Farahat-Higman for symmetric groups. The concepts of reflection length filtration of
%,(q) and modified types were not present in [8] however, and the parametrization of
the class sums for GL,(q) therein often uses p with p® containing no part equal to 1.
Our paper provides an in depth study of these structure constants complementary to [8],
focusing on arguably the more interesting and accessible ones.

A key ingredient in the proof of Theorem 1.1 is the existence of a normal form of
triples in the following sense (see Proposition 3.3). Assume |[v| = ||| + ||]|. Any triple
of elements (g, h,gh) in GLx(gq) of modified types A, u and v is conjugate (under the
simultaneous conjugation of GLu(g)) to some triple (g,h,gh) of elements in GLy(q)
with k = ||v|| + £(v°), where we regard G Ly (q) naturally as a subgroup of G L (q).

Theorem 1.1 can be rephrased as that the associated graded algebra 4, (q) of Z.(q)
has structure constants independent of n. We introduce a graded Z-algebra ¢ with a
basis given by the symbols K indexed by A € P(®), and its multiplication has structure
constants aX,, as in the theorem above, for [[v|| = [|A[| + [[p[]; cf. (3.10).
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Theorem 1.2 (Theorem 3.5). The graded Z-algebra 9, (q) has the multiplication given by

Ex(mKu(n)= Y a5, Ku(n),
=1l el

for A, p € P(®). Moreover, we have a surjective homomorphism 4 — 4,(q) for each n,
which maps Kx to Kx(n) for all X € P(®).

1.4. We conjecture that the stable center Q ®z¥(q) is the polynomial algebra gener-
ated by the single cycle class sums; for a precise formulation see Conjecture 5.4. Similar
structure results hold for the stable centers in the settings of symmetric groups and
wreath products; cf. [2,10].

The computations of the structure constants ay,, are much more difficult than in the
symmetric group or wreath product settings; cf. [2,10]. We compute various examples of
these structure constants (see Theorem 4.4, Proposition 4.5, Proposition 4.6) in Section 4.

All examples indicate a phenomenon (which is rather striking to us) that these struc-
ture constants a¥ " only depend on the configurations but not on the precise supports of
the modified types A, i, v; see §5.2(5) for a precise formulation. The examples have also
motivated several conjectures on more general structure constants in Section 5, where
we also discuss a few open problems and further directions which arise from this work.

In particular, we ask to what extent the structure constants (not merely the stable
ones) are polynomials in g; this is a little subtle as the indexing sets for the structure
constants rely on the conjugacy classes of GL,(q) which depend on g. We offer a possible
formulation of generic structure constants; see Conjecture 5.3 and §5.2(6).

1.5. The paper is organized as follows. In Section 2, we review and set up notations
for conjugacy classes and their canonical representatives of GL,(q). We introduce the
notion of modified types. In Section 3, we formulate and establish the stability on the
structure constants for the graded algebra ¥,(q) and the universal stable center 4(q).
In Section 4, we compute various structure constants for ¥(q). We formulate a few
conjectures and further research directions in Section 5.

2. Conjugacy classes and centralizers in GL,,(q)

In this section, we will review the conjugacy classes of the general linear group G L, (q)
and set up notations (cf. [7]). We provide a description of the centralizers of represen-
tatives of these conjugacy classes. A notion of modified types is introduced and used to
parametrize the conjugacy classes of GL,,(q) and GLx(q).

2.1. Conjugacy classes of GLy(q)

Denote by P the set of all partitions. For A = (A1, Aa,...,) € P, we denote its size by
Al = A1+ Aa + -+ - + Ay, its length by ¢()), and also denote
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n(A) =Y (i -1\

i>1

We will also write A = (171 (M2m2(0) |y where m;(\) is the number of parts in A equal
to i. For two partitions A, u € P, we denote by AU p the partition whose parts are those
of X and p. For a set Y, let P(Y") be the set of the partition-valued functions A : Y — P
such that only finitely many A(y) are nonempty partitions. Given A, u € P(Y'), we define
AU p € P(Y) by letting (AU p)(y) = A(y) U p(y) for each y € Y.

Denote by IF, the finite field of ¢ elements, where ¢ is a prime power. We shall regard
vectors in the n-dimensional vector space Fg' as column vectors, that is, F;' = {v =
(V1,...,v)T|og € Fg, 1 < k < n} for each n > 1. Denote by M, xm(g) the set of n x m
matrices over the finite field F,. The general linear group GL,(q), which consists of all
invertible matrices in M,xn(q), acts on Fj' naturally via left multiplication. We shall
abbreviate GL,(q) as G,,.

The conjugacy classes of G,, can be described as follows (cf. [7]). For g, h € G,,, write
g ~ hif g is conjugate to h. Each element g € G, acts on the vector space F;' and hence
defines a Fy[t]-module on F}' such that tv = gv for v € F;. Denote this F,[t]-module
by Vy. Then g ~ h if and only if V; = V}, as IF,[t|-modules. Hence the conjugacy classes
of G, are in one to one correspondence with the isomorphism classes of F,[t]-modules V'
such that dimV = n and if tv = 0 then v = 0 for v € V. Since F,[t] is a principal ideal
domain, each F,[t]-module is isomorphic to a direct sum of cyclic modules of the form
F,[t]/(f)™, where m > 1, f € F,[t] is a monic irreducible polynomial and (f) is the ideal
generated by f.

Let ® be the set of all monic irreducible polynomial in F[¢] other than ¢. Then for
each g € G, there exists a unique A = (A(f))res € P(P) such that

Vo = Va o= @i [t]/ (/)M (2.1)

where we write A(f) = (A1(f), A2(f),...) € P; moreover, we have

IA] ==~ d()IA)] = n, (2.2)

fed

where d(f) denotes the degree of the polynomial f. Denote by P,,(®) the set of A € P(P)
satisfying (2.2). The partition-valued function X = (A(f))secae € P(®) is called the type
of g. Then any two elements of GG, are conjugate if and only if they have the same
type, and there is a bijection between the set of conjugacy classes of GG, and the set
P (D).

For each f=1t4—%" .. a;t"" ' € @, let J(f) denote the companion matriz for f of
the form o
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0 1 0 0
0o 0 1 0
J(f) = : ,
0 0 O 1
ay ag asg Qq
and for each integer m > 1 let
J(f) 1, 0 0 0
0 J(f) 14 0 0
Im(f) = : : : : :
0 0 0o - J(H 1,
0 0 0 - 0 J(f) dmxdm

with m diagonal blocks J(f), where I is the d x d identity matrix. Given A € P(®) with
A(-f) = (Al(f)a AQ(f)? o ')a set

Jx = diag (in(f)(f))fi, (2.3)

that is, Jy is the diagonal sum of the matrices Jx,s)(f) for all i > 1 and f € ®. Then
an element g € G, of type A is conjugate to the canonical form Jy (cf. [7, Chapter IV,
§2]). For f € @, set

IA(f) = diag (in(f)(f))

i>1

Then by (2.1), we have Vy, () = @;>1Fy[t]/(f)*) as Fy[t]-modules and moreover, we

have Jy = diag (JA(f))fe(I).

Lemma 2.1 (c¢f. [7, IV, (2.5)]). Let A\,u € P(®) and f1 # f» € ®. Suppose A is a
d(f2)|(f2)| x d(f1)|A(f1)|-matriz over Fq satisfying AJx(f1) = Ju(f2)A. Then A = 0.

For any partition A € P, define

ax(q) = M T emn (@),

i>1
where for k > 0, we have denoted
or(t) = (1 —t)(1 =)+ (1 —t5).
For a polynomial f € ®, we set

a5 = q"7. (24)
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For A € P,(®), denote by Ay the centralizer of the element Jy in G,. It is known (cf.
[7, IT, (1.6)]) that the centralizer of the element Jx(f) in G'Lg(p) (s (q) has the order
ax(f)(qy) and hence by Lemma 2.1 the centralizer of an element g € G, of type A has
order

Axl =TT aac(ap)- (2.5)
jea

2.2. The group Gso
For m < n, by the natural identification

Vin = {(a1,...,am,0,...,O)T’ai EFq},

n—m

we regard V,,, as a subspace of V,, (denoted by V,,, C V,,). So we have a natural filtration
of vector spaces 0 =Vo C Vi C--- CV, C Vyy1 C---. We also denote

!
anm

={(0,...,0,b1,...,bp—m)T|b; € Fy},

m

another distinguished subspace of V,, of dimension n—m. Accordingly, via the embedding
0
g [g I }, we regard G, as a subgroup of G,. In this way we have a natural
n—m

filtration of groups
1=Go<G1 < <G <Gy <-o-
Then the union G = U,>0Gy, carries a natural group structure.
2.8. The modified type
For A € P(®), we introduce a shorthand notation
A=At - 1).
Let g be an element of G,, of type A = (A(f)) rea € Pn(®). If we regard g as an element
in Gy, by the natural embedding G,, C G4y, for any m > 1, then the type of g
changes. We define the modified type of g to be X € P,_.(D), where r = £(A°) and
M) =A(f) for f#£t—1and At —1) = (AS — 1,AS — 1,...,A° — 1). This modified
type is the same for a given element under the embedding of G,, in G,,4,. (The notion

of modified types here is inspired by an analogous notion for symmetric groups (cf. [7,
p. 131]) and wreath products [10, §2.3].) The following is immediate.
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Lemma 2.2. Two elements in G, are conjugate if and only if they have the same modified
type.

Given p € P(®) with r = £(u®) and pu® = (u$, us, ..., us), we define p"™ € P, (®)
for all n > ||p| + r via

p"(f) = p(f), for f £t -1, (2.6)
ptt—1)= (") =(uf+Lps+1,...,pi+1,1,...,1). (2.7)
n—r— |

Clearly elements of type pu!™ in G,, have a modified type .

Given p € P(®), we denote by %, the conjugacy class in G which consists of
elements of modified type p. For each p € P(®), £, (n) := G, N %}, is nonempty if and
only if ||p]| +€(p¢) < n; in this case %, (n) is a conjugacy class of G,,. Let K, (n) be the
class sum of %, (n) if ||| +€(p1°) < n, and be 0 otherwise. Denote by Z,(¢) the center
of the integral group algebra Z[G,]. We summarize these discussions in the following.

Lemma 2.3. The set {K,(n) # Ol € P(®)} forms the class sum Z-basis for the center
Z.(q), for each n > 0.

2.4. The centralizers

Recall Jp,(t — 1) is the Jordan form of size m and eigenvalue 1. The following elemen-
tary lemma (cf. [1, Lemma 2.1]) can be verified by a direct computation.

Lemma 2.4. Let k,m > 1. Suppose A € M,,xr(q) satisfies AJi(t — 1) = J(t — 1)A.
Then A is of the form

0 0 ap a2 Am—1 am
0 0 0 ar -+ Gm-2 Qn_1
A= C : : if m <k,
0 0 0 0 aq a9
0 0O 0 O 0 ai
or
a1 ay -+ ap—1  ap |
0 a1 -+ a2 ap
_ 0 0 aq as .
4=10 o 0 a | ¥mzk
0 O 0 0
I

Jor some scalars ai, . .., Ayin(k,m) € Fq-
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The order of the centralizer of a given element of type A in G,, is known; cf. (2.5). For
our purpose, we need to have a more precise description of the centralizer. Recall p!™
from (2.6) and (2.7).

Proposition 2.5. Letn > 0, u € P(®). Suppose k = ||p]|+£(¢) < n. Then the centralizer
of Jyn € Gy is given by

.Apjn = { |:é, ZB;:| ’A E‘A#Tk,D S Gn—k,J;ﬁkB = B,CJMMC = C} (2.8)

Proof. By (2.3), (2.6) and (2.7), we have

o J,, e 0
J,m_[ " In_k]

Write P € Ajtn in a (kln — k)-block form as

[ 8]

Then we have PJ,tn = . P if and only if

plr
Adyre = e A, JypeB =B, CJyn =C. (2.9)

Comparing with the right hand side of (2.8), it remains to show the following.

Claim 1. A matriz {é ZB;} satisfying (2.9) is invertible if and only if both A and D are

invertible.

Let us reduce Claim 1 to a special case. Let [é g] € G, be such that (2.9) holds.

By (2.3), we can write

Jpre = diag(JHTk(f))feq> = diag(diag(.fﬂm () -1, J(“Tk)e) .

Then by Lemma 2.1 and (2.9), we can write

A B A, 0 0
c pl=10 42 B,
0 ¢ D
A .
where A = {01 /(1)2],3: [391}02[0 C1] satisfy
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Aldiag(‘]HTk(f))f;ét—l = diag(‘]l“k(f))f#—lAl’

AQJ(/_LTI«)E = J(”Tk)eAQ’ J(”Tk‘,)eBl = Bl, ClJ(“Tk)e = Cl. (210)
A 0 0 A, B
Clearly | 0 As Bj| isinvertible if and only if both A; and [ 02 Dl} are invertible.
0 Cy D 1

Thus Claim 1 is reduced to the following special case when p(f) = 0 for all f #¢ — 1.

Ay B

Claim 2. A matriz M = [Cl D

} satisfying (2.10) is invertible if and only if both As

and D are invertible.

Let us prove Claim 2. Thanks to (2.7), we can write (u')¢ = (1, iy, - -+ , I8,.), with
[, > 2. Then by (2.10) and Lemma 2.4, we can write

A11 A12 ce Alr Bll
Ay Ay -+ Agr By
M=| (2.11)
Arl Ar2 o Arr Brl
Cyy Ci2 -+ Cy D
where A;; are of the form
0 -~ 0 a1 ax - ag,—1 oap,
0 0 0 ay aﬁi,g aﬁi,1
Ay = |: o S : if i > 7, (2.12)
0 0 0 O ay az
0 0 0 O 0 ar Jgm,
or
a1 a2 - ag,—1  agm, |
0 a - ag—2 ag,—1
R 0 0 ay a2 < g
A;j 0 0 0 @ ifi <y, (2.13)
0 O 0 0
Lo 0 - 0 0 | e XTEj
for some scalars aq, ..., Umin(gz,.55,) € Fy, and B;;,Cy; are of the form
by by - by_g
o 0 --- 0
Bai=1|. . . . )
0 0 -~ 0
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0 0 C1
0O --- 0 Co

Cy=1. . . : , (2.14)
0 -+ 0 c¢pik

(n—k)x@;

for some scalars b;, c; € Fy, where 1 <4 <n —k.

Denote by @ty ; = by + o +. ..+, for 1 < i < r. Then from Equations (2.12)—(2.14)
and the fact that @; > 2 for 1 < ¢ < r, we make the following observations: (I) The
nonzero elements in the rows fry, 4y o, ..., 4., in the matrix M all lie in the columns
B1, 1 95y - (II) The nonzero elements in the matrix C = [C11 Ci2 ... Ciy]
all lie in the columns fy, 1ty o, ..., &y,

Denote by E the submatrix of As of rows/columns &y, o,.-.,H ., and denote
by A} the submatrix of Ay with rows/columns iy, fty o, .., , removed. Then the

/
submatrix of M with rows/columns iy, fty o,..., & , removed is of the form {%2 E} .

Applying the Laplace expansion formula along the rows fiy, ft;_o,- .., #; , to compute
the determinants det M (or det A) only produces one nontrivial term, thanks to the
observations (I)—(IT) above. Hence we have

A2 Bl
Ci D

!
As x

det [ 0 D

]detE-det{ ]detE-detA’2~detDdetA2~detD.
Therefore the matrix {éf %} is invertible if and only if both A and D are invertible.

This proves Claim 2 and hence completes the proof of Claim 1.
The proposition is proved. O

Remark 2.6. The centralizers of a different set of representatives for the conjugacy classes
of G,, can be precisely described, following a variant of [1, Lemma 4.8 and its proof].
This can in particular provide another proof of Proposition 2.5. We will skip the details
as we do not need such a result in this paper.

Corollary 2.7. Suppose g € G,, is of the form g = [g I 0 k} and the type of g € Gy, is
A for some 0 < k < n. If all parts of the partition A® are strictly bigger than 1, then a
(k|n — k)-block matriz {é g] commuting with g is invertible if and only if both A and

D are invertible.

Proof. Since the type of § is A, there exists h € G}, such that hgh™' = Jx. Suppose

[é ZB;} commutes with ¢g. Set H = {g Ino—k:|. Then we have

hiAh h'B] _ i [A B
[Ch D}_H {C D]H’
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I 0]

and these two matrices commute with each other. By Proposition 2.5 and the assumption

-1 -1
that all parts of A® are strictly bigger than 1, the matrix [h C;lh h DB] is invertible

if and only if both hAh~! and D are invertible. The corollary follows. O
We record the following corollary for later use.

Corollary 2.8. Let pp € P(®). Suppose k = ||p|| + £(u®) < n. Then the cardinality of the
centralizer Ain of Jym in Gy, is equal to

|Amk| : |Gn—k| : ’{B € My (n—i)(@)|Jptr B = B}| |{C € Mn—iyxx(@)|CTprr = C}‘
(2.15)

Remark 2.9. Observe that Corollary 2.8 provides another interpretation of the cardinality
of A tn. It can be compared to the general formula given by (2.5) in the following way. Let
p € P(®) with r = £(u®). Suppose k = ||| +r < n. Then by (2.6) and (2.7), we observe
that a,n s (qr) = ayrecp(qy), for f#t—1 and furthermore m;((u')¢) = m;((uT#)®)
for i > 2 and my (u'™) = 0,m1(u') = n — k. This together with (2.5) implies

|A“Tn = H Ayt () Qf ZT(n k)( —k_ 1)(q"71C — q) - (q”*k _ qn*kfl)
fed
= [Apre| - |G| - g7 (2.16)

On the other hand, since rank(J,w — I) =n — r, we obtain

{B € Myx(n—)(@)|JuxB = B} = {B € Myy(n—p)(@)|(Jpre — Ir)B =0} = ¢"" 7%,

where Iy, is the k£ x k identity matrix. Similarly,

{C € Mu_iyxr(@)|CTre = C} =
¢"("=%)_ Therefore the equation (2.16) is compatible with the decomposmon into four
terms in (2.15).

3. Stability of the centers %,(q)

In this section, we examine the interrelations among reflection lengths, fixed point
subspaces, and modified types. We show that the associated graded algebra %,(q) to
the centers 2,,(q) as filtered algebras with respect to the reflection length has structure
constants independent of n. This leads to a formulation of a stable center, which governs
the algebras 4, (q) for all n.
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3.1. The reflection length and modified type
Recall V;, =F. For g € G, the fixed point subspace by g is denoted by
VI :=ker(g—1) = {v e V,|gv = v}.

An element s in G, is a reflection if its fixed point subspace has codimension 1. Let
R,, be the set of reflections in G,,. Then R, is a generating set for the group G,,, since
all of the elementary matrices used in Gaussian elimination are reflections and every
invertible matrix is row equivalent to the identity matrix. The reflection length of an
element g € G, is defined by

£(g) := min {k{g = 1rir9- -1} for some r; € Rn}. (3.1)

The combinatorics of partial orders on G,, arising from the reflection lengths has been
studied in [4]. Recall the codimension codimV;y = n — dimV¢ = rank(g — I,,). The
reflection length has the following simple and useful geometric interpretation.

Lemma 3.1 ([4, Propositions 2.9, 2.16]).

(1) For g € Gy, we have {(g) = codimV7.
(2) Suppose g,h € G,,. Then £(gh) < {(g) + £(h).
(3) If £(gh) = €(g) + £(h), then VINVIE =VIh and V,, = VI + VI

For ¢ € G, C Gnim, the fixed subspaces satisfy V?

em = Vg @V, . Hence by
Lemma 3.1, the length function is compatible with the embedding G, C Gpim- In
particular, a reflection s in G, is also a reflection in G4, that is, R, C Rytm, and

hence accordingly the set of reflections in G, is the union
R = UnZan.

Then g € G has the length ¢(g) = min{k|g = r17r9 - rg, for some r; € R}. It follows
readily by (2.3) that a reflection s is similar to the canonical form

1 10 0 0 & 0 0 0 0
0 1 0 0 0 010 0 0
0 0 1 0 0 o001 .-+ 00
or o (for £ € F,\{0,1}).
0 00 --- 10 o000 --- 10
0 0 0 -~ 0 1] 000 --- 0 1]

Equivalently, an element in G is a reflection if and only if its modified type p satisfies
[[pefl = 1.
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Lemma 3.2.

(1) If g € Ky, then L(g) = ||p|.
(2) If the modified types of g, h, gh € Goo are A, and v, then |v| < || Al + |l

Proof. As the reflection length is conjugation invariant, we can take g = Jyin; cf.
(2.3) and (2.6)-(2.7) for notations. Following the definitions, one checks directly that
codimV9 = ||p||. Hence (1) follows by using Lemma 3.1. Part (2) follows by (1) and
Lemma 3.1(2). O

3.2. A normal form of triples

The following proposition is a crucial step in the proof of the stability as formulated
in the subsequent subsections.

Proposition 3.3. Let g, h, gh € G,, be of modified type A, p and v, respectively. Suppose
vl = Al + lell. Set k = |[v|| + €(v®). Then there exists z € Gy, and g, h € G}, such
that

1 _[g o 4 _[r 0 ~1_lgh 0
zgz _[0 Ink:|7 zhz _[O Ink]’ zghz —[0 Ink:|.

Note that g, h € Gy above have modified types X, p respectively, and gh is of type .
We regard the triple of matrices in the proposition above as a normal form for the triple
(g, h, gh) which satisfies ¢(g) + ¢(h) = £(gh).

Proof. Since the modified type of gh is v, the type of gh is v™. Then by (2.3), gh is
conjugate to Jy,tn, and thus there exists a basis {v1,..., V%, Vks1,..., 00} of Vi, = F}!
such that (gh)v; € span-{vy,..., v} for 1 <i <k and (gh)v; = v; for k+1 <i <n. By
Lemma 3.2, we have

tgh) = il = M + [l = £(g) + £(h), (3-2)

and then by Lemma 3.1, gv; = v; and hv; = v; for k + 1 < ¢ < n. Therefore, there exist
elements z € G, and g,h € Gy and ¢',h' € M(,,_p)xi(q) such that

0= L?’ [no_k}’ e = [}f; Inok:|7 agha™" = [gh : ]

It remains to show ¢’ = 0 = A’. It follows by zghz~! = (2927 1)(2h27!) that
gh+h =0. (3.3)

Furthermore, the following holds:
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U(gh) = £(zgh="") = U(gh) < £(g) + €(h)
= rank(g — I) + rank(h — I,)

gfjk 0 B*Ik 0
§rank[ g O]+rank[ Y 0}

= rank(zgz~! — I,,) + rank(zhz" ' — I,,)
=L(g) + 4(h).

From this together with the equality £(gh) = £(g) + £(h) from (3.2) we conclude that all
the inequalities above are indeed equalities:

t(gh) = €(g) + £(h), (3.4)
rank(g — Ij) = rank F ;,Ik 8] , (3.5)
rank(h — I) = rank {h ;,I’“ 8} . (3.6)

Then by (3.5) and (3.6), there exist A, B € M(,,_x)xx(q) such that
g =A@G-1L), I =Bh-1I). (3.7)
By (3.4) and the invertibility of h, we have
rank(gh — I;) = rank(g — Ij;) 4+ rank(h — I;) = rank((g — Ix)h) + rank(h — I,),
which can then be rewritten as
rank((g — Ix)h + (h — Ii)) = rank((g — Ix)h) + rank(h — I,). (3.8)

Let U; and Us be the subspaces of V; spanned by the row vectors of (g— Iy )h and h — I,
respectively. Then by (3.8) we have

UyNU; =0. (3.9)
On the other hand, by (3.3) and (3.7), we have
A(g — I)h+ B(h — I};) = 0.

Observe that the row vectors of A(g— Ik)fz belong to U; while the row vectors of h—1I
belong to Us. Then by (3.9) we obtain
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A(g— I1)h =0, B(h—1I;) =0.

Hence we have b’/ = B(h — I},) = 0, and then by (3.3), ¢/ = —h'h~1 = 0.
The proposition is proved. O

3.8. A stability property

Recall from Lemma 2.3 that the set {K,(n) # Ojp € P(®)} forms the class sum
Z-basis for the center 27,(q). Given A\, € P(®), we can write the product in Z7,(q)
as in (1.1), where the structure constants a¥,,(n) are zero unless [[v[| < [[A]| + |||l by
Lemma 3.2. For v with ||| + {(v°) < n, the coefficient a¥,,(n) is uniquely determined.

Theorem 3.4. Let A, p,v € P(®). If |[v| = [|A]| + [|pll, then aX,(n) is a nonnegative
integer independent of n. (In this case, we shall write aX,(n) as a¥,,.)

Proof. Set k = |jv| + ¢(v°).
Observe that G, acts on the set of pairs

T={(g,h) € Goc x Gclg € Hr,h € Hp,gh € 0}

by simultaneous conjugation: z.(g, h) = (zgz~1, zhz=1). Wesay (g, h) and (zgz~1, zhz~1)
are conjugate, and so the set T is a union of such conjugate classes. We claim that the
set of conjugate classes of such pairs in T is finite. Indeed, by Proposition 3.3 each pair
(g,h) € T is conjugate to some pair lying in Gy X Gy, which is a finite set. Denote the
conjugate classes in T by %1,...,%,.

Suppose n > ||v||+£(v¢). Then by Proposition 3.3, there exists (g;, h;) € €:N(Gr X Gy,)
for each 1 < i < r. Moreover, €; N (G, x G,,) is a single conjugate class in TN (G,, X G,,)
under the simultaneous conjugation of G,,. By applying Proposition 3.3 once more, there
exist g;,h; € Gy such that the pair (g;, h;) is conjugate to the pair (Eyﬁi), where we
have denoted

~ _ 19, O = | h 0
gz—{o Ink], hz—[o IM]

Let us denote the stabilizer of the pair (g;, h;) by G . Then for each 7, we have

n;(Gi,hi)

= {z IS Gn’zﬁizfl = ﬁi,zﬁizfl = EZ}

‘G";(ﬁi»ﬁi)

O {Z = {2 iﬂ € Man((I)’Z1 € Gry2a € Gpiy 20521 = Giy 2hiz ™t = Ez}

= {Zl S Gk}zlgizfl = §i,zlﬁiz1—1 = El}

: ‘Gn—k"
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|{22 € ka(n—k)(q)|§i22 =Zz2 = EiZQH
\{23 € M(nfk)xk(Q)’ZBgi =z3 = Z:)ﬁi}}

(;) {Zl & Gk|21§i21_1 = §i,zlﬁizf1 = El}

“Gn—k"
‘{22 € My (n—k)(q)|Gihiz2 = 22}’ . ’{23 € Mu—ryxi(q)|23g;hi = 23}‘7

where the equality (i) follows from Corollary 2.7 since the type of g;h; is ¥ and the
equality (ii) follows from the following,.

Claim.

(1) For zg € My (n—p)(q), then g;zp = 22 = hizy if and only if G;hiza = 2s.
(2) For z3 € M(y,—i)xk(q), then 23g; = 23 = z3h; if and only if 23G;h; = 23.

We prove the Claim. Denote by C5 an arbitrary column vector of z5. Since /¢ (giﬁi) =
vl = Al + ]l = €3;) + £(h:), applying Lemma 3.1 we obtain Cy € V7' NV, if
and only if Cs € V,?ih"'7 ie, g,Cy = Cy = h;Cy if and only if §ﬁiC’2 = (5, whence
(1). Noting the reflection length is transpose invariant, we have £(h; g7) = 0(n]) + g]).
Then Claim (2) follows by (1). This completes the proof of the Claim.

Using the above identity for ’Gn;(ﬁiﬁi)‘ and Corollary 2.8 we obtain

" |<€Z N (G, x Gn)| " | A rn
ay,(n) = =
A ; "%/” N G"| ; ‘G";(ﬁi,fu)

T

|Az|

i=1 ‘{Zl € Gk‘zlgizfl =7;, z1hizy " = hi}

)

which is independent of n. The theorem is proved. O
3.4. The stable center

Let K,,, be the subspace of %, (q) spanned by the elements Kx(n) with ||Al] < m and
A € P(®). Thanks to Lemma 3.2, the assignment of degree ||A|| to K (n) provides %, (q)
a filtered ring structure with the filtration 0 C Kg C Ky € Ko C -+ C £,(q). Then
we can define the associated graded algebra denoted by %,(q) as follows. As a vector
space 9,(q) = ®i>0(Xi/Ki—1) where we set X_; = 0 and the multiplication satisfies
(x +Kic)(y + K1) = 2y + Kiyjo1 for z € K,y € K; and 4,5 > 0. Meanwhile,
introduce a graded associative Z-algebra ¥(q) with a basis given by the symbols K
indexed by A € P(®), and with multiplication given by

KaK,= > a,K. (3.10)
I l= A+
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Note Ky is the unit of 4(q). The following summarizes the above discussions.

Theorem 3.5. The graded Z-algebra 4, (q) has the multiplication given by

Ka(n)Kpu(n) = Z aKHK,,(n),
I l=1IA] el

for A, € P(D). Moreover, we have a surjective algebra homomorphism 4(q) = 9,(q)
for each n, which maps Kx to Kx(n) for all X € P(®).

We will refer to 4(q) as the stable center associated to the family of finite general
linear groups. This algebra can be viewed as the inverse limit of the projective system
of algebras {%,(q) }n>1-

Remark 3.6. Theorems 3.4 and 3.5 are the finite general linear group counterparts of
analogous results for symmetric groups in [2] and for wreath products in [10]. It is shown
by Méliot [8] that the structure constants aX,(n) for the center Z;, defined in (1.1) are
polynomials in ¢”, an analogue of another theorem of Farahat-Higmann for symmetric
groups [2]. However, we have difficulties in verifying some key details in Méliot’s approach
such as the equivalence between the assertions 2 and 3 in [8, Definition 2.3] as well as
the proof of [8, Lemma 2.21].

4. Computations in the stable center
In this section, we compute various structure constants ay, in Theorems 3.4 and 3.5.
4.1. Multiplication of class sums of reflections

For r > 1 and f € ®, we define the single cycles (r); € P(®) by letting (r)s(f) = (r)
and (r)f(f") =0 for f # f. Call (r)s a r-cycle of degree d(f). Denote by Fy = F,\{0}.

We shall compute the structure constants arising in the product of class sums of
reflections in G,,. We proceed in three separate cases, depending on the number of
unipotent class sums involved in the multiplication; see Lemmas 4.1-4.3 below.

Lemma 4.1. Suppose &',n' € Fy and n € F,N\{0,1}. Let A = (1)1, ;0 = (1);—y and
f=t>+ast+a; €. Then

O o, q—1, if&n =nd#n,
a’)\y,t7§ = 2q - 17 Zf {5/777,} = {lan}7

0, otherwise,

£ el2
a(2)t—§/ _ {q7 Zf& =1,

0, otherwise,
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a(;;f =

{q+15 ifal:na

0, otherwise.

Proof. We separate the proof into several cases.

1) Let us compute alDi—e Y We—nr Clearly alime YWt g g &'n’ # n. Assume
AL Ap

&'y’ =n. We first consider the case {&',n'} # {1,7n}. Let

r={alax 5 8[8 9 a~ s 1))

Then a&llit‘élu(l)t"" = |I'y]. Observe that A = [Z; Z;i] belongs to I'; if and only if

the following holds:

-1 —1
ai1 +azg =1 " +1, ai1a22 — ai2a21 =10 7,

’ r_ (4.1)
&ain +n'ax =2, a2 #0 or ag #0.

2
Hence if ¢’ = n/ then ag\lu)‘_gl = |T'y| = 0. Assume & # 7. Since &', 1 # 1, a direct
calculation shows that (4.1) is equivalent to

2—-n'(n~t+1) it +1)-2
aj; = T, 22 = g, - )
€ ) -+ 1)?
12021 = (f' _ 77')2 ’
Hence ag\ll”glu(l)t’”' =] =q—1since & +n' #n+1.

In the situation that {¢',n’'} = {1,n}, it is a special case of Proposition 4.5 in the
subsequent section, which includes a detailed proof.

(2) We now compute agi)f_g’. Note a(f;"‘fl = 0 unless (¢)2 = 7. Assume (¢')? =9

and then clearly & # 1. Set
1 ’
B et o] e 1], 11
FS_{A‘A [0 1}’[0 5’}A {0 1 }

Then a(f‘)j’s' = |I's], and A = {all al;] belongs to I's if and only if the following

a1 Q2
holds:

-1 1
a1 +age =71 " +1, aiiaz —apan =n ",

(4.2)
apn +&ax +an =2, axn#0 or aja+an #0.

Using (£')? =1, a direct calculation shows that (4.2) is equivalent to
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Cln((ﬁ*1 +1)— (111) —n!
2-¢(m 1 +1) '

(2)75—5’ _
Ap -

ase =M +1)—an, an=2-¢Mn1+1), ap=

Hence the number of solutions to (4.2) is ¢, which implies a
(3) Suppose f(t) =t*+ ast +a; € ®. Let v = (1) and

T, = {B ‘ B~ [8 ﬂ  det (tlg— [(1) }] B) :f(t)}.

Since f(t) is irreducible, we observe that a matrix C' € G is conjugate to J(f) if and
only if the characteristic polynomial of C'is f(t), and so

o[ . b fo-so).

Therefore we have

A EZnarel 2-q '
Clearly B = [Z; Z;;] belongs to I'y if and only if the following holds:
bi1 + b2 =n+1, biibay —biaba =1,
b1y +ba1 + bag = —aa, bi1bas — b12boy = ay. (4.4)

So a(;;f = 0 unless a; = 7. Now suppose a; = 7. Since f(t) = t> + aat + 1 is irreducible,

we have as + (n+ 1) # 0, and hence (4.4) is equivalent

(b11 — 1)(b11 — 77).

boo = (N +1) —by1, by = —as — (n+1), big=
22 (77 ) 11 21 2 (77 ) 12 ay T (n+ 1)

(1)

A”f:q—&—l.

This implies |T'4| = ¢. Hence by (4.3) we obtain a
The lemma is proved. O

Lemma 4.2. Let A = (1);—1. Suppose §,n € Fy and f = t2 +agt +ay € ®. Then

q_la lffnzl,f?él,

D eU()_n .
ad W = P ife=n=1,
0, otherwise,
) q, Zfé.z:lag#la
X =12  ife=1,

0, otherwise,



J. Wan, W. Wang / Advances in Mathematics 349 (2019) 749-780 769

J0r_ et ifa=1,
AA 0, otherwise.

Proof. The methods and calculations used in the proof of Ler2nma 4.1 can also be applied
to prove the formulas in the case £ = n = 1. To compute all )t‘l, let

Ap
1 1 0 0 1 1 0 O 1 1 0 O
01 00 01 00 01 00
Ts=9B1B~19 0 10| o001 1]/B~0oo0 10
0 0 0 1 0 0 0 1 0 0 01
bin bz biz bis 1 1 0 0
. _ | b1 baz Doz bas ~ 10 1 0 O
Write B = bsi bss bss sy € G4 and B = 00 1 1 - B. Observe that B
bir baz baz baa 00 0 1

belongs to I's if and only if the following holds:
by +boo + bz +bag =4, rank(B—1I,) =1, rank(B—1I;) =1, boy+bss=0. (4.5)
A direct calculation shows that (4.5) is equivalent to
bi1 =baa = b3z =baa =1, b1z =ba1 = bog = bag = b31 = ba1 = baz = by =0,
biabsz = b12(¢ — 1 —bi2), bza=¢q—1— b2

This implies a()}j)‘*l =T5=22¢—1)+(¢—2)(¢—1)=¢* +q.

We omit the detailed proofs for the other cases. 0O

The follow formulas can be proved by using arguments similar to the proof of
Lemma 4.1. We omit the details which can be found in arXiv version 1 of this paper.
This coincides with the computation in [8, Theorem 4.1]; see however Remark 3.6.

Lemma 4.3. Let {,n € F, \ {0,1} and &',n' € Fy. Let X = (1);—¢,pp = (1)1 and
f=t>4+ast+a; € ®. Then

q— 17 Zfé-/ ' = énvgl 7é 77,7 {glan/} 7é {5777}7
a(l)t—g/u(l)t—n/ — 2q - 1a Zf 6/ ! = f’)agl 7é 7)'7 {flaﬁl} = {5777}7

A ¢ +q, ife=n=&c=n,
0, otherwise,
. g &= ¢{En)
a)\ut7§ = 2Qa Z.f gl = 5 =1,
0, otherwise,

GJVr )t ifar=¢n,
A 0,  far#&n
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While the computations to derive the formulas in Lemmas 4.1-4.3 have to be carried
out separately and the sizes of the matrices involved are different, we find it rather
remarkable that these formulas afford a uniform reformulation. This is summarized in
the following theorem.

Theorem 4.4. Suppose §,1,&',n" € Fy and f € ® with degf = 2. Let A = (1);—¢, p =
(1)t—n. Then aX,, = 0 if det Jy # det Jx - det Jg for v € P(®) with [[v|| = 2. Otherwise,
we have the following complete list:

q—1, if&#Fn' {0 #{&nh
a(l)t—g’u(l)t—n’ — 2q - 1a Zf 5/ 7é 77/7 {f/ﬂ?/} = {57”};
M ¢ +4q, ifg =n'=¢=n,
0, otherwise,

¢ & E{&m)

ar = = {2, i€ e {& ),
0, otherwise,
ag\ll)f =q+1.

4.2. Computation on aii“

In the setting of symmetric groups [2] and wreath products [10], the structure con-

stants ai“ﬁ“ are among the easiest to compute. In our setting, these structure constants

N

are not as straightforward to compute in general. We shall present aiz in some simplest

nontrivial cases.

4.2.1.  We first compute some cases when A is a single 1-cycle of degree 1 and p is a
disjoint union of 1-cycles of degree 1.

Proposition 4.5. Suppose £1,82,...,8a € F; and & # & for 1 < i # j < d. Let XA =
(Di—ers b= 1)t—g, U+~ U (1)—g,. Then
adp = (20 - )"

Proof. We separate the proof in three cases.
(1) Assume 1 ¢ {&1,&,...,&4}. Let

M= {A | A~ diag(&70,1,...,1), diag(gl,...,gd)ANdiag(52,...,gd,1)}.
Since &; # 1 for 1 <14 < d, we have

a3t = 1. (4.6)
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Suppose A € II. Write A = (aij)1<ij<d. Let A = diag({l, e ,fd)A. Since A ~
diag(fl_l7 1,..., 1) and A ~ diag(fz, oo &, 1), we have

rank(A — Iy) =1, (4.7)
ain +ass 4+ aga =&+ (d—1), (4.8)
det(A —&1I,) =0, for2<i<d. (4.9)
Claim. We have agy = azz = -+ = agqa = 1 and a;; = & .

Let us prove the claim by contradiction. Assume age # 1. Then by (4.7), there exist
a1, 2,03, . ..,0q with as = 1 such that

aij — 0ij = aiag; — dg5), for 1 <id,j <d. (4.10)
Since A = diag(fl, e ,§d)A, a direct calculation using (4.10) shows that

det(A — &14) = (& — &2)€a(aze — 1) (& — &2) -+ (€a — &2) £ 0

since & # &; for ¢ # j. This contradicts (4.9). Hence azs = 1. Similarly, we can prove
azg = -+ = agqg = 1. Now it follows by (4.8) that a;; = ¢~ 1. The Claim is proved.

Observe that &' # 1. This means the first row of A — I is nonzero and then again
by (4.7), each A € II is of the following form:

gt az a3z as - ag ]
Bo(&5'—1) 1 Poag Poas -+ faag
A= |Ba(&'=1) Bsaz 1 fzas -+ Psaqg (4.11)
| Ba(& = 1) Baaz Baas Baas -+ 1
where as,...,aq,52,...,Bq4 € F, satisfy
a;B; =0, for 2 <i<d. (4.12)

Conversely, let A € Myxq(q) be of the form (4.11). Then we have A ~ diag(fl_l7 1,
...,1). Let A =diag(&1,...,&a)A. A direct computation using (4.12) shows that

det(A — &1,) = 0. (4.13)

Observe that the trace of A is tr(A) = 1+& + ... 4 &4 This together with (4.13) implies
det(A —I;) = 0. Therefore we have A = diag(&1,...,&a)A ~ diag(gg, &, 1). Putting
these together we obtain
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II={A | Ais of the form (4.11), where a;, 3; € Fq (2 < i < d) satisfy (4.12)}.

Thus, by (4.6) we have aiz“ = || = (2¢ — 1)971.
(2) Assume &; = 1. Set

1 -1 0 0 11 0 0 1 0 0
1 0 0 01 0 0 10 0
B |0 1 0 c=10 0 & 0 D—10 0 & 0
0 0 0 0 1 00 0 0 & 00 0 0 &

where B,C, D are (d+ 1) x (d + 1)-matrices. Then let
n={A|A~B, CA~D}.

Clearly aii“ = |IT|. Suppose A € TI. Write A = (aij)1<ij<a+1. Let A = CA. Since
AwBandZwD, we have

rank(A — Iy4q) = 1, (4.14)

ain +ax+ -+ ag41,9+1 =d+1, (4.15)

det(A — &1441) =0, for 2 <i<d, (4.16)

rank(A — Iy 1) =d—1, (4.17)

a1 + agy + age +&azz + - +8qaqr1,d41 =S+ + g + 2. (4.18)

Then by a similar proof of the claim in Case (1), we can show ass = aqq4 = -+ =
ad41,4+1 = 1 using (4.14) and (4.16) and hence a1 + a22 = 2 and ag; = 0 by (4.15) and
(4.18). Then using (4.17) we can deduce that az; = as1 = -+ = ag+1,1 = 0 and hence
a11 = asa = 1 by (4.14). Moreover, one can show aja +1 = 0 by (4.16) and (4.17). This
means the first row of A — ;41 is nonzero and again by (4.14), each A € II has the form

1 -1 as a4 as s ad+1
0 1 0 0 0 cee 0
0 —fs 1 B3aa as o B3ad41
A= , (4.19)
0 —fa Baas 1 Bras -+ Paaair
10 —Ba+1 Barias Bari1as Payias - ]
where a3, a4, ...,a4+41,053,...,Ba+1 € Fy satisfy

a;B; =0, for3<i<d+1. (4.20)
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Again similar to the proof of Case (1), we can show that a matrix A of the form (4.19)
satisfying (4.20) belongs to II. Hence we obtain

IT = {A| Ais of the form (4.19), where a;, 5; € F, (3 <1i < d+ 1) satisfy (4.20)}.

Therefore we have aii“ = || = (2¢ — 1)4%.

(3) Assume 1 € {&,&3,...,&q}. Without loss of generality, we can assume & = 1. Set

11 0 0 0 110 0 0
01 0 0 0 010 0 0
00 & 0 0 001 0 0

C=100 0 & 0 |, D=1]0 0 0 & 0
00 0 0 0 & | 000 0 0 ¢&

Then let
M= {A | A~ diag(¢74,1,...,1), CAND}.

Clearly aii“ = |II|. Suppose A € II. Write A = (a;j)1<ij<dt+1. Let A = CA. Since
A~ diag({fl7 1,..., 1) and A ~ D, we have

rank(A — Iy41) = 1, ( )

a11+a22+-~-+ad+1,d+1=§f1+d, ( )

det(A —&1g41) =0, for3<i<d, (4.23)

rank(A — Ip1) =d — 1, (4.24)

a1 + ag1 + ase + &rass + &3a4a + -+ EaGar1,a41 =&+ -+ &0+ 3. (4.25)

Again by a similar proof of the claim in Case (1), we have a4q = ass = -+ - = ag41,d+1 = 1.
Then by (4.22) and (4.25) we have

a11 + agse + ass = 51_1 +2, a4+ a2 +ax+&ass =3. (4.26)

We claim ag; = a3 = ag4 = -+ = a2,q+1 = 0,a22 = 1. Otherwise, the second row of the
matrix A — I;11 is nonzero and by (4.21) there exist aq, ..., a4+1 with as = 1 such that
Qjj — 5ij = ai(azj - 523’), for 1 < 1,] < d—+ 1. (427)

Then we have
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[0 1 0 0 0
a1 azx—1  ao3 a24 a2,d+1
N 0 0 &6-1 0 0
rank(A — Id+1) = rank 0 0 0 53 -1 .. 0 Z d7
00 0 0 €—1]

which contradicts with (4.24). So the claim holds. Then by (4.26) we obtain a;; = 1 and
azz = &' # 1. This means the third row of the matrix A — I;;; is nonzero and hence
by (4.21), each A € II has the following form:

1 Bias Bi&t = 1) Bias Bragi1 |
0 1 0 0 0
0 as fl_l a4 ad+1
A= _ 4.28
0 Baas Ba(&Tt = 1) 1 Baagyr |’ (4.28)
10 Bayraz Bap1 (6 —1) Bayias I

where as,a4,as5, - ,a4+1,B1, B4, Bs, - - -, Ba+1 € Fy such that B;a; =0 for 4 <i < d+ 1.
Then using (4.24) one can deduce that Sias = 0. Therefore each A € II has the form
(4.28) with

5102 = O, &-ai = O, for 4 S 1 S d+ 1. (429)

Conversely, by a similar argument as for Case (1), we can show that a matrix of the form
(4.28) satisfying (4.29) must belong to II, and hence

IT = {A| Ais of the form (4.28), where az,a;, 1, 8; € Fq (4 < i < d+1) satisfy (4.29)}.

AUp _

Therefore we have Uy = ITI| = (2¢ — 1)?~L. The proposition is proved. O

For m,b € N, define the g-integers, g-factorials, and g-binomial coefficients

(4.30)

ctd
Proposition 4.6. Let c¢,d > 1. Then a(ic e

_ cd C+d
(1) ime(1¥)ee 4 [

T AY Y
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Proof. Let

C = diag (&,...,¢,1,...,1), D= diag (§,...,&1,...,1).
—_— — —— —

Set

H:{(AvB)lAN07 Bng_lND}
Then aﬁiid_);(‘fd)t_s = |TI]. Observe that if a matrix A is conjugate to C' then A~ must
be conjugate to D, and hence II = {(A4,£A™!) | A ~ C}. This and (2.5) give us

(ct+d)((c+d)—1)
|GLcta(q)| q 2 [c + d]! d [

| = |A(c+d)| = = —— - =q°

‘ | ‘ A( )| |A)‘Tc+d| ,(21) [C]!'qd(% 1) [d]!

c+d
C 3
where XA = (1°);_¢. The proposition is proved. O
4.2.2.  For convenience, we shall denote by [¢] the class sum corresponding to g € G,,.
Regarding Proposition 4.5, here are some examples for aii“ when A is a single 1-cycle

of degree 1 and g is union of 1-cycles of degree 1.

Example 4.7. (1) Suppose ¢ = 3. Then

T2 000 0] [[t 1 00 o] 9 0 0 0 0
0100 0 01000 01 10 0
001 00 0 01 1 off=17{|0 0 1 0 Of + other terms.
00010 000 10 00011
loooo 1] JJoooo 1] [0 0001
Tt 1 00 0] [t 100 0] 9 0 0 0 0
0100 0 01000 01 100
001 00 002 0 0] =600 0 1 0 Of + other terms.
00010 00010 000 11
lo ooo 1] Joooo 1] 00001
T2 0000 0] 20000 0] 9 00 0 0 0
010 00O 0 110 0O 02 0 0 0 O
001000 000 100 0ff 0 00 1 10 0ff s
000100 000110 000100
000010 000010 000011
lo o000 00000 1) (000001
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(2) Suppose g = 5. Then

2 00 300 200
01 0 0 3 0 =490 3 0] + other terms.
0 0 1 0 0 1 00 3
2 0 0 0] [3 0 0 of (2 0 0 0]
0010 0 03 0 0f |03 0 0ff 0 s
00 1 0 00 3 0 0030
000 1) [[00o0 1] 0 0 0 3]
2 00 0] [3 0 0 of (2 0 0 0]
0010 0 03 0 0f o ll0 3 0 0ff 0 s
00 1 0 00 4 0 0030
00 0 1] [[0 0 0 1] 00 0 4]
(4 0 0 o] T4 o o o 40 0 0
0010 0ff 03 0 0f 0 4 0 0f s
00 1 0 00 30 0030
000 1] 000 1] 000 3

4.3. More examples

Here we present examples for a¥,, where A = (1);—¢ for § € F,\{0,1}, p = (1) for
f' € ® of degree 2, and v = (1)5 for f € ® of degree 3.

Example 4.8. Suppose ¢ = 3. Then

2 00 0 1 0
0 1 O0f-|11 2 0
0 0 1 0 01
0 1 0 010 010 010
=130 0 1| +13||0 0 1 +13}JJ0 0 1| +13}0 0 1
110 1 0 2 1 2 2 1 11

+ other terms.

Example 4.9. Suppose ¢ = 5. Then

o O N
S = O
= o o
o w o
S =
= o o
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0 0 1 0 01 0 0 1 0 1 0
=310 0 1| +31 1 +311)o o 1| +311)fo o 1| +311)fo 0 1
4 0 4 3 0 4 0 4 4 4 4 1 4
0 1 0] [0 1 0 010 01 0 01 0
+31fo 0o 1| +31|fo o 1| +31L(|fo o 1| +31{o0 +311]0 0 1
4 0 3_ 2 4 1 2 4 4 1 4 1
+ other terms.
2 0 0 010
Note that det |0 1 0| =2,and det [3 1 0| = —3. Observe that all irreducible
0 0 1 0 0 1

polynomial in F5[¢] of degree 3 with constant term equal to —2 x (—3) = 1 appear on
the right hand side of the above equation.

5. Conjectures and discussions

Motivated by the examples computed in the previous section, we formulate in this
section several conjectures on the structure constants of the stable center, and discuss

various problems arising from this work.
5.1. Conjectures

We present several conjectures on the structure constants a¥,, and the structure of
the stable center Q ®z ¢. Recall the g-integers [m] from (4.30).

Conjecture 5.1.

(1) Suppose £1,82,...,8a € Fy are distinct, and let c1,...,cq € N for 1 < i < d. Let
A= (1),5_51,/.1, = (lcl)t_gl(ICQ)t_gz -y (1Cd)t_§d. Then

d

axt = e + 1) [ (2¢% - 1)
1=2

(2) Suppose £ € Fy and f € ®. Let A= (1);—¢ and pp = (1)y. Recall g5 from (2.4). Then

A
aytt =2q5 — 1.

(3) Suppose § €Ky, fo,..., fa € ® and c1,¢2,...,¢cq € N with f; #t =& for 2 <i < d.
Let A= (1)i—gopp = (10)p—e(192), U U (190) . Then

d
axt =g fer+ 1 [[2>gr) - D).

=2
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Conjecture 5.1(1) is supported by Example 4.7. Note that in Example 4.7 we have
17=2¢> -1, 60 = q(1 + ¢)(2¢ — 1) and 204 = ¢(1 + q)(2¢*> — 1) with ¢ = 3 and 49 =
2% — 1, 249 = 2¢> — 1, 441 = (2¢ —1)(2¢*> — 1) and 1470 = q(1 +q)(2¢*® — 1) with ¢ = 5.
Conjecture 5.1(2) is supported by Lemma 4.2 and Proposition 4.5. Conjecture 5.1(3) is
a combination of Conjecture 5.1(1)-(2) and it is supported by some further examples
which we omit here.

Conjecture 5.2. Suppose A = (1);—¢ for § € Fy, p= (1) for f' € @ of degree d—1 with
constant term a.

(1) For each irreducible polynomial f € Fy[t] of degree d with constant term equal to
—&a, there exist elements g,h € G4 of modified types A and p, respectively, such
that the modified type of gh is (1)s.

(2) Suppose f € ® of degree d > 3 with constant term b. If b = —Ea, then a(;;f = [d].

Conjecture 5.2(1) holds when ||| = 1 by Theorem 4.4. Conjecture 5.2(2) is supported

by Theorem 4.4, where deg f = 2, and it is also supported by Examples 4.8 and 4.9.

Note in Example 4.8 we have 13 = ¢? + ¢ + 1 with ¢ = 3, while in Example 4.9 we have

31=¢*+q+1 with ¢ =5.

It will be interesting to understand how the structure constants aiﬂ depend on ¢ as

g varies. To that end, write ®, = ® below to indicate its dependence on q. For each

A€ P(D,), we set

Dy(A) = {f € 4 | A(f) # 0},

and call it the support of A. Denote by @z the set of monic irreducible polynomials in
Z[t] other than t. The support ®z(A) is defined similarly for each A € P(Pz). We shall
regard a polynomial in Z[t] as a polynomial in F,[¢] by reduction modulo g. Observe that
for each f(t) € @z we have f(t) € O, for ¢ any power of a large enough prime. Thus any
A € P(®z) with its support ®z(A) C @, can be viewed an element in P(®,). Our next
conjecture concerns about a generic version of the structure constants ay, of ¢ (q) as ¢
varies.

Conjecture 5.3. Suppose A\, u,v € P(Pz). There exists an integer polynomial in one
variable q, AK#(q) € Zlq], such that ax, = Aiﬂ(q), for each prime power q with
Pz (), 2z(p), Pz (v) C ©q. Moreover define 4, € Z[q] such that 4%, (a) = A%, (a+1),
i.e., ay, = AK”(q—l) for all prime powers q as above. Then the following positivity holds:
A3, € Nlq].

Conjecture 5.3 is supported by all examples computed in Section 4.
We formulate the following conjecture on the stable center. Let Q denote the field of
rational numbers.
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Conjecture 5.4. The stable center Q ®z ¥ (q) is the polynomial algebra generated by the
single cycle class sums K, for allr > 1 and f € .

In the setting of symmetric groups [2] and wreath products [10], the stable center
(after a base change from Z to Q) is known to be the polynomial algebras generated by
the single cycles. As Q ®z ¥(q) has the size of the ring of symmetric functions indexed
by ®, we can ask for a symmetric function interpretation of the class sum basis {K}.
(This was achieved for the stable center of the symmetric groups in [7].)

5.2. Further directions

There are several further directions and problems arising from our work which may
be worth pursuing.

(1) It is challenging but important to compute more examples of the structure constants
ax,, in particular when A is a general single cycles, i.e., A = (r)y for all r, f, and
v = AUp. It is likely that Conjecture 5.4 would follow from such detailed information.

(2) We ask for similar stability phenomena for other infinite families of finite groups of
Lie type, such as unitary, symplectic, or orthogonal groups.

(3) We ask for similar stability phenomena for various families of subgroups of GL,(q),
including the affine groups.

(4) The associated graded of the center of the complex group algebra of wreath product
' S, for a subgroup I' of SLy(C) is isomorphic to the cohomology ring of Hilbert

scheme of n points on the minimal resolution C2/T"; see [10] (also cf. [5,9,6]). It
can also be regarded as the Chen-Ruan orbifold cohomology ring of the orbifold
C?" /T 1 S,,. Does the graded algebra ¢,(¢) in this paper afford similar geometric
interpretation and generalization?

(5) Let A\, p, v, A\, i, 0 € P(®) with ||| = ||A|| + ||p]|. Assume that there exists a
degree preserving bijection ®(A) U @(p) U ®(v) & @A) U S(2) UD(@D), f — f
(deg f = deg f), such that A(f) = A(f),u(f) = a(f),v(f) = &(f), for all f, f.
Then from all the examples we have computed, the structure constants axu only
depend on the configurations of A, p, v in the sense that af, = aS‘~ We ask if this
remarkable phenomenon holds in general.

(6) Regarding the structure constants aX,,(n) in (1.1) for the center 25, (q) with A, p,v €
P(@q), [8, Theorem 3.7] states that there exist polynomials pY , () with rational coef-
ficients such that a¥,,(n) = pX,,(¢"); see however Remark 3.6. (The parametrization
in [8] used p' as in (2.6), and we can replace them by the modified type p etc.
here.) Thanks to ¢" = (¢ — 1)[n], + 1, this can be reformulated as that there exist
polynomials p¥, () with rational coefficients such that af,,(n) = p¥,,([nly). We ask
if the following integrality holds: p¥ ,(z) € Z[z] for any A, p, v
In light of Conjecture 5.3, we ask whether there exist polynomials ¢Ku(q,x) €
Q(a)[z], for A, p, v € P(®Pz), such that af,,(n) = ¢X (g, [nly) for any prime power ¢
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with @7(X), @z(p), z(v) C 4. Furthermore, we ask if the polynomials ¢%,(q, z)

Y (= [k —1
are Z[q]-linear combination of 2z = [la) - (=] Ja) for k > 0; cf. [3, Propo-
a2 [k]q!
sition 1.2]. For each fixed n, we ask if there exist positive integer polynomials

Xun(d) € N[q] such that A%, (¢ — 1) = a¥,,(n) for all prime powers ¢ as above.

This generalizes Conjecture 5.3.
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