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Abstract We classify the simple modules of the exceptional algebraic supergroups over an
algebraically closed field of prime characteristic.
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Introduction

Among the simple Lie superalgebras over the complex field C, the basic Lie superalgebras
distinguish themselves by admitting a non-degenerate super-symmetric even bilinear form
(see, e.g., [4]), and they include 3 exceptional Lie superalgebras: D(2|1; ζ ),G(3) and F(3|1);
cf. [7]. The classification of finite-dimensional simple modules of complex simple Lie
superalgebras was achieved by Kac ([10], Theorem 8). Note that the simple highest weight
moduleswhose highestweights are dominant integral (with respect to the even subalgebra) are
not all finite dimensional. This is one of several aspects that super representation theory differs
from the classical representation theory dramatically. This classification theorem of Kac can
be reformulated as a classification for simple modules over the corresponding supergroups
over C.
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There are algebraic supergroups associated to the basic Lie superalgebras, valid over an
algebraically closed field k of prime characteristic p �= 2. A general theory of Chevalley
supergroups was systematically developed by Fioresi and Gavarini [6] (also see [8]). In
representation theory of algebraic supergroups G over k, one of the basic questions is to
classify the simple G-modules. For type A, the answer is immediate as it is the same as
for the even subgroup G0. For type Q such a classification was obtained in [2], and it has
applications to classification of simple modules of spin symmetric groups over k. For type
osp, the classification was obtained in [17] in terms of the Mullineux involution by using odd
reflections; also see Remark 1.3.

The goal of this paper is to classify the simple G-modules, when G is a simply con-
nected supergroup of exceptional type. We shall assume throughout the paper that p > 2 for
D(2|1; ζ ) and p > 3 for G(3) or F(3|1) (except in §3.4). Under these assumptions, their
corresponding supergroups admit non-degenerate super-symmetric even bilinear forms. We
treat G(3) for p = 3 in §3.4.

Let us outline the approach of this paper. An equivalence of categories ([17]; also cf.
[14]) reduces the classification of simple G-modules to the classification of the highest
weights of finite-dimensional simple modules L(λ) = Lb(λ) over the distribution superal-
gebra Dist(G), where b is the standard Borel subalgebra. We then reduce the verification of
finite-dimensionality of L(λ) to verifying that L(λ) is locally finite over its even distribution
subalgebra. The local finiteness criterion for L(λ) is finally established by means of odd
reflections (see [11]), and is based on the following observation which seems to be well
known to experts (see [16]):

For every positive even root α in the standard positive system, either α/2 (if it is a root)
or α appears as a simple root in some simple system �′ associated to some b′, where b′ is a
Borel subalgebra obtained via a sequence of odd reflections from b.

For the exceptional Lie superalgebras, we make this observation explicit in this paper. We
compute the highest weight Lb′

(λ′) for all possible Borel subalgebras b′ as mentioned above.
Requiring λ′ to be dominant integral for all possible b′ gives the local finiteness criterion for
L(λ).

Recently, an approach to obtain characters of projective and simple modules in the BGG
categoryO for the exceptional Lie superalgebras over C has been systematically developed;
see [5] for D(2|1; ζ ). Building on this and the currentwork, onemay hope to better understand
the characters of projective and simple modules of the exceptional supergroups over a field
of prime characteristic in the future.

The organization of this paper is as follows. In Sect. 1, we review the equivalence between
the category of finite-dimensional modules over a supergroup G and the category of finite-
dimensional (Dist(G), T )-modules, where T is a maximal torus ofG. We develop a criterion
for the finite-dimensionality of simple Dist(G)-modules L(λ) via odd reflections. We also
review the formula for the Euler characteristic, which implies that a Dist(G)-module L(λ),
with λ dominant integral and λ + ρ is regular, is always finite dimensional.

In Sect. 2, we analyze the highest weight constraints given by odd reflections of a sim-
ple finite-dimensional Dist(G)-module when G is of type D(2|1; ζ ). Here D(2|1; ζ ) is a
family depending on a parameter ζ ∈ k\{0,−1}. We then classify the simple G-modules in
Theorem 2.1.

In Sect. 3, we analyze the highest weight constraints given by odd reflections of a simple
finite-dimensional Dist(G)-module when G is of type G(3). We then classify the simple
G-modules in Theorem 3.5.

In Sect. 4, we study the supergroup G of type F(3|1). When the highest weight λ =
aω1 + bω2 + cω3 + dω4 with a, b, c ∈ N, d ≥ 4 is dominant integral, the weight λ + ρ is
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Modular representations 637

regular and hence the Euler character formula implies that the Dist(G)-module L(λ) is finite
dimensional. For d ≤ 3, it is rather involved to analyze the highest weight changes under
sequences of odd reflections and formulate sufficient and necessary conditions for L(λ) to
be finite dimensional. We finally classify the simple G-modules in Theorem 4.8.

Finally we remark that, although in this article we deal with an algebraically closed field of
positive characteristic, the results also make sense in characteristic zero and give the known
classification in this case; cf. [10,12].

1 Modular representations of algebraic supergroups

1.1 Algebraic supergroups and (Dist(G), T )-mod

Throughout the paper, the ground field k is assumed to be algebraically closed and of char-
acteristic p > 2 (sometimes we will specify a stronger assumption p > 3).

We shall review briefly some generalities on algebraic supergroups; cf. [2,6,14,17]. An
(affine) algebraic supergroup G is an affine superscheme whose coordinate ring k[G] is a
Hopf superalgebra that is finitely generated as a k-algebra, and gives rise to a functor from
the category of commutative k-superalgebras to the the category of groups. The underlying
purely even group G0 is a closed subgroup of G corresponding to the Hopf ideal generated
by k[G]1, and it is an algebraic group in the usual sense. For an algebraic supergroup G,
the distribution superalgebra Dist(G), which is by definition the restricted dual of the Hopf
superalgebra k[G], is a cocommutative Hopf superalgebra.

We denote by G-mod the category of rational G-modules with (not necessarily homoge-
neous) G-homomorphisms. Note that a G-module is always locally finite, i.e., it is a sum
of finite-dimensional G-modules. Given a closed subgroup T of G, a Dist(G)-module M
is called a (Dist(G), T )-module if M has a structure of a T -module such that the Dist(T )-
module structure on M induced from the actions of Dist(G) and of T coincide. We denote
by (Dist(G), T )-mod the category of locally finite (Dist(G), T )-modules, and denote by
Dist(G)-mod the category of locally finite Dist(G)-modules. (We shall always take T to be
a maximal torus of G when G is of basic type.)

1.2 Modules of basic algebraic supergroups

Let g be a basic Lie superalgebra over k [4,6,8], including the three exceptional types:
D(2|1; ζ ), G(3), and F(3|1). The non-degenerate bilinear form (·, ·) of g over k exists when
the characteristic p of k satisfies p > 2 for type gl, osp and D(2|1; ζ ), and p > 3 for G(3)
and F(3|1).

Algebraic supergroups over k associated with basic (including exceptional) Lie superal-
gebras are constructed in analogy to Chevalley’s construction of semisimple algebraic groups
(see [6] and [8]); we shall use the same terminologies (such as basic type, exceptional type) to
refer toLie superalgebras and corresponding supergroups.We shall callG simply connected if
G0 is a simply connected algebraic group, taking advantage of [13, Proposition 3.5]. Simple-
connected supergroups of basic type exist, and we shall assume the exceptional supergroups
in this paper to be simply connected.

The assumption on Chevalley bases in [17, Theorem 2.8] is satisfied for all algebraic
supergroups of basic type, by the constructions in [6,8]. Hence we have the following.
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Proposition 1.1 [17, Theorem 2.8] [14] Let G be an algebraic supergroup of basic type.
Then there is a natural equivalence of categories between G-mod and (Dist(G), T )-mod.

If we further assume G is simply connected, then (Dist(G), T )-mod in Proposition 1.1
above can be replaced by Dist(G)-mod; cf. [9, II.1.20].

A supergroup G of basic type can be constructed as a Chevalley supergroup through a
Chevalley basis associated with a standard positive root system �+ as described in [17, §3.4
and §3.5], [6, 3.3] and [8, §3]. Therefore, we have a standard Borel subgroup B corresponding
to �+, which contains a maximal torus T . The distribution superalgebra Dist(G) contains
Dist(B) as a subalgebra. Set Lie(B) = b. Let X (T ) be the character group of T . For λ ∈
X (T ), we denote the Verma module of Dist(G) by

M(λ) = Dist(G) ⊗Dist(B) kλ,

where kλ is the one-dimensional Dist(B)-module of weight λ. The Dist(G)-module M(λ)

has a unique simple quotient L(λ), and furthermore the Dist(G)-modules L(λ) are non-
isomorphic for distinct λ ∈ X (T ). By definition, L(λ) is X (T )-graded and thus a T -module.
Denote by X+(T ) the set of G0-dominant integral weights (with respect to �+).

Lemma 1.2 [17, Lemma 4.1] Every simple module in the category (Dist(G), T )-mod is
isomorphic to a finite-dimensional highest weight module L(λ) for some λ ∈ X+(T ), and
vice versa.

By Proposition 1.1 and Lemma 1.2, the classification of simple G-modules can be reformu-
lated as the determination of the following set:

X†(T ) = {
λ ∈ X+(T )

∣∣ L(λ) is finite dimensional
}
. (1.1)

For general supergroups of basic type, X†(T ) turns out to be a nontrivial proper subset of
X+(T ).

Remark 1.3 For a supergroup G of type spo(2n|	), the subset X†(T ) ⊂ X+(T ) was deter-
mined explicitly in [17]. Note the supergroupG therein has even subgroupG0 = Sp2n ×SO	

and hence is not simply connected. For a simply connected group of type spo(2n|	),
one would have additional simple modules L(λ), where λ ∈ X+(T ) is of the form
λ ∈ ∑

i<0 Zδi + ∑
j>0

( 1
2 + Z

)
δ j in the notation of [17, §3.3–3.4]; this follows from

Proposition 1.9 below.

Wedenote by L ′(λ) and L ′′(λ) the highestweightDist(G)-moduleswith respect to positive
systems �′+ and �′′+, respectively.

Lemma 1.4 [3, Lemma 4.2], [17, Lemma 5.7] Let λ ∈ X (T ), and let β be an odd isotropic
root for g. Suppose that �′+ and �′′+ are two positive systems of g such that �′′+ =
�′+ ∪ {−β}\{β}. Then,

L ′′(λ) ∼=
{
L ′(λ) if (λ, β) ≡ 0 (mod p),
L ′(λ − β) if (λ, β) �≡ 0 (mod p).

We shall say�′′+ is obtained from�′+ by an odd reflection in the setup of Lemma 1.4. Often
we shall abbreviate a ≡ b (mod p) as a ≡ b later on. In the coming sections dealing with
exceptional supergroups, we shall be very explicit about the (positive) root systems and odd
reflections.
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Lemma 1.5 Let L = L(λ), for λ ∈ X+(T ). Suppose that L is isomorphic to Lb′
(λ′) with

λ′ ∈ X+(T ), for every Borel subalgebra b′ that is obtained from b by a sequence of odd
reflections. Then L is locally finite as a Dist(G 0̄)-module, i.e., it is a rational G0-module.

Proof We recall the following observation (cf., e.g., [12,16]):
For every positive even root α in �+

0
, either α/2 (if it is a root) or α appears as a simple

root in some simple system �′ associated to b′.
Denote by SL2,α the root subgroup of G associated to α. Then by the assumption of the

lemma, Dist(SL2,α) acts on L locally finitely (i.e., L is a rational SL2,α-module). It follows
that L is a rational G0-module, or equivalently, L is locally finite as a Dist(G 0̄)-module by
Proposition 1.1.

Lemma 1.6 If a finitely generated Dist(G)-module M is locally finite as a Dist(G 0̄)-module,
then M is finite dimensional.

Proof Since Dist(G) is finitely generated over the algebra Dist(G 0̄), as a Dist(G 0̄)-module
M is also finitely generated. Together with the locally finiteness assumption, this implies that
M is finite dimensional.

The combination of Proposition 1.1, Lemmas 1.4, 1.5 and 1.6 provides us with an effective
approach of classifying simple G-modules. Indeed, the problem of determining the finite-
dimensional irreducible modules is thus reduced to determining the weights that remain to be
G 0̄-dominant integral when transformed to highest weights with respect to any Borel (with
fixed even part).

1.3 Euler characteristic

Let H be a closed subgroup of an algebraic supergroupG such that the quotient superscheme
G/H is locally decomposable (cf. [1, the paragraph above Lemma 2.1]) and G0/H0 is
projective; that is, the superscheme X = G/H satisfies the assumptions (Q5–Q6) in [1, §2].

We refer to [9, II.2] and [2, §6] for the precise definitions for induction and restriction
functors below. Below, for a superspace M , we shall use S(M) to denote the corresponding
supersymmetric algebra.

Lemma 1.7 ([1, Corollary 2.8]) For any finite-dimensional H-module M, we have
∑

i≥0

(−1)i
[
resGG0

Ri indGHM
]

=
∑

i≥0

(−1)i
[
Ri ind

G0
H0

S
(
(LieG/LieH)∗̄1

)
⊗ M

]
,

where the equality is understood in the Grothendieck group of G0-modules.

Now we take G to be an algebraic supergroup of basic type, H = B− to be the opposite
Borel subgroup. Since G0/B

−
0
is projective and G/B− is locally decomposable (cf. [15] and

[18]), Lemma 1.7 is applicable. For M = kλ, we define Hi (λ) := Ri indGB−(kλ) and then the
Euler characteristic

χ(λ) :=
∑

i≥0

(−1)i ch Hi (λ).

By Lemma 1.7 we have the following formula for the Euler characteristic

χ(λ) =
∑

i≥0

(−1)i ch Ri ind
G0
B0

S
( (
g/b−)∗

1̄

) ⊗ kλ, (1.2)
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where b− is the opposite Borel subalgebra. Since the Euler characteristic is additive on short
exact sequences, it suffices to determine the Euler characteristic on the composition factors
of the B0-module S

((
g/b−)∗

1̄

) ⊗ kλ. Recall that the supersymmetric algebra of a purely
odd space is the exterior algebra in the usual sense. Let W be the Weyl group of g. Since

�β∈�+
1̄

(
e

β
2 + e

−β
2

)
is W -invariant, it follows by (1.2) and Lemma 1.7 that

χ(λ) =
∑

w∈W (−1)	(w)w
(
e(λ+ρ0̄)

(
�β∈�+

1̄

(
1 + e−β

)))

�α∈�+
0̄
(e

α
2 − e

−α
2 )

=
∑

w∈W (−1)	(w)w
(
e(λ+ρ)

(
�β∈�+

1̄

(
e

β
2 + e

−β
2

)))

�α∈�+
0̄
(e

α
2 − e

−α
2 )

=
�β∈�+

1̄

(
e

β
2 + e

−β
2

)

�α∈�+
0̄

(
e

α
2 − e

−α
2

)
∑

w∈W
(−1)	(w)ew(λ+ρ).

Here as usual 	(w) denotes the length of w ∈ W , and ρ is the Weyl vector given by

ρ = ρ0̄ − ρ1̄, where ρ0̄ = 1

2

∑

α∈�+
0̄

α, ρ1̄ = 1

2

∑

β∈�+
1̄

β.

Proposition 1.8 Let λ ∈ X+(T ). The Euler characteristic is given by

χ(λ) =
�β∈�+

1̄

(
e

β
2 + e

−β
2

)

�α∈�+
0̄

(
e

α
2 − e

−α
2

)
∑

w∈W
(−1)	(w)ew(λ+ρ).

Proposition 1.9 Let λ ∈ X+(T ) be such that λ + ρ is G0-dominant and regular. Then L(λ)

is finite dimensional.

Proof By the same arguments as in [1, Corollary 2.8, Lemma 4.2], all Hi (λ) are finite-
dimensional G-modules. By assumption λ + ρ is G0-dominant and regular, and hence, the
highest weight of the Euler characteristic in Proposition 1.8 equals λ + ρ + (ρ1 − ρ0) = λ.
The proposition now follows from Proposition 1.1 and Lemma 1.2.

2 Modular representations of the supergroup of type D(2|1; ζ )

2.1 Weights and roots for D(2|1; ζ )

The Lie superalgebra g = D(2|1; ζ ) is a family of simple Lie superalgebras of basic type,
which depends on a parameter ζ ∈ k \ {0,−1}. There are isomorphisms of Lie superalgebras
with different parameters

D(2|1; ζ ) ∼= D
(
2|1;−1 − ζ−1) ∼= D(2|1; ζ−1) . (2.1)

Then g = g0 ⊕ g1, where g0
∼= sl2 ⊕ sl2 ⊕ sl2 and, as a g0̄-module, g1

∼= k2 � k2 � k2. Here
k2 is the natural representation of sl2.
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Modular representations 641

Let h∗ be the dual of the Cartan subalgebra with basis {δ, ε1, ε2}. We equip h∗ with a
k-valued bilinear form (·, ·) such that {δ, ε1, ε2} are orthogonal and

(δ, δ) = −(1 + ζ ), (ε1, ε1) = 1, (ε2, ε2) = ζ. (2.2)

The root system for g = g0 ⊕ g1 is denoted by � = �0̄ ∪ �1̄. The set of simple roots of the
standard simple system in h∗ of D(2|1; ζ ) is chosen to be

� = {α0 = δ − ε1 − ε2, α1 = 2ε1, α2 = 2ε2} .

The Dynkin diagram associated to � is depicted as follows:

⊗

©

©

δ − ε1 − ε2

2ε1

2ε2

�:

The set of positive roots is �+ = �+
0

∪ �+
1
, where

�+
0̄

= {2δ, 2ε1, 2ε2} , �+
1̄

= {δ − ε1 − ε2, δ + ε1 − ε2, δ − ε1 + ε2, δ + ε1 + ε2} .

One computes the Weyl vector

ρ = −δ + ε1 + ε2 (= −α0).

Let

X = Zδ + Zε1 + Zε2,

denote the weight lattice ofg.
We denote the positive odd roots by

β1 = δ − ε1 − ε2, β2 = δ + ε1 − ε2, β3 = δ − ε1 + ε2, β4 = δ + ε1 + ε2. (2.3)

There are 4 conjugate classes of positive systems under the Weyl group action. The 4
positive systems containing �+

0
admit the following simple systems �i (0 ≤ i ≤ 3), which

are obtained from one another by applying odd reflections (see [4, §1.4] for an introduction
to odd reflections):

�0 := � = {δ − ε1 − ε2, 2ε1, 2ε2} ,

�1 := rβ1(�) = {−δ + ε1 + ε2, δ + ε1 − ε2, δ − ε1 + ε2} ,

�2 := rβ2(�
1) = {2ε1, −δ − ε1 + ε2, 2δ} ,

�3 := rβ3(�
1) = {2ε2, 2δ, −δ + ε1 − ε2} .
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642 S-J. Cheng et al.

The Dynkin diagrams of �1, �2, and �3 are respectively as follows:

⊗

⊗

⊗

−δ + ε1 + ε2

δ + ε1 − ε2

δ − ε1 + ε2

�1

⊗

©

©

−δ − ε1 + ε2

2δ

2ε1

�2

⊗

©

©

−δ + ε1 − ε2

2δ

2ε2

�3

The corresponding positive systems are denoted by �i+, for 0 ≤ i ≤ 3, with �0+ = �+,
and the corresponding Borel subalgebras of g are denoted by bi .

2.2 Highest weight computations

The simply connected algebraic supergroupG of type D(2|1; ζ )was constructed in [8].With
respect to the standard Borel subalgebra b (associated to �+), we have

X+(T ) = {λ = dδ + aε1 + bε2 ∈ X | a, b, d ∈ N} .

Denote the simple Dist(G)-module of highest weight λ by L(λ), where λ = dδ+aε1+bε2 ∈
X+(T ). We denote by λi the highest weight of L(λ) with respect to �i , for 0 ≤ i ≤ 3. So
λ0 = λ. We shall apply (2.2) and Lemma 1.4 repeatedly to compute λi , for 1 ≤ i ≤ 3.

By using (2.2) we have

(λ, β1) = −d(1 + ζ ) − a − bζ = −(a + d) − (b + d)ζ.

We now divide into 2 cases (1)–(2).

(1) Assume x1 := (a + d) + (b + d)ζ �≡ 0 (mod p). Then

λ1 = λ − β1 = (d − 1)δ + (a + 1)ε1 + (b + 1)ε2.

First we compute (λ1, β2) = −(d−1)(1+ζ )+(a+1)−(b+1)ζ = (a−d+2)−(b+d)ζ ,
and then further divide into 2 subcases (a)–(b).

(a) If y1 := (a − d + 2) − (b + d)ζ �≡ 0 (mod p), then

λ2 = λ1 − β2 = (d − 2)δ + aε1 + (b + 2)ε2.

(b) If y1 ≡ 0 (mod p), then λ2 = λ1 = (d − 1)δ + (a + 1)ε1 + (b + 1)ε2.

We also have (λ1, β3) = −(d−1)(1+ζ )−(a+1)+(b+1)ζ = −(a+d)+(b−d+2)ζ ,
and then divide into 2 subcases (a′–(b′).

(a’) If z1 := −(a + d) + (b − d + 2)ζ �≡ 0 (mod p), then

λ3 = λ1 − β3 = (d − 2)δ + (a + 2)ε1 + bε2.

(b’) If z1 ≡ 0 (mod p), then λ3 = λ1 = (d − 1)δ + (a + 1)ε1 + (b + 1)ε2.

(2) Assume x1 ≡ 0 (mod p). Then λ1 = λ = dδ + aε1 + bε2.
First we compute (λ1, β2) = −d(1+ ζ )+a−bζ = (a−d)− (b+d)ζ , and then divide
into 2 subcases (a)–(b).
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(a) If y2 := (a − d) − (b + d)ζ �≡ 0 (mod p), then

λ2 = λ1 − β2 = (d − 1)δ + (a − 1)ε1 + (b + 1)ε2.

(b) If y2 ≡ 0 (mod p), then λ2 = λ1 = dδ + aε1 + bε2.

We also have (λ1, β3) = −d(1+ ζ ) − a + bζ = −(a + d) + (b − d)ζ , and then divide
into 2 subcases (a′)-(b′).

(a’) If z2 := −(a + d) + (b − d)ζ �≡ 0 (mod p), then

λ3 = λ1 − β3 = (d − 1)δ + (a + 1)ε1 + (b − 1)ε2.

(b’) If z2 ≡ 0 (mod p), then λ3 = λ1 = dδ + aε1 + bε2.

2.3 Simple modules for the supergroup D(2|1; ζ )

Theorem 2.1 Let p > 2. Let G be the supergroup of type D(2|1; ζ ). A complete list of
inequivalent simple G-modules consists of L(λ), where λ = dδ+aε1+bε2, with d, a, b ∈ N,
such that one of the following conditions is satisfied:

(1) d = 0, and a ≡ b ≡ 0 (mod p);
(2) d = 1, and (a + 1) − (b + 1)ζ ≡ 0 (mod p);
(3) d = 1, and (a + 1) + (b + 1)ζ ≡ 0 (mod p);
(4) d ≥ 2, (and a, b ∈ N are arbitrary).

Proof From the computations in §3.2 on the highest weights λi (1 ≤ i ≤ 3) and their
associated conditions, we obtain the following (mutually exclusive) sufficient and necessary
conditions for L(λ) to be finite dimensional:

(i) d = 0, (a + d)+ (b + d)ζ ≡ 0, (a − d)− (b + d)ζ ≡ 0, −(a + d) + (b − d)ζ ≡ 0;
(ii) d = 1, (a+d)+ (b+d)ζ �≡ 0, (a−d+2)− (b+d)ζ ≡ 0,−(a+d)+ (b−d+2)ζ ≡ 0;

(iii-a) d = 1, (a+d)+ (b+d)ζ ≡ 0, (a−d)− (b+d)ζ �≡ 0 with a ≥ 1,−(a+d)+ (b−
d)ζ �≡ 0 with b ≥ 1;

(iii-b) d = 1, (a + d)+ (b + d)ζ ≡ 0, (a − d)− (b + d)ζ ≡ 0, −(a + d)+ (b − d)ζ �≡ 0
with b ≥ 1;

(iv-a) d = 1, (a+d)+ (b+d)ζ ≡ 0, (a−d)− (b+d)ζ �≡ 0 with a ≥ 1,−(a+d)+ (b−
d)ζ ≡ 0;

(iv-b) d = 1, (a + d)+ (b + d)ζ ≡ 0, (a − d)− (b + d)ζ ≡ 0, −(a + d)+ (b − d)ζ ≡ 0;
(v) d ≥ 2, (and a, b ∈ N are arbitrary).

In Case (i), we obtain d = 0 and a ≡ b ≡ 0, that is, Condition (1) in the theorem. Case (v)
is the same as Condition (4).

Condition (ii) with the help of Condition (iii-a) simplifies to Condition (2).
We note that the seemingly additional constraints a ≥ 1 and b ≥ 1 in (iii-a)–(iii-b) as

well as (iv-a)–(iv-b) follow automatically from the other conditions. Therefore, Conditions
(iii-a)–(iv-b) simplify to Condition (3).

The theorem is proved.

Remark 2.2 Theorem 2.1 makes sense over C, providing an odd reflection approach to the
classification of finite-dimensional simple modules over C (due to [10]). Indeed this classi-
fication can be read off from Theorem 2.1 by regarding p = ∞.
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3 Modular representations of the supergroup of type G(3)

3.1 Weights and roots for the supergroup G(3)

Let g = g0 ⊕ g1 be the exceptional simple Lie superalgebra G(3). We assume ε1, ε2, ε3
satisfy the linear relation

ε1 + ε2 + ε3 = 0.

The root system is � = �0 ∪ �1. We choose the standard simple system � = {α1, α2, α3},
where

α1 = ε2 − ε1, α2 = ε1, α3 = δ + ε3.

The Dynkin diagram associated to � is depicted as follows:

© ©>
⊗

α1 = ε2 − ε1 α2 = ε1 α3 = δ + ε3

�:

Then the standard positive roots are �+ = �+
0

∪ �+
1
, where

�+
0

= {2δ, ε1, ε2,−ε3, ε2 − ε1, ε1 − ε3, ε2 − ε3} , �+
1

= {δ, δ ± εi | 1 ≤ i ≤ 3} .

The Weyl vector for g is

ρ = −5

2
δ + 2ε1 + 3ε2, ρ1̄ = 7

2
δ. (3.1)

We have g0
∼= G2 ⊕ sl2 and g1

∼= k7 � k2 as an adjoint g0-module, where k7 denotes
denotes the 7-dimensional simpleG2-module and, as before, k2 the natural sl2-module. Note
that {α1, α2} forms a simple system of G2, and we denote by ω1, ω2 the corresponding
fundamental weights of G2. We have

ω1 = ε1 + 2ε2, ω2 = ε1 + ε2;
ε1 = 2ω2 − ω1, ε2 = ω1 − ω2.

We can rewrite the formulae for ρ in (3.2) as

ρ = −5

2
δ + ω1 + ω2. (3.2)

Denote the weight lattice of g by

X = Zδ ⊕ X2,

where

X2 = Zω1 ⊕ Zω2 = Zε1 ⊕ Zε2

is the weight lattice of G2.
The bilinear form (·, ·) on X is given by

(δ, δ) = −2, (δ, εi ) = 0, (εi , εi ) = 2, (εi , ε j ) = −1, for 1 ≤ i �= j ≤ 3.
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It follows that

(ω1, ε1) = 0, (ω1, ε2) = 3, (ω1, ε3) = −3,
(ω2, ε1) = 1, (ω2, ε2) = 1, (ω2, ε3) = −2.

(3.3)

Denote the following positive odd roots of G(3) by

β1 = δ + ε3, β2 = δ − ε2, β3 = δ − ε1. (3.4)

There are 4 conjugate classes of positive systems under theWeyl group action. The 4 positive
systems containing �+

0
admit the following simple systems �i (0 ≤ i ≤ 3), which are

obtained from one another by applying odd reflections (cf. [4, §1.4]):

�0 := � = {ε2 − ε1, ε1, δ + ε3} ,

�1 := rβ1(�) = {ε2 − ε1, δ − ε2,−δ − ε3} ,

�2 := rβ2(�
1) = {δ − ε1,−δ + ε2, ε1} ,

�3 := rβ3(�
2) = {−δ + ε1, ε2 − ε1, δ} .

The Dynkin diagrams of �1, �2, and �3 are respectively as follows:

© ⊗
>

⊗

ε2 − ε1 δ − ε2 −δ − ε3

�1

⊗

⊗

©
δ − ε1

−δ + ε2

ε1
�2

©

⊗

>
ε2 − ε1

−δ + ε1

δ

�3

The corresponding positive systems are denoted by �i+, for 0 ≤ i ≤ 3, with �0+ = �+,
and the corresponding Borel subalgebras of g are denoted by bi .

3.2 Highest weight computations

The (simply connected) algebraic supergroup G of type G(3) was constructed in [6]. With
respect to the standard Bore subalgebra b (associated to �+), we have

X+(T ) = {λ = nδ + rω1 + sω2 ∈ X | n, r, s ∈ N} .

Denote by L(λ) = Lb(λ) the irreducible Dist(G)-module of highest weight λ with respect
to the standard Borel subalgebra b, where

λ = dδ + rω1 + sω2 ∈ X+(T ).

Assume the simple module L(λ) = Lb(λ) has bi -highest weight λi , for i = 1, 2, 3. We shall
apply (3.3) and Lemma 1.4 repeatedly to compute λi , for 1 ≤ i ≤ 3. We have (λ, β1) =
−2d − 3r − 2s. We now divide into 2 cases (1)–(2).

(1) Assume x1 := 2d + 3r + 2s �≡ 0 (mod p). Then

λ1 = λ − β1 = (d − 1)δ + rω1 + (s + 1)ω2.

We obtain (λ1, β2) = −2d − 3r − s + 1. We then divide into 2 subcases (a–b).

(a) Assume y1 := 2d + 3r + s − 1 �≡ 0 (mod p). Then

λ2 = λ1 − β2 = (d − 2)δ + (r + 1)ω1 + sω2.

We have (λ2, β3) = −2d − s + 4.
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(i) If z1 := 2d + s − 4 �≡ 0 (mod p), then

λ3 = λ2 − β3 = (d − 3)δ + rω1 + (s + 2)ω2.

(ii) If z1 ≡ 0 (mod p), then λ3 = λ2 = (d − 2)δ + (r + 1)ω1 + sω2.

(b) Assume y1 = 2d + 3r + s − 1 ≡ 0 (mod p). Then

λ2 = λ1 = (d − 1)δ + rω1 + (s + 1)ω2.

We have (λ2, β3) = −2d − s + 1.
(i) If z2 := 2d + s − 1 �≡ 0 (mod p), then

λ3 = λ2 − β3 = (d − 2)δ + (r − 1)ω1 + (s + 3)ω2.

(ii) If z2 ≡ 0 (mod p), then λ3 = λ2 = λ1 = (d − 1)δ + rω1 + (s + 1)ω2.

(2) Assume x1 = 2d + 3r + 2s ≡ 0 (mod p). Then λ1 = λ = dδ + rω1 + sω2. We have
(λ1, β2) = −2d − 3r − s. We then divide into 2 subcases (a)-(b).

(a) Assume y2 := 2d + 3r + s �≡ 0 (mod p). Then

λ2 = λ1 − β2 = λ − β2 = (d − 1)δ + (r + 1)ω1 + (s − 1)ω2.

We have (λ2, β3) = −2d − s + 3.
(i) If z3 := 2d + s − 3 �≡ 0 (mod p), then

λ3 = λ2 − β3 = (d − 2)δ + rω1 + (s + 1)ω2.

(ii) If z3 ≡ 0 (mod p), then λ3 = λ2 = (d − 1)δ + (r + 1)ω1 + (s − 1)ω2.

(b) Assume y2 = 2d + 3r + s ≡ 0 (mod p). Then

λ2 = λ1 = λ = dδ + rω1 + sω2.

We have (λ2, β3) = −2d − s.
(i) If z4 := 2d + s �≡ 0 (mod p), then

λ3 = λ2 − β3 = (d − 1)δ + (r − 1)ω1 + (s + 2)ω2.

(ii) If z4 ≡ 0 (mod p), then λ3 = λ2 = λ = dδ + rω1 + sω2.

Proposition 3.1 Assumeλ = dδ+rω1+sω2, for d, r, s ∈ N. Then L(λ) is finite dimensional
if only if one of the following conditions holds:

1. (a) (i) d ≥ 3, 2d + 3r + 2s �≡ 0, 2d + 3r + s − 1 �≡ 0, 2d + s − 4 �≡ 0;
(ii) d ≥ 2, 2d + s − 4 ≡ 0, 3(r + 1) �≡ 0, 2d + 3r + 2s �≡ 0;

(b) (i) d ≥ 2, 3r �≡ 0, 2d + 3r + s − 1 ≡ 0, 2d + 3r + 2s �≡ 0;
(ii) d ≥ 2, 3r ≡ 0, 2d + s − 1 ≡ 0, 2d + 3r + 2s �≡ 0;

2. (a) (i) d ≥ 2, s �≡ 0, 2d + 3r + 2s ≡ 0, 3r + s + 3 �≡ 0;
(ii) d ≥ 1, s �≡ 0, 2d + 3r + 2s ≡ 0, 3r + s + 3 ≡ 0;

(b) (i) s ≡ 0, 2d �≡ 0, 2d + 3r ≡ 0;
(ii) 2d ≡ 3r ≡ s ≡ 0.

Proof The conditions in the proposition are summary of the dominant conditions for the
new highest weights after odd reflections, which were computed in §3.2. We remark that the
natural condition on d from the summary in §3.2 for the case (1b)(ii) is “d ≥ 1”, but “d = 1”
is quickly ruled out by the other conditions 3r ≡ 0, 2d + s − 1 ≡ 0, 2d + 3r + 2s �≡ 0.

It follows by Lemmas 1.5 and 1.6 that these conditions are also sufficient for L(λ) to be
finite dimensional.
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Note the conditions in Proposition 3.1 are obtained without using any division on the
conditions arising from odd reflections; some scalars 2, 3 therein appear to be unnecessary
for p > 3, and they are kept for the case when p = 3 below.

3.3 Simple modules for the supergroup G(3) for p > 3

We assume the characteristic of the ground field k is p > 3 in this subsection. We shall
reformulate the conditions in Proposition 3.1 in a more useful form. We first analyze the case
when d ≥ 3.

Proposition 3.2 For λ = dδ + rω1 + sω2 ∈ X+(T ) with d ≥ 3, the module L(λ) is always
finite dimensional.

Proof Recall ρ from (3.2). The proposition now follows by Proposition 1.9 since λ + ρ =
(d − 5

2 )δ + (r + 1)ω1 + (s + 1)ω2 is in X+(T ). (Alternatively, the proposition also follows
from the analysis in §3.2.)

We then analyze the case when d = 2.

Proposition 3.3 Let p > 3. Themodule L(λ) is finite dimensional, for λ = 2δ+rω1+sω2 ∈
X+(T ), if and only if one of the following 3 conditions are satisfied:

(i) s ≡ 0 (mod p);
(ii) 3r + s + 3 ≡ 0 (mod p);
(iii) 3r + 2s + 4 ≡ 0 (mod p).

The three conditions (i)–(iii) in Proposition 3.3 are not mutually exclusive. Three mutually
exclusive conditions are given in (3.5)–(3.7) below.

Proof Let us set d = 2 in Proposition 3.1.
Condition (1a)(ii) becomes s ≡ 0, r + 1 �≡ 0, 3r + 4 �≡ 0, while Condition (2b)(i)

becomes s ≡ 0, 3r + 4 ≡ 0 (and it follows that r + 1 �≡ 0). Hence the combination of
Conditions (1a)(ii) and (2b)(i) gives us the following conditions:

s ≡ 0, r + 1 �≡ 0. (3.5)

Condition (1b)(i) becomes r �≡ 0, 3r + s + 3 ≡ 0, 3r + 2s + 4 �≡ 0, while Condition (1b)(ii)
becomes r ≡ 0, 3r+s+3 ≡ 0, 3r+2s+4 �≡ 0.Hence the combination ofConditions (1b)(i)-
(ii) gives us the following conditions:

3r + s + 3 ≡ 0, 3r + 2s + 4 �≡ 0. (3.6)

Condition (2a)(i) becomes s �≡ 0, 3r + 2s + 4 ≡ 0, 3r + s + 3 �≡ 0, while Condition (2a)(ii)
becomes s �≡ 0, 3r + 2s + 4 ≡ 0, 3r + s + 3 ≡ 0. Hence the combination of Condi-
tions (2a)(i)-(ii) gives us the following conditions:

3r + 2s + 4 ≡ 0, s �≡ 0. (3.7)

So by Proposition 3.1, L(λ) is finite dimensional, for λ = 2δ + rω1 + sω2 ∈ X+(T ), if and
only if one of the 3 (mutually exclusive) conditions (3.5), (3.6), (3.7) holds.

Let us show that Conditions (3.5)–(3.7) are equivalent to Conditions (i)–(iii) in the
proposition. Clearly if r, s satisfy one of Conditions (3.5)–(3.7), then they satisfy one of
Conditions (i)–(iii). On the other hand, if r, s satisfy Condition (i) but not (3.5), that is,
s ≡ r + 1 ≡ 0, then (3.6) is satisfied. If r, s satisfy Condition (ii) but not (3.6), that is,
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3r + s + 3 ≡ 3r + 2s + 4 ≡ 0, then (3.7) is satisfied. Finally, if r, s satisfy Condition (iii)
but not (3.7), that is, s ≡ 3r + 2s + 4 ≡ 0, then (3.5) is satisfied.

The proof of Proposition 3.3 is completed.

We finally analyze the case when d = 1.

Proposition 3.4 Let p > 3. The module L(λ) is finite dimensional, for λ = δ+rω1+ sω2 ∈
X+(T ), if and only if one of the following 2 conditions are satisfied:

(i) s − 1 ≡ 3r + 4 ≡ 0 (mod p);
(ii) s ≡ 3r + 2 ≡ 0 (mod p).

Proof Let us set d = 1 in Proposition 3.1. The case d = 1 only occurs in Cases (2a)(ii) and
(2b)(i). Condition (2a)(ii) reads s �≡ 0, 3r + 2s + 2 ≡ 0, 3r + s + 3 ≡ 0, which is clearly
equivalent to (i) in the proposition. Condition (2b)(i) is the same as (ii) above.

SummarizingPropositions 3.1, 3.2, 3.3 and3.4 (and recallingProposition 1.1, Lemma1.2),
we have established the following.

Theorem 3.5 Let p > 3. Let G be the supergroup of type G(3). A complete list of inequiv-
alent simple G-modules consists of L(λ), where λ = dδ + rω1 + sω2, with d, r, s ∈ N, such
that one of the following conditions is satisfied:

1. d = 0, and 3r ≡ s ≡ 0 (mod p).
2. d = 1, and r, s satisfy either of (i)-(ii) below:

(i) s − 1 ≡ 3r + 4 ≡ 0 (mod p);
(ii) s ≡ 3r + 2 ≡ 0 (mod p).

3. d = 2, and r, s satisfy either of (i)-(iii) below:

(i) s ≡ 0 (mod p);
(ii) 3r + s + 3 ≡ 0 (mod p);
(iii) 3r + 2s + 4 ≡ 0 (mod p).

4. d ≥ 3, (and r, s ∈ N are arbitrary).

Remark 3.6 Theorem 3.5 makes sense over C, providing an odd reflection approach to the
classification of finite-dimensional simple modules overC (due to [10]; also cf. [12]). Indeed
this classification can be read off from Theorem 3.5 (by regarding p = ∞) as follows. The
g-modules L(λ) overC is finite dimensional if and only λ = dδ +rω1 + sω2, for d, r, s ∈ N,
satisfies one of the 3 conditions: (1) d = r = s = 0; (2) d = 2, s = 0; (3) d ≥ 3.

3.4 Simple modules for the supergroup G(3) for p = 3

The assumption p > 3 is not really necessary for the definition of G and classification of
simple G-modules. The (less polished) conditions in Proposition 3.1 remain valid for p = 3.
When one works it through, it turns out to be the same as setting p = 3 in Theorem 3.5; note
the scalar 3 in (1) therein. We summarize this in the following.

Theorem 3.7 Let p = 3. Let G be the supergroup of type G(3). A complete list of inequiv-
alent simple G-modules consists of L(λ), where λ = dδ + rω1 + sω2, with d, r, s ∈ N, such
that one of the following conditions is satisfied:

1. d = 0, and s ≡ 0 (mod 3);
2. d = 2, s ≡ 0 or 1 (mod 3);
3. d ≥ 3, (and r, s ∈ N are arbitrary).
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4 Modular representations of the supergroup of type F(3|1)
We assume the characteristic of the ground field k is p > 3 in this section.

4.1 Weights and roots for F(3|1)

Let g = g0 ⊕ g1 be the exceptional simple Lie superalgebra F(3|1) (which is sometimes
denoted by F(4) in the literature). We have g0

∼= sl2 ⊕ so7 and g1
∼= k2 � k8 as g0-module,

where k8 here is the 8-dimensional spin representation of so7. The root system of g can be
described via the basis {ε1, ε2, ε3, δ} in h∗ ∼= C

4 with a non-degenerate bilinear form (·, ·)
as follows:

(δ, δ) = −3, (δ, εi ) = 0, (εi , εi ) = 1, (εi , ε j ) = 0, i, j = 1, 2, 3, i �= j. (4.1)

The root system � = �0 ∪ �1 is as below:

�0 = {±δ;±εi ± ε j ;±εi | i, j = 1, 2, 3, i �= j
} ; �1 =

{
1

2
(±δ ± ε1 ± ε2 ± ε3)

}
.

The standard Borel subalgebra b corresponds to the simple root system

� =
{
α1 := ε1 − ε2, α2 := ε2 − ε2, α3 := ε3, α4 := 1

2
(δ − ε1 − ε2 − ε3)

}
.

The fundamental weights of g0 associated with the g0-simple roots α1, α2, α3, δ are:

ω1 := ε1, ω2 := ε1 + ε2, ω3 := 1

2
(ε1 + ε2 + ε3), ω4 := 1

2
δ.

Denote the weight lattice by

X = {λ = aω1 + bω2 + cω3 + dω4 | a, b, c, d ∈ Z} .

Sometimes we simply denote λ = aω1 + bω2 + cω3 + dω4 ∈ X as

λ = (a, b, c, d) ∈ Z
4.

With respect to b, the Weyl vector ρ can be expressed in terms of the fundamental weights
as

ρ = ω1 + ω2 + ω3 − 3ω4.

The Dynkin diagram associated to � is depicted as follows:

© © > © ⊗

ε1 − ε2 ε2 − ε3 ε3 1
2 (δ − ε1 − ε2 − ε3)

�:

From (4.1), we have

(ω1, ε1) = 1, (ω1, ε2) = 0, (ω1, ε3) = 0, (ω1, δ) = 0,
(ω2, ε1) = 1, (ω2, ε2) = 1, (ω2, ε3) = 0, (ω2, δ) = 0,
(ω3, ε1) = 1

2 , (ω3, ε2) = 1
2 , (ω3, ε3) = 1

2 , (ω3, δ) = 0,
(ω4, ε1) = 0, (ω4, ε2) = 0, (ω4, ε3) = 0, (ω4, δ) = − 3

2 .

(4.2)
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Denote the positive odd roots for F(3|1) by

γ1 = 1

2
(δ − ε1 − ε2 − ε3), γ2 = 1

2
(δ − ε1 − ε2 + ε3), γ3 = 1

2
(δ − ε1 + ε2 − ε3),

γ4 = 1

2
(δ − ε1 + ε2 + ε3), γ5 = 1

2
(δ + ε1 − ε2 − ε3).

In terms of the fundamental weights, we can reexpress the odd roots γi as follows:

γ1 = 1

2
δ − ω3, γ2 = 1

2
δ − ω2 + ω3, γ3 = 1

2
δ − ω1 + ω2 − ω3,

γ4 = 1

2
δ − ω1 + ω3, γ5 = 1

2
δ + ω1 − ω3.

Besides the conjugate class of the standard simple system�0 := � = {ε1−ε2, ε2−ε2, ε3, γ1}
there are five other conjugate classes of simple systems under the Weyl group action as listed
below. They all are obtained via sequences of odd reflections from �0 (cf. [[4], §1.4]):

�1 = rγ1(�
0) = {ε1 − ε2, ε2 − ε3, γ2,−γ1} ,

�2 = rγ2(�
1) = {ε1 − ε2, γ3,−γ2, ε3} ,

�3 = rγ3(�
2) = {γ5,−γ3, ε2 − ε3, γ4} ,

�4 = rγ4(�
3) = {δ, ε3, ε2 − ε3,−γ4} ,

�5 = rγ5(�
3) = {−γ5, ε1 − ε2, ε2 − ε3, δ} .

(4.3)

Their corresponding Dynkin diagrams are listed as follows:

© © ⊗ ⊗

ε1 − ε2 ε2 − ε3 γ2 −γ1

�1

© ⊗
©

⊗ε1 − ε2 γ3

−γ2

ε3

�2

© ⊗

⊗

⊗ε2 − ε3 −γ3

γ5

γ4

�3

© ⊗ © ©
δ −γ4 ε3 ε2 − ε3

<

�4

© ⊗ © ©
δ −γ5 ε1 − ε2 ε2 − ε3

�5

The corresponding positive systems are denoted by �i+, for 0 ≤ i ≤ 5, with �0+ = �+,
and the corresponding Borel subalgebras of g are denoted by bi .

4.2 Constraints on highest weights

Let G be the simply connected algebraic supergroup of type F(3|1) whose even subgroup is
SL2(k) × Spin7(k). With respect to the standard Borel subalgebra b (associated to �+), we
have

X+(T ) = {λ = aω1 + bω2 + cω3 + dω4 ∈ X | a, b, c, d ∈ N} .

Denote the simple Dist(G)-module of highest weight λ by L(λ), where λ ∈ X+(T ). Assume
that the simple module L(λ) = Lb(λ) has bi -highest weight λi , for 0 ≤ i ≤ 5, where we
have set λ0 = λ, b0 = b.
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4.2.1 The cases of d ≥ 4 and d = 0

Lemma 4.1 For any fixed 0 ≤ i ≤ 3, assume the module Lbi (λi ) is finite dimensional and
λi is of the form (x, y, z, 0). Let j = i + 1 if i ≤ 2, and let j = 4 or 5 if i = 3. Then

(λi , γ j ) ≡ 0 (mod p), and λ j = λi .

Proof The second equality is an immediate consequence of the first one by Lemma 1.4.
Assume that (λi , γ j ) �≡ 0. Then, by applying the odd reflection rγ j and Lemma 1.4, we

have Lbi (λi ) = Lb j
(λ j ), where λ j = λi − γ j is of the form (∗, ∗, ∗,−1). But then Lb j

(λ j )

cannot be finite dimensional due to the fact λ j /∈ X+(T ), which is a contradiction.

Proposition 4.2 Let λ = aω1 + bω2 + cω3 + dω4 ∈ X+(T ).

1. If d ≥ 4, then L(λ) is finite dimensional for arbitrary a, b, c ∈ N.
2. If d = 0, then L(λ) is finite dimensional if and only if a ≡ b ≡ c ≡ 0 (mod p).

Proof 1. Let d ≥ 4. Then λ + ρ = (a + 1, b + 1, c + 1, d − 3) ∈ X+(T ) and it is regular.
Hence L(λ) is finite dimensional by Proposition 1.9.

2. Assume L(λ) is finite dimensional, for λ = (a, b, c, 0). Lemma 4.1 is applicable and
gives us (λ, γ1) ≡ (λ, γ2) ≡ (λ, γ3) ≡ 0 (mod p). A direct computation shows

(λ, γ1) = −1

2
a − b − 3

4
c, (λ, γ2) = −1

2
a − b − 1

4
c, (λ, γ3) = −1

2
a − 1

4
c.

From these we conclude that a ≡ b ≡ c ≡ 0 (mod p). In this case we have λ5 = λ4 =
λ3 = λ2 = λ1 = λ.

By Lemma 1.5, we see the condition a ≡ b ≡ c ≡ 0 (mod p) is also sufficient for L(λ)

to be finite dimensional (this also follows easily by Steinberg tensor product theorem).

4.2.2 The case of d = 1

Proposition 4.3 Let λ = aω1 +bω2 + cω3 +dω4 ∈ X+(T ), with d = 1. Then L(λ) is finite
dimensional if only if one of the following conditions holds.

(i) a ≡ 2b + 3 ≡ c − 1 ≡ 0 (mod p);
(ii) 2a + 1 ≡ 2b + 1 ≡ c ≡ 0 (mod p);
(iii) 2a + 3 ≡ b ≡ c ≡ 0 (mod p).

Proof Assume L(λ) is finite dimensional, for λ = (a, b, c, 1) ∈ X+(T ). We compute

(λ, γ1) = −1

2
a − b − 3

4
(c + 1).

For now let us assume− 1
2a−b− 3

4 (c+1) �≡ 0 (mod p). Thenλ1 = λ−γ1 = (a, b, c+1, 0).
Hence Lemma 4.1 is applicable and gives us (λ1, γ2) ≡ (λ1, γ3) ≡ (λ1, γ4) ≡ 0. A direct
computation shows

(λ1, γ2) = −1

2
a − b − 1

4
(c + 1), (λ1, γ3) = −1

2
a − 1

4
(c + 1), (λ1, γ4) = −1

2
a + 1

4
(c + 1).

From these we conclude that a ≡ b ≡ c + 1 ≡ 0. This contradicts the assumption − 1
2a −

b − 3
4 (c + 1) �≡ 0.
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So we always have

−1

2
a − b − 3

4
(c + 1) ≡ 0 (mod p), and λ1 = λ = (a, b, c, 1). (4.4)

Using the above equations, we compute

(λ1, γ2) = −1

2
a − b − 1

4
c − 3

4
≡ 1

2
c (mod p).

We now divide into 2 cases (1)–(2).

(1) Assume c �≡ 0 (mod p). Then λ2 = λ1 − γ2 = (a, b + 1, c − 1, 0); we necessarily
have c ≥ 1. Hence Lemma 4.1 is applicable and gives us that (λ2, γ3) ≡ (λ2, γ4) ≡ 0.
A direct computation shows

(λ2, γ3) = −1

2
a − 1

4
(c − 1), (λ2, γ4) = −1

2
a + 1

4
(c − 1).

From these we conclude a ≡ c − 1 ≡ 0; a revisit of (4.4) then gives us b ≡ − 3
2 .

This gives us Condition (i) in the proposition. (Note the conditions c ≥ 1 and (4.4) are
automatically satisfied.) In this case, we have λ5 = λ4 = λ3 = λ2 = (a, b+ 1, c− 1, 0)
and λ1 = λ.

(2) Assume c ≡ 0 (mod p). So λ2 = λ1 = λ = (a, b, c, 1). We compute

(λ2, γ3) = −1

2
a − 1

4
(c + 3) ≡ −1

2
a − 3

4
(mod p).

Now we divide (2) into two subcases (2a)–(2b).

(2a) Assume − 1
2a − 3

4 �≡ 0 (mod p). Then λ3 = λ2 − γ3 = (a + 1, b− 1, c+ 1, 0); we
necessarily haveb ≥ 1.HenceLemma4.1 is applicable andgives us that (λ3, γ4) ≡ 0.
A direct computation shows (λ3, γ4) = − 1

2a+ 1
4c− 1

4 . Recalling c ≡ 0, we conclude
that a + 1

2 ≡ 0. A revisit of (4.4) then gives us b ≡ − 1
2 . This gives us Condition (ii)

in the proposition. (Note the conditions b ≥ 1 and (4.4) are automatically satisfied.)
In this case, we have λ5 = λ4 = λ3 = (a + 1, b − 1, c + 1, 0) and λ2 = λ1 = λ.

(2b) Assume− 1
2a− 3

4 ≡ 0 (mod p). Then a ≡ − 3
2 , and it follows by c ≡ 0 and (4.4) that

b ≡ 0. This gives us Condition (iii). In this case, we have λ4 = λ3 = λ2 = λ1 = λ,
and λ5 = (a − 1, b, c + 1, 0).

By Lemma 1.5 and by inspection that all weights λi lie in X+(T ) for all i in all cases above,
we see the conditions (i)–(iii) are sufficient for L(λ) to be finite dimensional. The proposition
is proved.

4.2.3 The case of d = 2

Proposition 4.4 Assume λ = aω1 + bω2 + cω3 + dω4 ∈ X+(T ) with d = 2. Then L(λ) is
finite dimensional if only if one of the following conditions hold:

1.1.1. a ≡ c ≡ 0, b �≡ −1 and b �≡ − 3
2 ;

1.2. a �≡ −1, b ≡ −a − 1, c ≡ 2a, and b ≥ 1;
1.3. a �≡ − 3

2 , b ≡ 0 and c ≡ −2a − 4.
2.2.1. c ≡ 2a + 2, b ≡ −2a − 3, c ≥ 1, and a �≡ −1;
2.2. (i) c ≡ −2a − 2, b ≡ a, a �≡ − 3

2 , a �≡ −1, c ≥ 2, and a ≥ 1;
(ii) a ≡ − 3

2 , b ≡ − 3
2 , c ≡ 1;
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2.3. c ≡ 0, b ≡ − 1
2a − 3

2 , and a �≡ −3;
2.4. c ≡ b ≡ 0 and a ≡ −3.

Proof Assume L(λ) is finite dimensional, for λ = (a, b, c, 2) ∈ X+(T ). We compute
(λ, γ1) = − 1

2a − b − 3
4c − 3

2 , and then divide into two cases (1)–(2) below.

(1) Assume − 1
2a − b − 3

4c − 3
2 �≡ 0 (mod p). Then λ1 = λ − γ1 = (a, b, c + 1, 1). We

compute (λ1, γ2) = − 1
2a − b − 1

4c − 1, and then divide into 2 subcases (1a)–(1b).
(1a) Assume − 1

2a − b − 1
4c − 1 �≡ 0 (mod p). Then λ2 = λ1 − γ2 = (a, b + 1, c, 0).

Hence Lemma 4.1 is applicable and gives us that (λ2, γ3) ≡ (λ2, γ4) ≡ (λ2, γ5) ≡ 0.
From these and a direct computation of (λ2, γ3) = − 1

2a − 1
4c, (λ

2, γ4) = − 1
2a + 1

4c,
and (λ2, γ5) = 1

2a − 1
4c, we conclude that a ≡ c ≡ 0, b �≡ −1, b �≡ − 3

2 , whence
Condition 1.1. In this case, we have λ5 = λ4 = λ3 = λ2 = (a, b + 1, c, 0).

(1b) Assume− 1
2a−b− 1

4c−1 ≡ 0 (mod p). Then λ2 = λ1 = (a, b, c+1, 1).We compute
(λ2, γ3) = − 1

2a − 1
4c − 1, and then again divide into 2 subcases (1b-1)–(1b-2):

(1b-1) Assume − 1
2a − 1

4c − 1 �≡ 0. Then λ3 = λ2 − γ3 = (a + 1, b − 1, c + 2, 0).
Hence Lemma 4.1 is applicable and gives us that (λ3, γ4) ≡ (λ3, γ5) ≡ 0. From
these and a direct computation of (λ3, γ4) = − 1

2 (a + 1) + 1
4 (c + 2) and (λ3, γ5) =

1
2 (a+1)− 1

4 (c+2), we conclude that c ≡ 2a. Combining with the conditions on (1),
(1b) and (1b-1), this gives us b ≡ −a−1 and a �≡ −1, whence Condition 1.2. In this
case we have λ2 = λ1 = (a, b, c+1, 1), and λ5 = λ4 = λ3 = (a+1, b−1, c+2, 0).

(1b-2) Assume− 1
2a− 1

4c−1 ≡ 0. Then λ3 = λ2 = λ1 = (a, b, c+1, 1). We deduce from
the conditions on (1), (1b) and (1b-2) that b ≡ 0, c ≡ −2a − 4, a �≡ − 3

2 , whence
Condition 1.3.

(
Wethencompute(λ3, γ4) = − 1

2a + 1
4c − 1

2 ≡ −a − 3
2 �≡ 0 . Thus,

λ4 = λ3 − γ4 = (a + 1, b, c, 0). Note that (λ3, γ5) = 1
2a − 1

4c − 1 (≡ a). Hence
λ5 = λ3 = (a, b, c + 1, 1) if a ≡ 0; λ5 = (a − 1, b, c, 0) if a �≡ 0).

Case (1b) and hence Case (1) are completed.
(2) Assume − 1

2a − b − 3
4c − 3

2 ≡ 0 (mod p). We have λ1 = λ = (a, b, c, 2). Then we
compute (λ1, γ2) = − 1

2a − b − 1
4c − 3

2 , and divide into 2 subcases (2a)–(2b).
(2a) Assume− 1

2a−b− 1
4c− 3

2 �≡ 0. Thenwe computeλ2 = λ1−γ2 = (a, b+1, c−1, 1);we
necessarily have c ≥ 1. (Note the combination of the condition c ≥ 1 and the condition
on (2) implies the condition on (2a).) We further compute (λ2, γ3) = − 1

2a − 1
4c − 1

2 ,
and then divide into 2 subcases (2a-1)–(2a-2).

(2a-1) Assume− 1
2a− 1

4c− 1
2 �≡ 0. Then λ3 = λ2−γ3 = (a+1, b, c, 0). Hence Lemma 4.1

is applicable and gives us that (λ3, γ4) ≡ (λ3, γ5) ≡ 0. Combining with the com-
putations of (λ3, γ4) = − 1

2 (a + 1) + 1
4c and (λ3, γ5) = 1

2 (a + 1) − 1
4c, this

implies c ≡ 2a + 2 and b ≡ −2a − 3; moreover the condition on (2a-1) becomes
a �≡ −1. Thus, we have obtained Condition 2.1. In this case, we have λ1 = λ,
λ2 = (a, b + 1, c − 1, 1), and λ5 = λ4 = λ3 = (a + 1, b, c, 0).

(2a-2) Assume − 1
2a− 1

4c− 1
2 ≡ 0. The conditions on (2), (2a) and (2a-2) can be rephrased

as c ≡ −2a − 2, b ≡ a and a �≡ −1. We have λ3 = λ2 = (a, b + 1, c − 1, 1); we
necessarily have c ≥ 1. We further compute (λ3, γ4) = − 1

2a + 1
4c − 1 ≡ −a − 3

2 ,
and again divide into 2 subcases:
(i) Assume a �≡ − 3

2 . Then we have λ4 = λ3 − γ4 = (a + 1, b + 1, c − 2, 0);
we necessarily have c ≥ 2. Moreover, if (λ3, γ5) = a �≡ 0, then λ5 = λ3 −
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γ5 = (a − 1, b + 1, c, 0), requiring a ≥ 1; otherwise, λ5 = λ3. This gives us
Condition 2.2(i).

(ii) Assume a ≡ − 3
2 . Then we have b ≡ − 3

2 and c ≡ 1, whence Condition 2.2(ii).
In this case, we have λ1 = λ, λ4 = λ3 = λ2 = (a, b + 1, c − 1, 1), and
λ5 = λ3 − γ5 = (a − 1, b + 1, c, 0).

This completes Case (2a).
(2b) Assume − 1

2a − b − 1
4c − 3

2 ≡ 0 (mod p). Then λ2 = λ1 = (a, b, c, 2). We compute
(λ2, γ3) = − 1

2a − 1
4c − 3

2 , and divide into 2 subcases (2b-1)–(2b-2).

(2b-1) Assume − 1
2a − 1

4c − 3
2 �≡ 0 (mod p). Then we have c ≡ 0, b ≡ − 1

2a − 3
2 , and

a �≡ −3, whence Condition 2.3. In this case, we have λ2 = λ1 = λ = (a, b, c, 2),
λ3 = λ2−γ3 = (a+1, b−1, c+1, 1), and then (λ3, γ4) = − 1

2a+ 1
4c−1 ≡ − 1

2a−1
and (λ3, γ5) ≡ 1

2a − 1
2 . So λ4 = λ3 − γ4 = (a + 2, b − 1, c, 0) if a �≡ −2, and

λ4 = λ3 otherwise; moreover, if a �≡ 1 then λ5 = λ3 − γ5 = (a, b − 1, c + 2, 0);
otherwise λ5 = λ3.

(2b-2) Assume − 1
2a − 1

4c − 3
2 ≡ 0 (mod p). Then we have a ≡ −3, b ≡ 0 and c ≡ 0,

whence Condition 2.4. In this case, we have λi = λ for 1 ≤ i ≤ 5.

Case (2b) and then Case (2) are hence completed. Therefore, we have established the neces-
sary conditions as listed in the proposition for L(λ) to be finite dimensional.

By inspection, we have all weights λi ∈ X+(T ) for all i in every case above. Hence by
Lemma 1.5 we conclude that the conditions as listed in the proposition are also sufficient for
L(λ) to be finite dimensional.

Now we simplify the above conditions by removing all inequalities. We caution that the
resulting conditions are no longer mutually exclusive.

Proposition 4.5 Set d = 2. Assume λ = aω1 + bω2 + cω3 + dω4 ∈ X+(T ). Then L(λ) is
finite dimensional if only if one of the following conditions (i)–(vi) holds:

(i) a ≡ c ≡ 0 (mod p);
(ii) 2a − c ≡ a + b + 1 ≡ 0 (mod p);
(iii) b ≡ 2a + c + 4 ≡ 0 (mod p);
(iv) 2a − c + 2 ≡ 2a + b + 3 ≡ 0 (mod p), and c ≥ 2;
(v) 2a + c + 2 ≡ a − b ≡ 0 (mod p), and a ≥ 1;
(vi) a + 2b + 3 ≡ c ≡ 0 (mod p).

Proof One first observes that all conditions listed in Proposition 4.4 are part of conditions
listed above in this proposition. Indeed the conditions above are basically obtained by remov-
ing the inequalities in the conditions in Proposition 4.4; the cases (1.4) and (2.4) with no
inequalities in Proposition 4.4 are part of (iii) and (vi) above, respectively.

It remains to show that all conditions above in this proposition are included in the list of
conditions (1.1)–(1.3) and (2.1)–(2.4) in Proposition 4.4.

If Condition (i) is satisfied but (1.1) in Proposition 4.4 is not, then either (A) b ≡ −1, in
which case a ≡ c ≡ 0, and so (1.2) is satisfied, or (B) b ≡ − 3

2 , in which case a ≡ c ≡ 0,
and so (2.3) is satisfied.

If Condition (ii) is satisfied but (1.2) in Proposition 4.4 is not, then either (A) a ≡ −1,
in which case b ≡ 0 and c ≡ −2, and hence (1.3) is satisfied, or (B) b = 0, in which case,
a ≡ −1, c ≡ −2, and so (1.3) is satisfied.

If Condition (iii) is satisfied but (1.3) in Proposition 4.4 is not, then a ≡ − 3
2 , in which

case b ≡ 0, c ≡ −1, and so (2.1) is satisfied.
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If Condition (iv) is satisfied but (2.1) in Proposition 4.4 is not, then a ≡ −1, in which
case b ≡ −1, c ≡ 0, and so (2.3) is satisfied.

If Condition (v) is satisfied but (2.2)(i) in Proposition 4.4 is not, then either (A) a ≡ − 3
2 ,

in which case b ≡ − 3
2 , c ≡ 1, and so (2.2)(ii) is satisfied; or (B) a ≡ −1, in which case

b ≡ −1, c ≡ 0, and so (2.3) is satisfied; or (C) c = 0, in which case a ≡ b ≡ −1, and so
(2.3) is satisfied.

If Condition (vi) is satisfied but (2.3) in Proposition 4.4 is not, then a ≡ −3, b ≡ c ≡ 0,
and so (2.4) is satisfied.

The proposition is proved.

4.2.4 The case of d = 3

Proposition 4.6 Assume λ = aω1 + bω2 + cω3 + dω4 ∈ X+(T ), with d = 3. Then L(λ) is
finite dimensional if only if one of the following conditions holds:

1.1.1. c ≡ 2a + 1, and b �≡ −2a − 3, b �≡ −a − 2, a �≡ −1;
1.2. c ≡ −2a − 3, and b �≡ −1, b �≡ a;
1.3. b ≡ − 1

2a − 1
4c − 7

4 , and b �≡ 0, c �≡ −1;
1.4. b ≡ 0, c ≡ −2a − 7, and a �≡ −3.

2.2.1. b ≡ − 1
2a − 3

4c − 9
4 , and c �≡ 0, c �≡ −2a − 5;

2.2. b ≡ a + 3
2 , c ≡ −2a − 5, and c �≡ 0;

2.3. b ≡ − 1
2a − 9

4 , c ≡ 0, and b �≡ 0;
2.4. a ≡ − 9

2 , b ≡ c ≡ 0.

Proof Assume L(λ) is finite dimensional, for λ = (a, b, c, 3) ∈ X+(T ). We compute
(λ, γ1) = − 1

2a − b − 3
4c − 9

4 , and divide into 2 cases (1)–(2).

(1) Assume− 1
2a−b− 3

4c− 9
4 �≡ 0 (mod p). We have λ1 = λ−γ1 = (a, b, c+1, 2). We

compute (λ1, γ2) = − 1
2a − b − 1

4 (c + 1) − 3
2 , and then divide into 2 cases (1a)-(1b).

(1a) Assume− 1
2a−b− 1

4 (c+1)− 3
2 �≡ 0 (mod p). Thenλ2 = λ1−γ2 = (a, b+1, c, 1).We

compute (λ2, γ3) = − 1
2a − 1

4c − 3
4 , and again divide into two subcases (1a-i)–(1a-ii):

(1a-i) Assume − 1
2a − 1

4c − 3
4 �≡ 0. Then λ3 = λ2 − γ3 = (a + 1, b, c + 1, 0). Hence

Lemma 4.1 is applicable and gives us that (λ3, γ4) ≡ (λ3, γ5) ≡ 0. Combining with
the computation of (λ3, γ4) = − 1

2 (a+1)+ 1
4 (c+1) and (λ3, γ5) = 1

2 (a+1)− 1
4 (c+

1), this implies c ≡ 2a+1. The conditions on (1), (1a) and (1a-i) can be simplified to
a �≡ −1, b �≡ −a−2 and b �≡ −2a−3, whence Condition 1.1. In this case, we have
λ1 = (a, b, c+1, 2), λ2 = (a, b+1, c, 1), and λ5 = λ4 = λ3 = (a+1, b, c+1, 0).

(1a-ii) Assume − 1
2a − 1

4c − 3
4 ≡ 0. Then λ3 = λ2 = (a, b + 1, c, 1). The conditions on

(1), (1a) and (1a-ii) can be simplified to c ≡ −2a − 3, b �≡ −1 and b �≡ a, whence
Condition 1.2. In this case, we have λ1 = (a, b, c+1, 2), λ3 = λ2 = (a, b+1, c, 1).
If a �≡ − 3

2 , then λ4 = λ3 − γ4 = (a + 1, b + 1, c − 1, 0); otherwise, λ4 = λ3. If
a �≡ 0, then λ4 = λ3 − γ5 = (a − 1, b + 1, c + 1, 0); otherwise, λ5 = λ3.

This completes Subcase (1a).
(1b) Assume − 1

2a − b− 1
4 (c+ 1) − 3

2 ≡ 0 (mod p). Then λ2 = λ1 = (a, b, c+ 1, 2). We
compute (λ2, γ3) = − 1

2a − 1
4c − 7

4 , and again divide into two subcases (1b-i)–(1b-ii):

(1b-i) Assume − 1
2a − 1

4c − 7
4 �≡ 0. We compute λ3 = λ2 − γ3 = (a + 1, b − 1, c + 2, 1).

The conditions on (1), (1b) and (1b-i) become b ≡ − 1
2a − 1

4c − 7
4 , b �≡ 0, and
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c �≡ −1, whence Condition 1.3. In this case, we have λ2 = λ1 = (a, b, c + 1, 2),
and λ3 = (a + 1, b − 1, c + 2, 1). Moreover, if c �≡ 2a + 3, then λ4 = λ3 − γ4 =
(a + 2, b − 1, c + 1, 0); otherwise λ4 = λ3. If c �≡ 2a − 3, then λ5 = λ3 − γ5 =
(a, b − 1, c + 3, 0); otherwise λ5 = λ3.

(1b-ii) Assume− 1
2a− 1

4c− 7
4 ≡ 0. Then λ3 = λ2 = (a, b, c+1, 2). The conditions on (1),

(1b) and (1b-ii) become a �≡ −3, b ≡ 0 and c ≡ −2a − 7, whence Condition 1.4.
In this case, we have λ3 = λ2 = λ1 = (a, b, c + 1, 2). Moreover, If a �≡ −3, then
λ4 = λ3 − γ4 = (a + 1, b, c, 1); otherwise λ4 = λ3. If a �≡ 0, then λ5 = λ3 − γ5 =
(a − 1, b, c + 2, 1); otherwise λ5 = λ3.

This completes Subcase (1b) and then Case (1).

(2) Assume − 1
2a − b − 3

4c − 9
4 ≡ 0. Then λ1 = λ = (a, b, c, 3). We compute (λ1, γ2)

= − 1
2a − b − 1

4c − 9
4 , and divide into 2 subcases (2a)–(2b).

(2a) Assume− 1
2a−b− 1

4c− 9
4 �≡ 0. Then λ2 = λ1−γ2 = (a, b+1, c−1, 2). We compute

(λ2, γ3) = − 1
2a − 1

4c − 5
4 , and again divide into 2 subcases (2a-i)–(2a-ii):

(2a-i) Assume − 1
2a − 1

4c − 5
4 �≡ 0. Then the conditions on (2), (2a) and (2a-i) become

b ≡ − 1
2a − 3

4c − 9
4 , c �≡ 0 and c �≡ −2a − 5, whence Condition 2.1. In this case,

we have λ1 = λ, λ2 = (a, b+ 1, c− 1, 2), λ3 = (a + 1, b, c, 1). If c �≡ 2a + 5, then
λ4 = (a+2, b, c−1, 0); otherwise λ4 = λ3. If c �≡ 2a−1, then λ5 = (a, b, c+1, 0);
otherwise λ5 = λ3.

(2a-ii) Assume − 1
2a − 1

4c − 5
4 ≡ 0. Then the conditions on (2), (2a) and (2a-ii) become

c ≡ −2a − 5, b ≡ a + 3
2 , and c �≡ 0, whence Condition 2.2. In this case, we have

λ1 = λ, λ3 = λ2 = (a, b+1, c−1, 2). If a �≡ −3, then λ4 = (a+1, b+1, c−2, 1)
(and c ≥ 2 is guaranteed by Condition 2.2); otherwise, λ4 = λ3. If a �≡ 0, then
λ5 = (a − 1, b + 1, c, 1); otherwise, λ5 = λ3.

This completes Subcase (2a).
(2b) Assume − 1

2a − b − 1
4c − 9

4 ≡ 0. Then λ2 = λ1 = λ. We compute (λ2, γ3) =
− 1

2a − 1
4c − 9

4 , and divide into 2 subcases (2b-i)-(2b-ii):

(2b-i) Assume − 1
2a − 1

4c − 9
4 �≡ 0. Then λ3 = λ2 − γ3 = (a + 1, b − 1, c + 1, 2). The

conditions on (2), (2b) and (2b-i) become c ≡ 0, b ≡ − 1
2a − 9

4 , and b �≡ 0, whence
Condition 2.3. In this case, we have λ2 = λ1 = λ, and λ3 = (a+ 1, b− 1, c+ 1, 2).
If a �≡ − 7

2 , then λ4 = (a + 2, b − 1, c, 1); otherwise, λ4 = λ3. If a �≡ 5
2 , then

λ5 = (a, b − 1, c + 2, 1); otherwise, λ5 = λ3.
(2b-ii) Assume − 1

2a − 1
4c − 9

4 ≡ 0. The conditions on (2), (2b) and (2b-ii) become b ≡ 0,
c ≡ 0 and a ≡ − 9

2 , whenceCondition 2.4. In this case, we have λi = λ for 1 ≤ i ≤ 4
and λ5 = λ3 − γ5 = (a − 1, b, c + 1, 2).

This completes Case (2). Therefore, we have established the necessary conditions as listed
in the proposition for L(λ) to be finite dimensional.

By inspection, we see that λi ∈ X+(T ) for all i in every case above. By Lemma 1.5, the
conditions listed in the proposition are also sufficient for L(λ) to be finite dimensional.

Now we simplify the conditions in Proposition 4.6 by removing all inequalities.

Proposition 4.7 Set d = 3. Assume λ = aω1 + bω2 + cω3 + dω4 ∈ X+(T ). Then L(λ) is
finite dimensional if only if one of the following conditions (i)–(v) holds:
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(i) 2a − c + 1 ≡ 0 (mod p);
(ii) 2a + c + 3 ≡ 0 (mod p);
(iii) 2a + 4b + c + 7 ≡ 0 (mod p);
(iv) 2a + c + 7 ≡ b ≡ 0 (mod p);
(v) 2a + 4b + 3c + 9 ≡ 0 (mod p).

Proof One first observes that all conditions listed in Proposition 4.6 are part of conditions
listed above in this proposition. Indeed the conditions above are basically obtained by remov-
ing the inequalities in the conditions in Proposition 4.6, and the case (2.4) with equalities
only is included in (v).

It remains to show that all conditions above in this proposition are included in the list of
conditions (1.1)–(1.4) and (2.1)–(2.4) in Proposition 4.6.

Wefirst check that the 4 subcases (2.1)–(2.4) of Proposition 4.6 are equivalent to Condition
(v). If Condition (v) is satisfied but (2.1) of Proposition 4.6 is not, then we have 2 cases (A)–
(B):

(A) c �≡ 0 and c ≡ −2a − 5, in which case b ≡ a + 3
2 , a �≡ − 5

2 , and so (2.2) is satisfied;
(B) c ≡ 0. Then b ≡ − 1

2a − 9
4 . We further divide into 2 subcases:

(B1) b �≡ 0, in which case (2.3) is satisfied,
(B2) b ≡ 0, in which case a ≡ − 9

2 , and so (2.4) is satisfied.

If Condition (i) is satisfied but (1.1) of Proposition 4.6 is not, then we have the following 3
cases (A)–(B)–(C):

(A) b ≡ −2a − 3, in which case c ≡ 2a + 1, and so (v) is satisfied;
(B) a ≡ −1 and b �≡ −2a − 3, in which case c ≡ −1 but b �≡ −1, and so (1.2) is satisfied;
(C) b ≡ −a − 2 and a �≡ −1. Hence c �≡ −1 thanks to c ≡ 2a + 1. We further divide into

2 subcases below:

(C1) b �≡ 0, in which case c ≡ 2a + 1, and so (1.3) is satisfied,
(C2) b ≡ 0, in which case a ≡ −2, c ≡ −3, and so (1.4) is satisfied.

If Condition (ii) is satisfied but (1.2) of Proposition 4.6 is not, then either (A) b ≡ a, in
which case c ≡ −2a − 3, and so (v) is satisfied, or (B) b ≡ −1 and b �≡ a, in which case
c ≡ −2a − 3 and then c �≡ −1, and so (1.3) is satisfied.

If Condition (iii) is satisfied but (1.3) of Proposition 4.6 is not, then either (A) c ≡ −1, in
which case the equality b ≡ − 1

2a − 1
4c − 7

4 implies that (v) is satisfied; or (B) c �≡ −1 and
b ≡ 0, in which case a �≡ −3, and so (1.4) is satisfied.

If Condition (iv) is satisfied but (1.4) of Proposition 4.6 is not, then a ≡ −3, in which
case b ≡ 0, c ≡ −1, and so (v) is satisfied.

The proposition is proved.

4.3 Simple modules of the supergroup F(3|1)

Summarizing Propositions 4.2, 4.3, 4.5, and 4.7, we have established the following classifi-
cation of simple modules for type F(3|1).
Theorem 4.8 Let p > 3. Let G be the simply connected supergroup of type F(3|1). A
complete list of inequivalent simple G-modules consists of L(λ), where λ = aω1 + bω2 +
cω3 + d δ

2 , with a, b, c, d ∈ N, such that one of the following conditions is satisfied:

1. d = 0, and a ≡ b ≡ c ≡ 0 (mod p).
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2. d = 1, and a, b, c satisfy either of (i)–(iii) below:

(i) a ≡ 2b + 3 ≡ c − 1 ≡ 0 (mod p);
(ii) 2a + 1 ≡ 2b + 1 ≡ c ≡ 0 (mod p);
(iii) 2a + 3 ≡ b ≡ c ≡ 0 (mod p).

3. d = 2, and a, b, c satisfy either of (i)–(vi) below:

(i) a ≡ c ≡ 0 (mod p);
(ii) 2a − c ≡ a + b + 1 ≡ 0 (mod p);
(iii) b ≡ 2a + c + 4 ≡ 0 (mod p);
(iv) 2a − c + 2 ≡ 2a + b + 3 ≡ 0 (mod p) and c ≥ 2;
(v) 2a + c + 2 ≡ a − b ≡ 0 (mod p) and a ≥ 1;
(vi) a + 2b + 3 ≡ c ≡ 0 (mod p).

4. d = 3, and a, b, c satisfy either of (i)–(v) below:

(i) 2a − c + 1 ≡ 0 (mod p);
(ii) 2a + c + 3 ≡ 0 (mod p);
(iii) 2a + 4b + c + 7 ≡ 0 (mod p);
(iv) 2a + c + 7 ≡ b ≡ 0 (mod p);
(v) 2a + 4b + 3c + 9 ≡ 0 (mod p).

5. d ≥ 4, (and a, b, c ∈ N are arbitrary).

We do no attempt the classification of simple G-modules for p = 3 in this paper, and leave
it to the reader.

Remark 4.9 Theorem 4.8 makes sense over C, providing an odd reflection approach to the
classification of finite-dimensional simple modules overC (due to [10]; also cf. [12]). Indeed
this classification can be read off from Theorem 4.8 (by regarding p = ∞) as follows. The
simple g-modules L(λ) overC are finite dimensional if and only if λ = aω1+bω2+cω3+d δ

2 ,
for a, b, c, d ∈ N, satisfies one of the 3 conditions: (1) a = b = c = d = 0; (2) d = 2 and
a = c = 0; (3) d ≥ 4.
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