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Abstract. Consider the integral polynomials fa,b(x) = x4 + ax + b
and gc,d(x) = x4 + cx3 + d. Suppose fa,b(x) and gc,d(x) are irreducible,

b | a, and the integers b, d, 256d − 27c4, and
256b3 − 27a4

gcd(256b3, 27a4)
are all

square-free. Using the Montes algorithm, we show that a root of fa,b(x)
or gc,d(x) defines a monogenic extension of Q and serves as a generator
for a power basis of the ring of integers. In fact, we show monogeneity
for slightly more general families. Further, we obtain lower bounds on
the density of polynomials generating monogenic S4 fields within the
families fb,b(x) and g1,d(x).

1. Introduction and Overview of Results

Let K be a number field and let OK be its ring of integers. If there

exists a monic irreducible polynomial f(x) ∈ Z[x] with a root θ such that

Z[θ] = OK , then we say K is monogenic. In other words, K is monogenic if

OK admits a power integral basis. A quantity related to monogeneity is the

field index. The field index is defined to be the pair-wise greatest common

divisor gcd
α∈OK

[OK : Z[α]]. Note that K can have field index 1 and still not be

monogenic. Define the minimal index to be min
α∈OK

[OK : Z[α]]. Monogeneity

is equivalent to having minimal index equal to 1.

Many of the number fields we are most familiar with are monogenic. For

example, all quadratic extensions and cyclotomic extensions are monogenic.

An example of a non-monogenic field, due to Dedekind [5], is the field

obtained by adjoining a root of x3 − x2 − 2x − 8 to Q. The problem of

classifying monogenic number fields is often called Hasse’s problem, as it is

believed to have been posed to the London Mathematical Society by Helmut

Hasse in the 1960’s. See the remark on page 193 of [22].

We can now state concise, less-general versions of our main results. The

following are consequences of Theorems 3.1 and 3.3 and Theorems 3.2 and

3.4, respectively.
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Corollary 1.1. Consider fb,b(x) = x4 + bx + b with b ∈ Z and let θ be a

root. Suppose b and 256 − 27b are square-free and b ̸= 3, 5. Then, Q(θ) is

a monogenic S4 quartic field and θ is a generator of a power integral basis.

Further, at least 29.18% of b ∈ Z satisfy these conditions.

Corollary 1.2. Consider g1,d(x) = x4 + x3 + d with d ∈ Z and let τ be a

root. Suppose d and 256d − 27 are square-free and d ̸= −2. Then Q(τ) is

a monogenic S4 quartic field and τ is a generator of a power integral basis.

Further, at least 41.849% of d ∈ Z satisfy these conditions.

Heuristically, the best possible percentages in Corollaries 1.1 and 1.2

seem to be 55.3%. See Remark 7.4.

2. Previous Work

Before a more detailed exposition of our work, we list some results

pertaining to Hasse’s problem. It has been shown that almost all abelian

extension of Q with degree coprime to 6 are not monogenic; see Gras [19].

Gassert [16] shows that all fields obtained by adjoining a root of xn − a,

where a is square-free and ap ̸≡ a modulo p2 for all primes p | n, are
monogenic. In [27], Jones and Phillips identify infinitely many monogenic

fields coming from polynomials of the shape xn+ a(m,n)x+ b(m,n), where

a(m,n) and b(m,n) are prescribed forms. They consider two families of

forms, one yielding Galois group Sn and the other An. Recently, Bhargava,

Shankar, and Wang [2] have shown that the density of monic, irreducible

polynomials f(x) ∈ Z[x] such that a root, θ, of f(x) yields a power basis

for the ring of integers of Q(θ) is 6
π2 = ζ(2)−1 ≈ 60.79%. In the same

paper, they also show that the density of monic integer polynomials with

square-free discriminants is∏︂
p

(︃
1− 1

p
+

(p− 1)2

p2(p+ 1)

)︃
≈ 35.82%.

Note that these polynomials are a subset of the monic, irreducible polynomials

f(x) ∈ Z[x] such that a root, θ, yields a power basis for the ring of integers

of Q(θ).

Many of the approaches to Hasse’s problem have focused on fields with a

given Galois group. We summarize the state of the art for degree 4 number

fields. For a nice treatise on approaches to monogeneity using index form

equations, see Gaál’s book [9], “Diophantine Equations and Power Integral

Bases.” In particular, Chapter 6 deals with the quartic case. A general
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algorithm for solving the quartic index form equations is presented, with

the author expanding upon specific cases.

A biquadratic field is an extension having Z/2Z × Z/2Z as the Galois

group. A biquadratic extension can be written Q (
√
m,

√
n). Gaál, Pethő,

and Pohst [11] parametrize the field indices that can occur based on congruence

conditions on m and n. Gras and Tanoé’s article [20] gives necessary and

sufficient conditions for a biquadratic field to be monogenic. Jadrijević [24]

describes the minimal and field indices of the two familiesQ
(︂√︁

(c− 2)c,
√︁
(c+ 2)c

)︂
andQ

(︂√︁
(c− 2)c,

√︁
(c+ 4)c

)︂
. This investigation is continued for the family

Q
(︂√︁

(c− 2)c,
√︁

(c+ 4)c
)︂
in [25]. When c and c + 4 are square-free, Gaál

and Jadrijević [10] show Q
(︂√

2c,
√︁

2(c+ 4)
)︂
is not monogenic, compute an

integral basis, and determine the elements of minimal index.

Dihedral quartic fields have received a significant amount of attention.

In [23], Huard, Spearman, and Williams compute the discriminant and an

integral basis of quartic fields with quadratic subfields. Further, they find

infinitely many monogenic D8 fields. Specifically, they show that for each

square-free c there are infinitely many fields of the form Q
(︂√

c,
√︁
a+ b

√
c
)︂

that are monogenic. Gaál and Szabó [15] solve index form equations to

show that the power integral bases found in [23] are the only possible power

integral bases. In [28], Kable resolves the question of monogeneity when

the D8 field in question has an imaginary quadratic subfield and establishes

some bounds in all cases. Using their algorithm from [13], Gaál, Pethő,

and Pohst [12] compute “small” indices of totally real quartic fields with

Galois group either Z/4Z or D8 and discriminant of absolute value less than

106. The indices may not be minimal since the algorithm they implemented

checks only for solutions to the index form equation with absolute value less

than 106.

A pure quartic field is a field obtained by adjoining a root of a polynomial

of the form x4 − a to Q. In [7], Funakura gives necessary and sufficient

conditions for pure monogenic quartic fields. Gaál and Remete [14], characterize

the only power integral bases of a number of infinite families of pure quartic

fields using binomial Thue equations and extensive calculations on a supercomputer.

The simplest quartic fields are given by a root of x4− tx3− 6x2+ tx+1,

where t ̸= ±3, 0. They are totally real with Galois group Z/4Z. If t2 + 16

is not divisible by an odd square, Olajos [30] has shown that the only two

simplest quartics that are monogenic occur when t = 2 and t = 4. In [18],
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Gras shows there are only two monogenic imaginary cyclic quartic fields.

These are Q(ζ5) and Q
(︁
ζ16 − ζ−1

16

)︁
.

For A4 fields, Spearman [32] shows x4 + 18x2 − 4tx+ t2 + 81 defines an

infinite family of monogenic fields when t (t2 + 108) is square-free.

With [8], Gaál considers five families of totally complex quartic polynomials.

The polynomials are shown to be irreducible and the Galois groups are

classified; A4,D8, Z/4Z, and Z/2Z×Z/2Z all occur. Further, Gaál computes

all power integral bases of the orders generated by the roots.

As for S4 quartics, work by Bérczes, Evertse, and Győry [1] restricts

multiply monogenic orders. A recent paper [17] by Gassert, Smith, and

Stange shows x4 − 6x2 − tx − 3 with t + 8 and t − 8 square-free defines

an infinite family of monogenic S4 quartic fields. It is worth noting that

the methods of [17] are distinct from much of the other literature in that

arithmetic properties of elliptic curves are central to proving monogeneity.

3. Results

In this paper we identify two families of monogenic quartic fields:

Theorem 3.1. Let a and b be integers such that
256b3 − 27a4

gcd(256b3, 27a4)
is square-

free. Suppose that fa,b(x) = x4 + ax + b is irreducible and let θ be a root.

Further, suppose every prime, p, dividing gcd(256b3, 27a4) satisfies one of

the following conditions:

(1) p divides a and b, but p2 does not divide b.

(2) p = 2, p - b, and (a, b) is congruent to one of the following pairs in

Z/4Z× Z/4Z: (0, 1), (2, 3).
(3) p = 3, p - a, and (a, b) is congruent to one of the following pairs in

Z/9Z× Z/9Z: (1, 3), (1, 6), (2, 0), (2, 3), (4, 0), (4, 6), (5, 0), (5, 6),
(7, 0), (7, 3), (8, 3), (8, 6).

Then, Q(θ) is monogenic and θ is a generator of the ring of integers.

Theorem 3.2. Let c and d be integers such that d is square-free and 256d−
27c4 is not divisible by the square of an odd prime. If 4 | (256d− 27c4), we

require that v2(d) = 1, or (c, d) is congruent to either (0, 1) or (2, 3) in

Z/4Z×Z/4Z. Suppose that gc,d(x) = x4+ cx3+ d is irreducible and let τ be

a root. Then, Q(τ) is monogenic and τ is a generator of the ring of integers.

If we restrict the above families we can classify the Galois groups and

analyze densities. Note the infinitude of the restricted families below shows

the more general families described above are infinite.
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Theorem 3.3. With the notation as in Theorem 3.1, consider fb,b(x) =

x4 + bx + b. Suppose the coefficients of fb,b(x) satisfy the conditions given

in Theorem 3.1. If b ̸= 3, 5, then Q(θ) has Galois group S4. Moreover, the

density of polynomials satisfying Theorem 3.1 among polynomials of the

form x4 + bx+ b with b ∈ Z arbitrary is at least
51− 4π2

4π2
≈ 29.18%.

Theorem 3.4. With the notation as in Theorem 3.2, consider g1,d(x) =

x4 + x3 + d. Suppose the coefficients of g1,d(x) satisfy the conditions given

in Theorem 3.2. If d ̸= −2, then Q(τ) has Galois group S4. Moreover, the

density of polynomials satisfying Theorem 3.2 among polynomials of the

form x4 + x3 + d with d ∈ Z arbitrary is at least
14− π2

π2
≈ 41.85%.

The primary reason for choosing the restricted families in the above

theorems was so that we could easily analyze their densities. Within the

larger class of polynomials which we prove yield monogenic fields, one

can find other restrictions on the coefficients that yield families with a

specific Galois group. However, in these cases studying density becomes

more difficult, as one is concerned with square-free values of higher degree

polynomials. Our methods could achieve similar results for polynomials of

the form x4 + ax2 + b or x4 + c. However, these families have already been

well-studied.

The outline of our paper is as follows: To prove Theorems 3.1 and 3.2 our

main tool is the Montes algorithm, which we will briefly describe in Section

4. In Section 5, we show that the restricted families are irreducible and have

Galois group S4. Section 6 is concerned with applying the Montes algorithm

to prove monogeneity. Lastly, in Section 7, we analyze the densities of our

restricted families.

4. The Montes Algorithm

We prove monogeneity with a simple application of the Montes algorithm.

We follow [6] for our exposition of the algorithm. Those interested in more

general situations are advised to consult [21]. For the purposes of our work,

the goal of the Montes algorithm is to compute the p-adic valuation vp([OK :

Z[θ]]).
We begin by fixing notation. Let f(x) ∈ Z[x] be monic and irreducible,

θ a root of f(x), K = Q(θ), OK the ring of integers of K, and p a prime in

Z. We extend the p-adic valuation on Z to Z[x] in the following manner. If

g(x) = b0 + b1x+ · · ·+ bkx
k, define vp(g(x)) = min

0≤j≤k
(vp(bj)).
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Now we describe a version of the Montes algorithm. Consider the reduction

of f(x) modulo p. Let φ(x) be an irreducible factor of f(x) modulo p and

let φ(x) be a lift of φ(x) to Z[x]. We may write

f(x) = a0(x) + a1(x)φ(x) + · · ·+ ar(x)φ(x)
r

where ai(x) ∈ Z[x] has degree strictly less than deg(φ(x)). We call this the φ-

adic development of f . To any coefficient, ai(x), of the φ-adic development of

f we attach the point (i, vp(ai(x))) in the plane. The lower convex envelope

of these points is called the φ-Newton polygon of f . The polygon determined

by the sides of the φ-Newton polygon with negative slope is called the

principal φ-polygon of f . We denote this polygon by N . The integer lattice

points on or below N contain the arithmetic information we are interested

in. Specifically, the φ-index of f is deg(φ) times the number of points in the

plane with integral coordinates that lie on or below N , strictly above the

x-axis, and strictly to the right of the y-axis. We denote this number, the

number of points in the integer lattice satisfying the above conditions, by

indφ(f).

Example 4.1. To illustrate how the φ-Newton polygon is obtained, consider

f(x) = x6 + 3x5 + x4 + 15x3 + 9x2 + 18x + 27. We reduce modulo 3

and obtain x4(x2 + 1). Working with the irreducible factor x, we take

the lift x and the x-adic development is again our original polynomial

f(x) = x6 + 3x5 + x4 + 15x3 + 9x2 + 18x+ 27. Now the x-Newton polygon

is:

(0,3)

(1,2) (2,2)

(3,1)

(4,0)

(5,1)

(6,0)

(2,1)(1,1)

The x-Newton polygon for f(x)

The principal x-polygon merely excludes the side between (4, 0) and (6, 0).

Further, accounting for (1, 1), (2, 1), and (1, 2), we see indx(f) = 3.

Continuing with our description of the Montes algorithm, to any integral

x-coordinate 0 ≤ i ≤ r of the principal φ-polygon N , we attach the residual
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coefficient ci ∈ Fp[x]/φ(x), defined to be

ci =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if (i, vp(ai(x))) lies strictly above N

or vp(ai(x)) = ∞.

ai(x)

pvp(ai(x))
∈ Fp[x]/φ(x), if (i, vp(ai(x))) lies on N .

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Note we have covered all cases since (i, vp(ai(x))) cannot lie below N , as N

is the lower convex hull of the (i, vp(ai(x))).

Let S be one of the sides of N . Suppose S has slope λ =
−h
e

where h, e

are positive, coprime integers. Define the length of S, denoted l, to be the

length of the projection onto the x-axis. The ramification index of S is e,

the denominator of λ. The degree of S, denoted d, is
l

e
.

Definition 4.2. Let t be the x-coordinate of the initial vertex of S. We

define the residual polynomial attached to S to be

Rλ(f)(y) = ct + ct+ey + · · ·+ ct+(d−1)ey
d−1 + ct+dey

d ∈ Fp[x]/φ(x)[y].

Now we state the Theorem of the index, our key tool in proving monogeneity.

This is Theorem 1.9 of [6].

Theorem 4.3. Choose monic polynomials φ1, . . . , φk whose reduction modulo

p are the different irreducible factors of f(x). Then,

vp([OK : Z[θ]]) ≥ indφ1(f) + · · ·+ indφk
(f).

Further, equality holds if and only if, for every φi, each side of the principal

φi-polygon has a separable residual polynomial.

Remark 4.4. The Montes algorithm is concerned with separability. With

the notation as above, suppose f(x) ≡ γ(x)ψ(x) modulo p where γ(x)

is separable and gcd(γ(x), ψ(x)) = 1. Then, γ(x) contributes nothing to

vp([OK : Z[θ]]). To see this, let η(x) be an irreducible factor of γ(x) and

consider the η(x)-adic development of f(x):

f(x) = a0(x) + a1(x)η(x) + · · ·+ ar(x)η(x)
r.

Because f(x) has only one factor of η(x) modulo p, we note p - a1(x). Hence
the principal η-polygon has only one side and that side terminates at (1, 0).

Thus indη(f) = 0. Furthermore, the residual polynomial will be separable

since linear polynomials are always separable.



8 H. SMITH

5. Galois Groups and Irreducibility

Consider the two families fa,b(x) = x4 + ax + b and gc,d(x) = x4 +

cx3 + d. These polynomials have discriminants ∆f = 256b3 − 27a4 and

∆g = d2(256d − 27c4). To prove monogeneity, we require the conditions

outlined in Theorems 3.1 and 3.2. However, to obtain families with Galois

group S4, we impose further restrictions. Namely, we require a = b ̸= 3, 5 for

fa,b(x) and c = 1, d ̸= −2 for gc,d(x). There are less restrictive S4 families,

but we have chosen these parameters so that we can analyze the densities

of these families.

In this section we are concerned with proving the first claims of Theorems

3.3 and 3.4, which we restate.

Theorem 5.1. The polynomials fb,b(x) = x4+bx+b and g1,d(x) = x4+x3+d

where b, d, 256− 27b, and 256d− 27 are square-free, b ̸= 3, 5, and d ̸= −2

are irreducible and have Galois group S4.

Before proving Theorem 5.1, we state two results we will need. We begin

with some definitions. Given a quartic polynomial h(x) = x4+a3x
3+a2x

2+

a1x+ a0 with roots α1, α2, α3, α4, we define the resolvent cubic to be

Rh(y) = y3 − a2y
2 + (a3a1 − 4a0)y − a23a0 − a21 + 4a2a0.

Rh has roots α1α2 +α3α4, α1α3 +α2α4, and α1α4 +α2α3. Given h(x), a

depressed quartic is obtained by the substitution x = X − a3
4

and has the

form

hdep(X) = X4 +

(︃
−3a23
8

+ a2

)︃
X2 +

(︃
a33
8

− a3a2
2

+ a1

)︃
X

+

(︃
−3a43
256

+
a23a2
16

− a3a1
4

+ a0

)︃
.

If we have a depressed quartic hdep(x) = x4 + b2x
2 + b1x+ b0, we define the

resolvent cubic to be

Rh,dep(z) = z3 + 2b2z
2 +

(︁
b22 − 4b0

)︁
z − b21.

Though Rh(y) and Rh,dep(z) are both called the resolvent cubic, they are

actually different polynomials even if h(x) is depressed to begin with. More

specifically, the substitution y = z− a23
4
+ a2 sends Rh(y) to Rh,dep(z). Thus

Rh has a root in Q if and only if Rh,dep has a root in Q.

Now we recall a classical theorem. One can see [3] for a clear, elementary

exposition.
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Theorem 5.2. With the notation as above, h(x) factors into quadratic

polynomials in Q[x] if and only if at least one of the following hold:

(1) Rh,dep has a nonzero root in Q2. That is, Rh,dep has a root that is the

square of a nonzero rational number.

(2) b1 = 0 and b22 − 4b0 ∈ Q2.

We will also use the following result of Kappe and Warren [29, Theorem

1] to determine the Galois groups. One can also consult [4] for a nice

exposition with ample examples.

Theorem 5.3. Let h(x) be a quartic polynomial that is irreducible over Q
and let ∆h be the discriminant. Further, let Gh be the Galois group of h.

Then, with the notation as above, the first two columns of the following table

imply the third column.

∆h Rh Gh

not a square irreducible S4

a square irreducible A4

not a square reducible D8 or Z/4Z
a square reducible Z/2Z× Z/2Z

We proceed with the proof of Theorem 5.1.

Proof. We begin with the irreducibility fb,b(x) = x4 + bx+ b. If b is not ±1,

then fb,b is Eisenstein at any prime dividing b. If b = ±1, then the rational

root test shows that there is not a root in Q. To show f±1,±1 does not split

into quadratic factors we consider Rf±1,±1,dep(z) = z3 ∓ 4z− 1. The rational

root test shows Rf±1,±1,dep does not have a root in Q, let alone Q2. Since

b2 = ±1, Theorem 5.2 shows f±1,±1 is irreducible. Note that since Rf±1,±1,dep

is irreducible, Rf±1,±1 is irreducible.

It remains to consider Rfb,b = y3 − 4by − b2 for b ̸= ±1. Suppose we

have a root k. The rational root test shows k ∈ Z divides b2. If p is a

prime divisor of b, then reduction modulo p shows p divides k. Since b is

square-free, b divides k. Write k = bk0. We have b2(bk30 − 4k0 − 1) = 0.

Thus, bk30 − 4k0 − 1 = 0. If any prime divides k0, reduction modulo that

prime yields a contradiction. Hence, k0 = ±1. If k0 = 1, then b = 5, and if

k0 = −1, then b = 3. Therefore, if b ̸= 3, 5, then Rfb,b is irreducible.

For g1,d(x) = x4 + x3 + d, suppose we have a root l. By Gauss’s lemma,

l ∈ Z. We have l3(l + 1) = −d. Since d is square-free, we must have l = 1

and d = −2. Thus for d ̸= −2, we conclude g1,d does not have a root in

Q. To see that g1,d does not factor into quadratics, we make the change of
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variables x = X − 1

4
to obtain the depressed quartic

X4 − 3

8
X2 +

1

8
X − 3

256
+ d.

Here b1 =
1

8
so condition (2) of Theorem 5.2 does not hold. Consider

Rg1,d(y) = y3 − 4dy − d. If d ̸= ±1, then Rg1,d is Eisenstein at any prime

dividing d and hence irreducible. If d = ±1, the rational root test shows

Rg1,d is irreducible. Thus condition (1) of Theorem 5.2 does not hold since

Rg1,d has a root in Q if and only if Rg1,d,dep has a root in Q. We conclude

g1,d is irreducible.

We have demonstrated that, with the conditions given in Theorem 5.1,

fb,b, g1,d, Rfb,b , and Rg1,d are all irreducible. A quick computation shows that

∆fb,b and ∆g1,d are not squares. Thus, Theorem 5.3 shows that fb,b and g1,d

have Galois group S4.

�

Remark 5.4. Let β be a root of Rg1,d . Note that g1,d and Rg1,d both have

discriminant d2(256d − 27). The methods of Section 6 show β generates a

power basis for the ring of integers of the cubic field Q(β) exactly when τ ,

a root of g1,d, generates a power basis for the ring of integers of the quartic

field Q(τ).

6. Monogeneity

For the following we recall a classical formula from algebraic number

theory. Let K be a number field obtained by adjoining a root, α, of some

monic irreducible polynomial h(x) ∈ Z[x]. Write OK for the ring of integers,

disc(K) for the discriminant of K, and ∆h for the discriminant of h(x). Let

p be a prime. We have

vp(disc(K)) + 2vp([OK : Z[α]]) = vp(∆h).

Note this implies any prime dividing [OK : Z[α]] also divides ∆h. Before we

proceed with the proof, we recall Theorem 3.1:

Theorem 6.1. Let a and b be integers such that
256b3 − 27a4

gcd(256b3, 27a4)
is square-

free. Suppose that fa,b(x) = x4 + ax + b is irreducible and let θ be a root.

Further, suppose every prime, p, dividing gcd(256b3, 27a4) satisfies one of

the following conditions:

(1) p divides a and b, but p2 does not divide b.
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(2) p = 2, p - b, and (a, b) is congruent to one of the following pairs in

Z/4Z× Z/4Z: (0, 1), (2, 3).
(3) p = 3, p - a, and (a, b) is congruent to one of the following pairs in

Z/9Z× Z/9Z: (1, 3), (1, 6), (2, 0), (2, 3), (4, 0), (4, 6), (5, 0), (5, 6),
(7, 0), (7, 3), (8, 3), (8, 6).

Then, Q(θ) is monogenic and θ is a generator of the ring of integers.

Proof. Recall ∆f = 256b3−27a4. Let p be a prime dividing ∆f . We will show

that vp([OQ(θ) : Z[θ]]) = 0. First, suppose p | ∆f , but p - gcd(256b3, 27a4).

Since
256b3 − 27a4

gcd(256b3, 27a4)
is square-free, we see

1 = vp(∆f ) = vp(disc(Q(θ))) + 2vp([OQ(θ) : Z[θ]]).

Thus vp([OQ(θ) : Z[θ]]) = 0.

So we consider primes p dividing gcd(256b3, 27a4). Suppose p satisfies

condition (1). We apply the Montes algorithm. Considering fa,b(x) modulo

p we obtain x4. Thus the only irreducible factor we must consider is x.

Taking the lift φ(x) = x, the principal x-polygon of fa,b(x) has one side,

originating at (0, 1) and terminating at (4, 0). Thus indx(fa,b) = 0. The

residual polynomial attached to this side is y− b
p
, which is clearly separable.

By Theorem 4.3, vp([OQ(θ) : Z[θ]]) = 0.

Now suppose p = 2 satisfies condition (2). We apply the Montes algorithm.

Note that 2 necessarily divides a, so modulo 2 we have

fa,b(x) ≡ x4 + b ≡ (x+ 1)4.

The (x+ 1)-adic development of fa,b(x) is

fa,b(x) = (x+ 1)4 − 4(x+ 1)3 + 6(x+ 1)2 + (a− 4)(x+ 1) + b− a+ 1.

To show monogeneity, we need indx+1(fa,b) = 0. Thus we want v2(b−a+1) =

1. One checks this is equivalent to the criteria given in condition (2). The

residual polynomial is linear and hence separable. Thus, Theorem 4.3 tells

us v2([OQ(θ) : Z[θ]]) = 0.

Finally, suppose p = 3 satisfies condition (3). We begin applying the

Montes algorithm. Note that 3 necessarily divides b, so that modulo 3 we

have

fa,b(x) ≡ x4 + ax ≡ x(x3 + a).

From Remark 4.4, the separable factor x contributes nothing to the index.

For the factor (x3 + a), we have two cases:
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Case 1: Suppose a ≡ 1 modulo 3. Thus fa,b(x) ≡ x(x + 1)3 modulo 3,

we take the (x+ 1)-adic development

fa,b(x) = (x+ 1)4 − 4(x+ 1)3 + 6(x+ 1)2 + (a− 4)(x+ 1) + b− a+ 1.

In order to have indx+1(fa,b) = 0, we need v3(b − a + 1) = 1. This is

satisfied by the following pairs (a, b) in Z/9Z × Z/9Z: (1, 3), (1, 6), (4, 0),
(4, 6), (7, 0), (7, 3). The residual polynomial is linear and hence separable.

Applying Theorem 4.3, we conclude v3([OQ(θ) : Z[θ]]) = 0.

Case 2: Suppose a ≡ −1 modulo 3. Thus fa,b ≡ x(x− 1)3 modulo 3, we

take the (x− 1)-adic development

fa,b(x) = (x− 1)4 + 4(x− 1)3 + 6(x− 1)2 + (a+ 4)(x− 1) + b+ a+ 1.

In order to have indx−1(fa,b) = 0, we need v3(b + a + 1) = 1. This is

satisfied by the following pairs (a, b) in Z/9Z × Z/9Z: (2, 0), (2, 3), (5, 0),
(5, 6), (8, 3), (8, 6). The residual polynomials is linear and hence separable.

Applying Theorem 4.3, we conclude v3([OQ(θ) : Z[θ]]) = 0.

Since we have covered all primes dividing the discriminant of fa,b, we see

[OQ(θ) : Z[θ]] = 1. We conclude that Q(θ) is monogenic and θ generates the

ring of integers. �

Before proving Theorem 3.2, we remind ourselves of the statement:

Theorem 6.2. Let c and d be integers such that d is square-free and 256d−
27c4 is not divisible by the square of an odd prime. If 4 | (256d− 27c4), we

require that v2(d) = 1, or (c, d) is congruent to either (0, 1) or (2, 3) in

Z/4Z×Z/4Z. Suppose that gc,d(x) = x4+ cx3+ d is irreducible and let τ be

a root. Then, Q(τ) is monogenic and τ is a generator of the ring of integers.

Proof. Recall ∆g = d2(256d− 27c4). Let p be a prime dividing ∆g. We will

show vp([OQ(τ) : Z[τ ]]) = 0. First, suppose p | (256d− 27c4), but p - d and

p ̸= 2. By assumption, vp(256d− 27c4) = 1. Hence

1 = vp(∆g) = vp(disc(Q(τ))) + 2vp([OQ(τ) : Z[τ ]]).

Thus vp([OQ(τ) : Z[τ ]]) = 0.

Now suppose p | d. Applying the Montes algorithm, we consider gc,d(x)

modulo p. We have two cases:

Case 1: Suppose p | c. The reduction of gc,d(x) is simply x4, so we only

consider the irreducible factor x. Taking the lift φ(x) = x, the principal x-

polygon of gc,d(x) has one side, originating at (0, 1) and terminating at (4, 0).

Thus indx(gc,d) = 0. The residual polynomial attached to this side is y − d
p
,

which is clearly separable. Thus, by Theorem 4.3, vp([OQ(τ) : Z[τ ]]) = 0.
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Case 2: Suppose p - c. Modulo p we have

gc,d(x) ≡ x4 + cx3 ≡ x3(x+ c).

We treat the irreducible factor x exactly as above. Again, the principal x-

polygon is one-sided and the residual polynomial is separable. We conclude

indx(gc,d) = 0.

Considering the factor x + c, we note it is separable. From Remark 4.4

we see indx+c(gc,d) = 0 and the residual polynomial is separable. We apply

Theorem 4.3 to see vp([OQ(τ) : Z[τ ]]) = 0.

For the final scenario, suppose 4 | (256d− 27c4) and 2 - d. Modulo 2 we

have

gc,d(x) ≡ x4 + d ≡ (x− 1)4.

Beginning the Montes algorithm, the (x− 1)-adic development is

(x− 1)4 + (c+ 4)(x− 1)3 + (3c+ 6)(x− 1)2 + (3c+ 4)(x− 1) + c+ d+ 1.

To ensure indx−1(gc,d) = 0, we need v2(c + d + 1) = 1. One checks this

is equivalent to the conditions given in the theorem statement. Finally, if

v2(c + d + 1) = 1 the residual polynomial is linear and hence separable.

Thus, by Theorem 4.3, v2([OQ(τ) : Z[τ ]]) = 0.

Since we have covered all primes dividing the discriminant of gc,d, we

conclude [OQ(τ) : Z[τ ]] = 1. Thus Q(τ) is monogenic and τ generates the

ring of integers.

�

7. Density

In this section, we will show the families of monogenic S4 fields defined

by the polynomials fb,b(x) = x4 + bx + b and g1,d(x) = x4 + x3 + d with

the conditions imposed in Theorem 5.1 are infinite. In fact, we will give a

lower bound on the density of each family. The families fb,b and g1,d are

parametrized by b and d respectively. So, by density, we mean the natural

density of b ∈ Z or d ∈ Z yielding monogenic fields.

To begin with, it is well-known that the natural density of square-free

integers is
1

ζ(2)
=

6

π2
≈ 60.79%.

See [26] for example. Now let S(x;m, k) denote the number of square-free

integers that do not exceed x and are congruent to m modulo k. We will

also need a result of Prachar from [31]:
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Theorem 7.1.

S(x;m, k) ∼ 6x

π2k

∏︂
p|k

(︃
1− 1

p2

)︃−1

(x→ ∞)

for gcd(m, k) = 1 and k ≤ x
2
3
−ϵ.

Before the proof, we recall the second claim of Theorem 3.3:

Theorem 7.2. The density of monogenic S4 fields within the number fields

defined by fb,b(x) = x4 + bx+ b is at least
51− 4π2

4π2
≈ 29.18%.

Proof. From Theorem 6.1, to show that there are infinitely many monogenic

fields defined by a root of fb,b, it suffices to show there are infinitely many

square-free b such that 256 − 27b is square-free. The density of square-free

b is
6

π2
. By Theorem 7.1, the density of square-free numbers congruent to

256 modulo 27 among numbers congruent to 256 modulo 27 is

6

π2

(︃
1− 1

9

)︃−1

=
27

4π2
.

Thus, at worst, the density of monogenic fields in this family is

6

π2
−

(︃
1− 27

4π2

)︃
=

51− 4π2

4π2
≈ 29.18%.

�

As above, before beginning the proof, we recall the second claim of

Theorem 3.4:

Theorem 7.3. The density of monogenic S4 fields within the number fields

defined by g1,d(x) = x4 + x3 + d is at least
14− π2

π2
≈ 41.85%.

Proof. From Theorem 6.2, to show that there are infinitely many monogenic

fields defined by a root of g1,d, it suffices to show there are infinitely many

square-free d such that 256d− 27 is square-free. The density of square-free

d is
6

π2
. By Theorem 7.1, the density of square-free numbers congruent to

27 modulo 256 among numbers congruent to 27 modulo 256 is

6

π2

(︃
1− 1

4

)︃−1

=
24

3π2
.

Thus, at worst, the density of monogenic fields in this family is

6

π2
−

(︃
1− 24

3π2

)︃
=

14− π2

π2
≈ 41.85%.

�
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Remark 7.4. As above, let θ be a root of fb,b(x) = x4 + bx + b and τ a

root of g1,d(x) = x4 + x3 + d. Computationally, it appears that 55.3% of

fields of the form Q(θ) have θ as a generator of OQ(θ). Likewise, it appears

that 55.3% of fields of the form Q(τ) have τ as a generator of OQ(τ). If

Q(τ) is monogenic, it seems that τ is almost always a generator of the ring

of integers, since Q(τ) appears to be monogenic about 55.3% of the time.

However, Q(θ) seems to be monogenic about 58.7% of the time. Thus there

are some cases where Q(θ) is monogenic, but θ does not generate the ring

of integers. We obtained these heuristics using SageMath [33] and testing b

and d between -2,500,000 and 2,500,000.
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[15] I. Gaál and T. Szabó, Power integral bases in parametric families

of biquadratic fields, JP J. Algebra Number Theory Appl., 24 (2012),

pp. 105–114.

[16] T. A. Gassert, A note on the monogeneity of power maps, Albanian

J. Math., 11 (2017), pp. 3–12.

[17] T. A. Gassert, H. Smith, and K. E. Stange, A family of

monogenic S4 quartic fields arising from elliptic curves, ArXiv e-prints,

(2017).

[18] M.-N. Gras, Z-bases d’entiers 1, θ, θ2, θ3 dans les extensions cycliques
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