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A B S T R A C T

The assumption that training and testing samples are generated from the same distribution does not always hold
for real-world machine-learning applications. The procedure of tackling this discrepancy between the training
(source) and testing (target) domains is known as domain adaptation. We propose an unsupervised version of
domain adaptation that considers the presence of only unlabelled data in the target domain. Our approach centres
on finding correspondences between samples of each domain. The correspondences are obtained by treating the
source and target samples as graphs and using a convex criterion to match them. The criteria used are first-order
and second-order similarities between the graphs as well as a class-based regularization. We have also developed
a computationally efficient routine for the convex optimization, thus allowing the proposed method to be used
widely. To verify the effectiveness of the proposed method, computer simulations were conducted on synthetic,
image classification and sentiment classification datasets. Results validated that the proposed local sample-to-
sample matching method out-performs traditional moment-matching methods and is competitive with respect
to current local domain-adaptation methods.

1. Introduction

In traditional machine-learning problems, we assume that the test
data is drawn from the same distribution as the training data. However,
such an assumption is rarely encountered in real-world situations. For
example, consider a recognition system that distinguishes between a cat
and a dog, given labelled training samples of the type shown in Fig. 1(a).
These training samples are frontal faces of cats and dogs. When the
same recognition system is used to test in a different domain such as
on the side images of cats and dogs as shown in Fig. 1(b), it would fail
miserably. This is because the recognition system has developed a bias
in being able to only distinguish between the face of a dog and a cat
and not side images of dogs and cats. Domain adaptation (DA) aims to
mitigate this dataset bias (Torralba and Efros, 2011), where different
datasets have their own unique properties. Dataset bias appears because
of the distribution shift of data from one dataset (i.e., source domain)
to another dataset (i.e., target domain). The distribution shift manifests
itself in different forms. In computer vision, it can occur when there is
changing lighting conditions, changing poses, etc. In speech processing,
it can be due to changing accent, tone and gender of the person speaking.
In remote sensing, it can be due to changing atmospheric conditions,
change in acquisition devices, etc. To encounter this discrepancy in
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distributions, domain adaptation methods have been proposed. Once
domain adaptation is carried out, a model trained using the adapted
source domain data should perform well in the target domain. The
underlying assumption in domain adaptation is that the task is the same
in both domains. For classification problems, it implies that we have the
same set of categories in both source and target domains.

Domain adaptation can also assist in annotating datasets efficiently
and further accelerating machine-learning research. Current machine-
learning models are data hungry and require lots of labelled samples.
Though huge amount of unlabelled data is obtained, labelling them
requires lot of human involvement and effort. Domain adaptation seeks
to automatically annotate unlabelled data in the target domain by
adapting the labelled data in the source domain to be close to the
unlabelled target-domain data.

In our work, we consider unsupervised domain adaptation (UDA),
which assumes absence of labels in the target domain. This is more
realistic than semi-supervised domain adaptation, where there are also
a few-labelled data in the target domain. This is because labelling data
might be time-consuming and expensive for real-world situations. Hence
we need to effectively exploit fully labelled source-domain data and
fully unlabelled target-domain data to carry out domain adaptation. In
our case, we seek to find correspondences between each source-domain
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(a) Source domain.

(b) Target domain.

Fig. 1. Discrepancy between the source domain and the target domain. In the
source domain, the images have frontal faces while the target domain has images
of the whole body from the side view-point.

sample and each target-domain sample. Once the correspondences are
found, we can transform the source-domain samples to be close to the
target-domain samples. The transformed source-domain samples will
then lie close to the data space of the target domain. This will allow
a model trained on the transformed source-domain data to perform well
with the target-domain data. This not only achieves the goal of training
robust models but also allows the model to annotate unlabelled target-
domain data accurately.

The remainder of the paper is organized as follows: Section 2
discusses related work of domain adaptation. Section 3 discusses the
background required for our proposed approach. Section 4 discusses our
proposed approach and formulates our unsupervised domain adaptation
problem into a constrained convex optimization problem. Section 5
discusses the experimental results and some comparison with existing
work. Section 6 discusses some limitations. Section 7 concludes with
a summary of our work and future research directions. Finally, the
Appendix shows more details about the proof of convexity of the
optimization objective function and derivation of the gradients.

2. Related work

There is a large body of prior work on domain adaptation. For our
case, we only consider homogeneous domain adaptation, where both
the source and target domains have the same feature space. Most of
previous DA methods are classified into two categories, depending on
whether a deep representation is learned or not. In that regard, our
proposed approach is not deep-learning-based since we directly work
at the feature level without learning a representation. We feel that our
method can easily be extended to deep architectures and provide much
better results. For a comprehensive overview on domain adaptation,
please refer to Csurka’s survey paper (Csurka, 2017).

2.1. Non-deep-learning domain-adaptation methods

These non-deep-learning domain-adaptation methods can be broadly
classified into three categories — instance re-weighting methods, pa-
rameter adaptation methods, and feature transfer methods. Parameter
adaptationmethods (Jiang et al., 2008; Bruzzone andMarconcini, 2010;
Duan et al., 2009; Yang et al., 2007) generally adapt a trained classifier
in the source domain (e.g., an SVM) in order to perform better in the

target domain. Since these methods require at least a small set of labelled
target examples, they cannot be applied to UDA.

Instance Re-weighting was one of the early methods, where it was
assumed that conditional distributions were shared between the two do-
mains. The instance re-weighting involved estimating the ratio between
the likelihoods of being a source example or a target example to compute
the weight of an instance. This was done by estimating the likelihoods
independently (Zadrozny, 2004) or by approximating the ratio between
the densities (Kanamori et al., 2009; Sugiyama et al., 2008). One of the
most popular measures used to weigh data instances, used in Gretton et
al. (2009) and Huang et al. (2007), was the MaximumMean Discrepancy
(MMD) (Borgwardt et al., 2006) computed between the data distribu-
tions in the two domains. Feature Transfer methods, on the other hand,
do not assume the same conditional distributions between the source
and target domains. One of the simplest methods for DA was proposed
in Daumé III (2009), where the original representation is augmented
with itself and a vector of the same size is filled with zeros — the source
features become (𝐱𝑠, 𝐱𝑠, 0) and the target features become (𝐱𝑡, 0, 𝐱𝑡). Then
an SVM is trained on these augmented features to figure out which
parts of the representation is shared between the domains and which
are the domain-specific ones. The idea of feature augmentation inspires
the Geodesic Flow Sampling (GFS) (Gopalan et al., 2014, 2011) and the
Geodesic Flow Kernel (GFK) (Gong et al., 2012, 2013), where the do-
mains are embedded in 𝑑-dimensional linear subspaces that can be seen
as points on the Grassmann manifold, corresponding to the collection of
all 𝑑-dimensional subspaces. The Subspace Alignment (SA) (Fernando
et al., 2013) learns an alignment between the source subspace obtained
by Principal Component Analysis (PCA) and the target PCA subspace,
where the PCA dimensions are selected by minimizing the Bregman
divergence between the subspaces. Similarly, the linear Correlation
Alignment (CORAL) (Sun et al., 2016) algorithm minimizes the domain
shift using the covariance of the source and target distributions. Transfer
Component Analysis (TCA) (Pan et al., 2011) discovers common latent
features having the same marginal distribution across the source and
target domains. Feature transformation proposed by Chen et al. (2012)
exploits the correlation between the source and target sets to learn
a robust representation by reconstructing the original features from
their noisy counterparts. All these previous methods learned a global
transformation between the source and target domains. In contrast, the
Adaptive Transductive Transfer Machines (ATTM) (Farajidavar et al.,
2014) learned both a global and a local transformation from the source
domain to the target domain that is locally linear. Similarly, the optimal
transport for domain adaptation (Courty et al., 2017) considers a local
transport plan for each source example.

2.2. Deep domain-adaptation methods

Most deep-learning methods for DA follow a twin architecture with
two streams, representing the source and target models. They are then
trained with a combination of a classification loss and a discrepancy
loss (Long et al., 2016, 2015; Tzeng et al., 2014; Ghifary et al., 2015;
Sun and Saenko, 2016) or an adversarial loss. The classification loss
depends on the labelled source data, and the discrepancy loss diminishes
the shift between the two domains. On the other hand, adversarial-based
methods encourage domain confusion through an adversarial objective
with respect to a domain discriminator. The adversarial loss tries to
encourage a common feature space through an adversarial objective
with respect to a domain discriminator. Tzeng et al. (2017) proposes
a unified view of existing adversarial DA methods by comparing them
according to the loss type, the weight-sharing strategy between the
two streams, and on whether they are discriminative or generative.
The Domain-Adversarial Neural Networks (DANN) (Ganin et al., 2016)
integrates a gradient reversal layer into the standard architecture to
promote the emergence of features that are discriminative for the main
learning task in the source domain and indiscriminate with respect to
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the shift between the domains. The main disadvantage of these adver-
sarial methods is that their training is generally not stable. Moreover,
empirically tuning the capacity of a discriminator requires lot of effort.

Between these two classes of DA methods, the state-of-the-art meth-
ods are dominated by deep architectures. However, these approaches
are quite complex and expensive, requiring re-training of the network
and tuning of many hyper parameters such as the structure of the hidden
adaptation layers. Non-deep-learning domain-adaptation methods do
not achieve as good performance as a deep-representation approach,
but they work directly with shallow/deep features and require lesser
number of hyper-parameters to tune. Among the non-deep-learning
domain-adaptation methods, we feel feature transformation methods
are more generic because they directly use the feature space from the
source and target domains, without any underlying assumption of the
classification model. In fact, a powerful shallow-feature transformation
method can be extended to deep-architecture methods, if desired, by
using the features of each and every layer and then jointly optimizing the
parameters of the deep architectures as well as that of the classification
model. For example, correlation alignment (Sun et al., 2016) has
been extended for deep architectures (Sun and Saenko, 2016), which
evidently achieve the state-of-the art performance. Moreover, we believe
a local transformation-based approach as in Courty et al. (2017) and
Farajidavar et al. (2014) will result in better performance than global
transformation methods because it considers the effect of each and every
sample in the dataset explicitly.

3. Background

Our local transformation-based approach to DA places a strong em-
phasis on establishing a sample-to-sample correspondence between each
source-domain sample and each target-domain sample. Establishing
correspondences between two sets of visual features have long been
used in computer vision mostly for image registration (Besl and McKay,
1992; Chui and Rangarajan, 2003). To our knowledge, the approach
of finding correspondences between the source-domain and the target-
domain samples has never been used for domain adaptation. The only
work that is similar to finding correspondences is the work on optimal
transport (Courty et al., 2017). They learned a transport plan for
each source-domain sample so that they are close to the target-domain
samples. Their transport plan is defined on a point-wise unary cost
between each source sample and each target sample. Our approach
develops a framework to find correspondences between the source and
target domains that exploit higher-order relations beyond these unary
relations between the source and target domains. We treat the source-
domain data and the target-domain data as the source and target hyper-
graphs, respectively, and our correspondence problem can be cast as
a hyper-graph matching problem. The hyper-graph matching problem
has been previously used in computer vision (Duchenne et al., 2011)
through a tensor-based formulation but has not been applied to domain
adaptation. Hyper-graph matching involves using higher-order relations
between samples such as unary, pairwise, tertiary or more. Pairwise
matching involves matching source-domain sample pairs with target-
domain sample pairs. Tertiary matching involves matching source-
domain sample triplets with target-domain sample triplets and so on.
Thus, hyper-graph methods provide additional higher-order geometric
and structural information about the data that is missing with just using
unary point-wise relations between a source sample and a target sample.
The advantage of using higher-order information in graph matching is
demonstrated in the example in Fig. 2. In Fig. 2, the graph on the left
is constructed from the source domain while the graph on the right
is constructed from the target domain. In the graph, each node repre-
sents a sample and edges represent connectivity among the samples.
Among these, samples 1 and 1′ do not match because those samples
are not the closest pair of samples. But as a group {1, 2, 3} matches
with {1′, 2′, 3′} suggesting that higher-order matching can aid domain
adaptation, whereas one-to-one matchings between samples might not

Fig. 2. Example showing the advantage of higher-order graph matching
compared to just first-order matching.

Fig. 3. Conceptual and high-level description of our proposed convex opti-
mization formulation with its proposed solution. The inputs are source-domain
data (𝐗𝑠), source-domain labels (𝐘𝑠), and target-domain data (𝐗𝑡). Output is a
mapping function (𝐌(⋅)) that maps 𝐗𝑠 close to 𝐗𝑡. The transformation can be
repeated again by providing the transformed source data 𝐌(𝐗𝑠), source labels
𝐘𝑠 and target data 𝐗𝑡 as input.

provide enough or provide incorrect information. Unfortunately, higher-
order graph matching comes with increasing computational complexity
and also extra hyper-parameters that weigh the importance of each of
the higher-order relations. Therefore , in our work we consider only the
first-order and second-order matchings to validate the approach. Still,
our problem can be inefficient because the number of correspondence
variables increases with the number of samples. To address all these
problems, we contribute in the following ways:

1. We initially propose a mathematical framework that uses the
first-order and second-order relations to match the source-
domain data and the target-domain data. Once the relations are
established, the source domain is mapped to be close to the target
domain. A class-based regularization is also used to leverage the
labels present in the source domain. All these cost factors are
combined into a convex optimization framework.

2. The above transformation approach is computationally ineffi-
cient. We then reformulate our convex optimization problem into
solving a series of sub-problems for which an efficient solution
using a network simplex approach exists. This new formulation
is more efficient in terms of both time and storage space.

3. Finally, we have performed experimental evaluation of our
proposed method on both toy datasets as well as real image
and sentiment classification datasets. We have also examined
the effect of each cost term in the convex optimization problem
separately.

The overall scheme of our proposed approach is shown in Fig. 3.

4. Proposed sample-to-sample correspondence method

In this section, we shall first define the domain adaptation prob-
lem (Pan and Yang, 2010; Weiss et al., 2016), and then formulate the
proposed correspondence-and-mapping method for the unsupervised
domain adaptation problem.

4.1. Notation

A domain is composed of a 𝑑-dimensional feature space  ⊂ R𝑑

with a marginal probability distribution 𝑃 (𝐗), and a task  defined by
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a label space  and the conditional probability distribution 𝑃 (𝐘|𝐗),
where 𝐗 and 𝐘 are random variables. Given a particular sample set
𝐗 = {𝐱1,… , 𝐱𝑛} of  with corresponding labels 𝐘 = {𝑦1,… , 𝑦𝑛}
from  , 𝑃 (𝐘|𝐗) can in general be learned in a supervised manner
from feature-label pairs {𝐱𝑖, 𝑦𝑖}. For the domain adaptation purpose,
we assume that there are two domains with the same task: a source
domain 𝑠 = {𝑠, 𝑃 (𝐗𝑠)} with  𝑠 = {𝑠, 𝑃 (𝐘𝑠

|𝐗𝑠)} and a target
domain 𝑡 = { 𝑡, 𝑃 (𝐗𝑡)} with  𝑡 = { 𝑡, 𝑃 (𝐘𝑡

|𝐗𝑡)}. Traditional machine
learning techniques assume that both 𝑠 = 𝑡 and  𝑠 =  𝑡, where 𝑠

becomes the training set and 𝑡 the test set. For domain adaptation,
𝑡 ≠ 𝑠 but  𝑡 =  𝑠. When the source domain is related to the target
domain, it is possible to use the relational information from 𝑠,  𝑠 to
learn 𝑃 (𝐘𝑡

|𝐗𝑡). The presence/absence of labels in the target domain
also decide how domain adaptation is being carried out. We shall solve
the most challenging case, where we have labelled source domain data
but unlabelled data in the target domain. This is commonly known as
unsupervised domain adaptation (UDA). A natural extension to UDA is
the semi-supervised case, where a small set of target domain samples is
labelled.

In our case, we have labelled source-domain data with a set of
training data 𝐗𝑠 = {𝐱𝑠𝑖 }

𝑛𝑠
𝑖=1 associated with a set of class labels 𝐘𝑠 =

{𝑦𝑠𝑖 }
𝑛𝑠
𝑖=1. In the target domain, we only have unlabelled samples 𝐗𝑡 =

{𝐱𝑡𝑖}
𝑛𝑡
𝑖=1. If we had already trained a classifier using the source-domain

samples, the performance of the target-domain samples on that classifier
would be quite poor. This is because the distributions of the source
and target samples are different; that is, 𝑃 (𝐗𝑠) ≠ 𝑃 (𝐗𝑡). So we need
to find a transformation of the input space 𝐅 ∶ 𝑠 →  𝑡 such that
𝑃 (𝑦|𝐱𝑡) = 𝑃 (𝑦|𝐅(𝐱𝑠)). As a result of this transformation, the classifier
learned on the transformed source samples can perform satisfactorily
on the target-domain samples.

4.2. Correspondence-and-mapping problem formulation

With the above notation, our proposed approach considers the trans-
formation 𝐅 as a point-set registration between two point sets, where the
source samples {𝐱𝑠𝑖 }

𝑛𝑠
𝑖=1 are the moving point set and the target samples

{𝐱𝑡𝑖}
𝑛𝑡
𝑖=1 are the fixed point set. In such a case, the registration involves

alternately finding the correspondence and mapping between the fixed
and moving point sets (Chui and Rangarajan, 2003; Besl and McKay,
1992). The advantage of point-set registration is that it ensures explicit
sample-to-sample matching and not moment matching like covariance
in CORAL (Sun et al., 2016) or MMD (Long et al., 2016, 2015; Tzeng
et al., 2014; Ghifary et al., 2015). As a result, the transformed source
domain matches better with the target domain. However, matching each
and every sample requires an optimizing variable for each pair of source
and target domain samples. If the number of samples increases, so does
the number of variables and the optimization procedure may become
extremely costly. We shall discuss how to deal with the computational
inefficiency later.

For the case when the number of target samples equals to the number
of source samples; that is, 𝑛𝑡 = 𝑛𝑠, the correspondence can be represented
by a permutation matrix 𝐏 ∈ {0, 1}𝑛𝑠×𝑛𝑡 . Element [𝐏]𝑖𝑗 = 1 if the source-
domain sample 𝐱𝑠𝑖 corresponds to the target-domain sample 𝐱𝑡𝑗 , and 0,
otherwise. The permutation matrix 𝐏 has constraints ∑𝑖[𝐏]𝑖𝑗 = 1 and
∑

𝑗 [𝐏]𝑖𝑗 = 1 for all 𝑖 ∈ {1, 2,… , 𝑛𝑠} and 𝑗 ∈ {1, 2,… , 𝑛𝑡}. Hence, if
𝐗𝑠 ∈ R𝑛𝑠×𝑑 and 𝐗𝑡 ∈ R𝑛𝑡×𝑑 be the data matrix of the source-domain
and the target-domain data, respectively, then 𝐏𝐗𝑡 permutes the target-
domain data matrix.

As soon as the correspondence is established, a linear or a non-
linear mapping must be established between the target samples and the
corresponding source samples. Non-linear mapping is involved when
there is localized mapping for each sample, and it might also be required
in case there is unequal domain shift of each class. The mapping
operation should map the source-domain samples as close as possible
to the corresponding target-domain samples. This process of finding a
correspondence between these transformed source samples and target

samples and then finding the mapping will continue iteratively till
convergence. This iterative method of alternately finding the corre-
spondence and mapping is similar to feature registration in computer
vision (Chui and Rangarajan, 2003; Besl and McKay, 1992) but they
have not been used or reformulated for unsupervised domain adaptation
. In fact, the feature registration methods formulate the problem as a
non-convex optimization. Consequently, these methods suffer from local
minimum as in Besl and McKay (1992), and the global optimization
technique such as deterministic annealing (Chui and Rangarajan, 2003)
does not guarantee convergence. Thus, we propose to formulate it as
a convex optimization problem to obtain correspondences as a global
solution. It is important to note that finding such global and unique
solution to the correspondence accurately is more important because
mapping with inaccurate correspondences will undoubtedly yield bad
results.

Formulating the proposed unsupervised domain adaptation problem
as a convex optimization problem requires the correspondences to have
the following properties: (a) First-order similarity: The corresponding
target-domain samples should be as close as possible to the corre-
sponding source-domain samples. This implies that we want to have
the permuted target-domain data matrix 𝐏𝐗𝑡 to be close to the source-
domain data matrix 𝐗𝑠, which translates to minimizing the Frobenius
norm ‖𝐏𝐗𝑡 −𝐗𝑠

‖

2
 in the least-squares sense. (b) Second-order similarity:

The corresponding target-domain neighbourhood should be structurally
similar to the corresponding source-domain neighbourhood. This struc-
tural similarity can be expressed using graphs constructed from the
source and target domains. Thus, if the two domains can be thought
of as weighted undirected graphs 𝐺𝑠, 𝐺𝑡, structural similarity implies
matching edges between the source and the target graphs. The edges
of these graphs can be expressed using the adjacency matrices. If 𝐃𝑠

and 𝐃𝑡 are the adjacency matrices of 𝐺𝑠 and 𝐺𝑡, respectively, then these
adjacency matrices can be found as,

[𝐃𝑠]𝑖𝑗 = exp(−
‖𝐱𝑠𝑖 − 𝐱𝑠𝑗‖

2
2

𝜎2𝑠
)

[𝐃𝑡]𝑖𝑗 = exp(−
‖𝐱𝑡𝑖 − 𝐱𝑡𝑗‖

2
2

𝜎2𝑡
)

[𝐃𝑠]𝑖𝑖 = [𝐃𝑡]𝑖𝑖 = 0,

where 𝜎𝑠 and 𝜎𝑡 can be found heuristically as the mean sample-to-
sample pairwise distance in the source and target domains, respectively.
For the second-order similarity, we want the permuted target domain
adjacency matrix 𝐏𝐃𝑡𝐏𝑇 to be close to the source domain adjacency
matrix (region) 𝐃𝑠, where the superscript 𝑇 indicates a matrix transpose
operation. We formulate it as equivalent to minimizing ‖𝐏𝐃𝑡𝐏𝑇 −𝐃𝑠

‖

2
 .

While this cost term geometrically implies the cost of mis-matching
edges in the constructed graphs, the first-order similarity term can be
thought as the cost of mis-matching nodes. However, the second-order
similarity cost term is bi-quadratic and we want to make it quadratic so
that the cost-function is convex and we can apply convex optimization
techniques to it. This can be done by post-multiplying 𝐏𝐃𝑡𝐏𝑇 − 𝐃𝑠 by
𝐏. Using the permutation matrix properties 𝐏𝑇𝐏 = 𝐈 (orthogonal) and
‖𝐀𝐏‖ = ‖𝐀‖ (norm-preserving), this transformation produces the cost
function ‖𝐏𝐃𝑡 − 𝐃𝑠𝐏‖2 .

Estimating the correspondence as a permutation matrix in this
quadratic setting is NP-hard because of the combinatorial complexity of
the constraint on 𝐏. We can relax the constraint on the correspondence
matrix by converting it from a discrete to a continuous form. The
norms (i.e., Frobenius) used in the cost/regularization terms will yield
a convex minimization problem if we replace 𝐏 with a continuous
constraint. Hence, if we relax the constraints on 𝐏 to allow for soft
correspondences (i.e., replacing 𝐏 with 𝐂), then an element of 𝐂matrix,
[𝐂]𝑖𝑗 , represents the probability that 𝐱𝑠𝑖 corresponds to 𝐱𝑡𝑗 . This matrix
𝐂 is called doubly stochastic matrix 𝐵 = {𝐂 ≥ 𝟎 ∶ 𝐂𝟏 = 𝐂𝑇 𝟏 = 𝟏} .
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𝐵 represents a convex hull, containing all permutation matrices at its
vertices. (Birkhoff-von-Neumann theorem).

In addition to the graph-matching terms, we add a class-based
regularization to the cost function that exploits the labelled information
of source-domain data. The group-lasso regularizer 𝓁2−𝓁1 norm term is
equal to∑

𝑗
∑

𝑐‖[𝐂]𝑐 𝑗‖2, where ‖ ⋅ ‖2 is the 𝓁2 norm and 𝑐 contains the
indices of rows of𝐂 corresponding to the source-domain samples of class
𝑐. In other words, [𝐂]𝑐 𝑗 is a vector consisting of elements [𝐂]𝑖𝑗 , where
𝑖th source sample belongs to class 𝑐 and the 𝑗th sample is in the target
domain. Minimizing this group-lasso term ensures that a target-domain
sample only corresponds to the source-domain samples that have the
same label.

It is important to note that the solution to the relaxed problem may
not be equal or even close to the original discrete problem. Even then,
the solution of the relaxed problem need not be projected onto the set
of permutation matrices to get our final solution. This is because the
graphs constructed using the source samples and the target samples are
far from isomorphic for real datasets. Therefore, we do not expect exact
matching between the nodes (samples) of each graph (domain) and soft
correspondences may serve better. As an example, consider that a source
sample 𝐱𝑠𝑖 is likely to correspond to both 𝐱

𝑡
𝑗 and 𝐱

𝑡
𝑘. In that case, it is more

appropriate to have correspondences [𝐂]𝑖𝑗 = 0.7 and [𝐂]𝑖𝑘 = 0.3 assigned
to the target samples, rather than the exact correspondences [𝐂]𝑖𝑗 = 1
and [𝐂]𝑖𝑘 = 0 or vice-versa. Thus, we can formulate our optimization
problem of obtaining 𝐂 as follows:

min
𝐂

𝑓 (𝐂) =‖𝐂𝐗𝑡 − 𝐗𝑠
‖

2
∕(𝑛𝑠𝑑)+ (1)

𝜆𝑠‖𝐂𝐃𝑡 − 𝐃𝑠𝐂‖2 + 𝜆𝑔
∑

𝑗

∑

𝑐
‖[𝐂]𝑐 𝑗‖2

such that 𝐂 ≥ 𝟎, 𝐂𝟏𝑛𝑡 = 𝟏𝑛𝑠 , and 𝐂𝑇 𝟏𝑛𝑠 = 𝟏𝑛𝑡 ,

where 𝜆𝑠 and 𝜆𝑔 are the parameters weighing the second-order similarity
term and class-based regularization term, respectively; 𝟏𝑛𝑠 and 𝟏𝑛𝑡 are
column vectors of size 𝑛𝑠 and 𝑛𝑡, respectively, and the superscript 𝑇
indicates a matrix transpose operation. The assumption that 𝑛𝑡 = 𝑛𝑠
is strict and it needs to be relaxed to allow more realistic situations
such as 𝑛𝑡 ≠ 𝑛𝑠. To analyse what modification is required to the
optimization problem in Eq. (1), we explore further to understand the
correspondences properly. In the case of 𝑛𝑡 = 𝑛𝑠, we have one-to-one
correspondences between each source sample and each target sample.
However, for the case 𝑛𝑡 ≠ 𝑛𝑠, we must allow multiple correspondences.
Initially, the constraint 𝐂𝟏𝑛𝑡 = 𝟏𝑛𝑠 implies that the sum of the correspon-
dences of all the target samples to each source sample is one. The second
equality constraint 𝐂𝑇 𝟏𝑛𝑠 = 𝟏𝑛𝑡 implies that the sum of correspondences
of all the source samples to each target sample is one. However, if
𝑛𝑡 ≠ 𝑛𝑠, the sum of correspondences of all the source samples to each
target sample should increase proportionately by 𝑛𝑠

𝑛𝑡
to allow for the

multiple correspondences. This is reflected in the following optimization
problem.

Problem UDA

min
𝐂

𝑓 (𝐂) = ‖𝐂𝐗𝑡 − 𝐗𝑠
‖

2
∕(𝑛𝑠𝑑) + 𝜆𝑠‖𝐂𝐃𝑡 − (

𝑛𝑡
𝑛𝑠

)𝐃𝑠𝐂‖2

+ 𝜆𝑔
∑

𝑗

∑

𝑐
‖[𝐂]𝑐 𝑗‖2 (2)

such that 𝐂 ≥ 𝟎, 𝐂𝟏𝑛𝑡 = 𝟏𝑛𝑠 , and 𝐂𝑇 𝟏𝑛𝑠 = (
𝑛𝑠
𝑛𝑡
)𝟏𝑛𝑡

for 𝑛𝑡 ≠ 𝑛𝑠.

4.3. Correspondence-and-mapping problem solution

Problem UDA is a constrained convex optimization problem and can
easily be solved by interior-point methods (Boyd and Vandenberghe,
2004). In general, the time complexity of these interior-point-methods
for conic programming is 𝑂(𝑁3.5), where 𝑁 is the total number of the
variables (Andersen, 2013). If we have 𝑛𝑠 and 𝑛𝑡 as source and target

samples, respectively, then the time complexity becomes 𝑂(𝑛3.5𝑠 𝑛3.5𝑡 ).
Also, the interior-point method is a second-order optimization method.
Hence, it requires storage space of the Hessian, which is 𝑂(𝑁2) ∼
𝑂(𝑛2𝑠𝑛

2
𝑡 ). This space complexity is more alarming and does not scale well

with an increasing number of variables. If 𝑛𝑡 and 𝑛𝑠 are greater than
100 points, it results in memory/storage-deficiency problems in most
personal computers. Thus, we need to employ a different optimization
procedure so that the proposed UDA approach can be widely used
without memory-deficiency problem. We could think of first-order
methods of solving the constrained optimization problem, which require
computing gradients but do not require storing the Hessians.

First-order methods of solving the constrained optimization problem
can be broadly classified into projected-gradient methods and condi-
tional gradient (CG) methods (Frank and Wolfe, 1956). The projected-
gradient method is similar to the normal gradient-descent method
except that for each iteration, the iterate is projected back into the con-
straint set. Generally, the projected gradient-descent method enjoys the
same convergence rate as the unconstrained gradient-descent method.
However, for the projected gradient-descent method to be efficient, the
projection step needs to be inexpensive. With an increasing number of
variables, the projection step can become costly. Furthermore, the full
gradient updating may destroy the structure of the solutions such as
sparsity and low rank. The conditional gradient method, on the other
hand, maintains the desirable structure of the solution such as sparsity
by solving the successive linear minimization sub-problems over the
convex constraint set. Since we expect our correspondence matrix 𝐂
to be sparse, we shall employ the conditional gradient method for our
problem. In fact, Jaggi (2013) points out that convex optimization
problems over convex hulls of atomic sets, which are relaxations of NP-
hard problems are directly suitable for the conditional gradient method.
This is similar to the way we formulate our problem by relaxing 𝐏matrix
to 𝐂.

Algorithm 1: Conditional Gradient Method (CG).
Given : 𝐂0 ∈ , 𝑡 = 1
Repeat

𝐂𝑑 = argmin
𝐂
Tr(∇𝐶𝑓 (𝐂0)𝑇𝐂), such that 𝐂 ∈ 

𝐂1 = 𝐂0 + 𝛼(𝐂𝑑 − 𝐂0), for 𝛼 = 2
𝑡+2

𝐂0 = 𝐂1 and 𝑡 = 𝑡 + 1
Until Convergence or Fixed Number of Iterations
Output : 𝐂0 = argmin

𝐂
𝑓 (𝐂) such that 𝐂 ∈ 

As described in the above Algorithm 1 of the conditional gra-
dient method, we have to solve the linear programming problem,
min𝐂Tr(∇𝐶𝑓 (𝐂0)𝑇𝐂), such that 𝐂 ∈  = {𝐂 ∶ 𝐂 ≥ 𝟎,𝐂𝟏𝑛𝑡 = 𝟏𝑛𝑠 ,𝐂

𝑇 𝟏𝑛𝑠 =
( 𝑛𝑠𝑛𝑡

)𝟏𝑛𝑡}. Here Tr(⋅) is the Trace operator. The gradient ∇𝐂𝑓 can be found
from the equation:

∇𝐂𝑓 = ∇𝐂𝑓1∕(𝑛𝑠𝑑) + 𝜆𝑠∇𝐂𝑓2 + 𝜆𝑔∇𝐂𝑓3, (3)

where 𝑓1, 𝑓2, and 𝑓3 are ‖𝐂𝐗𝑡 − 𝐗𝑠
‖

2
 , ‖𝐂𝐃𝑡 − ( 𝑛𝑡𝑛𝑠

)𝐃𝑠𝐂‖2 , and
∑

𝑗
∑

𝑐‖[𝐂]𝑐 𝑗‖2, respectively.
The gradients are obtained as follows. The derivation is given in the

Appendix section-

∇𝐂𝑓1 = 2(𝐂𝐗𝑡 − 𝐗𝑠)(𝐗𝑡)𝑇

∇𝐂𝑓2 = 2𝐂𝐃𝑡(𝐃𝑡)𝑇 − 2𝑟𝐃𝑠𝐂(𝐃𝑡)𝑇 − 2𝑟(𝐃𝑠)𝑇𝐂𝐃𝑡 + 2𝑟2(𝐃𝑠)𝑇𝐃𝑠𝐂

where 𝑟 = 𝑛𝑡
𝑛𝑠
and

𝜕𝑓3
𝜕[𝐂]𝑖𝑗

=

⎧

⎪

⎨

⎪

⎩

[𝐂]𝑖𝑗
‖[𝐂]𝑐 (𝑖)𝑗‖2

, if ‖[𝐂]𝑐 (𝑖)𝑗‖2 ≠ 0;

0 , otherwise;

Here, 𝑐(𝑖) is the class corresponding to the 𝑖th sample in the source
domain and 𝑐 (𝑖) contains the indices of source samples belonging to
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class 𝑐(𝑖). After the gradient ∇𝐂𝑓 is found from ∇𝐂𝑓1, ∇𝐂𝑓2, ∇𝐂𝑓3 using
Eq. (3), we need to solve for the linear programming problem.

The linear programming problem can be solved easily using simplex
methods used in solvers such as MOSEK (Mosek, 2010). However, using
such solvers would not make our method competitive in terms of time
efficiency. Hence, we convert this linear programming problem into a
min-cost flow problem, which can then be solved very efficiently using
a network simplex approach (Kelly, 1991).

Let the gradient ∇𝐂𝑓 (𝐂0) be 𝐆∕𝑛𝑠 and the correspondence matrix
variable be 𝐂 = 𝑛𝑠𝐓. Then, the linear programming (LP) problem
translates to min𝐓Tr(𝐆𝑇𝐓) such that 𝐓 ≥ 𝟎,𝐓𝟏𝑛𝑡 = 𝟏𝑛𝑠∕𝑛𝑠,𝐓

𝑇 𝟏𝑛𝑠 = 𝟏𝑛𝑡∕𝑛𝑡.
This LP problem has an equivalence with the min-cost flow problem on
the following graph:

∙ The graph is bipartite with 𝑛𝑠 source nodes and 𝑛𝑡 sink nodes.
∙ The supply at each source node is 1∕𝑛𝑠 and the demand at each
sink node is 1∕𝑛𝑡.

∙ Cost of the edge connecting the 𝑖th source node to the 𝑗th sink
node is given by [𝐆]𝑖𝑗 . Capacity of each edge is ∞.

Using this configuration, the min-cost flow problem is solved using
the network simplex. Details of the network-simplex method is omitted
and one can refer (Kelly, 1991). The network simplex method is an
implementation of the traditional simplex method for LP problems,
where all the intermediate operations are performed on graphs. Due
to the structure of min-cost flow problems, network-simplex methods
provide results significantly faster than traditional simplex methods.
Using this network-simplex method, we obtain the solution 𝐓∗, where
[𝐓∗]𝑖𝑗 is the flow obtained on the edge connecting the 𝑖th source node
to the 𝑗th sink node. From that, we obtain 𝐂𝑑 = 𝑛𝑠𝐓∗ and proceed with
that iteration of conditional gradient (CG) method as in Algorithm 1. In
the above CG method, we also need an initial 𝐂0 and 𝐂0 can be defined
as the solution to the LP problem, min𝐂Tr(𝐃𝑇𝐂) such that 𝐂 ∈  =
{𝐂 ∶ 𝐂 ≥ 0,𝐂𝟏𝑛𝑡 = 𝟏𝑛𝑠 ,𝐂

𝑇 𝟏𝑛𝑠 = ( 𝑛𝑠𝑛𝑡
)𝟏𝑛𝑡}, where [𝐃]𝑖𝑗 = ‖𝐱𝑠𝑖 − 𝐱𝑡𝑗‖2.

This is also solved by the network simplex approach after converting
this LP problem into its equivalent min-cost flow problem as described
previously. After we obtain 𝐂∗ from the CG algorithm, it is then used
to find the corresponding target samples 𝐗𝑡

𝑐 = 𝐂∗𝐗𝑡. Then, the mapping
𝐌(⋅) from the source domain to the target domain is found by solving
the following regression problem 𝐌(⋅) ∶ 𝑠 →  𝑡, with each row of
𝐗𝑠 as an input data sample and the corresponding row of 𝐗𝑡

𝑐 as an
output data sample. The choice of regressors can be linear functions,
neural networks, and kernel machines with proper regularization. Once
the mapping 𝐌∗(⋅) is found out, a source-domain sample 𝐱𝑠 can be
mapped to the target domain by applying 𝐌∗(𝐱𝑠). This completes one
iteration of finding the correspondence and the mapping. For the next
cycle, we solve Problem UDA with the mapped source samples as 𝐗𝑠

and subsequently find the new mapping. The number of iterations 𝑁𝑇
of alternatively finding correspondence and mapping is an user-defined
variable. The full domain adaptation algorithm is outlined in Algorithm
2
Algorithm 2: Unsupervised Domain Adaptation using dataset registra-
tion.
Given : Source Labelled Data 𝐗𝑠 and 𝐘𝑠, and Target Unlabelled Data 𝐗𝑡

Parameters : 𝜆𝑠, 𝜆𝑔 , 𝑁𝑇
Initialize : 𝑡 = 0
Repeat

𝐂∗ = argmin𝑓 (𝐂) such that 𝐂 ∈  (Find Correspondence using
CG method)
Regress 𝐌(⋅) s.t. 𝐗𝑠 M

←←←←←←←←←→ 𝐂∗𝐗𝑡 (Find Mapping)
Map 𝐗𝑠 = 𝐌(𝐗𝑠) and 𝑡 = 𝑡 + 1

Until 𝑡 = 𝑁𝑇
Output : Adapted Source Data 𝐗𝑠,𝐘𝑠 to learn classifier.

Table 1
Accuracy results over 10 trials for the toy dataset domain-adaptation problem
for varying degree of rotation between source and target domain.
Angle (◦) 10 20 30 40 50 70 90

SVM-NA 100 89.6 76.0 68.8 60.0 23.6 17.2
DASVM 100 100 74.1 71.6 66.6 25.3 18.0
PBDA 100 90.6 89.7 77.5 59.8 37.4 31.3
OT-exact 100 97.2 93.5 89.1 79.4 61.6 49.3
OT-IT 100 99.3 94.6 89.8 87.9 60.2 49.2
OT-GL 100 100 100 98.7 81.4 62.2 49.2
OT-Laplace 100 100 99.6 93.8 79.9 59.8 47.6
Ours 100 100 96 87.4 83.9 78.4 72.2

5. Experimental results and discussions

To evaluate and validate the proposed sample-sample correspon-
dence and mapping method for unsupervised domain adaptation, com-
puter simulations were performed on a toy dataset and then on image
classification and sentiment classification tasks. Our results were com-
pared with previous published methods. For comparisons, we used the
reported accuracies or conduct experiments with the available source
code. Since we are dealing with unsupervised domain adaptation, it is
not possible to cross-validate our hyper-parameters 𝜆𝑠, 𝜆𝑔 , and 𝑁𝑇 . Un-
less explicitly mentioned, we reported the best results obtained over the
hyper-parameter ranges 𝜆𝑠 and 𝜆𝑔 in {10−3, 10−2, 10−1, 100, 101, 102, 103}
and 𝑁𝑇 = 1. In our simulations, we found that using 𝑁𝑇 > 1 only
provides a tiny bump in performance or no improvement in performance
at all. This is because the source samples have already been transformed
close to the target samples and further transformation does not affect
recognition accuracies. After the correspondence was found, we consid-
ered mapping between the corresponding samples. For the mapping, we
used a linear mapping𝐖 ∈ R𝑑×𝑑 with a regularization of 0.001. 𝑑 is the
dimension of the feature space in which the data lies.

5.1. Toy dataset: Two interleaving moons

For the first experiment, we used the synthetic dataset of interleaving
moons previously used in Courty et al. (2017) and Germain et al. (2013).
The dataset consists of 2 domains. The source domain consists of 2
entangled moon’s data. Each moon is associated with each class. The
target domain consists of applying a rotation to the source domain.
This can be considered as a domain-adaptation problem with increasing
rotation angle implying increasing difficulty of the domain-adaptation
problem. Since the problem is low dimensional, it allowed us to visualize
the effect of our domain-adaptation method appropriately. Fig. 4(a)
and 4(b) show an example of the source-domain data and the target-
domain data respectively, and Fig. 4(c) shows the adapted source-
domain data using the proposed approach. The results showed that the
transformed source domain becomes close to the target domain.

For testing on this toy dataset, we used the same experimental
protocol as in Courty et al. (2017) and Germain et al. (2013). We
sampled 150 instances from the source domain and the same number
of examples from the target domain. The test data was obtained by
sampling 1000 examples from the target domain distribution. The
classifier used is an SVM with a Gaussian kernel, whose parameters are
set by 5-fold cross-validation. The experiments were conducted over
10 trials and the mean accuracy was reported. At this juncture, it is
important to note that choosing the classifier for domain adaptation is
important. For example, the two classes in the interleaving moon dataset
are not linearly separable at all. So, a linear kernel SVM would not
classify the moons accurately and it would result in poor performance
in the target domain as well. That is why we need a Gaussian Kernel
SVM. So, we have to make sure that we choose a classifier that works
well with the source dataset in the first place.

We compared our results with the DA-SVM (Bruzzone and Mar-
concini, 2010)- a domain-adaptive support vector machine approach,
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Fig. 4. (a) Source-domain data. (b) Target-domain data consists of a 50-degree rotation of the source-domain data. (c) Transformed source-domain data is now
aligned with the target-domain data.

Table 2
Time comparison (in seconds) of the two solvers for increasing sample size. The
sample size is the number of samples per class per domain of the interleaving
moon toy dataset. The target domain has a rotation of 50◦ with the source do-
main. We use 𝑁𝑇 = 1. Implementation was in MATLAB in a workstation with
Intel Xeon(R) CPU E5-2630 v2 and 40 GB RAM. Results are reported over 10
trials.

𝑛 25 50 75 100 125 150 175 200

M 62.1 83.1 103.4 128.5 387.7 680.1 1028.3 1577.6
N-S 1.5 4 6.9 10.1 16.9 23.5 31.2 41.3

PBDA (Germain et al., 2013)- which is a PAC-Bayesian based domain
adaptation method, and different versions of the optimal transport
approach (Courty et al., 2017). OT-exact is the basic optimal transport
approach. OT-IT is the information theoretic version with entropy
regularization. OT-GL and OT-Laplace has additional group and graph
based regularization, respectively. From our results in Table 1, we see
that for low rotation angles, the OT-GL-based method dominates and
our proposed method yields satisfactory results. But for higher angles
(≥50◦), our proposed method clearly dominates by a large margin. This
is because we have taken into consideration second-order structural
similarity information. For higher-rotation angles, the point-to-point
sample distance is high. However, similar structures in the source and
target domains can still correspond to each other. In other words,
the adjacency matrices, which depend on relative distances between
samples, can still be matched and do not depend on higher rotation
angles between the source and target domains. That is why our proposed
method out-performed other methods for large discrepancies between
the source and target distributions.

We further provided the time comparison between the network
simplex method (N-S) and MOSEK (M) for increasing number of samples
of the toy dataset in Table 2. Results showed that the network simplex
method is very fast compared to a general purpose linear programming
solver like MOSEK.

5.2. Real dataset: Image classification

We next evaluated the proposed method on image classification
tasks. The image classification tasks that we considered were digit recog-
nition and object recognition. The classifier used was 1-NN (Nearest
Neighbour). 1-NN is used for experiments with images because it does
not require cross-validating hyper-parameters and has been used in
previous work as well (Courty et al., 2017; Gong et al., 2012). The 1-NN
classifier is trained on the transformed source-domain data and tested
on the target-domain data. Instances of the image dataset are shown
in Fig. 5(a), (b) and (e). Generally, we cannot directly cross-validate
our hyper-parameters 𝜆𝑠 and 𝜆𝑔 on the unlabelled target domain data
making it impractical for real-world applications. However, for practical
transfer learning purposes, a reverse validation (RV) technique (Zhong

et al., 2010) was developed for tuning the hyper-parameters. We have
carried out experiments with a variant of the method to tune 𝜆𝑠 and 𝜆𝑔
for our UDA approach.

For a particular hyper-parameter configuration, we divide the source
domain data into 𝐾 folds. We use one of the folds as the validation
set. The remaining source data and the whole target data are used
for domain adaptation. The classifier trained using the adapted source
data is used to generate pseudo-labels for the target data. Another
classifier is trained using the target domain data and its pseudo-labels.
This classifier is then tested on the held-out source domain data after
adaptation. The accuracy obtained is repeated and averaged over all
the 𝐾 folds. This reverse-validation approach is repeated over all hyper-
parameter configurations. The optimal hyper-parameter configuration
is the one with the best average validation accuracy. Using the obtained
optimal hyper-parameter configuration, we then carry out domain
adaptation over all the source and target domain data and report the
accuracy over the target domain dataset. We used 𝐾 = 5 folds for
all the real-data experiments. Thus, we showed the results using this
RV approach in addition to the best obtained results over the hyper-
parameters. In majority of the cases in Tables 3, 5–7 we would see
that the result obtained using the reverse validation approach matches
the best obtained results suggesting that the hyper-parameters can be
automatically tuned successfully.

5.2.1. Digit recognition
For the source and target domains, we used 2 datasets – USPS (U)

and MNIST (M). These datasets have 10 classes in common (0–9). The
dataset consists of randomly sampling 1800 and 2000 images from USPS
and MNIST, respectively. The MNIST digits have 28 × 28 resolution and
the USPS 16 × 16. The MNIST images were then resized to the same
resolution as that of USPS. The grey levels were then normalized to
obtain a common 256-dimensional feature space for both domains.

5.2.2. Object recognition
For object recognition, we used the popular Caltech-Office

dataset (Gong et al., 2012; Gopalan et al., 2011; Saenko et al., 2010;
Zheng et al., 2012; Courty et al., 2017). This domain-adaptation dataset
consists of images from 4 different domains: Amazon (A) (E-commerce),
Caltech-256 (Griffin et al., 2007) (C) (a repository of images), Webcam
(W) (webcam images), and DSLR (D) (images taken using DSLR camera).
The differences between domains are due to the differences in quality,
illumination, pose and also the presence and absence of backgrounds.
The features used are the shallow SURF features (Bay et al., 2006) and
deep-learning feature sets (Donahue et al., 2014) — decaf6 and decaf7.
The SURF descriptors represent each image as a 800-bin histogram. The
histogram is first normalized to represent a probability and then reduced
to standard 𝑧-scores. On the other hand, the deep-learning feature sets,
decaf6 and decaf7, are extracted as the sparse activation of the neurons
from the fully connected 6th and 7th layers of convolutional network
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(a) MNIST.

(b) USPS.

(c) Book review of Amazon dataset.

(d) Kitchen review of Amazon dataset.

(e) Caltech-office dataset for monitor class.

Fig. 5. Instances of the real dataset used. At the top left, we see that USPS has the worse resolution compared to MNIST handwriting dataset. At the bottom left,
we have instances of the Amazon review dataset. There is a shift in textual domain when reviewing for different products. On the right, we have the Caltech-Office
dataset and we see that there are differences in illumination, quality, pose, presence/absence of background across different domains.

trained on imageNet and fine tuned on our task. The features are 4096-
dimensional.

For our experiments, we considered a random selection of 20 samples
per class (with the exception of 8 samples per class for the DSLR domain)
for the source domain. The target-domain data is split equally. One half
of the target-domain data is used for domain adaptation and the other
half is used for testing. This is in accordance with the protocol followed
in Courty et al. (2017). The accuracy is reported on the test data over
10 trials of the experiment.

We compared our approach against (a) the no adaptation baseline
(NA), which consists of using the original classifier without adaptation;
(b) Geodesic Flow Kernel (GFK) (Gong et al., 2012); (c) Transfer
Subspace Learning (TSL) (Si et al., 2010), which minimizes the Bregman
divergence between low-dimensional embeddings of the source and
target domains; (d) Joint Distribution Adaptation (JDA) (Long et al.,
2013), which jointly adapts both marginal and conditional distributions
along with dimensionality reduction; (e) Optimal Transport (Courty
et al., 2017) with the information-theoretic (OT-IT) and group-lasso
version (OT-GL). Among all these methods, TSL and JDA are moment-
matching methods while OT-IT, OT-GL and ours are sample-matching
methods.

The best performing method for each domain-adaptation problem is
highlighted in bold. From Table 3, we see that in almost all the cases,
the OT-GL and our proposed method dominated over other methods,
suggesting that sample-matching methods perform better than moment-
matching methods. For the handwritten digit recognition tasks (U → M
and M → U), our proposed method clearly out-performs GFK, TSL and
JDA, but is slightly out-performed by OT-GL. This might be because the
handwritten digit datasets U and M do not contain enough structurally
similar regions to exploit the second-order similarity cost term. For
the Office-Caltech dataset, the only time our proposed method was
beaten by a moment-matching method was W → D, though by a slight
amount. This is because W and D are closest pair of domains and using
sample-based matching does not have outright advantage over moment-
matching. The fact that W and D have the closest pair of domains is
evident form the NA accuracy of 53.62, which is the best among NA
accuracies of the Office-Caltech domain-adaptation tasks.

We have performed a runtime comparison in terms of the CPU time
in seconds of our method with other methods and have shown the results
in Table 4. The experiments performed are over the same dataset as used
in Table 3. From Table 4, we see that local methods like OT-GL and our
method generally take more time than moment-matching method like

Table 3
Domain-adaptation results for digit recognition using USPS and MNIST datasets
and object recognition with the Office-Caltech dataset using SURF features.
Tasks NA GFK TSL JDA OT-GL Ours Ours (RV)

U → M 39.00 44.16 40.66 54.52 57.85 56.90 56.90
M → U 58.33 60.96 53.79 60.09 69.96 68.44 66.24
C → A 20.54 35.29 45.25 40.73 44.17 46.67 46.67
C → W 18.94 31.72 37.35 33.44 38.94 39.48 39.48
C → D 19.62 35.62 39.25 39.75 44.50 42.88 40.12
A → C 22.25 32.87 38.46 33.99 34.57 38.51 38.51
A → W 23.51 32.05 35.70 36.03 37.02 38.69 38.69
A → D 20.38 30.12 32.62 32.62 38.88 36.12 36.12
W → C 19.29 27.75 29.02 31.81 35.98 33.81 32.83
W → A 23.19 33.35 34.94 31.48 39.35 37.69 37.69
W → D 53.62 79.25 80.50 84.25 84.00 84.10 84.10
D → C 23.97 29.50 31.03 29.84 32.38 32.78 32.78
D → A 27.10 32.98 36.67 32.85 37.17 38.33 37.61
D → W 51.26 69.67 77.48 80.00 81.06 81.12 81.12

Table 4
CPU time (s) comparison of different domain adaptation algorithms.
Task NA GFK TSL JDA OT-GL Ours

U→M 1.24 2.62 567.8 82.34 171.84 201.23
M→U 1.13 2.43 522.37 81.13 168.23 196.15
C→A 0.46 2.6 382.98 41.6 85.95 99.9
C→W 0.24 1.45 157.52 37.89 78.73 101.1
C→D 0.36 1.35 117.81 37.33 61.17 63.38
A→C 0.54 2.69 462.12 40.11 105.87 126.18
A→W 0.39 1.47 153.95 37.63 86.12 100.21
A→D 0.42 1.31 115.87 36.82 69.29 82.1
W→C 0.33 2.92 461.1 42.39 98.26 111.2
W→A 0.61 2.52 388.23 41.64 94.38 101.45
W→D 0.34 1.37 117.47 37.9 76.5 79.25
D→C 0.45 2.36 364.13 39.75 106.21 118.12
D→A 0.43 2.14 310.18 41.24 98.41 115.35
D→W 0.24 1.05 93.73 34.62 76.23 88.69

JDA. Our method takes more time compared with OT-GL because of
time taken in constructing adjacency matrices for the second order cost
term. Overall, the time taken for domain adaptation between USPS and
MNIST datasets is more because they contain relatively larger number
of samples, compared to the Office-Caltech dataset.

We have also reported the results of Office-Caltech dataset using
decaf6 and decaf7 features in Tables 5 and 6, respectively. The baseline
performance of the deep-learning features are better than SURF features
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Table 5
Domain-adaptation results for the Office-Caltech dataset using decaf6 features.
Task NA JDA OT-IT OT-GL Ours Ours(RV)

C→A 79.25 88.04 88.69 92.08 91.92 89.91
C→W 48.61 79.60 75.17 84.17 83.58 81.23
C→D 62.75 84.12 83.38 87.25 87.50 87.50
A→C 64.66 81.28 81.65 85.51 86.67 85.63
A→W 51.39 80.33 78.94 83.05 81.39 81.39
A→D 60.38 86.25 85.88 85.00 87.12 87.12
W→C 58.17 81.97 74.80 81.45 82.13 81.64
W→A 61.15 90.19 80.96 90.62 88.87 88.87
W→D 97.50 98.88 95.62 96.25 98.95 98.95
D→C 52.13 81.13 77.71 84.11 83.72 83.72
D→A 60.71 91.31 87.15 92.31 92.65 92.65
D→W 85.70 97.48 93.77 96.29 96.69 96.13

Table 6
Domain-adaptation results for the Office-Caltech dataset using decaf7 features.
Task NA JDA OT-IT OT-GL Ours Ours(RV)

C→A 85.27 89.63 91.56 92.15 91.85 91.85
C→W 65.23 79.80 82.19 83.84 85.36 85.36
C→D 75.38 85.00 85.00 85.38 85.88 85.88
A→C 72.80 82.59 84.22 87.16 86.67 85.39
A→W 63.64 83.05 81.52 84.50 86.09 85.36
A→D 75.25 85.50 86.62 85.25 87.37 87.37
W→C 69.17 79.84 81.74 83.71 82.80 82.80
W→A 72.96 90.94 88.31 91.98 90.15 89.31
W→D 98.50 98.88 98.38 91.38 99.00 99.00
D→C 65.23 81.21 82.02 84.93 82.20 82.20
D→A 75.46 91.92 92.15 92.92 92.60 92.15
D→W 92.25 97.02 96.62 94.17 97.10 97.10

Fig. 6. t-SNE (Maaten and Hinton, 2008) visualization of a single trial of
Amazon to Webcam DA problem using decaf6 features.

because they are more robust and contain higher-level representations.
Expectedly, the decaf7 features have better baseline performance than
decaf6 features. However, DAmethods can further increase performance
over the robust deep features. In Tables 5 and 6, we see that our pro-
posed method dominates over JDA and OT-IT but is in close competition
with OT-GL. We also noted that using decaf7 instead of decaf6 creates
only a small incremental improvement in performance because most of
the adaptation has already been performed by our proposed domain-
adaptation method. As seen in Fig. 6, the source-domain samples are
transformed to be near the target-domain samples using our proposed
method. Therefore, we expect a classifier trained on the transformed
source samples to perform better on the target-domain data.

We have also studied the effects of varying the regularization
parameters on domain-adaptation performance. In Fig. 7, the blue line

Fig. 7. Effect of varying regularization parameters 𝜆𝑠 and 𝜆𝑔 on the accuracy of
Amazon (source domain) to Webcam (target domain) visual domain-adaptation
problem for fixed 𝑁𝑇 = 1.

shows the accuracy when both 𝜆𝑠 = 𝜆𝑔 = 0. When 𝜆𝑠 = 0, best
performance is obtained for 𝜆𝑔 = 0.1. When 𝜆𝑔 = 0, best performance
is obtained for 𝜆𝑠 = 1. For 𝜆𝑠, 𝜆𝑔 > 1, performance degrades (not
shown) because we have put excess weight on the regularization terms
of second-order structural similarity and group-lasso than on the first-
order point-wise similarity cost term. Thus, the presence of second-order
and regularization term, weighted in the right amount is justified as it
improves performance over when only the first-order term is present.
We have also studied the effect of group-lasso regularization parameter
(𝜆𝑔) on the quality of the correspondence matrix 𝐂 obtained for a
domain-adaptation task. Visually the second plot from the left in Fig. 8
appears to discriminate the 10 classes best. Accordingly, this parameter
configuration (𝜆𝑠 = 0, 𝜆𝑔 = 0.1, 𝑁𝑇 = 1) realizes the best performance as
shown in the previous Fig. 7.

5.3. Real dataset: Sentiment classification

We have also evaluated our proposed method on sentiment classifi-
cation using the standard Amazon review dataset (Blitzer et al., 2007).
This dataset contains Amazon reviews on 4 domains: Kitchen items (K),
DVD (D), Books (B) and Electronics (E). Instances of the dataset are
shown in Fig. 5(c), (d). The dimensionality of the bag-of-word features
was reduced by keeping the top 400 features having maximum mutual
information with class labels. This pre-processing was also carried out
in Sun et al. (2016) and Gong et al. (2013) without losing performance.
For each domain, we used 1000 positive and 1000 negative reviews. For
each domain-adaptation task, we used 1600 samples (800 positive and
800 negative) from each domain as the training dataset. The remaining
400 samples (200 positive and 200 negative) were used for testing. The
classifier used is a 1-NN classifier since it is parameter free. The mean-
accuracy was reported over 10 random training/test splits.

We compared our proposed approach to a recently proposed unsu-
pervised domain-adaptation approach known as Correlation Alignment
(CORAL) (Sun et al., 2016). CORAL is a simple and efficient approach
that aligns the input feature distributions of the source and target
domains by exploring their second-order statistics. Firstly, it computes
the covariance statistics in each domain and then applies whitening
and re-colouring linear transformation to the source features. Results
in Table 7 showed that our proposed method outperforms CORAL
in all the domain-adaptation tasks. Our proposed method has better
performance because CORAL matches covariances while our method
matches samples explicitly through point-wise and pair-wise matching.
Moreover, CORAL does not use source-domain label information. Our
method uses source-domain label information through the group-lasso
regularization. However, CORAL is quite fast in transforming the source
samples compared to our method. For a single trial, CORAL took about
a second while our proposed method took about a few minutes.
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Fig. 8. The optimal correspondence matrix 𝐂 for 4 different parameter settings visualized as a colourmap, with 𝜆𝑠 = 0, 𝑁𝑇 (𝑇 in the figure) = 1. The task involved
was the Amazon to Webcam domain adaptation.

Table 7
Accuracy results of unsupervised domain-adaptation tasks for the Amazon re-
views dataset.
Tasks K→D D→B B→E E→K K→B D→E

NA 58.6 63.4 58.5 66.5 59.3 57.9
CORAL 59.9 66.5 59.5 67.5 59.2 59.5
Ours 63.5 69.5 62.0 69.5 64.5 61.2
Ours (RV) 60.9 69.5 62.0 69.5 64.5 59.0

6. Limitations

In this paper, we have assumed that the dimensionality of the source
and target feature space is the same. Our approach cannot be directly
used in cases when the dimensionality of the features are not the same.
However, we can think of two ways in which this problem can be solved
in conjunction with our approach. Firstly, we can add a preprocessing
step where source and target domain is mapped to a latent space of the
same dimensionality. Secondly, we can think of modifying the first-order
matching term from ‖𝐂𝐗𝑡 −𝐗𝑠

‖

2
 to ‖𝐂𝐗𝑡 −𝐗𝑠𝐖‖

2
 .𝐖 belongs to R𝑑×𝑑′

where 𝐖 maps from the source feature space R𝑑 to the target feature
space R𝑑′ . But it would require properly regularizing𝐖.

Another question regarding our approach is whether our method
is applicable to structured data. Structured data is stored in the form
of databases or tables. These kind of data might contain numerical,
categorical or date-time variables. The main problem in using structured
data for our domain adaptation method is the presence of categorical
variables. The presence of these discrete attributes would make the
problem discontinuous and would not allow optimization to converge.
However, we can use entity embedding (Guo and Berkhahn, 2016),
a recently developed method to map these categorical variables to an
Euclidean Space. We can then use the embeddings of the categorical
data as features for domain adaptation. However, we are yet to have
standard domain adaptation datasets for structured data to test upon.

7. Conclusions

In this paper, we have described a correspondence-mapping method
for unsupervised domain adaptation, which matched samples in the
source domain with the samples in the target domain. Our proposed
method is inspired from image registration, which alternately finds cor-
respondences between samples andmapping between the corresponding
samples. We proposed a convex-optimization-based approach to find
the correspondence that consists of three cost terms: one for point-to-
point similarity (first order), one for local structural similarity (second
order), and another for class-based regularization. We have averted
memory-efficiency problems of our optimization procedure by using the
conditional gradient approach. We further averted the time-efficiency

problem by solving the linear programming subproblems in conditional
gradient method using a network simplex method of a min-cost flow
problem, rather than a general purpose linear programming (LP) solver.
An experiment on time-efficiency suggests that the network simplex
method out-performs the general purpose LP solver by a large amount.
Classification results on datasets of the textual and visual domain sug-
gested that our proposed method outperformed other moment-matching
methods and was comparable to previous sample-matching methods.

We believe that we can further improve our proposed method in
terms of time and accuracy. Till now we have taken all the data-
samples in the optimization procedure. We could efficiently search
for ‘‘important’’ samples or exemplars that are a small fraction of all
the data-samples. Consequently, the number of variables to optimize
would be less and the optimization will be faster. As a result, the total
time of finding the number of exemplars and the domain adaptation
optimization procedure will be less. Also our method is a non-deep-
learning method that directly works on features. We feel that extension
of our method to deep architectures in terms of jointly learning a
representation and the correspondences and mapping would improve
performance in accuracy.

Appendix

Proof of convexity of optimization objective function

Let us prove the convexity of each cost term in Eq. (2).

1. The first-order similarity term in the objective function is of the
form ‖𝐀‖2𝐹 , where 𝐀 = 𝐂𝐗𝑡−𝐗𝑠 is a matrix that linearly depends
on 𝐂. Here 𝐀 ↦ ‖𝐀‖𝐹 is a convex function due to the properties
of norm. This convex function is composed with the function
𝑥 ↦ 𝑥2, which is increasing and convex on the positive domain
[0,∞). Thus, 𝐀 ↦ ‖𝐀‖2𝐹 is the composition of a convex function
with a convex increasing function, whichmakes it convex as well.

2. The argument for proving the convexity of second-order similarity
term is similar to that of proving convexity of first-order similarity
term except that𝐀 = 𝐂𝐃𝑡−

(

𝑛𝑡
𝑛𝑠

)

𝐃𝑠𝐂, which is linearly dependent
on 𝐂.

3. Proving the convexity of group-lasso regularization is easier. The
group-lasso regularization term is a summation of 𝓁2 norm terms.
Now the set 𝐂 is a convex set because it follows positivity and
affine equality constraints (Boyd and Vandenberghe, 2004). So
a subset of variables of 𝐂 will also form a convex set. 𝓁2 norm on
any arbitrary such convex subset will produce a convex function.
Summation of convex functions will yield a convex function and
therefore the group-lasso regularization is convex.
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Derivation of gradients of the objective function

𝑓1 = ‖𝐂𝐗𝑡 − 𝐗𝑠
‖

2
 = Tr((𝐂𝐗𝑡 − 𝐗𝑠)𝑇 (𝐂𝐗𝑡 − 𝐗𝑠))

= Tr((𝐗𝑡)𝑇𝐂𝑇𝐂𝐗𝑡 − (𝐗𝑡)𝑇𝐂𝑇𝐗𝑠 − (𝐗𝑠)𝑇𝐂𝐗𝑡 + (𝐗𝑠)𝑇𝐗𝑠),

and its gradient is

∇𝐂𝑓1 =
𝜕Tr((𝐗𝑡)𝑇𝐂𝑇𝐂𝐗𝑡)

𝜕𝐂
−

𝜕Tr((𝐗𝑡)𝑇𝐂𝑇𝐗𝑠)
𝜕𝐂

−
𝜕Tr((𝐗𝑠)𝑇𝐂𝐗𝑡)

𝜕𝐂
= 2𝐂𝐗𝑡(𝐗𝑡)𝑇 − 𝐗𝑠(𝐗𝑡)𝑇 − 𝐗𝑠(𝐗𝑡)𝑇 = 2(𝐂𝐗𝑡 − 𝐗𝑠)(𝐗𝑡)𝑇 .

Let 𝑟 = 𝑛𝑡
𝑛𝑠
, then

𝑓2 = ‖𝐂𝐃𝑡 − 𝑟𝐃𝑠𝐂‖2 = Tr((𝐂𝐃𝑡 − 𝑟𝐃𝑠𝐂)𝑇 (𝐂𝐃𝑡 − 𝑟𝐃𝑠𝐂))
= Tr((𝐃𝑡)𝑇𝐂𝑇𝐂𝐃𝑡 − 𝑟(𝐃𝑡)𝑇𝐂𝑇𝐃𝑠𝐂 − 𝑟𝐂𝑇 (𝐃𝑠)𝑇𝐂𝐃𝑡 + 𝑟2𝐂𝑇 (𝐃𝑠)𝑇𝐃𝑠𝐂),

and its gradient can be obtained as

∇𝐂𝑓2 =
𝜕Tr((𝐃𝑡)𝑇𝐂𝑇𝐂𝐃𝑡)

𝜕𝐂
−

𝜕Tr(𝑟(𝐃𝑡)𝑇𝐂𝑇𝐃𝑠𝐂)
𝜕𝐂

−
𝜕Tr(𝑟𝐂𝑇 (𝐃𝑠)𝑇𝐂𝐃𝑡)

𝜕𝐂
+

𝜕Tr(𝑟2𝐂𝑇 (𝐃𝑠)𝑇𝐃𝑠𝐂)
𝜕𝐂

= 2𝐂𝐃𝑡(𝐃𝑡)𝑇 − 2𝑟𝐃𝑠𝐂(𝐃𝑡)𝑇 − 2𝑟(𝐃𝑠)𝑇𝐂𝐃𝑡 + 2𝑟2(𝐃𝑠)𝑇𝐃𝑠𝐂.

∇𝐂𝑓3 can be found by carrying out the partial derivative
𝜕𝑓3

𝜕[𝐂]𝑖𝑗
with

respect to each element [𝐂]𝑖𝑗 of the correspondence matrix.

𝜕𝑓3
𝜕[𝐂]𝑖𝑗

=
𝜕(
∑

𝑗
∑

𝑐 ‖[𝐂]𝑐 𝑗‖2)
𝜕[𝐂]𝑖𝑗

=
𝜕(‖[𝐂]𝑐(𝑖)𝑗‖2)

𝜕[𝐂]𝑖𝑗
.

Here, 𝑐(𝑖) is the class corresponding to the 𝑖th sample in the source
domain. The other summation terms are omitted because they do not
depend on [𝐂]𝑖𝑗 . Using the property that partial derivative of an 𝓁2-norm
with respect to an element; that is, 𝜕(‖𝐱‖2)

𝜕𝑥𝑖
= 𝑥𝑖

‖𝐱‖2
, we have

𝜕(‖[𝐂]𝑐 𝑗‖2)
𝜕[𝐂]𝑖𝑗

=
[𝐂]𝑖𝑗

‖[𝐂]𝑐 (𝑖)𝑗‖2
.

However, the group-lasso regularization term 𝑓3 is not differentiable if
there exists a class 𝑐 and an index 𝑗 (corresponding to the 𝑗th sample of
the target domain) such that ‖[𝐂]𝑐 𝑗‖2 = 0. In such a case, we set the
partial derivative of the corresponding terms to 0. Thus, the gradient of
the group-lasso term is found as follows:

𝜕𝑓3
𝜕[𝐂]𝑖𝑗

=

⎧

⎪

⎨

⎪

⎩

[𝐂]𝑖𝑗
‖[𝐂]𝑐 (𝑖)𝑗‖2

, if ‖[𝐂]𝑐 (𝑖)𝑗‖2 ≠ 0;

0 , otherwise;

where 𝑐(𝑖) is the class corresponding to the 𝑖th sample in the source
domain.
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