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Abstract
There is a sufficiently large N ∈ hN such that the following holds. If G is a tripartite
graph with N vertices in each vertex class such that every vertex is adjacent to at least
2N/3 + 2h − 1 vertices in each of the other classes, then G can be tiled perfectly by
copies of Kh,h,h . This extendswork byMartin andZhao (Electron JCombin 16(1):109,
2009) and also gives a sufficient condition for tiling by any fixed 3-colorable graph.
Furthermore, we show that 2N/3 + 2h − 1 in our result can not be replaced by
2N/3 + h − 2 and that if N is divisible by 6h, then we can replace it with the value
2N/3 + h − 1 and this is tight.
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1 Introduction

Let H be a graph on h vertices, and let G be a graph on n vertices. An H -tiling of
G is a subgraph of G which consists of vertex-disjoint copies of H and a perfect
H-tiling, or H -factor, of G is an H -tiling consisting of �n/h� copies of H . The
celebrated Hajnal–Szemerédi Theorem [11] says that each n-vertex graph G with
δ(G) ≥ (r − 1)n/r contains a Kr -factor. (Corrádi and Hajnal [6] proved the case
r = 3.) Using Szemerédi’s regularity lemma [26], Alon and Yuster [1,2] obtained
results on H -tiling for arbitrary H . Their results were improved substantially [16,17,
19,25], in particular, Kühn and Osthus [19] determined the minimum degree threshold
for H -factors for arbitrary H up to an additive constant, see the survey [18] for details.

In this paper, we consider multipartite tiling, which restricts G to be an r -partite
graph. For r = 2, this is an immediate consequence of the König–Hall Theorem (e.g.
see [3]). Wang [27] considered Ks,s-factors in bipartite graphs for all s > 1; Zhao [28]
gave the best possible minimum degree condition for this problem.With the exception
of one case, Hladký and Schacht [13] found best possible minimum degree conditions
for Ks,t -factors in bipartite graphs with s < t ; the last case was settled by Czygrinow
and DeBiasio [8]. Later, Bush and Zhao [4] considered tiling bipartite graphs with an
arbitrary graph H .

For a tripartite graph G = (A, B,C; E), the graphs induced by (A, B), (A,C) and
(B,C) are called the natural bipartite subgraphs of G. Let Gr (N ) be the family of
r -partite graphs with N vertices in each partition set. Such a graph is called balanced
because the number of vertices in each partition set is the same. In an r -partite graph
G, δ∗(G) stands1 for the minimum degree over all natural bipartite subgraphs of G.

There are two classes of multipartite graphs that wewill reference in this paper. One
is Γk , which is in Gk(k). The vertices of Γk are h

( j)
i , i = 1, . . . , k and j = 1, . . . , k,

and the adjacency rules are as follows: h( j)
i ∼ h( j ′)

i ′ iff i 	= i ′, j 	= j ′, and either j or

j ′ is in {1, . . . , k − 2}. Also, h(k−1)
i ∼ h(k−1)

i ′ and h(k)
i ∼ h(k)

i ′ for i 	= i ′. The other
graph is Θr×n , which is in Gr (n). The vertices of Θr×n are a( j)

i , i = 1, . . . , r and

j = 1, . . . , n such that a( j)
i ∼ a( j ′)

i ′ if and only if i 	= i ′ and j 	= j ′. We will also
discuss the so-called blow-ups of these graphs. The blow-up graph, G(N ), for a graph
G is obtained by replacing each edge of G with a copy of KN ,N and replacing each
non-edge by an N × N bipartite graph with no edges.

In addition to the bipartite results discussed above, there have also been a number of
results onmultipartite graphs with r ≥ 3, many of which were inspired by a conjecture
of Fischer. Fischer [10] conjectured that if G ∈ Gr (N ) satisfies δ∗(G) ≥ r−1

r N , then
G contains a Kr -factor. However, if r and N/r are odd integers, then Catlin [5] had
earlier given an example of a graphwithout a Kr -factor where δ∗(G) = r−1

r N . In [21],
Magyar and Martin proved that, for large N , this graph is a unique counterexample
to Fisher’s conjecture for r = 3 by showing that if N is a sufficiently large odd
multiple of 3, the blow-up graph Γ3(N/3) ∈ G3(N ) (see Fig. 1) is the unique graph
with δ∗(G) ≥ 2N/3 and no K3-factor. The conjecture of Fischer can be modified to
exclude this case. This gives the following Corrádi–Hajnal-type result.

1 In [24], δ̄ was used in place of δ∗.
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Fig. 1 The diagram for the
blow-up of Γ3, with the vertex
classes in rows and the dotted
lines representing nonedges.
Note that δ∗(Γ3) = 2 but Γ3 has
no K3-factor
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Theorem 1 ([21]) Let G ∈ G3(N ) have δ∗(G) ≥ (2/3)N. If N ≥ N0 for some
absolute constant N0, then G contains a K3-factor or G = Γ3(N/3) for N/3 an odd
integer.

Martin and Szemerédi [23] proved a quadripartite version of the Hajnal–Szemerédi
Theorem. Han and Zhao [12] reproved the results of [21,23] by using the absorbing
method. An approximate version of the multipartite Hajnal–Szemerédi Theorem was
given by Csaba andMydlarz [7]. Keevash andMycroft [14] and independently Lo and
Markstrom [20] confirmed Fischer’s conjecture asymptotically, and finally Keevash
and Mycroft [15] proved the modified Fischer conjecture exactly for any sufficiently
large graph. More recently, an asymptotic multipartite version of the the Alon-Yuster
Theorem was proved by Martin and Skokan [22].

It was shown [24, Theorem 1.2] that in the tripartite case, 2/3 is the correct coeffi-
cient of N required to have a Kh,h,h-factor.

Theorem 2 ([24]) For any positive real number γ and any positive integer h, there is
N0 such that the following holds. Given an integer N ≥ N0 such that N is divisible
by h, if G is a tripartite graph with N vertices in each vertex class such that every
vertex is adjacent to at least (2/3+ γ )N vertices in each of the other classes, then G
contains a Kh,h,h-factor.

Let f (N , h) be the smallest integer f such that every balanced tripartite graphG on
3N vertices with δ∗(G) ≥ f contains a Kh,h,h-factor. Our main result is the following
more precise theorem.

Theorem 3 Fix a positive integer h and let N be sufficiently large. If h ≥ 2 and
N = (6q + r)h with 0 ≤ r < 6, then

f (N , h) = 2N

3
+ h − 1, if r = 0;

h

⌈
2N

3h

⌉
+ h − 2 ≤ f (N , h) ≤ h

⌈
2N

3h

⌉
+ h − 1, if r = 1, 2, 4, 5;

2N

3
+ h − 1 ≤ f (N , h) ≤ 2N

3
+ 2h − 1, if r = 3.

So, the result is tight when 6h divides N , almost tight unless N/h is an oddmultiple
of 3 and, in the worst case, the upper and lower bounds differ by h. We are not sure
whether the upper or lower bounds of Theorem 3 are correct in the cases when they
are not equal.
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Clearly the complete tripartite graph Kh,h,h can itself be perfectly tiled by any 3-
colorable graph on h vertices. Since f (N , h) ≤ 2N

3 + 2h − 1 whenever N is divisible
by h, we have the following corollary.

Corollary 1 Let H be a 3-colorable graph of order h. There exists a positive integer
N0 such that if N ≥ N0 and N divisible by h, then every G ∈ G3(N ) with δ∗(G)

≥ 2N
3 + 2h − 1 contains an H-factor.

The lower bound for f (N , h) in Theorem 3 is due to two constructions, one which
is from [24] and another which is similar. They are stated in Proposition 1, and proven
in Sect. 2.

Proposition 1 Fix a positive integer h ≥ 2. There exists an N0 such that

(1) if N ≥ N0, h | N and N/h is divisible by 3, then there is a graph G2 ∈ G3(N )

with no Kh,h,h-factor and δ∗(G2) ≥ 2N/3 + h − 2; and
(2) if N ≥ N0, h | N and N/h is not divisible by 3, then there is a graph G3 ∈ G3(N )

with no Kh,h,h-factor and δ∗(G3) ≥ h
⌈ 2N
3h

⌉ + h − 3.

As to the upper bound, we use Theorem 4 [24, Theorem 1.4] to take care of the
main case. For vertex sets A and B, let d(A, B) := e(A,B)

|A||B| denote the density of A and
B. Before we can prove the main case, we need the following definition.

Definition 1 Given α > 0, we say that G = (V1, V2, V3; E) ∈ G3(N ) is α-extremal
when there are three sets A1, A2, A3 such that Ai ⊆ Vi , |Ai | = �N/3� for all i and
d(Ai , A j ) ≤ α for i 	= j .

If G is α-extremal and δ∗(G) ≥ 2N/3, then for i 	= j , the pair (Ai , Vj − A j ) is a very
dense bipartite graph. Thus,we expectmostmembers of our Kh,h,h-factorwith vertices
in Ai to have h vertices in Ai and the remaining 2h vertices in

(
Vj − A j

)∪(Vk − Ak),
where { j, k} = [3] − {i}.
Theorem 4 ([24]) Given any positive integer h and any α > 0, there exists an ε > 0
and an integer N0 such that whenever N ≥ N0, and h divides N, the following occurs:
If G ∈ G3(N ) satisfies δ∗(G) ≥ (2/3 − ε)N, then either G contains a Kh,h,h-factor
or G is α-extremal.

Hence, for the upper bound, it suffices to assume thatG ∈ G3(N ) isα-extremal. The
proof, given in Sect. 3, is detailed and involves a case analysis. Moreover, it requires
the definition of a particular structure we call the very extreme case, which we deal
with in Sect. 3.5. This definition is given below, but roughly, it means that the graph
looks like Γ3(N ).

Definition 2 A balanced tripartite graph G on 3N vertices is in the very extreme
case if the following occurs: First, there are integers h, q such that N = (6q + 3)h.
Second, there are sets U ( j)

i ⊆ Vi for i, j ∈ {1, 2, 3}, each with size at least 2qh + 1,

such that if v ∈ U ( j)
i then v is nonadjacent to at most 3h−3 vertices inU ( j ′)

i ′ whenever

(h( j)
i , h( j ′)

i ′ ) is an edge in the graph Γ3.
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Note that we use different language for α-extremal and the very extreme
case because the definition of α-extremal requires a parameter, whereas the very
extreme case does not.

Now that we have defined the very extreme case, we can formally state the upper
bound theorem as follows:

Theorem 5 Fix h ≥ 2. Let N ∈ hN be sufficiently large and assume G ∈ G3(N ). If
δ∗(G) ≥ h

⌈ 2N
3h

⌉ + h − 1, then G has a Kh,h,h-factor or G is in the very extreme

case. If G is in the very extreme case and δ∗(G) ≥ h
⌈ 2N
3h

⌉ + 2h − 1, then G has a
Kh,h,h-factor.

2 Lower Bound

First, we need a lemma (Lemma 2.1 in [24]) which permits sparse tripartite graphs
with no triangles and with no quadrilaterals in its natural bipartite subgraphs:

Lemma 1 For each integer d ≥ 0, there exists an n0 such that, if n ≥ n0, there exists
a balanced tripartite graph, Q(n, d) on 3n vertices such that each of the 3 natural
bipartite subgraphs are d-regular with no C4 and Q(n, d) has no K3.

Finally, we prove the lower bound given in Proposition 1. Note that Proposition 1(1)
is proved by Proposition 1.5 in [24], so here we only address Proposition 1(2).

Proof of Proposition 1(2) Let h ≥ 3 and N = (3q+r)h so that, in this case, r ∈ {1, 2}.
Let G3 be defined such that Vi = A(1)

i
·∪ A(2)

i
·∪ A(3)

i (the notation ·∪ emphasizes that
it is a disjoint union of sets) in which column j is defined to be the triple of the form
(A( j)

1 , A( j)
2 , A( j)

3 ). Let the graph in column 1 be Q(qh + rh − 1, rh + h − 4) where
rh + h − 4 ≥ 2, the graph in column 2 be Q(qh, h − 3) and the graph in column
3 be Q(qh + 1, h − 2). If two vertices are in different columns and different vertex-
classes, then they are adjacent. It is easy to verify that δ∗(G3) = 2qh + rh + (h − 3)
= h
(2N )/(3h)� + h − 3. Suppose, by way of contradiction, that G3 has a Kh,h,h-
factor.

If a copy of Kh,h,h has vertex classes U1,U2,U3, then Ui ⊆ Vj for some j . Since
there are no triangles in any column and no C4’s in the natural bipartite subgraphs of
a column, the intersection of a copy of Kh,h,h with a column is either a star with all
leaves in the same vertex-class, or a set of vertices in the same vertex-class. So each
copy of Kh,h,h has at most h + 1 vertices in column 1 and at most h vertices in each
of column 2 and column 3.

There are three cases for a copy of Kh,h,h . Case 1 has h vertices in each column.
Case 2 has h + 1 vertices in column 1, h − 1 vertices in column 2 and h vertices in
column 3. Case 3 has h + 1 vertices in column 1, h vertices in column 2 and h − 1
vertices in column 3.

In Cases 1 and 2, since G3 contains no K1,h−1 in column 3, having h vertices of
a Kh,h,h in column 3 implies that all of them are in the same vertex class. In Case 3,
since G3 has no K1,h−1 in column 2, having h vertices in column 2 means that all are
in the same vertex-class. Since h + 1 vertices in column 1 means that they form a star,
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Fig. 2 The diagram for Θ3×3,
with the vertex classes in rows
and the dotted lines representing
nonedges (1)
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the remaining h − 1 vertices in column 3 must be in the same vertex-class (the same
vertex-class as the center of the star). Hence, the intersection of any copy of Kh,h,h with
column 3 is contained within a single vertex-class. Therefore, the number of copies

of Kh,h,h in the Kh,h,h-factor of G3 is at least 3
⌈
qh+1
h

⌉
= 3q + 3, a contradiction

because the factor has exactly 3q + r ≤ 3q + 2 copies of Kh,h,h .
Next consider the case when h = 2 and N = 2(3q + r) with r ∈ {1, 2}. Let G3 be

defined such that the graph in column 1 is Q(2q+1, 0), but all other possible edges in
G3 are present. It is easy to verify that δ∗(G3) = 4q+2r−1 = 2
N/3�−1. Suppose,
by way of contradiction, that G3 has a K2,2,2-factor. The intersection of one copy of
K2,2,2 with column 1 must be contained within a single vertex class and can contain

at most 2 vertices. So at least 3
⌈
2q+1
2

⌉
= 3q + 3 copies of K2,2,2 are needed to cover

all of column 1. This is a contradiction, because the factor has exactly 3q+r ≤ 3q+2
copies of K2,2,2. ��

3 The Extreme Case

Throughout Sect. 3, assume thatG is minimal, i.e., no edge ofG can be deleted so that
the minimum degree condition still holds. As we complete the proof of Theorem 3 by
proving Theorem 5, we will develop the usual hierarchy of constants:

α � α1 � α2 � α3 � α4 � α5 � 1 − θ � h−1.

Brief outline of the proof. There are 4 parts to the proof. Part 1 begins with G being
α-extremal and seeks a Kh,h,h-factor. If such a tiling is not found in G, we deduce that
G looks like the graph in Fig. 3 and move to Part 2. We again seek a Kh,h,h-factor in
G, and if it is not found, then we move on to Part 3 which addresses the two potential
structuresG must have. In Part 3a,G is approximatelyΘ3×3(N/3) (see Fig. 2). In Part
3b, G is approximately Γ3(N/3) (see Fig. 1.) Proofs for the lemmas and propositions
stated in this section are deferred until Sect. 3.6.

The following definition will come into play as we describe the structure of G.

Definition 3 For δ, 0 < δ < 1, a graph H and positive integer m, we say a graph
G is δ-approximately H(m) if V (G) can be partitioned into |V (H)| nearly-equally
sized pieces, each of size m or m + 1, corresponding to a vertex of H so that for
vertices v,w ∈ V (H) with v �H w, the parts of V (G) corresponding to v and w

have pairwise density less than δ.
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Note that if v ∼H w, we do not require that the parts of V (G) corresponding to v

and w have pairwise density close to 1.
We will assume for Parts 1, 2, 3a and 3b (Sects. 3.1, 3.2, 3.3 and 3.4, respectively)

that δ∗(G) ≥ h
⌈ 2N
3h

⌉ + h − 1. This takes care of everything except for the very
extreme case, which we will consider in Sect. 3.5. For this last part, we will require
δ∗(G) ≥ h

⌈ 2N
3h

⌉ + 2h − 1 to complete the proof.

3.1 Part 1: The Basic Extreme Case

For Part 1, we will prove that either a Kh,h,h-factor exists in G, or G is in Part 2.
Let Ai ⊂ Vi for i = 1, 2, 3 be the three pairwise sparse sets given by the definition

of α-extremal and Bi = Vi − Ai for i = 1, 2, 3. Recall that |Ai | = �N/3�, so
|Bi | = 
2N/3�. We then define Ãi to be the set of typical vertices with respect to
Ai , B̃i to be the set of typical vertices with respect to Bi , and C̃i are what remain.
Formally, for i = 1, 2, 3,

Ãi =
{
x ∈ Vi : ∀ j 	= i, degA j

(x) ≤ α1|A j |
}

B̃i =
{
y ∈ Vi : ∀ j 	= i, degA j

(y) ≥ (1 − α1)|A j |
}

C̃i = Vi − (
Ãi ∪ B̃i

)
.

Let {i, j, k} = {1, 2, 3}. Using these definitions, the fact that G is α-extremal and
the bound on δ∗, and the fact that every member of Ai − Ãi is adjacent to at least an
α1 proportion of either A j or Ak , we obtain the following:

|Ai − Ãi | · α1�N/3� < e(Ai − Ãi , A j ) + e(Ai − Ãi , Ak) ≤ e(Ai , A j ) + e(Ai , Ak)

≤ 2α�N/3�2,

and

⌈
2N

3

⌉
|A j | ≤ e(Vi , A j )

≤ α|Ai ||A j | + |Bi − B̃i |(1 − α1)|A j | + |Bi ∩ B̃i ||A j |
= α|Ai ||A j | + |Bi ||A j | − α1|Bi − B̃i ||A j |.

As a result, we have that |Ai − Ãi | ≤ 2(α/α1)�N/3� and |Bi − B̃i | ≤ 2(α/α1)�N/3�.
So, with α1 = α1/3 and α2 = 4α2

1, we get the following bounds for | Ãi | and |B̃i |:

(1 − α2)�N/3� ≤ | Ãi | ≤ (1 + α2)�N/3�

and

(1 − α2)
2N/3� ≤ |B̃i | ≤ (1 + α2)
2N/3�.
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Step 1 Adjusting the sizes of the Ãi sets. Let N = (3q + r)h with r ∈ {0, 1, 2} and
T = h �N/(3h)�.

Without loss of generality, assume that | Ã1| ≥ | Ã2| ≥ | Ã3|. For i = 1, 2, 3, define
ai = T + h if i ≤ r ; otherwise, ai = T . If | Ãi | > ai , then we will move | Ãi | − ai
vertices of Ãi to B̃i by applying Lemma 2 below, which is proved in Sect. 3.6. It is
applied several times throughout this paper to different sets.

Lemma 2 Let us be given ε2 > 0 and a positive integer M.

(1) Let (A1, A2; E) be a bipartite graph such that every vertex in A2 is adjacent to
at least d1 vertices in A1. Suppose further that ||Ai | − M | < ε2M and di < ε2M
for i = 1, 2.
Provided ε2 < ((h + 1)h)−1, there is a family ofmax{0, d1−h+1} vertex-disjoint
copies of K1,h all of whose centers lie in A1.

(2) Let (A1, A2, A3; E) be a tripartite graph such that every vertex not in Ai is
adjacent to at least di vertices in Ai , for i = 1, 2, 3. Suppose further that
||Ai | − M | < ε2M and di < ε2M for i = 1, 2, 3.
Provided ε2 < (2(h + 2)(h + 1)h)−1, there is a family of max{0, di − h + 1}
vertex-disjoint copies of K1,h all of whose centers lie in Ai and leaves lie in Ai+1
(index arithmetic is modulo 3).

Since
⌈ 2N
3h

⌉+⌊ N
3h

⌋ = N
h , we have h

⌈ 2N
3h

⌉+T = N . As δ∗(G) ≥ h
⌈ 2N
3h

⌉+h−1 ≥
N − T + h − 1, we can guarantee that each vertex not in Vi is adjacent to at least
| Ãi | − T + h − 1 vertices in Ãi . So we apply Lemma 2(2) to the graph induced
by ( Ã1, Ã2, Ã3), with di = | Ãi | − T + h − 1, ε2 = α2, and M = N/3. This will
construct stars with the property that there are exactly enough centers in Ãi such that,
when removed, the resulting set has its size bounded above by ai , which is either T
or T + h, depending on the case. Let Zi denote the set of these centers and move the
desired number of vertices of Zi from Ãi into B̃i .

If | Ãi | < ai , then we will move ai − | Ãi | vertices of B̃i ∪ C̃i to Ãi , as follows.
For a subgraph K1,h,h , with h ≥ 2, define the center to be the vertex that is adjacent

to all others. We will refer to the remaining vertices as leaves, although their degree
is h + 1.

In B := ⋃3
i=1

(
B̃i ∪ C̃i

)
, we will find vertex-disjoint copies of K1,h,h such that

each of max{ai − | Ãi |, 0} copies has its center vertex in B̃i ∪ C̃i for i ≤ r and such
that each of ai − | Ãi | copies has its center vertex in B̃i ∪ C̃i otherwise. This will be
accomplished with Lemma 3, which is proved in Sect. 3.6. It is applied several times
throughout this paper to slight variations of the sets B̃i .

Lemma 3 Given δ > 0, there exists an ε3 = ε3(δ) > 0 such that the following occurs:
Let (B1, B2, B3; E) be a tripartite graph on 6M vertices such that for all i 	= j ,

each vertex in Bi is adjacent to at least (1 − ε3)M vertices in B j . Furthermore,
||Bi | − 2M | < ε3M.

If (B1, B2, B3; E) contains no copy of K1,h,h with 1 vertex in B1, and h vertices in
each of B2 and B3, then the graph (B1, B2, B3; E) is δ-approximately Θ3×2(M).

Lemma 3 can be repeatedly applied to B at most 
α2(N/3)� times with δ = α3,
α2 � ε3 and M = T . Each time, either a K1,h,h is found and removed, or the
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current incarnation of B is α3-approximately Θ3×2(T ) and we stop applying the
lemma.When we are finished applying Lemma 3, add the center vertices of the K1,h,h

subgraphs to the appropriate sets Ãi . Put the leaves back into B and denote the result
as B = (B1, B2, B3; E).

If necessary, place vertices from C̃i into the set Ãi , for i = 1, 2, 3, so that the
resulting set, relabeled as A(1)

i , is of size ai and
∑3

i=1 |A(1)
i | = N .

Step 2 Finding a Kh,h-factor in B. Now we try to find a Kh,h-factor among the
remaining vertices in B with the goal of extending each Kh,h into a Kh,h,h using
vertices in A(1)

1 ∪ A(1)
2 ∪ A(1)

3 . Before we do so, however, we need to address the
following concerns:

• Vertices in copies of K1,h,h where the center vertex is in some A(1)
i must be in a

specified copy of Kh,h in B.
• Recall that Zi is the set of centers of h-stars which were found in Step 1. If v ∈ Zi

is the center of a K1,h with leaves in A(1)
k , then v will be assigned to B j , where

{ j} = {1, 2, 3} − {i, k}. This means that v will be adjacent to vertices in Bj in a
Kh,h in B.

• For {i, j, k} = {1, 2, 3}, vertices v ∈ C̃i will be assigned to B j or Bk , respectively.
This means that v will be adjacent to either h vertices in Bj or h vertices in Bk in
a Kh,h to be formed in B together with h − 1 vertices in Bi . We know this can be
accomplished because if v ∈ C̃i , then we may assume, without loss of generality,
that v is adjacent to at least α1|A j | vertices in A j .

Moreover, because all but a α2-proportion of the sets Ai and Bi are typical, we
have that |C̃i | ≤ α2|Ai | + α2|Bi | ≤ 3α2T . Recall that we applied Lemma 2 with
di = | Ãi | − T + h − 1. Thus |Zi | ≤ α2|Ai | + h − 1 ≤ 2α2T and there are at most
α2|Ai | + h ≤ 2α2T copies of K1,h,h with the center vertex in a given A(1)

i .
Lemma 4 is proved in Sect. 3.6. We will apply it to an adjusted B where we know

from Step 1 there are copies of Kh,h which must belong to any Kh,h-factor.

Lemma 4 Given δ > 0, there exists ε4 = ε4(δ) > 0 and a positive integer T0 = T0(δ)
such that the following occurs. Let T1, T2, T3 be three positive integers which are
divisible by h and with |Ti − Tj | ∈ {0, h}, for all i, j ∈ {1, 2, 3} and T1 > T0. Let
(B1, B2, B3; E) be a tripartite graph such that for {i, j, k} = {1, 2, 3} |Bi | = Tj +Tk,
and for i 	= j , each vertex in Bi is adjacent to at least (1− ε4)T1 vertices in B j . Then
one of the following holds.

(1) There is a Kh,h-factor in the graph induced by (B1, B2, B3; E) with the following
properties. Each copy is a subgraph of (Bi , Bj ) for some i 	= j . If we fix a set of
at most ε4T1 vertex-disjoint copies of Kh,h and at most ε4T1 vertex-disjoint copies
of K1,h, then the Kh,h-factor contains them as subgraphs.

(2) The graph induced by (B1, B2, B3; E) can be partitioned such that
Bi = A(2)

i
·∪ A(3)

i , |A(2)
i | = T1 for i = 1, 2, 3 and d(A(2)

j , A(2)
2 ) ≤ δ and

d(A(3)
j , A(3)

2 ) ≤ δ for j = 1, 3.

Now to find our Kh,h,h-factor, we first match vertices in C̃i that are assigned to Bj

with h typical neighbors in Bj and those h vertices with h − 1 typical neighbors in
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Fig. 3 The diagram that defines
Part 2. A dotted line represents a
sparse pair

1
(2)

A2
(2)

A3
(2)

A3
(1)

A2
(1)

A1
(1)

A3
(3)

A2
(3)

A1
(3)

A

Bi . As the name implies, a typical neighbor is a neighbor which is a typical vertex.
This forms a copy of Kh,h,h . Then, place the vertices that were moved in prior steps
into copies of Kh,h,h by matching the Kh,h with vertices in the appropriate “ Ã” set.
Remove all of these from B, and apply Lemma 4 to the remaining adjusted graph with
δ = α2 and ε4 = α2. If the appropriate Kh,h-factor cannot be found, then we are in
the case of Part 2, and G has the form shown in Fig. 3. A more rigorous definition of
this case is provided in Sect. 3.2.
Step 3 Completing the Kh,h,h-factor. If the Kh,h-factor above is found, then we will
recycle notation to define A(1)

i to be the vertices that remain from Ãi after removing

copies of Kh,h,h as above. It is easy to see that each A(1)
i will have size close to T and

divisible by h. Further define A( j)
i , i = 1, 2, 3 and j = 2, 3 so that each member of

the Kh,h-factor of B lies in a pair (A(2)
2 , A(3)

3 ), (A(2)
3 , A(3)

1 ) or (A(2)
1 , A(3)

2 ), and so that

each of the triples (A(1)
1 , A(2)

2 , A(3)
3 ), (A(1)

2 , A(2)
3 , A(3)

1 ) and (A(1)
3 , A(2)

1 , A(3)
2 ) consist

of sets of the same size. Note that this can be done arbitrarily.
We use Proposition 2, which allows us to complete a Kh,h-factor into a Kh,h,h-

factor. The proof follows easily from König–Hall.

Proposition 2 Let h ≥ 1.

(1) Let G = (V1, V2; E) be a bipartite graph with |V1| = |V2| = M, h divides M,
and each vertex is adjacent to at least (1 − 1/(2h2))M vertices in the other part.
Then, we can find a Kh,h-factor in G.

(2) Let G = (V1, V2, V3; E) be a tripartite graph with |V1| = |V2| = |V3| = M, h
divides M, and each vertex is adjacent to at least (1−1/(4h2))M vertices in each
of the other parts. Furthermore, let there be a Kh,h-factor in (V2, V3). Then, we
can extend it into a Kh,h,h-factor in G.

Proposition 2(2) allows us to find Kh,h,h-factors in each of (A(1)
1 , A(2)

2 , A(3)
3 ),

(A(1)
2 , A(2)

3 , A(3)
1 ) and (A(1)

3 , A(2)
1 , A(3)

2 ) which completes the Kh,h,h-factor in G.

3.2 Part 2: G is Approximately the Graph Represented by Fig. 3

Let H3 be the graph on vertices v
( j)
i for i, j ∈ {1, 2, 3} with the following non-

adjacencies: v( j)
1 � v

( j)
2 for j ∈ {1, 2, 3}, v( j)

2 � v
( j)
3 for j ∈ {1, 2, 3} and v

(1)
1 � v

(1)
3 .

In this part, our graph G is α2-approximately H3. It therefore corresponds to the
diagram in Fig. 3 in which partite sets are represented as rows, and each row is split
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into three columns. Note that the first column of G consists of the pairwise sparse
sets from the definition of α-extremal, and the second and third columns are defined
by the exceptional case of Lemma 4. We will group the vertices into sets A( j)

i of size

between (1 − 3α2/3
2 )T and (1 + 3α2/3

2 )T so that each vertex in A( j)
i is adjacent to at

least θT vertices in each set A( j ′)
i ′ when v

( j)
i ∼H3 v

( j ′)
i ′ . In other words, the vertices in

A( j)
i are typical according to the rules established by Fig. 3. The non-typical vertices

in row i will be collected in the set C̃i . From this point forward we have issues related
to divisibility that we did not have before. Namely, we may need to modify A(2)

2 and

A(3)
2 so that their sizes are divisible by h.

Step 1 Ensuring small A( j)
i sets of proper size. Each A( j)

i set has a target size that we
will denote si, j . If N = 3T , then si, j = T for all i, j . If N = 3T +h, let si, j = T +h
for all i, j such that 3 divides i + j and si, j = T otherwise. If N = 3T + 2h, let
si, j = T for all i, j such that 3 divides i + j and si, j = T + h otherwise. Note that

if N = 3T + h, we can remove one copy of Kh,h,h from the triple (A(2)
1 , A(1)

2 , A(3)
3 ),

and if N = 3T + 2h, we can remove two copies of Kh,h,h from triples where i + j is
not divisible by 3.

Apply Lemma 2 to obtain max{0, |A( j)
i | − si, j } disjoint stars with centers in A( j)

i

and leaves in A( j+1)
i . Then move these star centers to A( j ′)

i where j ′ 	= j so that

|A( j)
i | = si, j holds for all i, j .

Step 2 Partitioning the sets. Beforewe partition the sets, wemust examine the behavior
of (A(2)

1 ∪ A(3)
1 , A(2)

3 ∪ A(3)
3 ). If this is α5- approximatelyΘ2×2(T ), then call the dense

pairs (E1, E3) and (F1, F3). Note that the sets Ei and Fi need not be uniquely-defined
as long as they satisfy the given condition. If (A(2)

1 ∪ A(3)
1 , A(2)

3 ∪ A(3)
3 ) is not α5-

approximately Θ2×2(T ), do nothing.
For i ∈ {1, 3}, { j, j ′} = {2, 3}, we say that Ei and A

( j)
i coincide if the intersection of

their typical vertices is large and therefore the intersection of the typical vertices of Ei

and A( j ′)
i is small. We will determine the quantities that constitute “large” and “small”

later. If (E1, E3) and (F1, F3) coincide with (A(2)
1 , A(3)

3 ) and (A(3)
1 , A(2)

3 ), respec-
tively, then G is approximately Θ3×3(N/3). This case will be handled in Sect. 3.3. If
(E1, E3) and (F1, F3) coincide with (A(2)

1 , A(2)
3 ) and (A(3)

1 , A(3)
3 ), respectively, then

G is approximately Γ3(N/3). This case will be handled in Sect. 3.4. Otherwise, there
may be no coincidence, or coincidencemay occur in exactly one of V1 and V3.Without
loss of generality, we will assume that if there is coincidence in only one part, then
it occurs in V1. More specifically, we will assume that E1 coincides with A(2)

1 , F1
coincides with A(3)

1 , and neither E3 nor F3 coincides with A( j)
3 , j = 2, 3.

In addition, note that if, say A(2)
1 coincides with E1, then every vertex in A(2)

1 is
adjacent to at least θT vertices in E3 and vice versa. If there is no coincidence, then
let E1 and E3 be redefined so that every vertex in E1 is adjacent to at least θT vertices
in E3 and vice versa. Similarly for (F1, F3).

We randomly partition each set A( j)
i into two pieces of size divisible by h and as

equal as possible. By the Chernoff bound, with high probability each vertex in A( j)
i

123



1060 Graphs and Combinatorics (2018) 34:1049–1075

has at least (1 − 2α3 − 6α2/3
2 )(T /2) neighbors in each piece of the partition of A( j ′)

i ′ ,

i ′ 	= i , j ′ 	= j . Moreover, if a vertex has degree at least α3T in an A( j)
i set, it has

degree at least (α3/3)(T /2) in each of the two partitions.
Let Σ3 denote the symmetric group that permutes the elements of {1, 2, 3}. For

all i, j ∈ {1, 2, 3}, we assign to each part of A( j)
i a permutation σ ∈ Σ3 such that

σ(i) = j (there are exactly two such permutations) and denote it by Ai,σ . Furthermore,
it is possible to arrange the assignment such that |A1,σ | = |A2,σ | = |A3,σ | for all
σ ∈ Σ3. After some adjustments, these permutations will identify which sets the
copies of Kh,h,h in our covering will span. For example, a Kh,h,h which spans A(2)

1 ,

A(1)
2 and A(3)

3 will be contained in the parts of those sets corresponding to σ = 213,

and a Kh,h,h which spans A(2)
1 , A(3)

2 and A(1)
3 will be contained in the parts of those

sets corresponding to σ = 231. Note that the permutations 213 and 231 are expressed
using the notation σ(1)σ (2)σ (3).
Step 3Assigning vertices. Each vertex c ∈ C̃2 has the property that, for all j ∈ {1, 2, 3}
and distinct i ′, i ′′ ∈ {1, 3}, if c is adjacent to fewer than α3T vertices in A( j)

i ′ , then c

is adjacent to at least α3T vertices in A( j)
i ′′ .

For i ∈ {1, 3}, each vertex c ∈ C̃i has the property that, for all j ∈ {1, 2, 3}, c
cannot be adjacent to fewer than α3T vertices in either A(2)

2 or A(3)
2 . Also, c cannot

be adjacent to fewer than α3T vertices in both A(1)
2 and A(1)

4−i or both A(2)
2 and F4−i

(if it exists) or both A(3)
2 and E4−i (if it exists). Note that when F4−i and E4−i do not

exist, it is because (A(2)
1 ∪ A(3)

1 , A(2)
3 ∪ A(3)

3 ) is not approximately Θ2×2(T ).
Trivially, each vertex in Vi is adjacent to at least (1/2−α3)T vertices in at least two

of {A(1)
i ′ , A(2)

i ′ , A(3)
i ′ } and in at least two of {A(1)

i ′′ , A(2)
i ′′ , A(3)

i ′′ }, where i ′, i ′′ are distinct
members of {1, 2, 3} − {i}. This is particularly important for vertices in C̃i .

The C̃i vertices, as well as star-leaves and star-centers, may only be able to form a
Kh,h,h with respect to one particular permutation.

For example, consider a vertex c which had been in C̃1 but was put into A(1)
1 in

Step 2. Then, for either the pair (A(2)
2 , A(3)

3 ) or the pair (A(3)
2 , A(2)

3 ), the vertex c is
adjacent to at least (1/2 − α3)T vertices in one set and at least α3T vertices in the
other; otherwise, it would have been a typical vertex in A(1)

1 , A(2)
1 or A(3)

1 .

Assume that c is adjacent to at least α3T vertices in A(3)
2 and at least (1/2 − α3)T

vertices in A(2)
3 . In this case, if c were placed into the partition corresponding to the

identity permutation in Step 3, then exchange c with a vertex in A1,132.
In a similar fashion, if there is a star with center in, say A(2)

1 , and leaves in, say

A(1)
2 , then we will use it to form a Kh,h,h with respect to the permutation 213 ∈ Σ3.

Again, if any such leaf or center was placed in the wrong partition, exchange it with
a typical vertex in the other partition.

The number of leaves in any set is atmost 2h(6α2/3
2 T+h) and the number of centers

is at most 2(6α2/3
2 T + h); the number of C̃i vertices is at most 9α2/3

2 T . So, if N is

large enough, the total number of typical vertices in any A( j)
i which were exchanged

is at most 2(12h + 21)α2/3
2 T + 4h2 + 4h.
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With the partition established and the C̃i , star center and leaf vertices in the proper
parts, we consider the triple formed by three sets:

• A(1)
2 , which will also be denoted S̃2

• the union of the piece of A(2)
1 corresponding to 213 and the piece of A(3)

1 corre-
sponding to 312, denoted S̃1, and

• the union of the piece of A(2)
3 corresponding to 312 and the piece of A(3)

3 corre-
sponding to 213, denoted S̃3.

Let the graph induced by the triple (S̃1, S̃2, S̃3) be denoted S̃ .
Step 4 Finding a Kh,h,h cover in S̃. We will first find a Kh,h,h-factor in S̃ . This task
is complicated because the parts of S̃ correspond to the permutations 213 and 312,
meaning the Kh,h,h’s in our covering either will span A(2)

1 , A(1)
2 and A(3)

3 or will span

A(3)
1 , A(1)

2 and A(2)
3 . If (A(2)

1 ∪ A(3)
1 , A(2)

3 ∪ A(3)
3 ) is approximately Θ2×2(T ), then for

i = 1, 3, we will need to exchange vertices in S̃i with typical vertices in Ei and Fi .
Doing this in the right way will ensure that a Kh,h-factor of (S̃1, S̃3) can be found, and
we will extend that Kh,h-factor to a Kh,h,h-factor of S̃ . Note that this complication
does not arise when finding Kh,h,h’s with respect to permutations in Σ3 −{213, 312}.

To begin, let T0 = |A(1)
2 |. First, take each existing copy of K1,h in S̃ and complete

it to form disjoint copies of Kh,h,h , using unexchanged typical vertices. This can be
done because α4 is small enough and the centers are typical vertices. Remove all the
copies of Kh,h,h that contain stars.

Second, take each vertex c from C̃i and use it to complete a Kh,h,h . We can guaran-
tee, because of the random partitioning, that c is adjacent to at least (α3/3)T0 vertices
in one partition set and (1/3−2α3)T0 vertices in the other. Without loss of generality,
assume that c ∈ S̃1 has degree at least (α3/3)T0 in S̃2 and at least (1/3−2α3)T0 in S̃3.
Since α3 � α2, we can guarantee h neighbors of c in S̃2 among unexchanged typical
vertices and, if α3 � α4 � 1, then h common neighbors of those among unexchanged
typical vertices in N (c) ∩ S̃3. Finally, α4 � h−1 implies this Kh,h has at least h − 1
more common neighbors in S̃1. This is our Kh,h,h and we can remove it. Repeat this
process for all former members of a C̃i .

Third, take each exchanged typical vertex and put it into a Kh,h,h and remove it.
Throughout this process, we have removed at most Ch

√
α2 × T0 vertices where Ch

is a constant depending only on h. What remains are three sets of the same size,
T ′ ≥ (1− Ch

√
α2)T0, with each vertex in S̃1 adjacent to at least, say (1/2 − 2α4)T ′,

vertices in S̃3 and vice versa. Each vertex in S̃1 and in S̃3 is adjacent to at least
(1/2−2α4)T ′ vertices in S̃2 and each vertex in S̃2 is adjacent to at least (1/2−2α4)T ′
vertices in S̃1 and in S̃3.

Lemma 5 [28, Theorem 9] shows that we can find a factor of (S̃1, S̃3) with vertex-
disjoint copies of Kh,h unless (S̃1, S̃3) is approximately Θ2×2(T /2).

Lemma 5 (Zhao [28])For every ε > 0 and integer h ≥ 1, there exists an α > 0 and an
N0 such that the following holds. Suppose that N > N0 is divisible by h. Then every
bipartite graph G = (A, B; E) with |A| = |B| = N and δ(G) ≥ (1/2 − α)N either
contains a Kh,h-factor, or contains A′ ⊆ A, B ′ ⊆ B such that |A′| = |B ′| = N/2
and d(A, B) ≤ ε.
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If we can find the factor, apply König-Hall to form a factor of S̃ of vertex-disjoint
copies of Kh,h,h . If not, apply Lemma 6. Lemma 6 states, in particular, that if a random
partition results in (S̃1, S̃3)being approximatelyΘ2×2(T /2)withhighprobability, then
(A(2)

1 ∪ A(3)
1 , A(2)

3 ∪ A(3)
3 ) is approximately Θ2×2(T ). The proof of Lemma 6 follows

from similar arguments to those in the proof of Lemma 3.3 of [21] and in Sect. 3.3.1
of [23] so we omit it.

Lemma 6 For every ε > 0 and integer h ≥ 1, there exists a β > 0 and positive
integer T0 such that if T ≥ T0 the following holds. Let (A, B) be a bipartite graph
such that |A|, |B| ∈ {2T − h, 2T , 2T + h} with minimum degree at least (1 − ε)T
and is minimal with respect to this condition. Let A′ ⊂ A, B ′ ⊂ B, |A′| = |B ′| = T
be chosen uniformly at random. If

Pr{(A′, B ′) contains a subpair with density at most ε} ≥ 1/4

then (A, B) is β-approximately Θ2×2(T ).

We can, therefore, assume the existence of (E1, E3) and (F1, F3). Further, we can
assume that coincidence occurs only in V1 or not at all; otherwise, we would be in
Part 3.

As a result, recall that we let the typical vertices in the dense pairs in (A(2)
1

∪A(3)
1 , A(2)

3 ∪ A(3)
3 ) be denoted (E1, E3) and (F1, F3). If the dense pairs do not coin-

cide, thenwewillwork to ensure that |E1∩S̃1| = |E3∩S̃3| and |F1∩S̃1| = |F3∩S̃3| and
both are divisible by h. Do this by moving typical vertices from (A(2)

1 ∩ E1) − S̃1 into

(A(2)
1 ∩E1)∩ S̃1 andmove the same number from (A(2)

1 ∩F1)∩ S̃1 into (A(2)
1 ∩F1)− S̃1.

In addition, move vertices from (A(2)
3 ∩ E3) − S̃3 into (A(2)

3 ∩ E3) ∩ S̃3 and move the

same number from (A(2)
3 ∩ F3) ∩ S̃3 into (A(2)

3 ∩ F3) − S̃3.

This can be done unless one of the intersections A( j)
i ∩ Ei or A

( j)
i ∩ Fi is too small.

This implies the coincidence that we discussed at the beginning of this part. But then,
we have guaranteed that the remaining vertices of A(2)

1 are not only typical in that set

but also typical in E1. The same is true of A(3)
1 and F1.

Now, we want to move vertices in V3 to ensure that |E3 ∩ S̃3| = |A(2)
1 ∩ S̃1| and

|F3∩ S̃3| = |A(3)
1 ∩ S̃1|. Note that we have ensured that both |A(2)

1 ∩ S̃1| and |A(3)
1 ∩ S̃1|

are divisible by h and approximately T /2.
We can do this as follows: Move vertices from E3 ∩ A(2)

3 − S̃3 to (E3 ∩ A(2)
3 ) ∩ S̃3

and move the same amount from (F3 ∩ A(2)
3 ) − S̃3 to (F3 ∩ A(2)

3 ) ∩ S̃3. Also move

vertices from (E3 ∩ A(3)
3 ) − S̃3 to (E3 ∩ A(3)

3 ) ∩ S̃3 and move the same amount from

(F3 ∩ A(3)
3 ) − S̃3 to (F3 ∩ A(3)

3 ) ∩ S̃3. Since none of the intersections are small, this is
possible. Moving around these vertices will let us find a Kh,h-factor of (S̃1, S̃3) which
we can complete to a Kh,h,h-factor of S̃ by applying Proposition 2(2).
Step 5Completing the Kh,h,h-factor in G. Now that we have found a Kh,h,h-factor that
corresponds to permutations 213 and 312, we consider the other permutations in Σ3.

For a σ ∈ Σ3 −{213, 312}, let S(σ )
def= (

A1,σ , A2,σ , A3,σ
)
be a triple of parts formed

by the random partitioning after the exchange of vertices has taken place. The set Ai,σ
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is a subset of A(σ (i))
i . We have also ensured that sσ

def= ∣∣A1,σ
∣∣ = ∣∣A2,σ

∣∣ = ∣∣A3,σ
∣∣ and

sσ is divisible by h. It is now easy to ensure that this triple contains a Kh,h,h-factor:
First, take each star in S(σ ) and complete it to form disjoint copies of Kh,h,h , using

unexchanged typical vertices. This can be done if α4 is small enough. Remove all such
Kh,h,h’s containing stars.

Second, take each c which had been a member of some C̃i and use it to complete
a Kh,h,h . We can guarantee, because of the random partitioning, that c is adjacent to
at least (α3/3)sσ vertices in one set and (2/3 − 2α3)sσ vertices in the other. Without
loss of generality, let c ∈ A1,σ with degree at least (α3/3)sσ in A2,σ and at least
(1/2 − 2α3)sσ in A3,σ . Since α3 � α2, we can guarantee h neighbors of c in A2,σ
among unexchanged typical vertices and, if α3 � α4 � 1, then h common neighbors
of those among unexchanged typical vertices in N (c) ∩ A3,σ . Finally, α4 � h−1

implies this Kh,h has at least h − 1 more common neighbors in A1,σ . This is our
Kh,h,h and we can remove it. Do this for all former members of a C̃i .

Finally, take each exchanged typical vertex and put it into a Kh,h,h and remove
it. Throughout this process, we have removed at most Ch

√
α2 × sσ vertices where

Ch is a constant depending only on h. What remains are three sets of the same size,
s′ ≥ (1 − Ch

√
α2)sσ , with each vertex adjacent to at least, say (1 − 2α4)s′, vertices

in each of the other parts. If N is large enough, then we can use the Blow-up Lemma
or Proposition 2(2) to complete the factor of S(σ ) by copies of Kh,h,h .

3.3 Part 3a: G is Approximately�3×3(�N/3�)

Figure 2 shows Θ3×3 and we are in the case where G is α2-approximately

Θ3×3(�N/3�), so A( j)
i and A( j ′)

i ′ being connected with a dotted line means that the

pair (A( j)
i , A( j ′)

i ′ ) is sparse.
We will assume for this part that each vertex is adjacent to at least h

⌈ 2N
3h

⌉ + h − 1
vertices in each of the other pieces of the partition. Again, let T = h�N/(3h)�.

We will group the vertices of G into sets A( j)
i of size between (1 − √

α2)T and

(1 + √
α2)T so that each vertex in A( j)

i is adjacent to at least θT vertices in each

set A( j ′)
i ′ where i ′ 	= i and j ′ 	= j . In other words, the vertices in A( j)

i are typical
according to the rules established by Fig. 2. The non-typical vertices in row i will
be collected in the set C̃i . Note that each vertex c ∈ C̃i has the property that, for all
j ∈ {1, 2, 3} and distinct i ′, i ′′ ∈ {1, 2, 3} − {i}, if c is adjacent to fewer than α3T
vertices in A( j)

i ′ , then c is adjacent to at least α3T vertices in A( j)
i ′′ ; otherwise c is in

some set A( j)
i . Furthermore, c is adjacent to at least (1/2 − α3)T vertices in at least

two of {A(1)
i ′ , A(2)

i ′ , A(3)
i ′ } and in at least two of {A(1)

i ′′ , A(2)
i ′′ , A(3)

i ′′ }.
Step 1 Ensuring small A( j)

i sets of proper size. As in Sect. 3.2, each A( j)
i set has a

target size si, j . If N = 3T , then si, j = T for all i, j . If N = 3T + h, let si, j = T + h
when i = j and si, j = T otherwise. If N = 3T + 2h, let si, j = T when i = j and
si, j = T + h otherwise.
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Take each triple (A( j)
1 , A( j)

2 , A( j)
3 ), j = 1, 2, 3, and construct disjoint copies of

stars so that there are at most T non-center vertices in each set A( j)
i . We use the fact

that every vertex is adjacent to at least h
⌈ 2N
3h

⌉ + h − 1 vertices in each of the other

parts as well as Lemma 2. Move these star centers to A( j ′)
i where j ′ 	= j so that

|A( j)
i | = si, j holds for all i, j .

Step 2 Partitioning the sets. We will randomly partition each set A( j)
i into two pieces,

as close as possible to equal size but which have size divisible by h, and assign them
to a permutation, σ ∈ Σ3, which assigns σ(i) = j . Each part assigned to σ will be
the same size, and these permutations will identify which sets the copies of Kh,h,h in
our covering will span.

When N is large, this random partition of A( j)
i will have the following properties

with high probability. A typical vertex in A( j)
i has at least (1 − 2α4 − 2

√
α2)(T /2)

neighbors in each piece of the partition of A( j ′)
i ′ , i ′ 	= i , j ′ 	= j . Moreover, if a vertex

has degree at least α3T in a set, it has degree at least (α3/3)(T /2) in each of the two
partitions.
Step 3 Assigning vertices. The C̃i vertices, as well as star centers together with their
star-leaves, may only be able to form a Kh,h,h with respect to one particular permuta-
tion.

For example, consider a vertex c which had been in C̃1 but is now in A(1)
1 . Then,

for either the pair (A(2)
2 , A(3)

3 ) or the pair (A(3)
2 , A(2)

3 ), the vertex c is adjacent to at
least (1/2 − α3)T in one set and at least α3T vertices in the other. It is easy to see,
since α2 � α3, that if this were not true, then c would have been typical with respect
to one of the sets A(1)

1 , A(2)
1 or A(3)

1 , which is a contradiction to the definition of c.

Assume that c is adjacent to at least α3T vertices in A(3)
2 and at least (1/2 − α3)T

vertices in A(2)
3 . In this case, if c were placed into the partition corresponding to the

identity permutation, then exchange c with a typical vertex in the partition assigned
to 132.

In a similar fashion, if there is a star with center in, say A(2)
1 , and leaves in, say

A(1)
2 , then we will form a Kh,h,h with respect to the permutation 213 ∈ Σ3. Again, if

any such leaf or center was in the wrong partition, exchange it with a typical vertex in
the other partition.

The number of leaves in any set is at most 2h(
√

α2 T +h) and the number of centers
is at most 2(

√
α2 T + h), the number of C̃i vertices is at most 3

√
α2 T . So, if N is

large enough, the total number of typical vertices in any A( j)
i which were exchanged

is at most (2h + 6)
√

α2 T .

Step 4Completing the cover. For some σ ∈ Σ3, letS(σ )
def=

(
S(σ (1))
1 , S(σ (2))

2 , S(σ (3))
3

)
be a triple of parts formed by the random partitioning after the exchange has taken
place. The set S(σ (i))

i is a subset of A(σ (i))
i . We have also ensured in Step 3 that

sσ
def=

∣∣∣S(σ (1))
1

∣∣∣ =
∣∣∣S(σ (2))

2

∣∣∣ =
∣∣∣S(σ (3))

3

∣∣∣ and sσ is divisible by h. It is now easy to

ensure that this triple contains a Kh,h,h-factor:
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First, take each star in S(σ ) and complete it to form disjoint copies of Kh,h,h , using
unexchanged typical vertices. This can be done if α4 is small enough. Remove all such
Kh,h,h’s containing stars.

Second, take each c which had been a member of some C̃i and use it to complete
a Kh,h,h . We can guarantee, because of the random partitioning, that c is adjacent to
at least (α3/3)sσ vertices in one set and (2/3 − 2α3)sσ vertices in the other. Without
loss of generality, let c ∈ S(σ (1))

1 have degree at least (α3/3)sσ in S(σ (2))
2 and at least

(1/2−2α3)sσ in S(σ (3))
3 . Since α3 � α2, we can guarantee h neighbors of c in S(σ (2))

2
among unexchanged typical vertices and, since α3 � α4 � 1, h common neighbors
of those among unexchanged typical vertices in N (c) ∩ S(σ (3))

3 . Finally, α4 � h−1

implies this Kh,h has at least h − 1 more common neighbors in S(σ (1))
1 . This is our

Kh,h,h and we can remove it. Do this for all former members of a C̃i .
Finally, take each exchanged typical vertex and put it into a Kh,h,h and remove

it. Throughout this process, we have removed at most α
1/3
2 sσ vertices if α2 is small

enough. What remains are three sets of the same size, s′ ≥ (1 − α
1/3
2 )sσ , with each

vertex adjacent to at least, say (1 − 2α4)s′, vertices in each of the other parts. If N
is large enough, then we can use Proposition 2(2) to complete the factor of S(σ ) by
copies of Kh,h,h .

3.4 Part 3b: G is Approximately �3(�N/3�)

Figure 1 shows Γ3 and we are in the case where G is α2-approximately Γ3(�N/3�),
where A( j)

i and A( j ′)
i ′ being connected with a dotted line means that the pair

(A( j)
i , A( j ′)

i ′ ) is sparse.
We will assume for this part that each vertex is adjacent to at least h

⌈ 2N
3h

⌉ + h − 1
vertices in each of the other pieces of the partition. We also assume that G is not
in the very extreme case (see Definition 2). We must deal with the very extreme
case separately.

Now, let T
def= h�N/(3h)�. We may group the vertices of G into sets A( j)

i of size

between (1 − √
α2)T and (1 + √

α2)T so that each vertex in A(1)
i is adjacent to at

least (1 − α3)T vertices in each set A( j ′)
i ′ where i ′ 	= i and j ′ ∈ {2, 3}. For j = 2, 3,

each vertex in A( j)
i is adjacent to at least (1− α3)T vertices in each set A(1)

i ′ and A( j)
i ′ ,

where i ′ 	= i . In other words, the vertices in A( j)
i are typical according to the rules

established by Fig. 1. The non-typical vertices in row i will be collected in the set
C̃i . Note that each vertex c ∈ C̃i has the following property: for all j ∈ {1, 2, 3} and
distinct i ′, i ′′ ∈ {1, 2, 3} − {i}, if c is adjacent to fewer than α3T vertices in A( j)

i ′ , then

c is adjacent to at least α3T vertices in A( j)
i ′′ . Furthermore, c is adjacent to at least

(1/2 − α4)T vertices in at least two of
{
A(1)
i ′ , A(2)

i ′ , A(3)
i ′

}
and

{
A(1)
i ′′ , A(2)

i ′′ , A(3)
i ′′

}
.

Step 1 Ensuring small A( j)
i sets of proper size. As in the previous two sections, each

A( j)
i has a target size si, j . There are several cases for si, j according to the divisibility

of N/h. Let N/h = 6q + r where 0 ≤ r < 6.
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• r = 0, 3: si, j = T for i = 1, 2, 3 and j = 1, 2, 3.
• r = 1: si, j = T for i = 1, 2, 3 and j = 1, 3; and si,2 = T + h for i = 1, 2, 3.
• r = 2, 5: si,1 = T for i = 1, 2, 3; and si, j = T + h for i = 1, 2, 3 and j = 2, 3.
• r = 4: si,1 = T for i = 1, 2, 3; and s1,3 = s2,3 = s3,2 = T ; and s1,2 = s2,2

= s3,3 = T + h.

Without loss of generality, we will assume that both |A(2)
1 | ≥ |A(3)

1 | and |A(2)
2 |

≥ |A(3)
2 |.

If |A(2)
3 | ≥ |A(3)

3 |, then A(2)
i is larger than A(3)

i for i = 1, 2, 3. Use Lemma 2(1) to

construct max
{
|A(2)

i | − T , 0
}
disjoint copies of K1,h in the pair2 (A(2)

i , A(3)
i+1) with

centers in A(2)
i . Move these star-centers into A(3)

i .

If |A(2)
3 | < |A(3)

3 |, we do something similar except that first we use Lemma 2(1) to

create the appropriate number of stars in (A(2)
1 , A(3)

2 ) and (A(2)
2 , A(3)

1 ) with the centers

in A(2)
1 and A(2)

2 , respectively. Move these star-centers into A(3)
1 and A(3)

2 , respectively.

Then, after the star-centers have been removed from A(2)
2 , we apply Lemma 2(1) to

the pair (A(3)
3 , A(2)

2 ), and move the star-centers into A(2)
3 .

By the conditions on Lemma 2(1), we see that each remaining set A( j)
i is of size

at most T . Now, apply Lemma 2(2) to the triple (A(1)
1 , A(1)

2 , A(1)
3 ). For star-centers in

A(1)
i , move T − |A(2)

i | into A(2)
i and T − |A(3)

i | into A(3)
i .

If necessary, place vertices from C̃i into A( j)
i for i = 1, 2, 3 and j = 1, 2, 3, while

ensuring that we still have |A( j)
i | ≤ si, j .

For j = 2, 3, letA( j) = (A( j)
1 , A( j)

2 , A( j)
3 ). We remove some copies of Kh,h,h from

among typical vertices of these sets as follows:

• r = 1: One from A(2).
• r = 2: One from each of A(2) and A(3).
• r = 4: One from A(2).
• r = 5: Two from A(2).

Recalling N = (6q + r)h, each A( j)
i is now of size 2qh, 2qh + h or 2qh + 2h.

Step 2a Partitioning the sets (r 	= 3). Let r ∈ {0, 1, 2, 4, 5}, τ1 = qh and τ2 = qh+h.
Partition each A( j)

i set into parts of nearly equal size. Each part of the partition will
receive a label σ ∈ {1, 2, 3} × {2, 3}, where σ = (i, j) corresponds to row i and
column j . The part with label (i, j)will be denoted Si, j . A Kh,h,h which is associated

with the label (i, j) will span the triple with one part in A(1)
i and two parts in column

j . Now, partition each A( j)
i as follows:

Each A(1)
i will be split into two pieces. For r = 0, 1, 2 and i = 1, 2, 3, both pieces

will have size τ1 and we will arbitrarily assign the two pieces with the labels Si,2 and
Si,3. For r = 4 and i = 3, assign the piece of size τ1 with label S3,3 and the one of
size τ2 with S3,2. For r = 4 and i = 1, 2 and for r = 5 and i = 1, 2, 3, assign the
smaller piece with label Si,2 and the larger with label Si,3.

2 Arithmetic in the indices is always done modulo 3.
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Fig. 4 Partitioning the sets. The
light outlined half of a set is the
piece of size τ1, the bold
outlined half of a set is the piece
of size τ2

(3,2)

(1,3)

(2,2) (2,3)

(3,2) (3,3) (1,2)

(1,2)

(2,2)

(2,2)

(3,2)

(2,3)(1,3)

(3,3)(1,3)

(3,3)(2,3)

r=4

(1,2)

(3,2)

(2,2)(3,3)

(2,2)

     r=5

(1,2)

(1,3) (2,3)

(1,3) (3,3)

(2,3) (3,3)(1,2) (1,3)

(2,2) (2,3)

(1,2)

(3,2)

(3,2)

Each A(2)
i will be split into two pieces. Unless both r = 4 and i ∈ {1, 2}, both

pieces will be of size τ1 and will be assigned Si ′,2 and Si ′′,2 arbitrarily, where {i, i ′, i ′′}
= {1, 2, 3}. If r = 4 and i ∈ {1, 2}, the one of size τ1 is labeled S3−i,2 and the one of
size τ2, is labeled S3,2.

Each A(3)
i will be split into two pieces. If r ∈ {0, 1, 2}, both pieces will be of size

τ1, and if r = 5 or if r = 4 and i = 3, both pieces will be of size τ2. In these cases,
arbitrarily assign the pieces with labels Si ′,3 and Si ′′,3 where {i, i ′, i ′′} = {1, 2, 3}. If
r = 4 and i ∈ {1, 2}, the one of size τ1 is labeled S3,3 and one of size τ2 is labeled
S3−i,3.

Figure 4 diagrams the partitioning for r = 4 and r = 5.Note thatwhen r ∈ {0, 1, 2},
the partition labeling is identical to the case when r = 5, but all parts have size τ1.

Partitioning the sets at random again ensures that the above can be accomplished
so that all of the vertices’ neighborhoods maintain roughly the same proportion, as in
Part 3a, Step 3.
Step 2b Partitioning the vertices (r = 3, not The very extreme case). Let r = 3 (recall
N = (6q + r)h) and let G not be in the very extreme case. We will use Lemma 2(1)
to find additional stars between sparse pairs. Without loss of generality, we seek stars
with centers in either A(1)

1 or A(3)
1 . If we can find at least h centers in one of these sets,

then we can make that A( j)
1 set of size 2qh. If we are not able to do this, every vertex

v ∈ A( j)
i must be adjacent to at most 2h − 2 vertices in A( j ′)

i ′ where (A( j)
i , A( j ′)

i ′ ) is

a sparse pair. In turn, we have that every vertex v ∈ A( j)
i is nonadjacent to at most
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3h − 3 vertices in A( j ′)
i ′ where (A( j)

i , A( j ′)
i ′ ) is a dense pair. Since G is approximately

Γ3(�N/3�), this means G is in the very extreme case.
Suppose star-centers are removed to make either |A(1)

1 | = 2qh or |A(3)
1 | = 2qh.

We will make the set A(2)
1 of size (2q + 2)h by adding star-centers and vertices from

the set C̃1.
In each case, if the star-centers thatwere placed into A(2)

1 were themselves originally

in A(2)
1 , then we just treat them as typical vertices again, ignoring the star that was

formed. Note that all sets are of size (2q + 1)h, except |A(2)
1 | = (2q + 2)h and either

A(1)
1 or A(3)

1 , which has size 2qh. If A(1)
1 is the small set, then remove one copy of

Kh,h,h in the triple (A(3)
1 , A(3)

2 , A(3)
3 ).

Now we partition each set as follows: Each A(1)
i will have one piece of size qh

with label (i, 3). The other set will have label (i, 2) and will be of size (q + 1)h in
the case of A(1)

2 and A(1)
3 and of size either qh or (q + 1)h in the case of A(1)

1 . The

set A(2)
1 is partitioned into two pieces of size (q + 1)h, one labeled (2, 2), the other

labeled (3, 2). For A(2)
i , i = 2, 3, we have one piece of size qh and labeled (1, 2) and

the other of size (q + 1)h, labeled (5 − i, 2). For A(3)
1 , it will have two pieces of size

qh, one labeled (2, 3), the other (3, 3). Finally, for A(3)
i , i = 2, 3, we have one piece

of size qh with label (5− i, 3) and the other will have size either qh or (q + 1)h and
label (1, 3).

Partitioning the sets at random again ensures that the above can be accomplished
so that all of the vertices’ neighborhoods maintain roughly the same proportion, as in
Part 3a, Step 3.
Step 3 Assigning vertices. For any σ ∈ {1, 2, 3} × {2, 3}, we will show that the star-
centers and C̃i vertices, in any A( j)

i can be assigned to one of the two parts of the
partition.

For example, consider a vertex c which had been in C̃1 but is now in A(1)
1 . Then,

for either the pair (A(2)
2 , A(2)

3 ) or the pair (A(3)
2 , A(3)

3 ), the vertex c is adjacent to at
least (1/2 − δ)T in one set and at least α3T vertices in the other. If such a pair is
(A(2)

2 , A(2)
3 ) then if c were labeled (1, 2) exchange it with a typical vertex with label

(1, 3).
Now, for example, consider a vertex c which had been in C̃1 but is now in A(2)

1 . It

is easy to check that for either the pair (A(1)
2 , A(2)

3 ) or the pair (A(1)
3 , A(2)

2 ), the vertex
c is adjacent to at least (1/2 − α3)T in one set and at least α3T vertices in the other.
If such a pair is, say, (A(1)

2 , A(2)
3 ), and c is not labeled (2, 2), then exchange it for a

typical vertex of that label.
A similar analysis can be applied to any c ∈ C̃i for i = 1, 2, 3.
Now we consider stars. All star-centers are in sets A(2)

i or A(3)
i . Without loss of

generality, assume z is such a center in A(2)
1 and the leaves are in V2. If the leaves are

in A(1)
2 , then z must have been a member of A(1)

1 originally. So, z and its leaves must

have label (2, 2). If the leaves are in A(2)
2 , then z must have been a member of A(3)

1
originally. So, z and its leaves must have label (3, 2). Exchange z with typical vertices
to ensure this.
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Finally, we consider typical vertices moved from A(2)
i ∪ A(3)

i to A(1)
i . Without loss

of generality, suppose z is such a vertex in A(1)
1 . If z were originally from A(2)

1 , then

it is a typical vertex with respect to A(2)
2 and A(2)

3 and z should receive label (1, 2).

Otherwise, it is typical with respect to A(3)
2 and A(3)

3 and z should receive label (1, 3).
This completes the verification that all moved vertices can receive at least one label

of the A( j)
i set in which it is placed.

Step 4 Completing the cover. For any σ ∈ {1, 2, 3} × {2, 3}, let S(σ ) be the triple of
parts with label σ . Note that the label (i, j) corresponds to a triple with one part in
A(1)
i and two parts in column j . We can finish the Kh,h,h-factor as in Part 3a, Step 5.

3.5 The very extreme case

Recall the very extreme case:

There are integers N , q such that N = (6q + 3)h. There are sets A( j)
i for

i, j ∈ {1, 2, 3}, with sizes at least 2qh + 1, such that if v ∈ A( j)
i then v is

nonadjacent to at most 3h − 3 vertices in A( j ′)
i ′ whenever the pair (A( j)

i , A( j ′)
i ′ )

corresponds to an edge in the graph Γ3 with respect to the usual correspondence.

In this case, we must raise the minimum degree condition to 2N/3 + 2h − 1.
Recalling Part 4, Step 3b, we were able to proceed if we were able to make one of the
sets A( j)

i small by means of creating stars. Each vertex in A(2)
2 is adjacent to at least

|A(3)
1 | − N/3 + 2h − 1 vertices in A(3)

1 . Using Lemma 2(1), we have that there is a

family of |A(3)
1 | − N/3 + h vertex-disjoint stars with centers in A(3)

1 . We move the

centers to A(2)
1 . Then we can proceed from Part 3b, Step 4.

3.6 Proofs of Lemmas

Lemma 2 is used to find vertex-disjoint h-stars in a graphG. Part (1) deals with the case
whereG = (A1, A2; E), and part (2) deals with the case whereG = (A1, A2, A3; E).

Proof of Lemma 2 (1) Let δ1 = d1 −h+1. If the stars cannot be created greedily, then
there is a set S ⊂ A1 and a set T ⊂ A2 such that |S| ≤ δ1 − 1 and |T | = |S|h and
each vertex in A1 − S is adjacent to at most h − 1 vertices in A2 − T . In this case,

(d1 − |S|)|A2 − T | ≤ e(A1 − S, A2 − T ) ≤ (h − 1)|A1 − S|.
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This gives

|S| ≥ δ1 − (h − 1)
|A1 − S| − |A2 − T |

|A2 − T |
= δ1 − (h − 1)

|A1| − |A2| + (h − 1)|S|
|A2| − h|S|

≥ δ1 − (h − 1)
(h + 1)εM

(1 − (h + 1)ε)M
.

If ε < (h2 + h)−1, then this gives |S| > δ1 − 1. Since |S| is an integer, |S| ≥ δ1,
contradicting the condition we put on |S|.

(2) Let δi = max{0, di − h + 1} for i = 1, 2, 3. If, say, δ3 = 0, then apply part
(1) to the pair (A2, A3) to create δ2 vertex-disjoint stars with centers in A2. Let
Z2 be the set of the centers. Apply part (1) to (A1, A2 − Z2) and we can find δ1
vertex-disjoint stars with centers in A1 if 2ε < (h2 + h)−1.
So, we may assume that δi > 0 for i = 1, 2, 3. Note that if it is possible to
construct δ1 + δ2 disjoint copies of K1,h in (A1, A2) with centers, Z1 ⊂ A1, then
we can finish by applying part (1). To see this, apply part (1) to (A3, A1 − Z1),
with 3ε < (h2 + h)−1, creating δ3 stars with centers Z3 ⊂ A3. Then apply part
(1) to (A2, A3 − Z3). (Here, we need 2ε < (h2 + h)−1.) There will be δ1 stars
remaining in (A1, A2) which are vertex-disjoint from the rest.
So, we will assume that it is not possible to create δ1 + δ2 vertex-disjoint copies of
K1,h in (A1, A2)with centers in A1. That means there is an S ⊂ A1 and a T ⊂ A2
such that |S| < δ1 + δ2, |T | = h|S| and every vertex in A1 − S is adjacent to at
most h − 1 vertices in A2 − T .
Now apply part (1) to (A3, A1 − S) to obtain δ3 vertex-disjoint copies of K1,h
with centers Z3 ⊂ A3. (Here, we need 3ε < (h2 + h)−1.) Next, apply part (1) to
(A2, A3 − Z3) to obtain δ2 vertex-disjoint copies of K1,h with centers Z2 ⊂ A2.
(Here, we need 2ε < (h2 + h)−1.) Finally, apply part (1) to (A1, A2 − (Z2 ∪ T ))

to obtain δ1 vertex-disjoint copies of K1,h with centers Z1 ⊂ A1. (Here, we need
(2h+2)ε < (h2+h)−1.) But, because no vertex in A1− S is adjacent to h vertices
in A2 − (Z2 ∪ T ), it must be the case that Z1 ⊂ S and our δ1 + δ2 + δ3 copies of
K1,h are, indeed, vertex-disjoint.

��
Lemma 3 is used to find a copy of K1,h,h in a tripartite graph (B1, B2, B2; E). If a

K1,h,h cannot be found, then the graph must be approximately Θ3×2(M).

Proof of Lemma 3 We can first apply the following theorem of Erdős, Frankl and Rödl
[9]:

Theorem 6 For every ε′ > 0 and graph F, there is a constant n0 such that for any
graph G of order n ≥ n0, if G does not contain F as a subgraph, then G contains a
set E ′ of at most ε′n2 edges such that G − E ′ contains no Kr with r = χ(F).

Here, F = K1,h,h and r = 3.
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Let us remove at most ε′(6M)2 edges from G so that it becomes triangle-free. In
doing so, some vertices might be nonadjacent to many more vertices than before. We
want to remove such vertices so that we can apply Proposition 3, which appeared in
[21] and is rephrased below:

Proposition 3 For a Δ small enough, there exists ε′′ > 0 such that if H is a tripartite
graph with at least 2

(
1 − ε′′) t vertices in each vertex class and each vertex is non-

adjacent to at most
(
1 + ε′′) t vertices in each of the other classes. Furthermore, let

H contain no triangles. Then, each vertex class is of size at most 2
(
1 + ε′′) t and H

is Δ-approximately Θ3×2(t).

For ε′′ � ε′, at least 2(1 − ε′′)M vertices are nonadjacent to at most (1 + ε′′)M
vertices in each of the other classes. Otherwise, we would have had to delete a total
of at least Ω(ε′′)M edges incident to each of these vertices, of which there would
be at least Ω(ε′′)M . But this means deleting Ω((ε′′)2)M2 edges, which is more than
ε′(6M)2.

So we apply Proposition 3. Thus, G is approximately Θ3×2(M), and so the lemma
follows. ��

Lemma 4 is used to find a Kh,h-factor in a tripartite graph (B1, B2, B2; E). If the
factor cannot be found, then the graph has a structure like columns 2 and 3 of the
diagram in Fig. 3.

Proof of Lemma 4 Let ε′ be chosen such that ε′ � δ.
For this lemma,we partition the possibilities according towhether the pairs (Bi , Bj )

are approximately Θ2×2(T1). That is, there are two pairs of sets of size T1 which have
density less than ε′. Minimality gives the rest.

In addition, we say that graphs Θ2×2(T1) coincide if (Bi , Bj ) and (Bj , Bk) are
approximately Bi ⊆ Bi , B j ⊆ Bj , Bk ⊆ Bk , all of size T1, such that both (Bi , B j )

and (B j , Bk) have density less than ε′. Note that this means that (Bi − Bi , Bj − B j )

and (Bi − Bi , Bj − B j )

Case 1 No pair is Θ2×2(T1). For each distinct i, j, k ∈ {1, 2, 3}, partition Bi into
two pieces, Bi [ j] and Bi [k] with |Bi [ j]| = Tj and |Bi [k]| = Tk . If this partition is
done uniformly at random, then with probability approaching 1, each vertex in Bi [k]
is adjacent to at least (1/2− ε1/2)Tk vertices in Bj [k]. So there exists a partition such
that each vertex in Bi is adjacent to at least (1/2 − ε1/2)T1 vertices in each of the
pieces Bj [k], j, k 	= i and such that the pair (B2[1], B3[1]) fails to contain a subpair
with �T1/2� vertices in each part and density at most ε1/3.

The vertices that are reserved will have to be placed in the proper set. For example,
if a reserved Kh,h is in the pair (Bi , Bj ), then those vertices will need to be in the pair
(Bi [k], Bj [k]). So, we exchange vertices in Bi [k] for vertices in Bi [ j] so that reserved
vertices are in the proper place. At most 4(ε + ε)T1 vertices are either reserved or
moved in each set Bi [ j]. After such exchanges occur, place the moved vertices into
vertex-disjoint copies of Kh,h that lie entirely within the given pairs. This can be done
because each vertex not in Bi is adjacent to almost half of the vertices in both Bi [ j]
and Bi [k].

Consider what remains of these sets. The number of vertices is still divisible by h
and at most 8h(ε)T1 have been placed into these copies of Kh,h . We look for a perfect
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Kh,h-factor in each of the pairs (B1[3], B2[3]), (B1[2], B3[2]) and (B2[1], B3[1]).
Recall that each of these pairs has minimum degree at least (1/2−ε1/2)T1. Utilizing a
lemma in [28]—stated as Lemma 5 in Sect. 3.2 above—we are able to find such a factor
unless at least one of those pairs is α(ε1/2)-approximately Θ2×2(T1/2). (Minimality
gives the other sparse pair.)

Lemma 6 says that if random selections give a graph that is approximately
Θ2×2(T1/2), then the original graph was, too. So, along with Lemma 5, it estab-
lishes that if, after moving our vertices, we are unable to complete our Kh,h-cover in
(Bi [k], Bj [k]) with nontrivial probability, then the pair (Bi , Bj ) is ε′-approximately
Θ2×2(T1), where ε′ = β(α(ε1/2)).

Since none of the pairs is ε′-approximately Θ2×2(T1), we can find the required
factor of (B1, B2, B3) by copies of Kh,h .
Case 2 Exactly one pair is Θ2×2(T1). Here, we will assume that B1 = B1 ·∪ B̂1 and
B2 = B2 ·∪ B̂2, where |B1| = |B̂2| = T1 and d(B1, B̂2), d(B̂1, B2) ≤ ε′. A random
partition of B1 into pieces, with probability approaching 1 as T1 approaches infinity,
will partition B1 into two approximately equal pieces. In particular, let the typical
vertices in B1 be those that are nonadjacent to at most (ε′)1/2T1 in B̂2. There are at
most (ε′)1/2T1 such vertices. A similar conclusion can be drawn from B2, B̂1 and B̂2.

In this case, we randomly partition B1, B2 and B3 into the sets Bi [k] as prescribed.
Exchange the vertices as we have done above and complete both the reserved and
exchanged vertices to form copies of Kh,h . This encompasses at most 8hεT1 vertices.
Exchange vertices in B1[3] with vertices in B1[2] and vertices in B2[3] with vertices
in B2[1] so that there are exactly h�T1/(2h)� typical vertices of B1 in B1[3] and
h�T1/(2h)� typical vertices of B̂2 in B2[3]. Let the rest of the vertices, notmatched into
a Kh,h , in B1[3]be typical vertices in B̂1 and the rest of the vertices in B2[3]be typical in
B2. Using Proposition 2(1) on each pair of sets of typical vertices in (B1[3], B2[3])will
easily have a Kh,h-factor.With ε′ small enough,we can guarantee that atmost (ε′)1/3T1
vertices in (B1[2], B3[2]) and (B2[1], B3[1])were moved. Applying Lemmas 5 and 6,
and the fact that no pair other than (B1, B2) can be ε′-approximately Θ2×2(T1), we
conclude that the pairs (B1[2], B3[2]) and (B2[1], B3[1]) can be completed to Kh,h-
factors.
Case 3Exactly two pairs areΘ2×2(T1), which do not coincide.Let the pairs in question
be (B1, B2) and (B2, B3). Let the dense pairs in the subgraph induced by (B1, B2)

be (B1, B2) and (B̂1, B̂2). Let the dense pairs in (B2, B3) be (B̊2, B̊3) and (B̈2, B̈3).
Moreover, since the pairs fail to coincide, we can conclude that the intersection of the
typical vertices of B2 with the typical vertices of each of B̊2 and B̈2 is at least (ε′)1/4T1
and similarly for B̂2.

Once again, we randomly partition the vertices in B1, B2 and B3 and move vertices
so as to ensure that the reserved vertices and the vertices exchanged for them are placed
into vertex-disjoint copies of Kh,h . Our concern at this point is the vertices in B2.

Consider the vertices in (B1[3], B2[3]). Approximately half are typical vertices of
B2 and approximately half are typical vertices of B̂2. Take each non-typical vertex in
B1[3] and in B2[3], match them with a copy of Kh,h in the pair (B1[3], B2[3]) and
remove them. Do the same for vertices in B2[1] that are not typical in B̊2 or B̈2 and in
B3[1] that are not typical in B̊3 or B̈3. Remove those copies of Kh,h also.
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Observe that there are at least ε1/4t1/4 vertices in each intersection of B2 or B̂2
with B̊2 or B̈2 and with B2[3] or B2[1].

First, move a vertices from B2∩ B̊2∩B2[3] to B2∩ B̊2∩B2[1] to make |B2∩B2[3]|
divisible by h. Second, move a+b vertices from B̂2∩ B̊2∩B2[1] to B̂2∩ B̊2∩B2[3] to
make |B̊2∩ B2[1]| divisible by h. Third, move a+b+c vertices from B̂2∩ B̈2∩ B2[3]
to B̂2 ∩ B̈2 ∩ B2[1]. This will make both |B̂2 ∩ B2[3]| and |B̈2 ∩ B2[1]| divisible by h.

Here a, b and c are the remainders of |B2 ∩ B2[3]|, |B̊2 ∩ B2[1]| and |B̂2 ∩ B2[3]|,
respectively, when each is divided by h. Observe that both |B2∩ B2[3]|+|B̂2∩ B2[3]|
and |B̊2 ∩ B2[1]| + |B̈2 ∩ B2[1]| are divisible by h.

Finally, we exchange vertices in B1 ∩ B1[3] with those in B1 ∩ B1[2] so that
|B1∩B1[3]| = |B2∩B2[3]| and similarly for B̂2. Also, exchange vertices in B̊3∩B3[1]
with those in B̊3 ∩ B3[2] so that |B̊3 ∩ B3[1]| = |B̊2 ∩ B2[1]| and similarly for B̈2.

Then, in (B1 ∩ B1[3], B2 ∩ B2[3]), first greedily place each moved vertex into
copies of Kh,h and then finish the factor via Proposition 2(1). Do the same for(
B̂1 ∩ B1[3], B̂2 ∩ B2[3]

)
,
(
B̊2 ∩ B2[1], B̊3 ∩ B3[1]

)
and

(
B̊2 ∩ B2[1], B̊3 ∩ B3[1]

)
.

Finally, we can complete the factor of (B1[2], B3[2]) because if it is not possible,
Lemmas 5 and 6 would require (B1, B3) to be approximately Θ2×2(T1), excluded by
this case.
Case 4 Three pairs are Θ2×2(T1), none of which coincide. Let the dense pairs in
(B1, B2) be (B1, B2) and (B̂1, B̂2). Let the dense pairs in (B2, B3) be (B̊2, B̊3) and
(B̈2, B̈3). Let the dense pairs in (B1, B3) be (B�

1, B
�
3) and (B�

1, B
�
3). Moreover, since

the pairs fail to coincide, we can conclude that the intersection of the typical vertices
of one set of sparse pairs with the typical vertices of another is at least (ε′)1/4T1.

Partition B1, B2 and B3 into appropriately-sized sets as before, uniformly at random.
The degree conditions hold with high probability as before. Take non-typical vertices
and complete them greedily to place them in vertex-disjoint copies of Kh,h within each
of the pairs (B1[3], B2[3]), (B2[1], B3[1]) and (B1[2], B3[2]). Remove these copies
of Kh,h from the graph.

Let M be the largest multiple of h less than or equal to the size of the intersection
of what remains of any sparse set (i.e., Bi , B̂i , B̊i , B̈i , B

�
i , B

�
i ) with a set of the form

Bi [k].
We can move vertices as in Case 3 by letting a = |B2 ∩ B2[3]| − M , b = |B̊2 ∩

B2[1]|− M and c = |B̂2 ∩ B2[3]|+ M − T3, which is also equal to T1 − M − a− b−
|B̈2 ∩ B2[1]|. We can perform similar operations to guarantee that, among the vertices
that remain in the graph, that

M = ∣∣B1 ∩ B1[3]
∣∣ = ∣∣B2 ∩ B2[3]

∣∣ =
∣∣∣B̊2 ∩ B2[1]

∣∣∣ =
∣∣∣B̊3 ∩ B3[1]

∣∣∣
=

∣∣∣B�
1 ∩ B1[2]

∣∣∣ =
∣∣∣B�

3 ∩ B3[2]
∣∣∣

The fact that the pairs do not coincide ensures that there are enough vertices to make
these moves.

Place the moved vertices into vertex-disjoint copies of Kh,h and finish the factor
via Proposition 2(1).
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Case 5 There are at least two pairs which are Θ2×2(T1) and which coincide. This is
exactly the exceptional case stated in the lemma and without loss of generality the
pairs (A(2)

1 , A(2)
2 ) and (A(2)

2 , A(2)
3 ) are those that witness the coincidence of the copies

of Θ2×2(T1). ��
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