Graphs and Combinatorics (2018) 34:1049-1075
https://doi.org/10.1007/s00373-018-1929-1

ORIGINAL PAPER

@ CrossMark

Tiling Tripartite Graphs with 3-Colorable Graphs: The
Extreme Case

Kirsten Hogenson' - Ryan R. Martin? - Yi Zhao3

Received: 17 May 2016 / Revised: 20 July 2018 / Published online: 6 August 2018
© Springer Japan KK, part of Springer Nature 2018

Abstract

There is a sufficiently large N € AN such that the following holds. If G is a tripartite
graph with N vertices in each vertex class such that every vertex is adjacent to at least
2N /3 + 2h — 1 vertices in each of the other classes, then G can be tiled perfectly by
copies of Ky, 55, This extends work by Martin and Zhao (Electron J Combin 16(1):109,
2009) and also gives a sufficient condition for tiling by any fixed 3-colorable graph.
Furthermore, we show that 2N /3 4+ 2h — 1 in our result can not be replaced by
2N /3 + h — 2 and that if N is divisible by 6/, then we can replace it with the value
2N /3 + h — 1 and this is tight.
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1 Introduction

Let H be a graph on A vertices, and let G be a graph on n vertices. An H-tiling of
G is a subgraph of G which consists of vertex-disjoint copies of H and a perfect
H-tiling, or H-factor, of G is an H-tiling consisting of |n/h] copies of H. The
celebrated Hajnal-Szemerédi Theorem [11] says that each n-vertex graph G with
8(G) > (r — I)n/r contains a K,-factor. (Corrddi and Hajnal [6] proved the case
r = 3.) Using Szemerédi’s regularity lemma [26], Alon and Yuster [1,2] obtained
results on H-tiling for arbitrary H. Their results were improved substantially [16,17,
19,25], in particular, Kiihn and Osthus [19] determined the minimum degree threshold
for H-factors for arbitrary H up to an additive constant, see the survey [18] for details.

In this paper, we consider multipartite tiling, which restricts G to be an r-partite
graph. For r = 2, this is an immediate consequence of the Konig—Hall Theorem (e.g.
see [3]). Wang [27] considered K ¢-factors in bipartite graphs for all s > 1; Zhao [28]
gave the best possible minimum degree condition for this problem. With the exception
of one case, Hladky and Schacht [13] found best possible minimum degree conditions
for K ;-factors in bipartite graphs with s < 7; the last case was settled by Czygrinow
and DeBiasio [8]. Later, Bush and Zhao [4] considered tiling bipartite graphs with an
arbitrary graph H.

For a tripartite graph G = (A, B, C; E), the graphs induced by (A, B), (A, C) and
(B, C) are called the natural bipartite subgraphs of G. Let G.(N) be the family of
r-partite graphs with N vertices in each partition set. Such a graph is called balanced
because the number of vertices in each partition set is the same. In an r-partite graph
G, 8*(G) stands' for the minimum degree over all natural bipartite subgraphs of G.

There are two classes of multipartite graphs that we will reference in this paper. One

is I}, which is in Gy (k). The vertices of I} are h;j), i=1,...,kand j =1,...,k,
and the adjacency rules are as follows: h;j )~ h:(’] it #1', j # j', and either j or

jlisin {1,... k =2} Also, B ~ nSD and B ~ 1 for i # i’. The other
)

graph is ®,,, which is in G, (n). The vertices of ®,, are ¢;”’,i = 1,...,r and

j = 1,...,n such that al.(j) ~ al.(,j/) if and only if i # i’ and j # j’. We will also

discuss the so-called blow-ups of these graphs. The blow-up graph, G(N), for a graph
G is obtained by replacing each edge of G with a copy of Ky n and replacing each
non-edge by an N x N bipartite graph with no edges.

In addition to the bipartite results discussed above, there have also been a number of
results on multipartite graphs with r > 3, many of which were inspired by a conjecture
of Fischer. Fischer [10] conjectured that if G € G, (N) satisfies §*(G) > %N , then
G contains a K,-factor. However, if r and N /r are odd integers, then Catlin [5] had
earlier given an example of a graph without a K -factor where §*(G) = ’:—1 N.In[21],
Magyar and Martin proved that, for large N, this graph is a unique counterexample
to Fisher’s conjecture for r = 3 by showing that if N is a sufficiently large odd
multiple of 3, the blow-up graph I'3(N/3) € G3(N) (see Fig. 1) is the unique graph
with §*(G) > 2N /3 and no K3-factor. The conjecture of Fischer can be modified to
exclude this case. This gives the following Corradi—Hajnal-type result.

I'In [24], § was used in place of §*.
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Fig.1 The diagram for the (1) (2) (3)
blow-up of I3, with the vertex O OA
classes in rows and the dotted N

lines representing nonedges. (1) . (2) A (3)
Note that §*(I'3) = 2 but I'3 has O - Q

no K3-factor - : l. O‘

o =y (2) <3)
A 3

Theorem 1 ([21]) Let G € G3(N) have §*(G) > (2/3)N. If N > Ny for some
absolute constant Ny, then G contains a Kz-factor or G = I'3(N/3) for N/3 an odd
integer.

Martin and Szemerédi [23] proved a quadripartite version of the Hajnal-Szemerédi
Theorem. Han and Zhao [12] reproved the results of [21,23] by using the absorbing
method. An approximate version of the multipartite Hajnal-Szemerédi Theorem was
given by Csaba and Mydlarz [7]. Keevash and Mycroft [14] and independently Lo and
Markstrom [20] confirmed Fischer’s conjecture asymptotically, and finally Keevash
and Mycroft [15] proved the modified Fischer conjecture exactly for any sufficiently
large graph. More recently, an asymptotic multipartite version of the the Alon-Yuster
Theorem was proved by Martin and Skokan [22].

It was shown [24, Theorem 1.2] that in the tripartite case, 2/3 is the correct coeffi-
cient of N required to have a K}, j, p-factor.

Theorem 2 ([24]) For any positive real number y and any positive integer h, there is
Ny such that the following holds. Given an integer N > Nq such that N is divisible
by h, if G is a tripartite graph with N vertices in each vertex class such that every
vertex is adjacent to at least (2/3 + y) N vertices in each of the other classes, then G
contains a Ky p j-factor.

Let f (N, h) be the smallest integer f such that every balanced tripartite graph G on
3N vertices with §*(G) > f contains a K, p-factor. Our main result is the following
more precise theorem.

Theorem 3 Fix a positive integer h and let N be sufficiently large. If h > 2 and
= (6g +r)h with0 <r < 6, then

2N )
f(N,h)=—3 +h—1, ifr =0;
MELA . 2< f(N,h) <h NV S ifr=1.2.4.5
3h f 3h k) lf‘r_ E) £ E) £
2N 2N )

So, the result is tight when 6/ divides N, almost tight unless N/ is an odd multiple
of 3 and, in the worst case, the upper and lower bounds differ by 4. We are not sure
whether the upper or lower bounds of Theorem 3 are correct in the cases when they
are not equal.
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Clearly the complete tripartite graph K 5 5 can itself be perfectly tiled by any 3-
colorable graph on A vertices. Since (N, h) < 2TN +2h — 1 whenever N is divisible
by &, we have the following corollary.

Corollary 1 Let H be a 3-colorable graph of order h. There exists a positive integer
Ny such that if N > No and N divisible by h, then every G € G3(N) with §*(G)
> % + 2h — 1 contains an H-factor.

The lower bound for f(N, k) in Theorem 3 is due to two constructions, one which
is from [24] and another which is similar. They are stated in Proposition 1, and proven
in Sect. 2.

Proposition 1 Fix a positive integer h > 2. There exists an Ny such that

(1) if N = No, h | N and N /h is divisible by 3, then there is a graph G, € G3(N)
with no Ky p p-factor and §*(G2) > 2N /3 + h — 2; and

(2) if N = No, h | N and N /h is not divisible by 3, then there is a graph G3 € G3(N)
with no Ky p p-factor and §*(G3) > h [ 2] +h — 3.

As to the upper bound, we use Theorem 4 [24, Theorem 1.4] to take care of the

main case. For vertex sets A and B, letd(A, B) := % denote the density of A and

B. Before we can prove the main case, we need the following definition.

Definition 1 Given « > 0, we say that G = (V, V2, V3; E) € G3(N) is a-extremal
when there are three sets A, Az, Az such that A; C V;, |A;| = [N /3] for all i and
d(A;, Aj) <afori # j.

If G is a-extremal and §*(G) > 2N /3, then fori # j, the pair (A;, V; — A;) is a very
dense bipartite graph. Thus, we expect most members of our K, , ,-factor with vertices
in A; to have h vertices in A; and the remaining 2/ vertices in (Vj —A j) UV — Ap),
where {j, k} = [3] — {i}.

Theorem 4 ([24]) Given any positive integer h and any o > 0, there exists an ¢ > 0
and an integer Ng such that whenever N > Ny, and h divides N, the following occurs:
If G € G3(N) satisfies $*(G) > (2/3 — €)N, then either G contains a Ky, , p-factor
or G is a-extremal.

Hence, for the upper bound, it suffices to assume that G € G3(N) is a-extremal. The
proof, given in Sect. 3, is detailed and involves a case analysis. Moreover, it requires
the definition of a particular structure we call the very extreme case, which we deal
with in Sect. 3.5. This definition is given below, but roughly, it means that the graph
looks like I'3(N).

Definition 2 A balanced tripartite graph G on 3N vertices is in the very extreme
case if the following occurs: First, there are integers &, g such that N = (6g + 3)h.
Second, there are sets Ul.(]) C V; fori, j € {1, 2, 3}, each with size at least 2qh + 1,

such thatifv e U l.(j ) then v is nonadjacent to at most 34 — 3 vertices in Ul.(,j ) whenever
(hlm, hf,] )) is an edge in the graph I}
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Note that we use different language for «-extremal and the very extreme
case because the definition of «-extremal requires a parameter, whereas the very
extreme case does not.

Now that we have defined the very extreme case, we can formally state the upper
bound theorem as follows:

Theorem5 Fix h > 2. Let N € hN be sufficiently large and assume G € G3(N). If
8*(G) > h (%—I}H 4+ h — 1, then G has a Kp, p p-factor or G is in the very extreme
case. If G is in the very extreme case and §*(G) > h (23—1}\” +2h — 1, then G has a
K. h.n-factor.

2 Lower Bound

First, we need a lemma (Lemma 2.1 in [24]) which permits sparse tripartite graphs
with no triangles and with no quadrilaterals in its natural bipartite subgraphs:

Lemma 1 For each integer d > 0, there exists an nq such that, if n > ny, there exists
a balanced tripartite graph, Q(n, d) on 3n vertices such that each of the 3 natural
bipartite subgraphs are d-regular with no C4 and Q(n, d) has no Ks3.

Finally, we prove the lower bound given in Proposition 1. Note that Proposition 1(1)
is proved by Proposition 1.5 in [24], so here we only address Proposition 1(2).

Proof of Proposition 1(2) Leth > 3 and N = (3q +r)h so that, in this case, r € {1, 2}.
Let G3 be defined such that V; = AED Y AEZ) ] Al@) (the notation U emphasizes that
it is a disjoint union of sets) in which column j is defined to be the triple of the form
(AY), Aéj), Ag/)). Let the graph in column 1 be Q(gh +rh — 1,rh + h — 4) where
rh + h —4 > 2, the graph in column 2 be Q(gh, h — 3) and the graph in column
3be Q(gh + 1, h —2). If two vertices are in different columns and different vertex-
classes, then they are adjacent. It is easy to verify that *(G3) = 2gh +rh + (h — 3)
= h[(2N)/(3h)] + h — 3. Suppose, by way of contradiction, that G3 has a Kp, ;-
factor.

If a copy of K}, ., has vertex classes Uy, Up, Us, then U; C V; for some j. Since
there are no triangles in any column and no C4’s in the natural bipartite subgraphs of
a column, the intersection of a copy of K, 5., with a column is either a star with all
leaves in the same vertex-class, or a set of vertices in the same vertex-class. So each
copy of Kj ».» has at most 2 + 1 vertices in column 1 and at most £ vertices in each
of column 2 and column 3.

There are three cases for a copy of K}, ,. Case 1 has h vertices in each column.
Case 2 has h + 1 vertices in column 1, & — 1 vertices in column 2 and / vertices in
column 3. Case 3 has i + 1 vertices in column 1, 4 vertices in column 2 and & — 1
vertices in column 3.

In Cases 1 and 2, since G3 contains no K 1 in column 3, having h vertices of
a Kp p.p in column 3 implies that all of them are in the same vertex class. In Case 3,
since G3 has no K j—1 in column 2, having & vertices in column 2 means that all are
in the same vertex-class. Since /& + 1 vertices in column 1 means that they form a star,
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Q

Fig.2 The diagram for ©33,
with the vertex classes in rows
and the dotted lines representing

SOy
nonedges (I ) ) 2)
'Ot « Q
>

M) @ 3
NelioRte)

the remaining 4 — 1 vertices in column 3 must be in the same vertex-class (the same
vertex-class as the center of the star). Hence, the intersection of any copy of K, 5, , with

column 3 is contained within a single vertex-class. Therefore, the number of copies
qh+1

)
A,

Tnpps

..Q“.O

@

of Kj pn in the Kp j p-factor of Gz is at least 3 —‘ = 3q + 3, a contradiction
because the factor has exactly 3g +r < 3g + 2 coples of Kp.n.i.

Next consider the case when 2 = 2 and N = 2(3¢g 4+ r) withr € {1, 2}. Let G3 be
defined such that the graph in column 1 is Q(2¢ + 1, 0), but all other possible edges in
G are present. It is easy to verify that §*(G3) = 49 +2r —1 = 2[N /3] — 1. Suppose,
by way of contradiction, that G3 has a K> 2 »-factor. The intersection of one copy of

K722 with column 1 must be contained within a single vertex class and can contain

2q+1

at most 2 vertices. So at least 3 { —I = 3q + 3 copies of K> 7> are needed to cover

all of column 1. This is a contradlctlon, because the factor has exactly 3g +r < 3g+2
copies of K2 22. O

3 The Extreme Case

Throughout Sect. 3, assume that G is minimal, i.e., no edge of G can be deleted so that
the minimum degree condition still holds. As we complete the proof of Theorem 3 by
proving Theorem 5, we will develop the usual hierarchy of constants:

ey KLy Lay<Las < 1—0<h™.

Brief outline of the proof. There are 4 parts to the proof. Part 1 begins with G being
a-extremal and seeks a K, j, j-factor. If such a tiling is not found in G, we deduce that
G looks like the graph in Fig. 3 and move to Part 2. We again seek a K, 5 p-factor in
G, and if it is not found, then we move on to Part 3 which addresses the two potential
structures G must have. In Part 3a, G is approximately @3,3(N /3) (see Fig. 2). In Part
3b, G is approximately I3(N /3) (see Fig. 1.) Proofs for the lemmas and propositions
stated in this section are deferred until Sect. 3.6.
The following definition will come into play as we describe the structure of G.

Definition3 For §, 0 < § < 1, a graph H and positive integer m, we say a graph
G is §-approximately H (m) if V(G) can be partitioned into |V (H)| nearly-equally
sized pieces, each of size m or m 4 1, corresponding to a vertex of H so that for
vertices v, w € V(H) with v ~y w, the parts of V(G) corresponding to v and w
have pairwise density less than §.
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Note that if v ~g w, we do not require that the parts of V (G) corresponding to v
and w have pairwise density close to 1.

We will assume for Parts 1, 2, 3a and 3b (Sects. 3.1, 3.2, 3.3 and 3.4, respectively)
that §*(G) = h ( —| + h — 1. This takes care of everything except for the very
extreme case, Wthh we will consider in Sect. 3.5. For this last part, we will require
8*(G) = h |— -| + 2h — 1 to complete the proof.

3.1 Part 1: The Basic Extreme Case

For Part 1, we will prove that either a K}, 5 p-factor exists in G, or G is in Part 2.

Let A; C V; fori =1, 2, 3 be the three pairwise sparse sets given by the definition
of a-extremal and B; = V; — A; fori = 1,2, 3. Recall that |A;| = [N/3], so
|Bi| = [2N/3]. We then define A; to be the set of #ypical vertices with respect to
A;, B; to be the set of typical vertices with respect to B;, and C; are what remain.
Formally, fori =1, 2, 3,

A= { eV Vj£i, degAj(x)§a1|Aj|]

e

= {yeviivi#is deg, ) = (1 iyl
Vi — (A; UB)).

™M =

i
Let {i, j, k} = {1, 2, 3}. Using these definitions, the fact that G is «¢-extremal and

the bound on §*, and the fact that every member of A; — Zi is adjacent to at least an
ay proportion of either A; or Ay, we obtain the following:

|A; — Al - a1 LN/3] < e(A; — A, Aj) + e(A; — A, Ay) < e(Ai, Aj) + e(A;, Ay)
< 2a|N/3)%,

and

2N
’77—‘ [Ajl <e(Vi,A))

< alAillAj| +|B; — Bil(1 —ap)|Aj| + |B; ﬁEiIIAjI
= a|A;l|Aj] + |Bi||Aj| — a1|B; — Bi||Aj].

As aresult, we have that | A; —A | <2(x/a1)|N/3] and |B; — B | < 2(a/a1)|N/3].
So, with ; = &'/ and ap = 4011, we get the following bounds for |A | and |B |:

(1 —a2)|[N/3] < |A;] < (1 +a)|N/3]
and
(1 — a2)[2N/3] < |Bi| < (1 +a2)[2N/3].
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Step 1 Adjusting the sizes of the Z,- sets. Let N = (3¢ 4+ r)h withr € {0, 1, 2} and
T =h|N/@3h)]. ~ ~ ~

Without loss of generality, assume that |A| > |Az| > |A3|. Fori =1, 2, 3, define
a; =T + hifi < r;otherwise, a; = T. If |Xi| > a;, then we will move |;4V,-| —a;
vertices of A; to B; by applying Lemma 2 below, which is proved in Sect. 3.6. It is
applied several times throughout this paper to different sets.

Lemma 2 Let us be given €2 > 0 and a positive integer M.

(1) Let (A1, Ao; E) be a bipartite graph such that every vertex in Ay is adjacent to
at least dy vertices in A1. Suppose further that ||A;| — M| < eoxM and d; < e;M
fori =12
Provided es < ((h + 1)h)™", there is afamily of max{0, d| —h+ 1} vertex-disjoint
copies of K1 all of whose centers lie in Aj.

(2) Let (A1, Az, Az; E) be a tripartite graph such that every vertex not in A; is
adjacent to at least d; vertices in A;, for i = 1,2,3. Suppose further that
[|Ail| — M| < eaxM and d; < eoM fori =1,2,3.

Provided €3 < (2(h + 2)(h + D)L, there is a family of max{0,d; — h + 1}
vertex-disjoint copies of K1y all of whose centers lie in A; and leaves lie in A;41
(index arithmetic is modulo 3).

Since ( —|+L3hJ = ],\l’,wehaveh ( —|—|—T N.AsS8*(G) > h ( -|+h—1 >
N-T+ h — 1, we can guarantee that each vertex not in V; is ad]acent to at least
|A | =T + h — 1 vertices in A So we apply Lemma 2(2) to the graph induced
by (Al, Az, A3) with d; = |A | —T+h—1,e = ar,and M = N/3 This will
construct stars with the property that there are exactly enough centers in A; such that,
when removed, the resulting set has its size bounded above by a;, which is either T
or T + h, depending on the case. Let Z; denote the set of these centers and move the
desired number of vertices of Z; from A; into B;.

If |A,| < a;, then we will move a; — |A,| vertices of Ei U 5,- to Avl-, as follows.

For a subgraph K p, 5, with i > 2, define the center to be the vertex that is adjacent
to all others. We will refer to the remaining vertices as leaves, although their degree
ish+1. ~

InB:=J_ (B UG ), we will find vertex-disjoint copies of Ki,p5 such that
each of max{a; — |A |, 0} copies has its center vertex | in B U C, for i < r and such
that each of a; — |A | copies has its center vertex in B U C otherwise. This will be
accomplished with Lemma 3, which is proved in Sect. 3.6. It is applied several times
throughout this paper to slight variations of the sets B;.

Lemma 3 Given § > 0, there exists an €3 = €3(8) > 0 such that the following occurs:
Let (B1, B2, B3; E) be a tripartite graph on 6 M vertices such that for all i # j,
each vertex in B; is adjacent to at least (1 — €3)M vertices in Bj. Furthermore,
[|Bi| —2M| < e3M.
If (B1, B2, B3; E) contains no copy of K1 j n with 1 vertex in By, and h vertices in
each of B> and Bz, then the graph (B, By, B3; E) is §-approximately ®3o(M).

Lemma 3 can be repeatedly applied to B at most [« (N /3)] times with § = a3,
ay K< €3 and M = T. Each time, either a Ky, , is found and removed, or the
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current incarnation of B is az-approximately ®342(7T) and we stop applying the
lemma. When we are finished applying Lemma 3, add the center vertices of the K5,
subgraphs to the appropriate sets A;. Put the leaves back into B and denote the result
as B = (By, By, B3; E).

If necessary, place vertices from a into the set Xi, for i = 1, 2,3, so that the
resulting set, relabeled as AEI), is of size a; and Z?:l |Afl)| = N.
Step 2 Finding a K j-factor in B. Now we try to find a K, ,-factor among the
remaining vertices in B with the goal of extending each Kj ;, into a K ; j using
vertices in A(ll) U Aél) U Agl). Before we do so, however, we need to address the
following concerns:

e Vertices in copies of K| j , where the center vertex is in some AEI) must be in a
specified copy of Kj ;, in B.

e Recall that Z; is the set of centers of A-stars which were found in Step 1. If v € Z;
is the center of a K1 j; with leaves in A,((l), then v will be assigned to Bj, where
{j} =1{1,2,3} — {i, k}. This means that v will be adjacent to vertices in B; in a
Kppin B.

e For{i, j, k} = {1, 2, 3}, vertices v € a will be assigned to B; or By, respectively.
This means that v will be adjacent to either & vertices in B; or h vertices in By in
a Ky, to be formed in B together with 2 — 1 vertices in B;. We know this can be
accomplished because if v € C;, then we may assume, without loss of generality,
that v is adjacent to at least 1| A ;| vertices in A ;.

Moreover, because all but a «p-proportion of the sets A; and B; are typical, we
have that |a| < w]A;| + a2|B;i| < 3apT. Recall that we applied Lemma 2 with
di = |Zi| — T 4+ h —1.Thus |Z;] < a2|Aij|+h — 1 < 2aT and there are at most
a2|Aj| +h < 2a,T copies of Ky j, 5, with the center vertex in a given Afl).

Lemma 4 is proved in Sect. 3.6. We will apply it to an adjusted B where we know
from Step 1 there are copies of Ky ; which must belong to any K}, ;-factor.

Lemma4 Given § > 0, there exists €4 = €4(5) > 0 and a positive integer To = Ty(5)
such that the following occurs. Let T1, T, T3 be three positive integers which are
divisible by h and with |T; — T;| € {0, h}, for all i, j € {1,2,3} and T\ > To. Let
(B1, Ba, B3; E) be atripartite graph such that for {i, j, k} = {1,2,3} |Bi| = T; + T},
and fori # j, each vertex in B; is adjacent to at least (1 — €4) Ty vertices in B;. Then
one of the following holds.

(1) Thereis a Ky p-factor in the graph induced by (B1, Bz, B3; E) with the following
properties. Each copy is a subgraph of (B;, Bj) for some i # j. If we fix a set of
at most 4T vertex-disjoint copies of Ky j, and at most €4T vertex-disjoint copies
of K1.n, then the K, j,-factor contains them as subgraphs.

(2) The graph induced by (Bi, B2, B3; E) can be partitioned such that
B = AP W AY, |AP| = Ty fori = 1,2.3 and d(A'D, AD) < & and

d(A5.3), APy <sforj=1,3.

Now to find our K} , j-factor, we first match vertices in 51' that are assigned to B;
with £ typical neighbors in B; and those & vertices with 4 — 1 typical neighbors in
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Fig.3 The diagram that defines 1) ®) 3)
Part 2. A dotted line represents a Al O Al O Al Q
sparse pair = “ ] =
[ ] L [ ]
(1) (2) (3)
HOMNG
L] [ ]
LY L] [ ]
(1) (2 (3)
oo 7o

A,
B;. As the name implies, a typical neighbor is a neighbor which is a typical vertex.
This forms a copy of Kj,;,». Then, place the vertices that were moved in prior steps
into copies of Kj 5, by matching the Kj j with vertices in the appropriate “A” set.
Remove all of these from B, and apply Lemma 4 to the remaining adjusted graph with
8 = ap and €4 = ap. If the appropriate K j-factor cannot be found, then we are in
the case of Part 2, and G has the form shown in Fig. 3. A more rigorous definition of
this case is provided in Sect. 3.2.

Step 3 Completing the K}, ; j-factor. If the K, ,-factor above is found, then we will

....-“

recycle notation to define Agl) to be the vertices that remain from A; after removing
copies of Ky, ., as above. It is easy to see that each Al(l) will have size close to T and
divisible by . Further define AE'i ), i =1,2,3and j = 2, 3 so that each member of
the K, ,-factor of B lies in a pair (Af), Ags)), (Agz), A§3)) or (Agz), A(23)), and so that
each of the triples (A{", A%, D)), (A", AP, AP) and (A", A, ATY) consist
of sets of the same size. Note that this can be done arbitrarily.

We use Proposition 2, which allows us to complete a K j-factor into a Kj, j -
factor. The proof follows easily from Konig—Hall.

Proposition2 Leth > 1.

(1) Let G = (V1, Va; E) be a bipartite graph with |Vi| = |Va| = M, h divides M,
and each vertex is adjacent to at least (1 — 1/ (th))M vertices in the other part.
Then, we can find a Kp p-factor in G.

(2) Let G = (V1, Va, V3; E) be a tripartite graph with |Vi| = |Va| = |V3| = M, h
divides M, and each vertex is adjacent to at least (1 —1/ (4h®)) M vertices in each
of the other parts. Furthermore, let there be a Ky y-factor in (V, V3). Then, we
can extend it into a Ky, j, p-factor in G.

Proposition 2(2) allows us to find K} j p-factors in each of (Agl), Agz)’ A§3)),
(Agl), Agz)’ A?)) and (Agl), A(12)’ A?)) which completes the K}, j, p-factor in G.

3.2 Part 2: G is Approximately the Graph Represented by Fig. 3

Let H3 be the graph on vertices vl.(j ) for i,j € {1,2,3} with the following non-
adjacencies: vi") P vé") for j € {1,2, 3}, véj) o véj) for j € {1,2,3}and vil) ) vél).
In this part, our graph G is ay-approximately Hz. It therefore corresponds to the

diagram in Fig. 3 in which partite sets are represented as rows, and each row is split
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into three columns. Note that the first column of G consists of the pairwise sparse
sets from the definition of a-extremal, and the second and third columns are defined
by the exceptional case of Lemma 4. We will group the vertices into sets A; ) of size

ST and (1 + 303"

least T vertices in each set A(] ) when v;

)T so that each vertex in A;l ) is adjacent to at
()

between (1 — 3«
~ Hj vl.(,] ). In other words, the vertices in

A;J ) are typical according to the mk:s established by Fig. 3. The non-typical vertices
in row i will be collected in the set C;. From this point forward we have issues related
to divisibility that we did not have before. Namely, we may need to modify A§2) and
A?) so that their sizes are divisible by /.

Step 1 Ensuring small Algj ) sets of proper size. Each Algj ) sethas a target size that we
will denote s; ;. If N = 3T, thens; ; = T foralli, j. If N = 3T +h,lets; j =T +h
for all i, j such that 3 divides i + j and s; ; = T otherwise. If N = 37 + 2h, let
si,j = T forall i, j such that 3 divides i + j and s; ; = T + h otherwise. Note that
if N = 3T + h, we can remove one copy of K}, , », from the triple (A(z) A(l) A§3)),
and if N = 3T 4 2h, we can remove two copies of K, j , from triples where i+ jis
not divisible by 3.

Apply Lemma 2 to obtain max{0, |A§j )| — s, j} disjoint stars with centers in Al(j )

and leaves in Afj D Then move these star centers to Al(j ) where j/ # j so that
|AY| = 5; ; holds for all i, ;.
Step 2 Partitioning the sets. Before we partition the sets, we must examine the behavior
of (Agz) U A?), Agz) U A§3)). If this is a5- approximately &> (T'), then call the dense
pairs (E1, E3) and (F1, F3). Note that the sets E; and F; need not be uniquely-defined
as long as they satisfy the given condition. If (A(12) u A(13), Agz) U A§3)) is not as-
approximately &> (T), do nothing.

Fori € {1,3},{j, j'} = {2, 3}, wesay that E; and A\’ coincide if the intersection of
their typical vertices is large and therefore the intersection of the typical vertices of E;
and Afj " is small. We will determine the quantities that constitute “large” and “small”
later. If (Ey, E3) and (Fy, F3) coincide with (A%, AY) and (A%, AD), respec-
tively, then G is approximately ®3x3(N/3). This case will be handled in Sect. 3.3. If
(E1, E3) and (Fy, F3) coincide with (A(Z) A;z)) and (A?), A§3)), respectively, then
G is approximately I'3(N /3). This case will be handled in Sect. 3.4. Otherwise, there
may be no coincidence, or coincidence may occur in exactly one of V; and V3. Without
loss of generality, we will assume that if there is coincidence in only one part, then

it occurs in Vj. More specifically, we will assume that E; coincides with A(z) F1
coincides with AS ), and neither E3 nor F3 coincides with Agj ), j=2,3.

In addition, note that if, say Agz) coincides with E7p, then every vertex in Agz) is
adjacent to at least 8T vertices in E3 and vice versa. If there is no coincidence, then
let E1 and E3 be redefined so that every vertex in £ is adjacent to at least 6T vertices
in E3 and vice versa. Similarly for (F7, F3).

We randomly partition each set AEJ ) into two pieces of size divisible by & and as

equal as possible. By the Chernoff bound, with high probability each vertex in A;j )
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has at least (1 — 2«3 — 6a§/ 3)(T /2) neighbors in each piece of the partition of Al(,] /),

" # i, j # j. Moreover, if a vertex has degree at least a37 in an AEJ ) set, it has
degree at least («3/3)(7/2) in each of the two partitions.

Let X3 denote the symmetric group that permutes the elements of {1, 2, 3}. For
all i, j € {1, 2,3}, we assign to each part of A?J) a permutation o € X3 such that
o (i) = j (there are exactly two such permutations) and denote it by A; . Furthermore,
it is possible to arrange the assignment such that [A1 ,| = |A2,| = |A3,s| for all
o € X3. After some adjustments, these permutations will identify which sets the
copies of Ky, , ; in our covering will span. For example, a K, , , which spans A?),
A;l) and A?) will be contained in the parts of those sets corresponding to o = 213,
and a K, 5, , which spans Agz), A?) and Agl) will be contained in the parts of those
sets corresponding to o = 231. Note that the permutations 213 and 231 are expressed
using the notation o (1)o (2)o (3).

Step3A551gmng vertices. Each vertex ¢ € C» has the property that, forall j € {1, 2, 3}
and distinct i/, i” € {1, 3}, if ¢ is adjacent to fewer than o3 T vertices in A; ,] ), then ¢

is adjacent to at least w3 T vertices 1n~A§/’ .

For i € {1, 3}, each vertex ¢ € C; has the property that, for all j € {1, 2,3}, ¢
cannot be adjacent to fewer than a37 vertices in either A;Z) or A(3) Also, ¢ cannot
be adjacent to fewer than «37 vertices in both A(l) and Agfl) ; or both A(z) and Fy_;
(if it exists) or both A?) and E4_; (if it exists). Note that when F4_; and E4_; do not
exist, it is because (Agz) U A?), Agz) U AgS)) is not approximately @, x> (T).

Trivially, each vertex in V; is adjacent to at least (1/2 — 053) T vertices in at least two
of {A}}), A( A(%)} and in at least two of {A(,, , A(/z,), A( }, where i’ ’Nare distinct
memberE of {1,2,3} — {i}. This is particularly important for vertices in C;.

The C; vertices, as well as star-leaves and star-centers, may only be able to form a
K. . with respect to one particular permutation.

For example, consider a vertex ¢ which had been in C) but was put into Ail) in

Step 2. Then, for either the pair (A§2), A(3)) or the pair (A(3) A(32)), the vertex c is

adjacent to at least (1/2 — «3)7T vertices in one set and at least w37 vertices in the
other; otherwise, it would have been a typical vertex in A(l) A(12) or A§3).
Assume that c is adjacent to at least w3 7" vertices in Ag) and at least (1/2 — a3)T

vertices in A§2). In this case, if ¢ were placed into the partition corresponding to the
identity permutation in Step 3, then exchange ¢ with a vertex in A1 132.

In a similar fashion, if there is a star with center in, say AEZ), and leaves in, say

Aél), then we will use it to form a Kj, 5 », with respect to the permutation 213 € X3.
Again, if any such leaf or center was placed in the wrong partition, exchange it with
a typical vertex in the other partition.

The number of leaves in any set is at most 2/ (6055/ 31 + h) and the number of centers
is at most 2(6a§/3T + h); the number of 5,- vertices is at most 9a§/3T. So, if N is
large enough, the total number of typical vertices in any Al(j ) which were exchanged
is at most 2(12h + 21)a;* T + 4h2 + 4h.
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With the partition established and the C;, star center and leaf vertices in the proper
parts, we consider the triple formed by three sets:

o AS", which will also be denoted S

e the union of the piece of A( ) corresponding to 213 and the piece of A( ) corre-
sponding to 312, denoted S}, and

e the union of the piece of A( ) corresponding to 312 and the piece of A( ) corre-
sponding to 213, denoted S3

Let the graph induced by the triple | (81, S5, S3) be denoted S.

Step 4 Finding a Ky 5., cover in S. We will first find a Kj jp,p-factor in S. This task
is complicated because the parts of S correspond to the permutations 213 and 312,
meaning the Ky, ;s in our covering either will span Agz)’ Agl) and Ag3) or will span
A§3), A;l) and Agz). If (Aiz) U AE3), Agz) U Af)) is approximately &> (T), then for
i = 1,3, we will need to exchange vertices in S; with typical vertices in E; and F;.
Doing this in the right way will ensure that a K h,h—factoz of (§1 , §3) can be found, and
we will extend that K, j-factor to a Kj, 5 -factor of S. Note that this complication
does not arise when finding K},  5’s with respect to permutations in X3 — {213, 312}.

To begin, let Ty = |A§1) |. First, take each existing copy of K 5 in S and complete
it to form disjoint copies of K 5 ;, using unexchanged typical vertices. This can be
done because a4 is small enough and the centers are typical vertices. Remove all the
copies of Ky ;.5 that contain stars.

Second, take each vertex ¢ from 5,- and use it to complete a K, 4 5. We can guaran-
tee, because of the random partitioning, that c is adjacent to at least («3/3)Tp vertices
in one partition set and (1/3 — 2a3)Tj vertices in the other. Without loss of generality,
assume that ¢ € Sl has degree at least («3/3)Tp in Sz and atleast (1/3 —2a3)Tp in 53
Since a3 > an, we can guarantee i neighbors of ¢ in S among unexchanged typical
vertices and, if o3 < a4 < 1, then h common neighbors of those among unexchanged
typical vertices in N (c) N S3 Finally, oy <« h~! implies this K}, , has at least & — 1
more common neighbors in Sl This i is our K. n.n and we can remove it. Repeat this
process for all former members of a C;.

Third, take each exchanged typical vertex and put it into a K 5, and remove it.
Throughout this process, we have removed at most Cj, /a2 x Ty vertices where Cp,
is a constant depending only on 4. What remains are three sets of the same size,
T > (1 - CNh\/OZ_z) Ty, with each vertex in §1 adj~acent to atleast, say (1/2 —2a4)T’,
vertices in S3 and vice versa. Each vertex in §7 and in S3 is adjacent to at least
(1/2 —20a4) T’ vertices in §2 and each vertex in §2 is adjacent to at least (1/2 — 2a4) T’
vertices in §1 and in §3.

Lemma 5 [28, Theorem 9] shows that we can find a factor of (gl, 3"3) with vertex-
disjoint copies of K ; unless (§1, §3) is approximately ©&2,2(7T/2).

Lemma5 (Zhao [28)]) Forevery e > 0 and integer h > 1, there exists ana > 0 and an
No such that the following holds. Suppose that N > Ny is divisible by h. Then every
bipartite graph G = (A, B; E) with |A| = |B| = N and §(G) > (1/2 — a)N either
contains a Ky, p-factor, or contains A’ C A, B C B such that |A’| = |B’| = N/2
and d(A, B) < e.
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If we can find the factor, apply Konig-Hall to form a factor of S of vertex-disjoint
copies of Ky, . If not, ~apply Lemma 6. Lemma 6 states, in particular, that if a random
partitionresultsin (51, S3) being approximately &, «» (T /2) with high probability, then
(Agz) U A§3), A;z) U A?)) is approximately &>, (7). The proof of Lemma 6 follows
from similar arguments to those in the proof of Lemma 3.3 of [21] and in Sect. 3.3.1
of [23] so we omit it.

Lemma 6 For every € > 0 and integer h > 1, there exists a B > 0 and positive
integer Ty such that if T > Ty the following holds. Let (A, B) be a bipartite graph
such that |A|, |B| € {2T — h, 2T, 2T + h} with minimum degree at least (1 — €)T
and is minimal with respect to this condition. Let A’ C A, B C B, |A’'| = |B'| =T
be chosen uniformly at random. If

Pr{(A’, B) contains a subpair with density at most €} > 1/4

then (A, B) is B-approximately ®@yx>(T).

We can, therefore, assume the existence of (E, E3) and (Fy, F3). Further, we can
assume that coincidence occurs only in V| or not at all; otherwise, we would be in
Part 3.

As a result, recall that we let the typical vertices in the dense pairs in (A

A(g) A(z) A(g)) be denoted (E, E3) and (Fi, F3). If the dense pairs do not coin-
c1de thenWewﬂlworktoensurethat |Eq ﬂS] | = |E3053| and | F ﬂSl | = |F3ﬂS;| and
both are divisible by /. Do this by moving typical vertices from (A( 'NE 1) — S into
(Agz)ﬁEl)ﬂsl and move the same number from (Agz)ﬂFl)ﬂSl into (A(lz)ﬂFl)—Sl.
In addition, move vertices from (Agz) NE3) — 53 into (Agz) NE3)N §3 and move the
same number from (Agz) N F3)N §3 into (Agz) N F3) — §3

This can be done unless one of the intersections Afj 'NE ; or Al(j ’n F; is too small.
This implies the coincidence that we discussed at the beginning of this part. But then,
we have guaranteed that the remaining vertices of Agz) are not only typical in that set

2

but also typical in E. The same is true of A§3) and Fj.

Now, we want to move vertices in V3 to ensure that |E3 N §3| = |A§2) N §1| and
|[F3N §3| = |A§3) N §1 |. Note that we have ensured that both |A(12) N §1 | and |A§3) N §1 |
are divisible by 4 and approximately 7 /2.

We can do this as follows: Move vertices from E3 N Agz) — §3 to (EzN Agz)) N §3
and move the same amount from (F3 N Agz)) — §3 to (F3 N Agz)) N 53. Also move
vertices from (E3 N A(3)) - §3 to (E3 N A(3)) N §3 and move the same amount from
(F3N A(3)) — S3 to (F3N A(3)) N S3 Since none of the intersections are small, this is
possible. Moving around these vertices will let us find a K j,-factor of (Sl, S3) which
we can complete to a Ky, j, p-factor of S by applying Proposition 2(2).

Step 5 Completing the K}, , p-factor in G. Now that we have found a K}, j, ,-factor that
corresponds to permutations 213 and 312 we consider the other permutations in X3.

Forao € X3 — {213,312}, letS(o) = (A1 o+ A2,6, A3 5 ) be atriple of parts formed
by the random partitioning after the exchange of vertices has taken place. The set A;
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is a subset of Afg(l)). We have also ensured that s, oo |A1o| = |A2.6| = |A3,| and
s 1s divisible by A. It is now easy to ensure that this triple contains a Kj, ;, ,-factor:

First, take each star in S(o') and complete it to form disjoint copies of K} j, , using
unexchanged typical vertices. This can be done if o4 is small enough. Remove all such
K n.n’s containing stars.

Second, take each ¢ which had been a member of some C and use it to complete
a Ky, p.n. We can guarantee, because of the random partitioning, that c is adjacent to
at least («3/3)s, vertices in one set and (2/3 — 2a3)s, vertices in the other. Without
loss of generality, let ¢ € A, with degree at least («3/3)s, in Az, and at least
(1/2 — 2a3)ss in A3z . Since 3 > ap, we can guarantee s neighbors of ¢ in Az 4
among unexchanged typical vertices and, if o3 < a4 < 1, then 4 common neighbors
of those among unexchanged typical vertices in N(c) N A3 . Finally, oy < hl
implies this K, ; has at least 7 — 1 more common neighbors in A . This is our
K, ».n and we can remove it. Do this for all former members of a C i

Finally, take each exchanged typical vertex and put it into a Kj 5 5 and remove
it. Throughout this process, we have removed at most Cj. /a2 X s, vertices where
C}, is a constant depending only on 2. What remains are three sets of the same size,
s" = (1 = Cp/a2)ss, with each vertex adjacent to at least, say (1 — 204)s’, vertices
in each of the other parts. If N is large enough, then we can use the Blow-up Lemma
or Proposition 2(2) to complete the factor of S(o) by copies of Kj 4 -

3.3 Part 3a: G is Approximately O3,3(|N/3])

Figure 2 shows ©343 and we are in the case where G is wop-approximately
®3,3(LN/3]), so AE'i ) and Al(/ K being connected with a dotted line means that the
pair (A(j) A(j/)) is sparse.

We will assume for this part that each vertex is adjacent to at least & |_ -| +h—1
vertices in each of the other pieces of the partition. Again, let T = h|N/ (3h)J

We will group the vertices of G into sets Afj ) of size between (1 — /a2)T and
(I 4+ /a2)T so that each vertex in Alg ) is adjacent to at least T vertices in each
set A(j " where i’ # i and j/ # j. In other words, the vertices in A(j ) are typical
accordlng to the rules established by Fig. 2. The non-typical vertlces in row  will

be collected in the set C;. Note that each vertex ¢ € C; has the property that, for all
Jj € {1,2,3} and distinct i """ e {1,2,3) — {i},if cis adjacent to fewer than a3 T

vertices in Al(,j ), then c is adjacent to at least 37T vertices in Af,j,); otherwise ¢ is in
some set Agj ), Furthermore, c is adjacent to at least (1/2 — «3)T vertices in at least
two of {Af,]), A( A(3)} and in at least two of {A(,l,), A(,, , A[(?,)}

Step 1 Ensuring small Af’ ) sets of proper size. As in Sect. 3.2, each Agj ) set has a
target size s; j. If N =37, thens; ; = T foralli, j. If N =3T +h,lets; j =T +h
wheni = j and s; ; = T otherwise. If N = 3T + 2h, lets; j = T wheni = j and
si,j = T + h otherwise.
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Take each triple (Aij), Agj), Agj)), Jj = 1,2,3, and construct disjoint copies of
stars so that there are at most 7' non-center vertices in each set Al(] ). We use the fact
that every vertex is adjacent to at least & (23—’}” + h — 1 vertices in each of the other

parts as well as Lemma 2. Move these star centers to Aﬁj ) where j' # j so that
|Afj)| =s;,j holds for all 7, j.
Step 2 Partitioning the sets. We will randomly partition each set Al(j ) into two pieces,
as close as possible to equal size but which have size divisible by /4, and assign them
to a permutation, ¢ € X3, which assigns o (i) = j. Each part assigned to o will be
the same size, and these permutations will identify which sets the copies of K} 5, , in
our covering will span.

When N is large, this random partition of Agj ) will have the following properties
with high probability. A typical vertex in Algj ) has at least (1 =204 — 2,/2)(T /2)

neighbors in each piece of the partition of AE,’ /), i’ #1i,j # j.Moreover, if a vertex
has degree at least @37 in a set, it has degree at least (w3/3)(7 /2) in each of the two
partitions.

Step 3 Assigning vertices. The C; vertices, as well as star centers together with their
star-leaves, may only be able to form a K}, , , with respect to one particular permuta-
tion.

For example, consider a vertex ¢ which had been in c 1 but is now in A(ll). Then,
for either the pair (Ag) , A§3)) or the pair (Af), Agz)), the vertex c is adjacent to at
least (1/2 — «3)T in one set and at least 3T vertices in the other. It is easy to see,
since oy K 3, that if this were not true, then ¢ would have been typical with respect

to one of the sets Aﬁl) s Agz) or AES), which is a contradiction to the definition of c.

Assume that ¢ is adjacent to at least o3 T vertices in Ag) and at least (1/2 — a3)T

vertices in A_gz). In this case, if ¢ were placed into the partition corresponding to the
identity permutation, then exchange ¢ with a typical vertex in the partition assigned
to 132.

In a similar fashion, if there is a star with center in, say A(z), and leaves in, say

A;l), then we will form a K, 5, , with respect to the permutation 213 € X3. Again, if
any such leaf or center was in the wrong partition, exchange it with a typical vertex in
the other partition.

The number of leaves in any set is at most 24 (/a2 T +h) and the number of centers
is at most 2(,/ax T + h), the number of C; vertices is at most 3,/ap T. So, if N is
large enough, the total number of typical vertices in any Ag" ) which were exchanged
is at most (2h + 6)./ar T.

Step 4 Completing the cover. For some o € X3,let S(o) def (Sfa(l)), Séa(z)), S§U(3)))
be a triple of parts formed by the random partitioning after the exchange has taken

place. The set Sl.(g(i)) is a subset of AEU(i)). We have also ensured in Step 3 that

sy ‘Sl(”(l))‘ = ‘Sé"(z))' = ‘Sé”a))‘ and s, is divisible by 4. It is now easy to

ensure that this triple contains a K}, j-factor:
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First, take each star in S(o') and complete it to form disjoint copies of Kj 4, using
unexchanged typical vertices. This can be done if ¢4 is small enough. Remove all such
K. p.p’s containing stars.

Second, take each ¢ which had been a member of some C ; and use it to complete
a Kp p.n. We can guarantee, because of the random partitioning, that ¢ is adjacent to
at least (a3/3)s, vertices in one set and (2/3 — 2a3)s, vertices in the other. Without

loss of generality, letc € S ;0(1) ) have degree at least («3/3)ss in Séo(z)) and at least

(1/2 —2a3)s, in S§0(3) ). Since a3 > &, we can guarantee h neighbors of ¢ in Séa(z))
among unexchanged typical vertices and, since a3 < a4 < 1, h common neighbors
of those among unexchanged typical vertices in N(c) N S§0(3)). Finally, s < h~!
implies this Kp » has at least 4 — 1 more common neighbors in S;{G(l)). This is our
K. h.n and we can remove it. Do this for all former members of a C;.

Finally, take each exchanged typical vertex and put it into a Kj 5 5, and remove

/3

it. Throughout this process, we have removed at most a; sq vertices if a is small

enough. What remains are three sets of the same size, s’ > (1 — aé/ 3)s(,, with each
vertex adjacent to at least, say (1 — 2ay)s’, vertices in each of the other parts. If N
is large enough, then we can use Proposition 2(2) to complete the factor of S(o) by
copies of Ky p..

3.4 Part 3b: G is Approximately /3(LN/3])

Figure 1 shows I3 and we are in the case where G is ap-approximately I3(|N/3]),
where Al(j ) and Al(,] ) being connected with a dotted line means that the pair
(Alw, Alg/)) is sparse.

We will assume for this part that each vertex is adjacent to at least & [23—2'—‘ +h—-1
vertices in each of the other pieces of the partition. We also assume that G is not

in the very extreme case (see Definition 2). We must deal with the very extreme
case separately.

Now, let T L LN /(3h)]. We may group the vertices of G into sets Al(j ) of size
between (1 — /a)T and (1 + /a2)T so that each vertex in AEI) is adjacent to at
least (1 — «3)T vertices in each set Af,j,) where i’ # i and j' € {2,3}. For j = 2, 3,
each vertex in Afj ) is adjacent to at least (1 — «3) T vertices in each set Al(,l ) and Al(,J ),

where i’ # i. In other words, the vertices in AEj ) are typical according to the rules
established by Fig. 1. The non-typical vertices in row i will be collected in the set
C;. Note that each vertex ¢ € C; has the following property: for all j € {1, 2, 3} and

distinct i/, i” € {1, 2, 3} — {i}, if ¢ is adjacent to fewer than a3 T vertices in A;,j), then
c is adjacent to at least w37 vertices in Af{). Furthermore, c is adjacent to at least
(1/2 — a4) T vertices in at least two of HAE}), Af,z), A?)] and [AE,I,), Aﬁ), Af?,) .

Step 1 Ensuring small Al(j ) sets of proper size. As in the previous two sections, each

Agj ) has a target size s; ;. There are several cases for s; ; according to the divisibility
of N/h.Let N/h = 6qg +r where 0 <r < 6.
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r=0,3s5;=Tfori=1,2,3andj =1,2,3.

r=1lis;j=Tfori=1,2,3and j =1,3;ands; o =T +hfori =1,2,3.
r=2,5s51=Tfori =1,2,3;ands; j =T +hfori=1,2,3and j =2,3.
r=4:5;1 =Tfori =1,2,3;and 513 = 5203 = s32 = T;and 512 = $22
=s533=1T+h.

Without loss of generality, we will assume that both |A§2)| > |A(13)| and |A§2)|
3
> |AS].
If |A§2)| > |A§3)|, then Afz) is larger than Af3) fori =1, 2, 3. Use Lemma 2(1) to
construct max { |A§2)| - T, O] disjoint copies of K j in the pair (A(z) A(g)l) with

centers in Al@. Move these star-centers into Al@.

If |A§2)| < |Ag3) |, we do something similar except that first we use Lemma 2(1) to
create the appropriate number of stars in (A( ) A(3)) and (A(Z) A?) ) with the centers
in Agz) and A;z), respectively. Move these star-centers into A§ ) and A(23), respectively.
Then, after the star-centers have been removed from A;z), we apply Lemma 2(1) to
the pair (A§3), Agz)), and move the star-centers into Agz).

By the conditions on Lemma 2(1), we see that each remaining set Afj ) is of size
at most 7. Now, apply Lemma 2(2) to the triple (Agl), A(zl), Aél)). For star-centers in
AY move T — [AP]into A and T — |4 into A%

If necessary, place vertices from 5,- into A}j) fori =1,2,3and j =1, 2, 3, while
ensuring that we still have |A§j )| <sij.

For j =2, 3, let AW = (Agj), A;j), Agj)). We remove some copies of Ky, , ; from
among typical vertices of these sets as follows:

r = 1: One from A@.
r = 2: One from each of A® and A®.
r = 4: One from A®.
r = 5: Two from A®.

Recalling N = (6g + r)h, each AY is now of size 2qh, 2gh + h or 2qh + 2h.
Step 2a Part1t10n1ng the sets (r # 3). Letr €{0,1,2,4,5}, 71 =ghand o = gh+h.
Partition each A; ) set into parts of nearly equal size. Each part of the partition will
receive a label o € {l1, 2, 3} x {2, 3}, where ¢ = (i, j) corresponds to row i and
column ;. The part with label (i, j) will be denoted S; ;. A Kj 5, which is associated

with the label (i, j) will span the triple with one part in AIQ) and two parts in column
Jj. Now, partition each Al(/ ) as follows:

Each AED will be split into two pieces. Forr =0, 1,2 and i = 1, 2, 3, both pieces
will have size 71 and we will arbitrarily assign the two pieces with the labels S; » and
S;3. Forr = 4 and i = 3, assign the piece of size t; with label S3 3 and the one of
size Tp with S32. Forr =4 andi = 1,2 and for» = 5 and i = 1, 2, 3, assign the
smaller piece with label S; » and the larger with label S; 3.

2 Arithmetic in the indices is always done modulo 3.
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Fig.4 Partitioning the sets. The
light outlined half of a set is the
piece of size 71, the bold

outlined half of a set is the piece : *
of size 7o

Each Al@ will be split into two pieces. Unless both r = 4 and i € {1, 2}, both
pieces will be of size 1] and will be assigned Sy » and S; , arbitrarily, where {i, i’, i}
={1,2,3}.If r =4 and i € {1, 2}, the one of size 7| is labeled S3_; » and the one of

size 12, is labeled S3 2.

Each AES) will be split into two pieces. If r € {0, 1, 2}, both pieces will be of size
T, and if r = Sorifr = 4 and i = 3, both pieces will be of size 1. In these cases,
arbitrarily assign the pieces with labels Sy 3 and S;» 3 where {i,i’,i”} = {1,2,3}. If
r =4andi € {1, 2}, the one of size 77 is labeled S3 3 and one of size 15 is labeled

83,3

Figure 4 diagrams the partitioning forr = 4andr = 5. Note thatwhenr € {0, 1, 2},
the partition labeling is identical to the case when » = 5, but all parts have size t;.

Partitioning the sets at random again ensures that the above can be accomplished
so that all of the vertices’ neighborhoods maintain roughly the same proportion, as in

Part 3a, Step 3.

Step 2b Partitioning the vertices (r = 3, not The very extreme case). Let r = 3 (recall
N = (6q + r)h) and let G not be in the very extreme case. We will use Lemma 2(1)
to find additional stars between sparse pairs. Without loss of generality, we seek stars
with centers in either Agl) or Ag?’). If we can find at least /& centers in one of these sets,

then we can make that AY ) set of size 2gh. If we are not able to do this, every vertex

v E Agj) must be adjacent to at most 24 — 2 vertices in Af/j) where (Afj), Al(,] )) is

a sparse pair. In turn, we have that every vertex v € AE’ ) is nonadjacent to at most
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3h — 3 vertices in Al(,j " where (Afj ), Al(,] /)) is a dense pair. Since G is approximately
I3(LN/3]), this means G is in the very extreme case.

Suppose star-centers are removed to make either |A§1)| = 2qh or |A§3)| = 2qh.
We will make the set A(12) of size (2q + 2)h by adding star-centers and vertices from
the set C.

In each case, if the star-centers that were placed into A(lz) were themselves originally
in A(lz), then we just treat them as typical vertices again, ignoring the star that was
formed. Note that all sets are of size (2g + 1)k, except |A§2)| = (2q + 2)h and either
A(l) or A?), which has size 2gh. If Ail) is the small set, then remove one copy of
K . in the triple (A(13), A(3) A§3)).

Now we partition each set as follows: Each Afl) will have one piece of size gh
with label (i, 3). The other set will have label (i, 2) and will be of size (g + 1)A in
the case of A;l) and Agl) and of size either gh or (¢ + 1)h in the case of Agl). The
set A(z) is partitioned into two pieces of size (¢ + 1)h, one labeled (2, 2), the other
labeled (3, 2). For Al@, i = 2, 3, we have one piece of size gh and labeled (1, 2) and
the other of size (¢ + 1)h, labeled (5 — i, 2). For A(3), it will have two pieces of size
qh, one labeled (2, 3), the other (3, 3). Finally, for AIQ), i = 2,3, we have one piece
of size gh with label (5 — i, 3) and the other will have size either gh or (¢ + 1)h and
label (1, 3).

Partitioning the sets at random again ensures that the above can be accomplished
so that all of the vertices’ neighborhoods maintain roughly the same proportion, as in
Part 3a, Step 3.

Step 3 As31gn1ng vertices. For any o € {1, 2, 3} x {2, 3}, we will show that the star-
centers and C; vertices, in any A(J ) can be assigned to one of the two parts of the
partition.

For example, consider a vertex ¢ which had been in C 1 but is now in Agl). Then,
for either the pair (A(z) Agz)) or the pair (A(3), A§3)), the vertex c is adjacent to at
least (1/2 — 8)T in one set and at least a3 T vertices in the other. If such a pair is
(A(Z) Agz)) then if ¢ were labeled (1, 2) exchange it with a typical vertex with label
(1,3).

Now, for example, consider a vertex ¢ which had been in C) but is now in Agz). It
is easy to check that for either the pair (Agl), A(z)) or the pair (A(l) Agz)), the vertex
c is adjacent to at least (1/2 — «3)7T in one set and at least w37 vertices in the other.
If such a pair is, say, (Aél), Agz)), and c is not labeled (2, 2), then exchange it for a
typical vertex of that label. ~

A similar analysis can be applied to any ¢ € C; fori =1, 2, 3.

Now we consider stars. All star-centers are in sets AEZ) or Al@ . Without loss of

generality, assume z is such a center in A§2) and the leaves are in V». If the leaves are
in Agl), then z must have been a member of Agl) originally. So, z and its leaves must

have label (2, 2). If the leaves are in Agz), then z must have been a member of A(13)
originally. So, z and its leaves must have label (3, 2). Exchange z with typical vertices
to ensure this.
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Finally, we consider typical vertices moved from AEZ) U AES) to Afl) . Without loss
of generality, suppose z is such a vertex in Agl). If z were originally from Agz)’ then
it is a typical vertex with respect to Aéz) and A§2) and z should receive label (1, 2).

Otherwise, it is typical with respect to A§3) and A§3) and z should receive label (1, 3).
This completes the verification that all moved vertices can receive at least one label

of the AEJ ) setin which it is placed.

Step 4 Completing the cover. For any o € {1, 2, 3} x {2, 3}, let S(o) be the triple of
parts with label o. Note that the label (i, j) corresponds to a triple with one part in
AEI) and two parts in column j. We can finish the K} j j-factor as in Part 3a, Step 5.

3.5 The very extreme case

Recall the very extreme case:

There are integers N, g such that N = (6g + 3)h. There are sets AEj ) for
i,j € {1, 2,3}, with sizes at least 2gh + 1, such that if v € AEJ) then v is

nonadjacent to at most 32 — 3 vertices in Al(,] ) whenever the pair (Agj ), A[(,] ))
corresponds to an edge in the graph I3 with respect to the usual correspondence.

In this case, we must raise the minimum degree condition to 2N /3 + 2h — 1.
Recalling Part 4, Step 3b, we were able to proceed if we were able to make one of the

sets Afj ) small by means of creating stars. Each vertex in Ag) is adjacent to at least
|A(13)| — N/3 4+ 2h — 1 vertices in A?). Using Lemma 2(1), we have that there is a
family of |A§3)| — N/3 + h vertex-disjoint stars with centers in Ag?’). We move the
centers to AEZ). Then we can proceed from Part 3b, Step 4.

3.6 Proofs of Lemmas

Lemma 2 is used to find vertex-disjoint s-stars in a graph G. Part (1) deals with the case
where G = (A1, Az; E), and part (2) deals with the case where G = (A1, Az, Az; E).

Proofof Lemma 2 (1) Let§; = dy —h+ 1. If the stars cannot be created greedily, then
thereisaset S C AjandasetT C Ajpsuchthat|S| <& —1and|T| =S|k and
each vertex in A} — S is adjacent to at most 2 — 1 vertices in Ap — T'. In this case,

(di —[SDIA2 = T| = e(A1 =S, Ay —T) = (h— DA = S|.
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(@)

This gives

[Ap — S| — A2 =T

IS| =81 —(h—1)

A2 —T]
Al — A h—1|S
A= A2+ = DS
A2l — hIS|
h+ DeM
> 8 — (h— 1y e

A= (h+De)M’

If e < (h%+ h)~ !, then this gives |S| > §; — 1. Since |S] is an integer, |S| > 5,
contradicting the condition we put on |S].
Let 6; = max{0,d; — h + 1} fori = 1,2, 3. If, say, 63 = 0, then apply part
(1) to the pair (A3, A3) to create &y vertex-disjoint stars with centers in A,. Let
Z» be the set of the centers. Apply part (1) to (Aj, Ay — Z>) and we can find §;
vertex-disjoint stars with centers in Aj if 2¢ < (h®+h)~ L.
So, we may assume that §; > 0 for i = 1,2, 3. Note that if it is possible to
construct §; + & disjoint copies of K , in (A1, A2) with centers, Z; C Aj, then
we can finish by applying part (1). To see this, apply part (1) to (A3, A — Z1),
with 3¢ < (h? 4+ h)~!, creating 83 stars with centers Z3 C A3. Then apply part
(1) to (A, A3 — Z3). (Here, we need 2¢ < (h2 + h)~L)) There will be 8 stars
remaining in (A1, Az) which are vertex-disjoint from the rest.
So, we will assume that it is not possible to create §; + &, vertex-disjoint copies of
Kj pin (Ay, A2) with centers in A. That means thereisan S C AjandaT C Ay
such that |S| < 81 + 62, |T| = h|S| and every vertex in A1 — § is adjacent to at
most & — 1 verticesin Ay — T.
Now apply part (1) to (A3, A1 — §) to obtain §3 vertex-disjoint copies of K j
with centers Z3 C As. (Here, we need 3¢ < (h2 + h)~1.) Next, apply part (1) to
(A2, A3 — Z3) to obtain &, vertex-disjoint copies of K, with centers Zy C A».
(Here, we need 2¢ < (h? 4 h)~!.) Finally, apply part (1) to (A1, Ay — (Zo U T))
to obtain §; vertex-disjoint copies of K j, with centers Z; C A;. (Here, we need
(2h+2)e < (h®+h)~!.) But, because no vertex in A| — S is adjacent to h vertices
in Ay — (Z2 U T), it must be the case that Z1 C S and our §; + 8> + 83 copies of
K j, are, indeed, vertex-disjoint.

O

Lemma 3 is used to find a copy of K| 5 5 in a tripartite graph (B1, By, Ba; E).If a

K1, cannot be found, then the graph must be approximately ®3,2(M).

Proof of Lemma 3 We can first apply the following theorem of Erd6s, Frankl and Rodl
[9]:

Theorem 6 For every €’ > 0 and graph F, there is a constant ng such that for any
graph G of order n > ny, if G does not contain F as a subgraph, then G contains a
set E' of at most €'n? edges such that G — E' contains no K, withr = x (F).

Here, F = Ky, and r = 3.
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Let us remove at most €’(6M)? edges from G so that it becomes triangle-free. In
doing so, some vertices might be nonadjacent to many more vertices than before. We
want to remove such vertices so that we can apply Proposition 3, which appeared in
[21] and is rephrased below:

Proposition 3 For a A small enough, there exists € > 0 such that if H is a tripartite
graph with at least 2 (1 - ) t vertices in each vertex class and each vertex is non-
adjacent to at most (1 +é€” ) t vertices in each of the other classes. Furthermore, let
H contain no triangles. Then, each vertex class is of size at most 2 (l +é€” ) t and H
is A-approximately ®3,2(t).

For €” > ¢, at least 2(1 — €)M vertices are nonadjacent to at most (1 + €)M
vertices in each of the other classes. Otherwise, we would have had to delete a total
of at least §2(¢””)M edges incident to each of these vertices, of which there would
be at least £2(¢”)M. But this means deleting £2((¢”)?) M? edges, which is more than
€ (6M)2.

So we apply Proposition 3. Thus, G is approximately ®@3,2(M), and so the lemma
follows. O

Lemma 4 is used to find a K, ,-factor in a tripartite graph (B1, B2, Bs; E). If the
factor cannot be found, then the graph has a structure like columns 2 and 3 of the
diagram in Fig. 3.

Proof of Lemma 4 Let €’ be chosen such that €’ < 8.

For this lemma, we partition the possibilities according to whether the pairs (B;, B;)
are approximately @, (T7). That is, there are two pairs of sets of size 77 which have
density less than €’. Minimality gives the rest.

In addition, we say that graphs ©;.>(T1) coincide if (B;, Bj) and (B;, By) are

approximately E,- C B, B i € Bj, Ek C By, all of size T7, such that both (E,-, B i)
and (B s Bj) have density less than ¢’. Note that this means that (B; — Bi, B = B i)
and (B,' —Ei, Bj —Ej)
Case 1 No pair is ®,»(T1). For each distinct i, j, k € {1, 2, 3}, partition B; into
two pieces, B;[j] and B;[k] with |B;[j]| = T; and |B;[k]| = Tj. If this partition is
done uniformly at random, then with probability approaching 1, each vertex in B;[k]
is adjacent to at least (1/2 — el/ 2)Tk vertices in B [k]. So there exists a partition such
that each vertex in B; is adjacent to at least (1/2 — €!/2)T; vertices in each of the
pieces Bjlk], j, k # i and such that the pair (B>[1], B3[1]) fails to contain a subpair
with | T /2] vertices in each part and density at most €!/3.

The vertices that are reserved will have to be placed in the proper set. For example,
if areserved Ky, j, is in the pair (B;, B;), then those vertices will need to be in the pair
(Bilk], Bj[k]). So, we exchange vertices in B;[k] for vertices in B;[ j] so that reserved
vertices are in the proper place. At most 4(e + €)T; vertices are either reserved or
moved in each set B;[j]. After such exchanges occur, place the moved vertices into
vertex-disjoint copies of K, ;, that lie entirely within the given pairs. This can be done
because each vertex not in B; is adjacent to almost half of the vertices in both B;[ ]
and B;[k].

Consider what remains of these sets. The number of vertices is still divisible by &
and at most 8/ (¢€)T7 have been placed into these copies of K} ;. We look for a perfect
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K p-factor in each of the pairs (B1[3], B2[3]), (B1[2], B3[2]) and (B2[1], B3[1]).
Recall that each of these pairs has minimum degree at least (1/2 —€!/2)Ty. Utilizing a
lemma in [28]—stated as Lemma 5 in Sect. 3.2 above—we are able to find such a factor
unless at least one of those pairs is (e !/?)-approximately @ (T1/2). (Minimality
gives the other sparse pair.)

Lemma 6 says that if random selections give a graph that is approximately
©742(T1/2), then the original graph was, too. So, along with Lemma 5, it estab-
lishes that if, after moving our vertices, we are unable to complete our K, j-cover in
(Bi[k], Bj[k]) with nontrivial probability, then the pair (B;, B;) is ¢’-approximately
©2x2(T1), where € = B(a(e'/?)).

Since none of the pairs is €’-approximately ®,x2(T1), we can find the required
factor of (B, B2, B3) by copies of K}, ..

Case 2 Exactly one palr is Ozxz(Tl) Here, we will assume that 31 = B1 V] B1 and
By =B, U Bz, where |Bl| = |Bz| = T; and d(B], Bz) d(31 B2) < €’. A random
partition of Bj into pieces, with probability approaching 1 as 77 approaches infinity,
will partition Bj into two approximately equal pieces. In particular, let the rypical
vertices in B be those that are nonadjacent to at most (¢’ )1/ 27} in §2. There are at
most (¢/)1/2T} such vertices. A similar conclusion can be drawn from By, El and §2.

In this case, we randomly partition Bj, By and B3 into the sets B;[k] as prescribed.
Exchange the vertices as we have done above and complete both the reserved and
exchanged vertices to form copies of K}, ,. This encompasses at most 8h¢ T vertices.
Exchange vertices in Bj[3] with vertices in Bj[2] and vertices in B,[3] with vertices
in By[1] so that there are exactly h|77/(2h)] typical vertices of B in B;[3] and
h|T1/(2h)] typical vertices of §2 in B>[3]. Let the rest of the vertices, not matched into
a Ky, p,in B1[3] be typical vertices in §1 and therest of the vertices in B»[3] be typical in
B>. Using Proposition 2(1) on each pair of sets of typical vertices in (B [3], B>[3]) will
easily have a K, ;-factor. With €’ small enough, we can guarantee that at most (¢’)'/37;
vertices in (B1[2], B3[2]) and (B2[1], B3[1]) were moved. Applying Lemmas 5 and 6,
and the fact that no pair other than (Bj, B;) can be €’-approximately ©,>(T}), we
conclude that the pairs (B;[2], B3[2]) and (B2[1], B3[1]) can be completed to K}, j,-
factors.

Case 3 Exactly two pairs are @22 (T1), which do not coincide. Let the pairs in question
be (Bl, B2) and (B2, Bz) Let the dense pairs in the subgraph induced by (Bl, By)
be (B, B») and (Bl, BQ) Let the dense pairs in (B>, B3) be (Bg, B3) and (B,, B3).

Moreover, since the pairs fail to coincide, we can conclude that the intersection of the
typical vertices of B> with the typical vertices of each of B, and By is at least (¢/) /4T
and similarly for B>.

Once again, we randomly partition the vertices in By, B> and B3 and move vertices
so as to ensure that the reserved vertices and the vertices exchanged for them are placed
into vertex-disjoint copies of K, ;. Our concern at this point is the vertices in Bs.

Consider the vertices in (B1[3], B2[3]). Approximately half are typical vertices of
B> and approximately half are typical vertices of B>. Take each non- typical vertex in
B1[3] and in B,[3], match them with a copy of K} ; in the pair (31[3] B>[3]) and
remove them. Do the same for vertices in B, [1] that are not typical in 82 or B and in
B3[1] that are not typical in 33 or B3 Remove those copies of K, j, also.
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Observe that there are at least €!/41 /4 vertices in each intersection of B, or §2
with B, or B, and with By[3] or Bz[l]

First, move a vertices from B, N Bz N By[3] to 32 N 32 NBy[1]to make |32 N By [3]]
divisible by 4. Second, move a + b vertices from 32 N 32 NB[1]to 32 N Bz N B[3] to
make |32 N B> [1]] divisible by /4. Third, move a + b + ¢ vertices from Bz N 32 N B>[3]
to 32 N Bz N By [1]. This will make both |32 N B>[3]| and |82 N Bo[1]] d1v151ble by h.

Here a, b and c¢ are the remainders of | B, N B[3]], |B2 N By[1]] and |32 N B> [3]],
respectlvely, when each is divided by /. Observe that both |82 N By [3]|+ |B2 N By [3]]
and |Bz N Bo[1]] + |Bz N By[1]| are divisible by A.

Finally, we exchange vertices in Bj N Bl[S] with those in Bj N Bl[2] so that
|B1NB;[3]| = |B2NB,[3]| and 51m11arly for 32 Also, exchange vertices in B3 033 [1]
with those in B3 N B3[2] so that |B3 N B3[1]] = |B2 N B;[1]| and similarly for Bz.

Then, in (By N B;[3], B> N B>[3]), first greedily place each moved vertex into
copies of Kj j and then finish the factor via Proposition 2(1). Do the same for
(Bi 0 B1(3). B2 0 Bo[31), (B2 1 Bal1), B 01 B[1]) and (B> 1 Bal1], B30 Bsl1]).

Finally, we can complete the factor of (B;[2], B3[2]) because if it is not possible,

Lemmas 5 and 6 would require (B, B3) to be approximately ®>>(77), excluded by
this case.
Case 4 Three palrs are @2X2(T1) none of which coincide. Let the dense palrs in
(B1, By) be (By, B>) and (Bl Bz) Let the dense palrs in (Bz, B3) be (B2, B3) and
(Bz, B3). Let the dense pairs in (Bg, B3) be (Bj, B3) and (Bl, B3). Moreover, since
the pairs fail to coincide, we can conclude that the intersection of the typical vertices
of one set of sparse pairs with the typical vertices of another is at least (¢')!/4T.

Partition B, B and B3 into appropriately-sized sets as before, uniformly atrandom.
The degree conditions hold with high probability as before. Take non-typical vertices
and complete them greedily to place them in vertex-disjoint copies of K ; within each
of the pairs (B1[3], B2[3]), (B2[1], B3[1]) and (B1[2], B3[2]). Remove these copies
of Kj » from the graph.

Let M be the largest multiple of / less than or equal to the size of the intersection
of what remains of any sparse set (i.e., B;, E, l§,~, E,-, Bf, Bl.b) with a set of the form
B;[k]. . .

We can move vertices as in Case 3 by letting a = |Bo N B2[3]| — M, b = |B> N
By[1]]—M and c = |§2 N B>[3]| + M — T3, whichis alsoequal to 71 — M —a — b —
| B, N By[1]]. We can perform similar operations to guarantee that, among the vertices
that remain in the graph, that

M = [By 0 Bi31| = [B20 Bal3)| = | B2 0 Bl = | By 0 s
- ’B? N Bl[z]) - \Bg N 33[2]‘
The fact that the pairs do not coincide ensures that there are enough vertices to make
these moves.

Place the moved vertices into vertex-disjoint copies of K}, , and finish the factor
via Proposition 2(1).
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Case 5 There are at least two pairs which are ® 4> (T1) and which coincide. This is
exactly the exceptional case stated in the lemma and without loss of generality the

pairs (Agz), A(22)) and (Agz), Agz)) are those that witness the coincidence of the copies
of @, (Ty). |
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