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algebraically closed field of prime characteristic.
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Introduction

Among the simple Lie superalgebras over the complex field C, the basic Lie superalgebras
distinguish themselves by admitting a non-degenerate super-symmetric even bilinear form
(see, e.g., [4]), and they include 3 exceptional Lie superalgebras: D(2|1; ¢), G(3) and F (3|1);
cf. [7]. The classification of finite-dimensional simple modules of complex simple Lie
superalgebras was achieved by Kac ([10], Theorem 8). Note that the simple highest weight
modules whose highest weights are dominant integral (with respect to the even subalgebra) are
not all finite dimensional. This is one of several aspects that super representation theory differs
from the classical representation theory dramatically. This classification theorem of Kac can
be reformulated as a classification for simple modules over the corresponding supergroups
over C.
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There are algebraic supergroups associated to the basic Lie superalgebras, valid over an
algebraically closed field k of prime characteristic p # 2. A general theory of Chevalley
supergroups was systematically developed by Fioresi and Gavarini [6] (also see [8]). In
representation theory of algebraic supergroups G over k, one of the basic questions is to
classify the simple G-modules. For type A, the answer is immediate as it is the same as
for the even subgroup Gg. For type Q such a classification was obtained in [2], and it has
applications to classification of simple modules of spin symmetric groups over k. For type
osp, the classification was obtained in [17] in terms of the Mullineux involution by using odd
reflections; also see Remark 1.3.

The goal of this paper is to classify the simple G-modules, when G is a simply con-
nected supergroup of exceptional type. We shall assume throughout the paper that p > 2 for
DQ2|1;¢) and p > 3 for G(3) or F(3|1) (except in §3.4). Under these assumptions, their
corresponding supergroups admit non-degenerate super-symmetric even bilinear forms. We
treat G(3) for p = 3 in §3.4.

Let us outline the approach of this paper. An equivalence of categories ([17]; also cf.
[14]) reduces the classification of simple G-modules to the classification of the highest
weights of finite-dimensional simple modules L(X) = LP (%) over the distribution superal-
gebra Dist(G), where b is the standard Borel subalgebra. We then reduce the verification of
finite-dimensionality of L (1) to verifying that L (1) is locally finite over its even distribution
subalgebra. The local finiteness criterion for L(}) is finally established by means of odd
reflections (see [11]), and is based on the following observation which seems to be well
known to experts (see [16]):

For every positive even root « in the standard positive system, either o /2 (if it is a root)
or o appears as a simple root in some simple system I1' associated to some b', where b’ is a
Borel subalgebra obtained via a sequence of odd reflections from b.

For the exceptional Lie superalgebras, we make this observation explicit in this paper. We
compute the highest weight L b’ (/) for all possible Borel subalgebras b’ as mentioned above.
Requiring A" to be dominant integral for all possible b’ gives the local finiteness criterion for
L(A).

Recently, an approach to obtain characters of projective and simple modules in the BGG
category O for the exceptional Lie superalgebras over C has been systematically developed;
see [S]for D(2|1; ¢). Building on this and the current work, one may hope to better understand
the characters of projective and simple modules of the exceptional supergroups over a field
of prime characteristic in the future.

The organization of this paper is as follows. In Sect. 1, we review the equivalence between
the category of finite-dimensional modules over a supergroup G and the category of finite-
dimensional (Dist(G), T')-modules, where T is a maximal torus of G. We develop a criterion
for the finite-dimensionality of simple Dist(G)-modules L(A) via odd reflections. We also
review the formula for the Euler characteristic, which implies that a Dist(G)-module L (1),
with A dominant integral and A + p is regular, is always finite dimensional.

In Sect. 2, we analyze the highest weight constraints given by odd reflections of a sim-
ple finite-dimensional Dist(G)-module when G is of type D(2|1; ¢). Here D(2|1;¢) is a
family depending on a parameter ¢ € k\{0, —1}. We then classify the simple G-modules in
Theorem 2.1.

In Sect. 3, we analyze the highest weight constraints given by odd reflections of a simple
finite-dimensional Dist(G)-module when G is of type G(3). We then classify the simple
G-modules in Theorem 3.5.

In Sect. 4, we study the supergroup G of type F(3|1). When the highest weight A =
aw) + bwy + cwz + dwg with a, b, c € N, d > 4 is dominant integral, the weight A + p is
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regular and hence the Euler character formula implies that the Dist(G)-module L (1) is finite
dimensional. For d < 3, it is rather involved to analyze the highest weight changes under
sequences of odd reflections and formulate sufficient and necessary conditions for L(A) to
be finite dimensional. We finally classify the simple G-modules in Theorem 4.8.

Finally we remark that, although in this article we deal with an algebraically closed field of
positive characteristic, the results also make sense in characteristic zero and give the known
classification in this case; cf. [10,12].

1 Modular representations of algebraic supergroups
1.1 Algebraic supergroups and (Dist(G), T)-mo0

Throughout the paper, the ground field k is assumed to be algebraically closed and of char-
acteristic p > 2 (sometimes we will specify a stronger assumption p > 3).

We shall review briefly some generalities on algebraic supergroups; cf. [2,6,14,17]. An
(affine) algebraic supergroup G is an affine superscheme whose coordinate ring k[G] is a
Hopf superalgebra that is finitely generated as a k-algebra, and gives rise to a functor from
the category of commutative k-superalgebras to the the category of groups. The underlying
purely even group Gy is a closed subgroup of G corresponding to the Hopf ideal generated
by k[G]ly, and it is an algebraic group in the usual sense. For an algebraic supergroup G,
the distribution superalgebra Dist(G), which is by definition the restricted dual of the Hopf
superalgebra k[G], is a cocommutative Hopf superalgebra.

We denote by G-mod the category of rational G-modules with (not necessarily homoge-
neous) G-homomorphisms. Note that a G-module is always locally finite, i.e., it is a sum
of finite-dimensional G-modules. Given a closed subgroup T of G, a Dist(G)-module M
is called a (Dist(G), T)-module if M has a structure of a T-module such that the Dist(7)-
module structure on M induced from the actions of Dist(G) and of T coincide. We denote
by (Dist(G), T)-mo0 the category of locally finite (Dist(G), T)-modules, and denote by
Dist(G)-mo0 the category of locally finite Dist(G)-modules. (We shall always take T to be
a maximal torus of G when G is of basic type.)

1.2 Modules of basic algebraic supergroups

Let g be a basic Lie superalgebra over k [4,6,8], including the three exceptional types:
D(2|1;¢), G(3), and F(3]1). The non-degenerate bilinear form (-, -) of g over k exists when
the characteristic p of k satisfies p > 2 for type gl, osp and D(2|1; ¢), and p > 3 for G(3)
and F(3|1).

Algebraic supergroups over k associated with basic (including exceptional) Lie superal-
gebras are constructed in analogy to Chevalley’s construction of semisimple algebraic groups
(see [6] and [8]); we shall use the same terminologies (such as basic type, exceptional type) to
refer to Lie superalgebras and corresponding supergroups. We shall call G simply connected if
Gy is a simply connected algebraic group, taking advantage of [13, Proposition 3.5]. Simple-
connected supergroups of basic type exist, and we shall assume the exceptional supergroups
in this paper to be simply connected.

The assumption on Chevalley bases in [17, Theorem 2.8] is satisfied for all algebraic
supergroups of basic type, by the constructions in [6,8]. Hence we have the following.
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Proposition 1.1 [17, Theorem 2.8] [14] Let G be an algebraic supergroup of basic type.
Then there is a natural equivalence of categories between G-mod and (Dist(G), T)-mo0.

If we further assume G is simply connected, then (Dist(G), 7)-mod in Proposition 1.1
above can be replaced by Dist(G)-mo?; cf. [9, I1.1.20].

A supergroup G of basic type can be constructed as a Chevalley supergroup through a
Chevalley basis associated with a standard positive root system ®+ as described in [17, §3.4
and §3.5], [6,3.3] and [8, §3]. Therefore, we have a standard Borel subgroup B corresponding
to ®*, which contains a maximal torus T. The distribution superalgebra Dist(G) contains
Dist(B) as a subalgebra. Set Lie(B) = b. Let X (T') be the character group of 7. For A €
X(T), we denote the Verma module of Dist(G) by

M) = Dist(G) ®pist(B) k.,

where k; is the one-dimensional Dist(B)-module of weight A. The Dist(G)-module M (i)
has a unique simple quotient L(}), and furthermore the Dist(G)-modules L(X) are non-
isomorphic for distinct . € X (7). By definition, L(A) is X (T)-graded and thus a T-module.
Denote by X (T') the set of Gy-dominant integral weights (with respect to ®).

Lemma 1.2 [17, Lemma 4.1] Every simple module in the category (Dist(G), T)-mo0 is
isomorphic to a finite-dimensional highest weight module L()) for some A € X (T), and
vice versa.

By Proposition 1.1 and Lemma 1.2, the classification of simple G-modules can be reformu-
lated as the determination of the following set:

XT(T) = {A e X™(T) | L(}) is finite dimensional}. (1.1)

For general supergroups of basic type, XT(T') turns out to be a nontrivial proper subset of
XT(T).

Remark 1.3 For a supergroup G of type spo(2n|f), the subset X (T) ¢ X+ (T) was deter-
mined explicitly in [17]. Note the supergroup G therein has even subgroup G = Sp,,, x SO,
and hence is not simply connected. For a simply connected group of type spo(2n|f),
one would have additional simple modules L()), where A € XT(T) is of the form
A€ Y i0Zsi + Zj>0 (% + Z) 8; in the notation of [17, §3.3-3.4]; this follows from
Proposition 1.9 below.

We denote by L'(A) and L” (1) the highest weight Dist(G)-modules with respect to positive
systems ®'* and ®"7, respectively.

Lemma 1.4 [3, Lemma 4.2], [17, Lemma 5.7] Let > € X(T), and let B be an odd isotropic
root for g. Suppose that ®'t and &' are two positive systems of g such that ®'t =
&+ U {—B)\{B). Then,

L'() ., p)=0 (mod p),

Loy = { L'G— ) if . f) £0 (mod p).

We shall say ®”+ is obtained from ®'* by an odd reflection in the setup of Lemma 1.4. Often
we shall abbreviate a = b (mod p) as a = b later on. In the coming sections dealing with
exceptional supergroups, we shall be very explicit about the (positive) root systems and odd
reflections.
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Lemma 1.5 Let L = L(}), for » € X1 (T). Suppose that L is isomorphic to LY (\) with
X e XT(T), for every Borel subalgebra b’ that is obtained from b by a sequence of odd
reflections. Then L is locally finite as a Dist(Gg)-module, i.e., it is a rational Gg-module.

Proof We recall the following observation (cf., e.g., [12,16]):

For every positive even root o in CD%', either /2 (if it is a root) or o appears as a simple
root in some simple system T1’ associated to b'.

Denote by SL; , the root subgroup of G associated to «. Then by the assumption of the
lemma, Dist(SL> ) acts on L locally finitely (i.e., L is a rational SL; o-module). It follows
that L is a rational Gg-module, or equivalently, L is locally finite as a Dist(Gg)-module by
Proposition 1.1.

Lemma 1.6 Ifafinitely generated Dist(G)-module M is locally finite as a Dist(Gg)-module,
then M is finite dimensional.

Proof Since Dist(G) is finitely generated over the algebra Dist(Gy), as a Dist(Gg)-module
M is also finitely generated. Together with the locally finiteness assumption, this implies that
M is finite dimensional.

The combination of Proposition 1.1, Lemmas 1.4, 1.5 and 1.6 provides us with an effective
approach of classifying simple G-modules. Indeed, the problem of determining the finite-
dimensional irreducible modules is thus reduced to determining the weights that remain to be
Gp-dominant integral when transformed to highest weights with respect to any Borel (with
fixed even part).

1.3 Euler characteristic

Let H be a closed subgroup of an algebraic supergroup G such that the quotient superscheme
G/H is locally decomposable (cf. [1, the paragraph above Lemma 2.1]) and Gg/Hj is
projective; that is, the superscheme X = G/H satisfies the assumptions (Q5-Q6) in [1, §2].

We refer to [9, 11.2] and [2, §6] for the precise definitions for induction and restriction
functors below. Below, for a superspace M, we shall use S(M) to denote the corresponding
supersymmetric algebra.

Lemma 1.7 ([1, Corollary 2.8]) For any finite-dimensional H-module M, we have
Y =1y [resgaRiindf,M] =Y 1y [Riindf,gs ((LieG/LieH)’f) ® M] ,
i>0 i>0

where the equality is understood in the Grothendieck group of Gg-modules.

Now we take G to be an algebraic supergroup of basic type, H = B~ to be the opposite
Borel subgroup. Since G/ Bg is projective and G/ B~ is locally decomposable (cf. [15] and
[18]), Lemma 1.7 is applicable. For M = k;, we define H' (1) := R'ind$_ (k;.) and then the
Euler characteristic

xX() = (=D chH'(1).
i>0
By Lemma 1.7 we have the following formula for the Euler characteristic

X =Y (=1 ch Riind,"s((g/67)F) @ k., (1.2)

i>0
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where b~ is the opposite Borel subalgebra. Since the Euler characteristic is additive on short
exact sequences, it suffices to determine the Euler characteristic on the composition factors
of the Bz-module S ((g / b_)}ﬁ) ® k. Recall that the supersymmetric algebra of a purely
odd space is the exterior algebra in the usual sense. Let W be the Weyl group of g. Since

Mg (eg n e%ﬁ) is W-invariant, it follows by (1.2) and Lemma 1.7 that
1

gy = ZewCD O (€ (Mg (1+e77)))
X = o —a
Myeqr(e? —e)
0

T (=D (e(H-p) (nﬁeqﬁ (eg i e%”)))
1
Myeqr(e? —e)
0

B =B
Hﬂedﬁ (62 te? )
— I Z (_])f(w)ew(kJrP).

o —a
Haecbg ez —e? | ywew

Here as usual £(w) denotes the length of w € W, and p is the Weyl vector given by

1 1
p=py—pr, where o5 =~ hR:2 pi=3 > B

aecb(f; ﬂed){r

Proposition 1.8 Let . € X1 (T). The Euler characteristic is given by

B =B
Hﬁeclx+ (ez te? )
I Z (_l)ﬁ(w)ew()»-kp).

a —a
HLXECD('-;' ez —e? ) weW

x) =

Proposition 1.9 Let A € X+ (T) be such that . + p is Gg-dominant and regular. Then L(}.)
is finite dimensional.

Proof By the same arguments as in [1, Corollary 2.8, Lemma 4.2], all H()) are finite-
dimensional G-modules. By assumption A + o is Gz-dominant and regular, and hence, the
highest weight of the Euler characteristic in Proposition 1.8 equals A 4+ p + (p1 — po) = A.
The proposition now follows from Proposition 1.1 and Lemma 1.2.

2 Modular representations of the supergroup of type D(2|1; ¢)
2.1 Weights and roots for D(2|1; ¢)
The Lie superalgebra g = D(2|1; ¢) is a family of simple Lie superalgebras of basic type,

which depends on a parameter ¢ € k \ {0, —1}. There are isomorphisms of Lie superalgebras
with different parameters

DRI =D (2 -1-¢ H =Dl ¢). 2.1

Then g = g5 ® g1, where g5 = sl © slx @ sl and, as a gg-module, g7 = k? X k%X k2. Here
k? is the natural representation of s;.
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Modular representations 641

Let h* be the dual of the Cartan subalgebra with basis {6, €1, €2}. We equip h* with a
k-valued bilinear form (-, -) such that {3, €1, €2} are orthogonal and

(6,8)=—-(047), (er,e) =1, (e2,€2) =7¢. 22

The root system for g = g5 @ g7 is denoted by ® = ®g U ®1. The set of simple roots of the
standard simple system in h* of D(2|1; ¢) is chosen to be

IM={ag=68 —€1 —er, 1 =2€1,0p =262}.

The Dynkin diagram associated to IT is depicted as follows:

O 2
IT: S—ej—e

O 2ey
The set of positive roots is T = ng U @}“ , where

CD(?;' = {26, 2¢1, 262}, @i" ={0—€—€,0+€ —€,6—€ +€,8+e +6e}.
One computes the Weyl vector
p=—08+¢€ +e (=—a).
Let
X =76+ Ze + Zer,

denote the weight lattice ofg.
We denote the positive odd roots by

Pr=8—e1—e, Ppr=8+e1—€, f3=8—e+e, Pr=5+te +e. (23)

There are 4 conjugate classes of positive systems under the Weyl group action. The 4
positive systems containing ® admit the following simple systems IT* (0 < i < 3), which
are obtained from one another by applying odd reflections (see [4, §1.4] for an introduction
to odd reflections):

m.=mn= {6 — €1 — e, 2¢;, 262},

N i=rg () ={-8+e€1+e, §+e —e, §—€ +ea),
% = rg, (IT') = {2¢1, —8 — €1 + €2, 28},

% = rp, (1) = 262, 28, 8+ €1 — €2}
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642 S-J. Cheng et al.

The Dynkin diagrams of IT', [12, and TT° are respectively as follows:

Step—e O = O =
—d+e€+e —3—€1t+e —d+e€—e€

S—€e1+e O 24 O 2«

! n? 3

The corresponding positive systems are denoted by @'+, for 0_ <i < 3, with % = @™,
and the corresponding Borel subalgebras of g are denoted by b’.

2.2 Highest weight computations
The simply connected algebraic supergroup G of type D(2|1; ¢) was constructed in [8]. With
respect to the standard Borel subalgebra b (associated to ® ), we have

XN (T)={r=dS+ae  +bey € X |a,b,d e N}.

Denote the simple Dist(G)-module of highest weight A by L(X), where . = d§+ae€|+bey €
XT(T). We denote by A’ the highest weight of L(A) with respect to I1/, for 0 < i < 3. So
20 = A. We shall apply (2.2) and Lemma 1.4 repeatedly to compute A’, for 1 <i < 3.

By using (2.2) we have

A, B)=—-d(1+¢)—a—-bl=—(a+d)— (b+d).
We now divide into 2 cases (1)—(2).
(1) Assume x1 :=(a+d)+ (b+d)¢ #0 (mod p). Then
AM=xr—B1=W~-18+ (a+ e + (b + Des.

First we compute (A!, 82) = —(d—1D)(14+0)+(a+ 1) —(b+1)¢ = (a—d+2)—(b+d)¢,
and then further divide into 2 subcases (a)—(b).

(@ Ifyi:=(@—d+2)—(b+d)¢ #0 (mod p), then
A== B =(d —2)5 +ae; + (b +2)e.
(b) If yy =0 (mod p), then M=Al=d - D8+ (a+ e + (b + Des.

Wealsohave (A, 3) = —(d—1D)(1+¢)—(a+ D+ b0+ 1) = —(a+d)+(b—d+2)¢,
and then divide into 2 subcases (a’—(b’).

@) Ifzi:=—(@+d)+b—-d+2)¢ #0 (mod p), then
=2l — B3 =(d —2)8 + (a+2e; + ber.
() Ifz; =0 (mod p), then A3 = A = (d — 1)§ + (a + ey + (b + Des.

(2) Assume x; =0 (mod p). Then A=A =ds + ae| + bes.
First we compute oL, B2)=—-d(1+¢)+a—b¢ = (a—d)— (b+d)¢, and then divide
into 2 subcases (a)—(b).
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(@ Ify, :=(a—d)— (b+d)¢ #0 (mod p), then
A== B=d -8+ (a— e + (b + Des.
(b) If y» =0 (mod p), then A2 = A! = d§ + ae| + be.

We also have (1!, B3)=—d(1+4+¢)—a+bl =—(a+d)+ (b—d)¢, and then divide
into 2 subcases (a’)-(b’).

@) Ifznp:=—(@+d)+ b —-d)¢ #0 (mod p), then
M= —B=Ud -8+ (a+ e + (b — Des.
(b’) If zp = 0 (mod p), then A3 = A! = d8 + ae; + bes.

2.3 Simple modules for the supergroup D(2|1; ¢)

Theorem 2.1 Let p > 2. Let G be the supergroup of type D(2|1; ¢). A complete list of
inequivalent simple G-modules consists of L()), where A = d§+ae€|+ber, withd,a,b € N,
such that one of the following conditions is satisfied:

(1) d=0,anda =b =0 (mod p);
2)d=1land(a+1)— (b+1)¢ =0 (mod p),
B)d=1lLand@a+1)+ b+ 1)¢ =0 (mod p),
@) d =2, (and a, b € N are arbitrary).

Proof From the computations in §3.2 on the highest weights A’ (I < i < 3) and their
associated conditions, we obtain the following (mutually exclusive) sufficient and necessary
conditions for L(A) to be finite dimensional:

AN d=0,(a+d)+b+d)¢=0,(a—d)—b+d)¢=0,—(a+d)+ (b—d) =0;
(i) d =1,(a+d) + (b+d)¢ #0,(a—d+2) — (b+d)¢ =0,—(a+d) + (b—d+2)¢ =0;
(ii-a) d =1,(a+d)+ (b+d)¢ =0,(a—d)— (b+d)¢ #0witha > 1,—(a+d)+ (b—
d)¢ #0withb > 1;
Gi-b) d=1,a+d)+b+d)=0,(a—d)—b+d)t=0,—(a+d)+b—-d)¢ #£0
withb > 1;
@iv-a) d=1,(a+d)+b+d)¢ =0,(a—d)—(b+d)¢ #0witha > 1,—(a+d)+ (b—
d); =0;
ivb)d=1,@a+d)+b+d)=0,(a—d)—(b+d)¢=0,—(a+d)+ (b —d)¢ =0;
(v) d = 2, (and a, b € N are arbitrary).

In Case (i), we obtaind = O and a = b = 0, that is, Condition (1) in the theorem. Case (v)
is the same as Condition (4).

Condition (ii) with the help of Condition (iii-a) simplifies to Condition (2).

We note that the seemingly additional constraints @ > 1 and » > 1 in (iii-a)—(iii-b) as
well as (iv-a)—(iv-b) follow automatically from the other conditions. Therefore, Conditions
(iii-a)—(iv-b) simplify to Condition (3).

The theorem is proved.

Remark 2.2 Theorem 2.1 makes sense over C, providing an odd reflection approach to the

classification of finite-dimensional simple modules over C (due to [10]). Indeed this classi-
fication can be read off from Theorem 2.1 by regarding p = oo.
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3 Modular representations of the supergroup of type G(3)
3.1 Weights and roots for the supergroup G(3)

Let g = gg © g7 be the exceptional simple Lie superalgebra G(3). We assume €1, €2, €3
satisfy the linear relation

€1+e+e3=0.

The root system is ® = ®g U ®7. We choose the standard simple system IT = {1, a2, a3},
where

a) =€ —€, ay=¢€, o3=203+¢;.
The Dynkin diagram associated to IT is depicted as follows:

I: O——0—=

a) =€) —¢€] ay = €] a3 =d+e€3
Then the standard positive roots are ®+ = <I>%r U CI:'%r , where

O = (28, €1,6, —e3, 2 —€1, €1 —€e3, 2 —€3), DT ={85%¢|1<i=<3)

The Weyl vector for g is

5 7
p:—§5+2€]—|—362, 01258 (31)

~

We have g5 = G2 @ sl and g7 = k7 X k2 as an adjoint gg-module, where k7 denotes
denotes the 7-dimensional simple G;-module and, as before, k? the natural slp-module. Note
that {a1, oy} forms a simple system of G,, and we denote by w;, w; the corresponding
fundamental weights of G,. We have

w) =€ +26, w =€ +ey

€ =2w) — w1, € =w| —w).

We can rewrite the formulae for p in (3.2) as

p = —;8—}—(01 + wy. (3.2)
Denote the weight lattice of g by
X =76 & X,
where
X = Zw) ® Ly = Ze| ® Ze

is the weight lattice of G.
The bilinear form (-, -) on X is given by

6,8)=-2, ,€)=0, (¢,6)=2, (g,€j))=—1, forl=<i#j=<3.

@ Springer



Modular representations 645

It follows that

(w1,€1) =0, (w1,€) =3, (w1,€3)=-3,

@ne) =1, (@.e)=1, (@.e)=—2. (3-3)

Denote the following positive odd roots of G(3) by
Bi=68+e, Ppp=8—€, P3=0—¢€. (€XD)

There are 4 conjugate classes of positive systems under the Weyl group action. The 4 positive
systems containing ®F admit the following simple systems IT! (0 < i < 3), which are
obtained from one another by applying odd reflections (cf. [4, §1.4]):

N°:=11={e) —e1,61,8 + &3},

n' .= rg (I = {e2 — €1,8 — €2, =8 — €3},
M7 = rg, (") = {§ — €1, =6 + €2, €1},

% = rp, (%) = {8 + €1, €2 — €1, 8}

The Dynkin diagrams of 1!, T12, and IT? are respectively as follows:

—$+e —8+e€;
e Gty —dees @ﬁo éo
5—61 €] € —€] F)

! 2 3

The corresponding positive systems are denoted by ®'*, for 0 < i < 3, with &0+ = @+,
and the corresponding Borel subalgebras of g are denoted by b’.

3.2 Highest weight computations

The (simply connected) algebraic supergroup G of type G(3) was constructed in [6]. With

respect to the standard Bore subalgebra b (associated to &), we have
XT(T)={(rA=né+rw +swr € X |n,rseN}.

Denote by L(A) = L®()) the irreducible Dist(G)-module of highest weight A with respect
to the standard Borel subalgebra b, where

A=ds+ro) +sw € XT(T).

Assume the simple module L(A) = Lb (A) has bi—highest weight A fori = 1,2, 3. We shall
apply (3.3) and Lemma 1.4 repeatedly to compute A, for 1 < i < 3. We have (&, 81) =
—2d — 3r — 2s. We now divide into 2 cases (1)—(2).

(1) Assume x1 :=2d 4+ 3r + 25 £ 0 (mod p). Then
AM=A—Bi=W-1)8+rw +(s+ Dwy.
We obtain (A!, B2) = —2d — 3r — s + 1. We then divide into 2 subcases (a-b).
(a) Assume y; :=2d +3r +s— 10 (mod p). Then
A=A — B =(d—-2)8+ (r + Do + sws.
We have (A2, B3) = —2d — s + 4.
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() Ifz1:=2d +5s —4 %0 (mod p), then
AW =22y =(d -3 +rw+ (s + 2w

(ii) Ifz; =0 (mod p), then A3 = 12 = (d — 2)8 + (r + Dy + sws.
(b) Assume y; =2d +3r+s —1=0 (mod p). Then

AM=Al=Wd -1 +rw + (s + Dan.
We have (A2, B3) = —2d — s + 1.
() Ifz2:=2d +s5s—1%#0 (mod p), then
B=22—B=d—-28+ — Do+ (s +3w.
(i) Ifz0 =0 (mod p), then A3 =22 =1l = (d — DS + ro1 + (s + Dos.
(2) Assume x1 = 2d + 3r +2s =0 (mod p). Then Al =21 =ds+ rw; + swp. We have
(A, B2) = —2d — 3r — 5. We then divide into 2 subcases (a)-(b).
(a) Assume y; :=2d +3r + s # 0 (mod p). Then
V=A== =d-15++ Do + (s — Dos.
We have (A2, B3) = —2d — s + 3.
() Ifz3:=2d +s5s—3 %0 (mod p), then
MB=22—B3=(d—-2)5+rw + (s + Dows.
(ii) Ifz3 =0 (mod p), then A3 =22 = (d — DS + (r + D1 + (s — Dan.
(b) Assume y; =2d +3r +s =0 (mod p). Then
A2 = =A=dé+rwi+swy.

We have (A2, B3) = —2d — s.
(i) Ifz4 :=2d + 5 #0 (mod p), then

M=A2—B=Wd-15+ (- Doy + (s + ws.
(ii) Ifz4 =0 (mod p), then A3 =212 =1 = d§ + ro; + sw,.

Proposition 3.1 Assume ) = dé+rwi+swy, ford,r, s € N. Then L(1) is finite dimensional
if only if one of the following conditions holds:

I (a) (i) d>=32d+3r+25s%#0,2d4+3r+s—1%#0,2d+s—4#0;
(ii) d>2,2d+s—4=0,3r+1) #0,2d + 3r + 25 #0;
(b) (i) d=>2,3r£0,2d4+3r+s—1=0,2d +3r +2s #0;
(ii) d>2,3r=0,2d+s—1=0,2d +3r + 25 #0;
2.(a) (i) d=2,5#0,2d+3r+2s=0,3r+s+3#0;
(i) d>1,5s #20,2d +3r +2s =0,3r+s+3=0;
(b) (i) s=0,2d £0,2d +3r =0,
(ii) 2d =3r=s5s=0.

Proof The conditions in the proposition are summary of the dominant conditions for the
new highest weights after odd reflections, which were computed in §3.2. We remark that the
natural condition on d from the summary in §3.2 for the case (1b)(ii) is “d > 17, but“d = 1”
is quickly ruled out by the other conditions 3r =0,2d +s — 1 =0,2d + 3r + 25 # 0.

It follows by Lemmas 1.5 and 1.6 that these conditions are also sufficient for L(A) to be
finite dimensional.
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Note the conditions in Proposition 3.1 are obtained without using any division on the
conditions arising from odd reflections; some scalars 2, 3 therein appear to be unnecessary
for p > 3, and they are kept for the case when p = 3 below.

3.3 Simple modules for the supergroup G(3) for p > 3

We assume the characteristic of the ground field k is p > 3 in this subsection. We shall
reformulate the conditions in Proposition 3.1 in a more useful form. We first analyze the case
when d > 3.

Proposition 3.2 For A = dé +rwy + swy € X7 (T) withd > 3, the module L().) is always
finite dimensional.

Proof Recall p from (3.2). The proposition now follows by Proposition 1.9 since A 4+ p =
(d—- %)8 + (r + Dwy + (s + Dy is in X+ (T). (Alternatively, the proposition also follows
from the analysis in §3.2.)

We then analyze the case when d = 2.

Proposition 3.3 Let p > 3. The module L(1) is finite dimensional, for A = 25+rw;+sw; €
X1(T), if and only if one of the following 3 conditions are satisfied:

(i) s =0 (mod p);
(ii) 3r +s+3 =0 (mod p);,
(iii) 3r +2s +4 =0 (mod p).

The three conditions (i)—(iii) in Proposition 3.3 are not mutually exclusive. Three mutually
exclusive conditions are given in (3.5)—(3.7) below.

Proof Let us set d = 2 in Proposition 3.1.

Condition (la)(ii) becomes s = 0,r + 1 # 0,3r + 4 # 0, while Condition (2b)(i)
becomes s = 0,3r + 4 = 0 (and it follows that » + 1 % 0). Hence the combination of
Conditions (1a)(ii) and (2b)(i) gives us the following conditions:

s =0, r+1#£0. (3.5)

Condition (1b)(i) becomes r # 0, 3r +s+3 = 0, 3r + 25 +4 # 0, while Condition (1b)(ii)
becomesr = 0, 3r+s+4+3 = 0, 3r+2s+4 # 0. Hence the combination of Conditions (1b)(i)-
(ii) gives us the following conditions:

3r+s+3=0, 3r+2s+4#£0. (3.6)

Condition (2a)(i) becomes s # 0, 3r + 25 +4 = 0, 3r + s + 3 # 0, while Condition (2a)(ii)
becomes s # 0,3r+2s+4 = 0,3r+5+4+3 = 0. Hence the combination of Condi-
tions (2a)(i)-(ii) gives us the following conditions:

3r+2s+4=0, s #0. 3.7

So by Proposition 3.1, L() is finite dimensional, for A = 28 + rw; + swy € X (T), if and
only if one of the 3 (mutually exclusive) conditions (3.5), (3.6), (3.7) holds.

Let us show that Conditions (3.5)—(3.7) are equivalent to Conditions (i)—(iii) in the
proposition. Clearly if r, s satisfy one of Conditions (3.5)—(3.7), then they satisfy one of
Conditions (i)—(iii). On the other hand, if r, s satisfy Condition (i) but not (3.5), that is,
s =r + 1 = 0, then (3.6) is satisfied. If r, s satisfy Condition (ii) but not (3.6), that is,
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3r+s5+3=3r+2s+4 =0, then (3.7) is satisfied. Finally, if r, s satisfy Condition (iii)
but not (3.7), that is, s = 3r + 25 + 4 = 0, then (3.5) is satisfied.
The proof of Proposition 3.3 is completed.

We finally analyze the case when d = 1.

Proposition 3.4 Let p > 3. The module L(}) is finite dimensional, for . = § +rw; +swy €
XT(T), if and only if one of the following 2 conditions are satisfied:

(i) s—1=3r+4=0 (mod p),

(ii) s =3r+2=0 (mod p).

Proof Letus set d = 1 in Proposition 3.1. The case d = 1 only occurs in Cases (2a)(ii) and
(2b)(i). Condition (2a)(ii) reads s # 0,3r +2s + 2 = 0, 3r 4+ s 4+ 3 = 0, which is clearly
equivalent to (i) in the proposition. Condition (2b)(i) is the same as (ii) above.

Summarizing Propositions 3.1, 3.2, 3.3 and 3.4 (and recalling Proposition 1.1, Lemma 1.2),
we have established the following.

Theorem 3.5 Let p > 3. Let G be the supergroup of type G(3). A complete list of inequiv-
alent simple G-modules consists of L()A), where .. = db§ 4+ rwy + swy, withd, r, s € N, such
that one of the following conditions is satisfied:

1. d =0,and3r =s =0 (mod p).
2. d =1, and r, s satisfy either of (i)-(ii) below:

(i) s—1=3r+4=0 (mod p);
(ii) s =3r+2=0 (mod p).

3. d =2, and r, s satisfy either of (i)-(iii) below:

(i) s =0 (mod p);
(ii) 3r +s+3 =0 (mod p);
(iii) 3r +2s +4 =0 (mod p).

4. d > 3, (and r, s € N are arbitrary).

Remark 3.6 Theorem 3.5 makes sense over C, providing an odd reflection approach to the
classification of finite-dimensional simple modules over C (due to [10]; also cf. [12]). Indeed
this classification can be read off from Theorem 3.5 (by regarding p = o0) as follows. The
g-modules L(A) over C is finite dimensional if and only .. = d§ +rw +swy, ford,r,s € N,
satisfies one of the 3 conditions: (1)d =r=s5s=0; 2)d=2,s=0; 3)d > 3.

3.4 Simple modules for the supergroup G(3) for p =3

The assumption p > 3 is not really necessary for the definition of G and classification of
simple G-modules. The (less polished) conditions in Proposition 3.1 remain valid for p = 3.
When one works it through, it turns out to be the same as setting p = 3 in Theorem 3.5; note
the scalar 3 in (1) therein. We summarize this in the following.

Theorem 3.7 Let p = 3. Let G be the supergroup of type G(3). A complete list of inequiv-
alent simple G-modules consists of L(A), where A = dé + rwy + swa, withd, r,s € N, such
that one of the following conditions is satisfied:

1. d =0,ands =0 (mod 3),

2.d=2,5s=00r1 (mod 3);

3. d >3, (andr, s € N are arbitrary).
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4 Modular representations of the supergroup of type F (3|1)

We assume the characteristic of the ground field £ is p > 3 in this section.

4.1 Weights and roots for F (3|1)

Let g = gg @ g7 be the exceptional simple Lie superalgebra F(3|1) (which is sometimes
denoted by F(4) in the literature). We have gg = sl @ s07 and g7 = K2 X K8 as gg-module,
where k® here is the 8-dimensional spin representation of s07. The root system of g can be
described via the basis {€], €3, €3, 8} in h* = C* with a non-degenerate bilinear form (-, -)
as follows:

(6,8)=-3,0,€)=0,(ci,€)) =1,(¢5,€;) =0, i,j=1,2,3,i#]. 4.1)

The root system ® = &5 U ®7 is as below:
1
Oy ={+8 te tejide |0, j=1,2,3,i # j}; op= {E(j:Sj:el j:egﬂ:@)}.
The standard Borel subalgebra b corresponds to the simple root system
1
[M=3a:=¢€1—€, ap ;=€ — €, 3 := €3, Q4 := 5(5—61 —€ —€3)¢.

The fundamental weights of g associated with the gg-simple roots a1, az, a3, § are:

w| =€, w):=¢€+€, w3:= %(61 + e +€3), wyg:= %8.
Denote the weight lattice by
X={,=aw) +bwry+cws+dws|a,b,c,d eZ}.
Sometimes we simply denote A = aw| + bwy + cwz +dws € X as

A= (a,b,cd) el

With respect to b, the Weyl vector p can be expressed in terms of the fundamental weights
as

P = w| + wr + w3 — 3wy.

The Dynkin diagram associated to IT is depicted as follows:

I1: O———O0——0—-=®R

€ —e ©-€ & To-e—cx—ep

From (4.1), we have

(1, €) =1, (1,€) =0, (01,€e) =0, (01,8 =0,
(w2,€1) =1, (w2,€2) =1, (w2,€3) =0, (w2,8) =0,
(3, €1) =3, (W3, €2) =3, (3,€3) =1, (@3,8) =0,
(@4, €1) =0, (04, €) =0, (w4,€3) =0, (w4,8) = —3.

4.2)
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Denote the positive odd roots for F(3|1) by

1 1 1
V1=§(3—61—62—63), )/225(5—61—624-63), V3=§(5—61+62—63),

1 1
V4=§(5—61+62+63), VSZ§(3+€1 — € —€3).

In terms of the fundamental weights, we can reexpress the odd roots y; as follows:

1 1 1
J/1=§5—w3, V2=55—w2+w3, V3=55—w1+w2—w3,

1 1
V4 = 53—601 +w3, 5= §5+w1 — w3.
Besides the conjugate class of the standard simple system nl:=1= {e1—€2, e2—e2, €3, y1}
there are five other conjugate classes of simple systems under the Weyl group action as listed
below. They all are obtained via sequences of odd reflections from il (cf. [[4], §1.4]):

! =r, (M%) = {e1 — €2, €2 — €3, v2, — 11},

N2 = r), (1" = {e; — €2, v3, =12, €3},

I =y, (T1) = {y5, —¥3, €2 — €3, ¥4} . 4.3)
* = r), (I1%) = {8, &3, €2 — €3, — 4},

I = ry (I1%) = {~ys, €1 — €2, €2 — €3, 8}

Their corresponding Dynkin diagrams are listed as follows:

€3 Y4
€] —€) € —€3 Y2 - €] —€ V3 € —€3 -V3
! n m s
O——®——0O0—=<=0 @) X @) O
8 —V4 €3 € —€3 8 -v5 €] —€ € —€3
4 mn’

The corresponding positive systems are denoted by &'+, for 0 < i < 5, with ®%F = &+,
and the corresponding Borel subalgebras of g are denoted by b*.

4.2 Constraints on highest weights

Let G be the simply connected algebraic supergroup of type F (3]|1) whose even subgroup is
SLy(k) x Spin, (k). With respect to the standard Borel subalgebra b (associated to 1), we
have

XN(T) ={r = aw) +bwr + cas +dws € X | a, b, c,d € N}.

Denote the simple Dist(G)-module of highest‘wei ght A by L(}), _where A e XT(T). Assume
that the simple module L(A) = L®(%) has b’ -highest weight A', for 0 < i < 5, where we
have set A9 = A, 60 = b.
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4.2.1 The cases of d > 4andd =0

Lemma 4.1 For any fixed 0 < i < 3, assume the module LY (A1) is finite dimensional and
Al is of the form (x,y,z,0). Let j =i+ 1ifi <2, andlet j =4 or5ifi =3. Then

OLy)=0 (mod p), and M =i

Proof The second equality is an immediate consequence of the first one by Lemma 1.4.

Assume that (A', y;) # 0. Then, by applying the odd reflection r),; and Lemma 1.4, we
have LY W = LY (A7), where A/ = Al — yj is of the form (x, *, *, —1). But then LY )
cannot be finite dimensional due to the fact A/ ¢ X (T'), which is a contradiction.

Proposition 4.2 Let A = aw| + bwy + cws +dws € XT(T).

1. Ifd = 4, then L(}) is finite dimensional for arbitrary a, b, c € N.
2. Ifd =0, then L(}) is finite dimensional if and only ifa = b = ¢ =0 (mod p).

Proof 1. Letd >4.ThenrA+p=(a+1,b+1,c+1,d—3) e X (T) and it is regular.
Hence L(A) is finite dimensional by Proposition 1.9.

2. Assume L(A) is finite dimensional, for A = (a, b, ¢, 0). Lemma 4.1 is applicable and
givesus (A, 1) = (A, y2) = (A, 3) =0 (mod p). A direct computation shows

(A)—le(A)—lbl(A)—ll
» V1) = 261 4C, » V2) = 261 4C, »V3) = 2a 4C-

From these we conclude thata = b = ¢ = 0 (mod p). In this case we have > = A* =
M=22=x=x

By Lemma 1.5, we see the conditiona = b = ¢ =0 (mod p) is also sufficient for L())
to be finite dimensional (this also follows easily by Steinberg tensor product theorem).

4.2.2 The case of d = 1

Proposition 4.3 Let A = aw| +bwy + cw3 +dws € XT(T), withd = 1. Then L(X) is finite
dimensional if only if one of the following conditions holds.

(i) a=2b+3=c—1=0 (mod p);
(ii) 2a+1=2b+1=c=0 (mod p),
(iii) 2a+3=b=c=0 (mod p).

Proof Assume L(}) is finite dimensional, for A = (a, b, ¢, 1) € X+ (T). We compute

1 3
A,y = 54 b— Z(C + 1.

For now let us assume —%a—b—%(c—i—l) # 0 (mod p).Then)»l =A—y1 =(a,b,c+1,0).
Hence Lemma 4.1 is applicable and gives us ) = (L y3) = L ye) = 0. A direct
computation shows

1 1 1 1 1 1
(Al,yz)z—ia—b—z(c-i—l), (Al,y3)=—§a—1(c+1), ()»l,y4)=—§a+1(c+1).

From these we conclude that a = b = ¢ 4+ 1 = 0. This contradicts the assumption —%a -
b—2(c+1)£0.
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So we always have

1 3
—ya=b—+D=0 (modp), and Al=x=(a,b,c ). (4.4)
Using the above equations, we compute
Gl =—sa—b—te—2=1c (mod p)
s m)=—=a—-b—-c—-=-c (mo .
=T 47172 b

‘We now divide into 2 cases (1)—(2).

(1) Assume ¢ # 0 (mod p). Then A2 = Al — 95 = (a,b + 1, ¢ — 1, 0); we necessarily
have ¢ > 1. Hence Lemma 4.1 is applicable and gives us that (12, y3) = (A2, y3) = 0.
A direct computation shows

2 1 1 2 1 1
Ly =—ga=g@=1, 0Ly =-za+ -D.

From these we conclude @ = ¢ — 1 = 0; a revisit of (4.4) then gives us b = —%.

This gives us Condition (i) in the proposition. (Note the conditions ¢ > 1 and (4.4) are
automatically satisfied.) In this case, we have MW= =3=22= (a,b+1,c—1,0)
and ! = A

(2) Assumec =0 (mod p).Sor2=rl =1 =(a,b,c,1). We compute

1 1 1 3
(A2, y3) = —54- Z(C +3) = 4= 7 (mod p).

Now we divide (2) into two subcases (2a)—(2b).

(2a) Assume —1a—3 #0 (mod p). Then 2> =22 —y3=(@+1,b—1,c+1,0); we
necessarily have b > 1. Hence Lemma4.1 is applicable and gives us that (A3, y4) = 0.
A direct computation shows (A3, y3) = — %a + %c - %. Recalling ¢ = 0, we conclude
thata + % = (. A revisit of (4.4) then givesus b = —%. This gives us Condition (ii)
in the proposition. (Note the conditions » > 1 and (4.4) are automatically satisfied.)
In this case, we have A> = A% = A3 = (a+1,b—1,c+1,0) and A2 = Al = A

(2b) Assume —1a—32 =0 (mod p). Thena = —3, and it follows by ¢ = O and (4.4) that
b = 0. This gives us Condition (iii). In this case, we have AM=23=a2=2l =,
and 2’ = (@ — 1,b,c +1,0).

By Lemma 1.5 and by inspection that all weights A lie in X+ (T") for all i in all cases above,
we see the conditions (i)—(iii) are sufficient for L()) to be finite dimensional. The proposition
is proved.

4.2.3 The case of d =2

Proposition 4.4 Assume A = aw) + bawn + cws + dwy € X (T) withd = 2. Then L()) is
finite dimensional if only if one of the following conditions hold:

L1l a=c=0,b#—1landb # —3;
12.a#—-1,b=—-a—1,c=2a,andb > 1;
13. a# -3, b=0andc=—2a—4.
221 ¢c=2a+2,b=-2a—-3,c>1,anda # —1;
22. (i) c=-2a-2b=aa#—-3,a#%-1l,c>2anda>1;
(i) a=—3,b=—-3,c=1;
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2.3. CEO,bE—%a—%, and a # —3;
24. c=b=0anda = 3.

Proof Assume L(}) is finite dimensional, for A = (a,b,c,2) € X1 (T). We compute
(A, y1) = —%a —b — 3¢ — 3, and then divide into two cases (1)~(2) below.

(1) Assume —%a —b— ZC -3 7é 0 (mod p). ThenA' = A —y; = (a,b,c+1,1). We
compute (?»l V) = —Qa b — ZC 1, and then divide into 2 subcases (1a)—(1b).
(la) Assume —4a —b — tc — 1 # 0 (mod p). Then 2> = A! —y, = (@, b + 1,¢,0).
Hence Lemma 4.1 is applicable and gives us that (A2, y3) = (A2, y4) = (A%, y5) = 0.
From these and a direct computation of (A%, y3) = —%a — %c A2, ya) = ]a + %c
and (A%, y5) = 2a - %c we conclude that a = ¢ = 0,b # —1,b # —3, whence
Condition 1.1. In this case, wehave > = A* =23 =22 = (a, b+ 1, c, 0)
(1b) Assume—za b—4c—1 =0 (mod p). Then22 = A! = (a, b, c+1, 1). We compute
(A2, Vi) = za - ZC 1, and then again divide into 2 subcases (1b-1)—(1b-2):

(1b-1) Assume —3a — e —1 # 0. Then 2> = 22 — 3 = (@ + 1.b — 1,c + 2,0).
Hence Lemma 4.1 is applicable and gives us that (A, )/4) (3, y5) = 0. From
these and a direct computation of (23, V4) = —f(a + 1)+ 3 (c +2)and (A3, Vs5) =
%(a +1)— }T(c+ 2), we conclude that ¢ = 2a. Combining w1th the conditions on (1),
(1b) and (1b-1), this givesus b = —a — 1 and a #% —1, whence Condition 1.2. In this
casewehave)\z =Al'=(a,b,c+1,1),and 2> = 2* =23 = (a+1,b—1,c+2,0).

(1b-2) Assume —1a—tc—1=0.Theni® =22 =2! = (a,b,c+1,1). We deduce from
the conditions on (1), (1b) and (1b-2) that b = 0 c=—-2a—4,a ¢ —3, whence

Condition 1.3. (Wethencompute(k3, V4) = a + 4c é =-—a—3 §é 0. Thus,

A =23 —y4 = (a+1,b,c,0). Note that (A3,y5) =la—ic—1 (z a). Hence
MW=rB=(@@bc+1,1)ifa=0;2>=@—1,b,c,0)if a #£0).

Case (1b) and hence Case (1) are completed.
(2) Assume —%a —b— %c — 3 =0 (mod p). We have Al =X = (a,b,c,?2). Then we
compute (!, y2) = —ia - b - fc 2, and divide into 2 subcases (2a)—(2b).

(2a) Assume —Ja—b—1tc—3 # O.Thenwecomputekz =M=y = (a,b+1,c—1, 1); we
necessarily have ¢ Z 1. (Note the combination of the condition ¢ > 1 and the condition
on (2) implies the condition on (2a).) We further compute (A2, v3) = —%a - %c — %,
and then divide into 2 subcases (2a-1)—(2a-2).

(2a-1) Assume —Sa—4tc—1 #0.Theni® = A2 —y3 = (a+1, b, c, 0). Hence Lemma 4.1
is applicable and gives us that (A3, y4) = (A3, y5) = 0. Combining with the com-
putations of (A%, y4) = —4(a + 1) + fcand A3, y5) = $(a + 1) — ic, this
implies ¢ = 2a + 2 and b = —2a — 3; moreover the condition on (2a-1) becomes
a ;é —1. Thus, we have obtained Condition 2.1. In this case, we have A! = A,

=(a,b+1,c—1, 1) and A3 =14 =23 = (a+1,b,¢,0).

(2a-2) Assume — ia — %c — 5 = 0. The conditions on (2), (2a) and (2a-2) can be rephrased
asc=—-2a—2,b _aanda E= —1. We have A3 = A2 = (a,b+1,c—1,1); we
necessarily have ¢ > 1. We further compute (A3, V4) = —%a + %c —1=—a- %,

and again divide into 2 subcases:
(i) Assume a # —%. Then we have A* = A3 —y3 = (a+ 1,6+ 1,¢ —2,0);
we necessarily have ¢ > 2. Moreover, if (A3, 15) = a # 0, then A% = A3 —
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ys = (a—1,b+ 1, ¢, 0), requiring a > 1; otherwise, A5 = A3. This gives us
Condition 2.2(i).

(ii)) Assume a = —%. Then we have b = —% and ¢ = 1, whence Condition 2.2(ii).
In this case, we have A! = A, 2% = 23 = A2 = (a,b+ 1,c — 1,1), and
A5 =A3—y5 =(a—-1,b+1,c0).

This completes Case (2a).
(2b) Assume —%a —b— %c —3=0 (mod p). Then A2 = A! = (a, b, ¢, 2). We compute
A2, y3) = —%a - %c - % and divide into 2 subcases (2b-1)—(2b-2).

(2b-1) Assume —%a — %c — % # 0 (mod p). Then we have c = 0, b = —%a - %, and
a # —3, whence Condition 2.3. In this case, we have A=rl=x1=(ab,c?2),
A3 =22—y3 = (a+1,b—1,c+1, D),andthen (A3, yu) = —Ja+Le—1=—-la—1
and (A3, y5) = fa—3.Sox* =23 —yy = (@+2,b—1,¢,0)ifa # —2, and
A4 = A3 otherwise; moreover, if a # 1 then A =A% — ys = (a,b—1,c+2,0);
otherwise A5 = A3.

(2b-2) Assume —%a — %c - % = 0 (mod p). Then we have a = —3,b = 0 and ¢ = 0,
whence Condition 2.4. In this case, we have Al = A for 1 <i < 5.

Case (2b) and then Case (2) are hence completed. Therefore, we have established the neces-
sary conditions as listed in the proposition for L (1) to be finite dimensional.

By inspection, we have all weights A’ € X*(T) for all i in every case above. Hence by
Lemma 1.5 we conclude that the conditions as listed in the proposition are also sufficient for
L()) to be finite dimensional.

Now we simplify the above conditions by removing all inequalities. We caution that the
resulting conditions are no longer mutually exclusive.

Proposition 4.5 Set d = 2. Assume » = aw| + bws + cws + dwy € XT(T). Then L(A) is
finite dimensional if only if one of the following conditions (i)—(vi) holds:

(i) a=c=0 (mod p);

(ii) 2a—c=a+b+1=0 (mod p),

(iii) b=2a+c+4=0 (mod p);

(iv) 2a—c+2=2a+b+3=0 (mod p), and c > 2;
v) 2a+c+2=a—-b=0 (mod p),anda > 1;

(vi) a+2b+3=c=0 (mod p).

Proof One first observes that all conditions listed in Proposition 4.4 are part of conditions
listed above in this proposition. Indeed the conditions above are basically obtained by remov-
ing the inequalities in the conditions in Proposition 4.4; the cases (1.4) and (2.4) with no
inequalities in Proposition 4.4 are part of (iii) and (vi) above, respectively.

It remains to show that all conditions above in this proposition are included in the list of
conditions (1.1)—(1.3) and (2.1)—(2.4) in Proposition 4.4.

If Condition (i) is satisfied but (1.1) in Proposition 4.4 is not, then either (A) b = —1, in

which case a = ¢ = 0, and so (1.2) is satisfied, or (B) b = —%, in which case a = ¢ = 0,
and so (2.3) is satisfied.
If Condition (ii) is satisfied but (1.2) in Proposition 4.4 is not, then either (A) a = —1,
in which case b = 0 and ¢ = —2, and hence (1.3) is satisfied, or (B) b = 0, in which case,
= —1,c = —2, and so (1.3) is satisfied.
If Condition (iii) is satisfied but (1.3) in Proposition 4.4 is not, then a = —%, in which

case b =0,c = —1, and so (2.1) is satisfied.
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If Condition (iv) is satisfied but (2.1) in Proposition 4.4 is not, then ¢ = —1, in which
case b = —1, ¢ =0, and so (2.3) is satisfied.

If Condition (v) is satisfied but (2.2)(i) in Proposition 4.4 is not, then either (A) a = —%,
in which case b = —%, ¢ = 1, and so (2.2)(ii) is satisfied; or (B) a = —1, in which case
b= —1,c =0, and so (2.3) is satisfied; or (C) ¢ = 0, in which case a = b = —1, and so
(2.3) is satisfied.

If Condition (vi) is satisfied but (2.3) in Proposition 4.4 is not, thena = -3, b =c =0,
and so (2.4) is satisfied.

The proposition is proved.

4.2.4 The case of d = 3

Proposition 4.6 Assume » = aw; + bws + cws +dwy € XT(T), withd = 3. Then L(}) is
finite dimensional if only if one of the following conditions holds:

1.1.1. c=2a+1,andb # —2a -3, b# —a—2,a # —1;
12. c=-2a—-3,andb # —1,b # a;

13. b=—-ta—tc—T andb#0,c # —1;
14. b=0,c=—2a—17, and a # -3.
2.2.1. E—%a ic—%, andc #0, c # —2a —5;
2.2. b—a—i—z, = —2a—5,andc #0;

23 b=—-%a—% c=0andb #£0;

24. a=— g,bECEO.

Proof Assume L(A) is ﬁnite dimensional, for A = (a,b,c,3) € XT(T). We compute
) = —za —b—- fc 4, and divide into 2 cases (1)—(2).

(1) Assume —ia—b— 7¢— % #0 (mod p). Wehave A! = A—y; = (a,b,c+1,2). We
compute W) = —%a - b - %(c +1) — %, and then divide into 2 cases (1a)-(1b).
(1a) Assume—la b—4(c+1) $ 0 (mod p). Then2? = Al— y» = (a,b+1,c,1).We
compute (A2 y3) = 1a — %c — 4, and again divide into two subcases (1a-i)—(1a-ii):
(la-i) Assume —ia — %c — Z # 0. Then A3 =A% - y3 = (a+1,b,c + 1,0). Hence
Lemma 4.1 is applicable and gives us that (13, y4) = (A3, y5) = 0. Combining with
the computation of (A3, V4) = —%(a—}— 1)+ %(c—i— 1) and (A3, Vs5) = %(a—i— 1)— %(c—i—
1), this implies ¢ = 2a + 1. The conditions on (1), (1a) and (1a-i) can be simplified to
a ;é —1,b # —a—2and b # —2a — 3, whence Condition 1.1. In this case, we have
=(a,b,c+1,2), A2 (a,b+1,¢, D,and A’ =24 =23 = (a+1,b,c+1,0).
(1a-ii) Assume —%a - %c - Z = 0. Then A3 = A2 = (a,b + 1, ¢, 1). The conditions on
(1), (1a) and (1a-ii) can be simplified to ¢ = —2a — 3, b % —1 and b # a, whence
Condition 1.2.In this case, we have A = (a, b, c+1,2),23 =22 = (a,b+1,¢, 1).
Ifa # —%, then A* = A3 — ya = (a+1,b+ 1,c — 1, 0); otherwise, A =23 1f

a # 0, then A =23 ys =(a—1,b+ 1, c+ 1, 0); otherwise, A5 =23,

This completes Subcase (1a).
(1b) Assume —3a—b—1(c+1)—3 =0 (mod p). Then2> = 1! = (a, b, c +1,2). We

compute A2, y3) = ;a — %c I 7 and again divide into two subcases (1b-i)—(1b-ii):

(1b-1) Assume—%a—%c—z = 0. Wecompute}\3 —)L2—y3 (a+1,b—1,c+2,1).

The conditions on (1), (1b) and (1b-i) become b = —ia — le % b # 0, and
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¢ # —1, whence Condition 1.3. In this case, we have A2 = A! = (a,b, ¢ + 1, 2),
and A3 = (a+1,b—1,c+2,1). Moreover, if ¢ # 2a + 3, then A =23 Y4 =
(a+2,b—1,c+ 1,0); otherwise A =23 Ifc # 2a — 3, then A=A = Y5 =
(a,b — 1, ¢+ 3,0); otherwise 1> = A3

(1b-ii) Assume —%a - %c— 7 =0.Then 13 =12 =(a, b, c+1,2). The conditions on (1),
(1b) and (1b-ii) become a # —3, b = 0 and ¢ = —2a — 7, whence Condition 1.4.
In this case, we have A3 = A2 = Al = (a, b, c + 1,2). Moreover, If a # —3, then
MW=2—ys=(@+1,b,c 1);otherwise A* = A3 Ifa £ 0, then A> = A3 — p5 =
(a—1,b,c+2,1); otherwise A5 = A3,

This completes Subcase (1b) and then Case (1).

(2) Assume —ta — b — gc — 9 =0.Then 2! =& = (a,b.c,3). We compute (A!, y»)
= —ja — b — 7c 4, and divide into 2 subcases (2a)—(2b).
(2a) Assume — 2a b—zc— 2 = 0. Then A2 = A! —yy=(a,b+1,c—1,2). We compute

2, y3) = —% % 7 and again divide into 2 subcases (2a-1)—(2a-ii):
(2a-1) Assume —%a % % 0. Then the conditions on (2), (2a) and (2a-i) become
= —%a ic ,C ;é 0 and ¢ # —2a — 5, whence Condition 2.1. In this case,

wehaveA] =2, Az (a,b+1,c—1,2),23>=(a+1,b,c,1).If ¢ # 2a+5, then
= (a+2, b, c—1,0); otherwise A* = 13.If ¢ # 2a—1,then 1> = (a, b, c+1, 0);
otherwise A =23
(2a-ii) Assume —%a - ic - % = (. Then the conditions on (2), (2a) and (2a-ii) become
c=-2a—-5b=a+ 3 , and ¢ # 0, whence Condition 2.2. In this case, we have
Al=x123=2%2=(, b+1 c—1,2).1fa # —3,thenA* = (a+1,b+1,¢c—2,1)
(and ¢ > 2 is guaranteed by Condition 2.2); otherwise, A =23 Ifa # (, then
A’ =(a—1,b+1,c,1); otherwise, A5 = A>.
This completes Subcase (2a)
(2b) Assume ——a —b— —c — 2 = 0. Then 22 = Al = A. We compute (A2, y3) =
—%a — %c ?T’ and d1v1de 1nt0 2 subcases (2b-1)-(2b-ii):

(2b-i) Assume —1a —tc— 5 #£0.Then 3 =A% — p3 = (a +1, b —1,c+1,2). The
conditions on (2) (2b) and (2b-i) become c =0, b = 2a 4, and b # 0, whence
Condition 2.3. In this case, we have A2 = Al = A, and A° = (a+1,b—1,c+1,2).
Ifa # —3, then 2* = (@ +2,b — 1,c,1); otherwise, A* = A3. If a # 3, then

= (a,b—1,c+2, 1); otherwise, 1> = A3

(2b-ii) Assume —%a - %c — % = (. The conditions on (2), (2b) and (2b-ii) become b = 0,
c=0anda = —%, whence Condition 2.4. In this case, we have A! = Aforl <i <4
and A =13 —ys=(@—1,b,c+1,2).

This completes Case (2). Therefore, we have established the necessary conditions as listed
in the proposition for L(A) to be finite dimensional.

By inspection, we see that A’ € X*(T) for all i in every case above. By Lemma 1.5, the
conditions listed in the proposition are also sufficient for L(A) to be finite dimensional.

Now we simplify the conditions in Proposition 4.6 by removing all inequalities.

Proposition 4.7 Set d = 3. Assume » = aw| + bwn + cws + dwg € XT(T). Then L(A) is
finite dimensional if only if one of the following conditions (i)—(v) holds:
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(i) 2a—c+1=0 (mod p);

(ii) 2a+c+3=0 (mod p),

(iii) 2a +4b+c+7=0 (mod p),
(iv) 2a+c+7=b=0 (mod p);
(v) 2a+4b+3c+9 =0 (mod p).

Proof One first observes that all conditions listed in Proposition 4.6 are part of conditions
listed above in this proposition. Indeed the conditions above are basically obtained by remov-
ing the inequalities in the conditions in Proposition 4.6, and the case (2.4) with equalities
only is included in (v).

It remains to show that all conditions above in this proposition are included in the list of
conditions (1.1)—(1.4) and (2.1)—(2.4) in Proposition 4.6.

We first check that the 4 subcases (2.1)—(2.4) of Proposition 4.6 are equivalent to Condition
(v). If Condition (v) is satisfied but (2.1) of Proposition 4.6 is not, then we have 2 cases (A)—
(B):

(A) c#£0and c = —2a — 5,in whichcase b = a + %, a# —%, and so (2.2) is satisfied;
(B) c=0.Thenb = —%a — %. We further divide into 2 subcases:

(B1) b # 0, in which case (2.3) is satisfied,
(B2) b =0, in which case a = —%, and so (2.4) is satisfied.

If Condition (i) is satisfied but (1.1) of Proposition 4.6 is not, then we have the following 3
cases (A)—(B)-(C):

(A) b = —2a — 3, in which case ¢ = 2a + 1, and so (v) is satisfied;

(B) a=—1and b # —2a — 3, in which case c = —1 but b % —1, and so (1.2) is satisfied;

(C) b= —a —2anda # —1. Hence ¢ # —1 thanks to ¢ = 2a 4 1. We further divide into
2 subcases below:

(C1) b # 0, in which case ¢ = 2a + 1, and so (1.3) is satisfied,
(C2) b =0, in which case a = —2, ¢ = —3, and so (1.4) is satisfied.

If Condition (ii) is satisfied but (1.2) of Proposition 4.6 is not, then either (A) b = a, in
which case ¢ = —2a — 3, and so (v) is satisfied, or (B) b = —1 and b # a, in which case
¢ = —2a — 3 and then ¢ # —1, and so (1.3) is satisfied.

If Condition (iii) is satisfied but (1.3) of Proposition 4.6 is not, then either (A) c = —1,in

which case the equality b = —%a — %c - % implies that (v) is satisfied; or (B) ¢ # —1 and
b = 0, in which case a # —3, and so (1.4) is satisfied.

If Condition (iv) is satisfied but (1.4) of Proposition 4.6 is not, then @ = —3, in which
case b =0, c = —1, and so (v) is satisfied.

The proposition is proved.

4.3 Simple modules of the supergroup F(3|1)

Summarizing Propositions 4.2, 4.3, 4.5, and 4.7, we have established the following classifi-
cation of simple modules for type F'(3|1).

Theorem 4.8 Let p > 3. Let G be the simply connected supergroup of type F(3|1). A
complete list of inequivalent simple G-modules consists of L()\), where . = aw| + bw) +
cws + d%, witha, b, c,d € N, such that one of the following conditions is satisfied:

1. d=0,anda=b=c=0 (mod p).
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2. d =1, and a, b, c satisfy either of (i)—(iii) below:

(i) a=2b+3=c—1=0 (mod p);
(ii) 2a+1=2b+1=c¢=0 (mod p),
(iii) 2a+3=b=c=0 (mod p).

3. d =2, and a, b, c satisfy either of (i)—(vi) below:

(i) a=c=0 (mod p);

(ii) 2a—c=a+b+1=0 (mod p);

(iii) b=2a+c+4=0 (mod p);

(iv) 2a—c+2=2a+b+3=0 (mod p)andc > 2;
v) 2a+c+2=a—-b=0 (mod p)anda > 1;

(vi) a+2b+3=c=0 (mod p).

4. d =3, and a, b, c satisfy either of (i)—(v) below:

(i) 2a—c+1=0 (mod p);

(ii) 2a+c+3 =0 (mod p);

(iii) 2a +4b +c+7=0 (mod p),
(iv) 2a+c+7=b=0 (mod p);
(v) 2a+4b+3c+9 =0 (mod p).

5. d >4, (anda,b, c € N are arbitrary).

We do no attempt the classification of simple G-modules for p = 3 in this paper, and leave
it to the reader.

Remark 4.9 Theorem 4.8 makes sense over C, providing an odd reflection approach to the
classification of finite-dimensional simple modules over C (due to [10]; also cf. [12]). Indeed
this classification can be read off from Theorem 4.8 (by regarding p = oo) as follows. The
simple g-modules L()\) over C are finite dimensional if and only if . = aw|+bwy+cw3 +d%,
fora,b,c,d € N, satisfies one of the 3 conditions: (1)a =b=c=d =0;(2)d =2 and
a=c=0;3)d = 4.
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