TWO FAMILIES OF MONOGENIC S; QUARTIC NUMBER
FIELDS

HANSON SMITH

ABsTRACT. Consider the integral polynomials f,;(z) = z* + az + b
and g. 4(z) = 2* + cx® + d. Suppose f,»(z) and g 4(x) are irreducible,

25603 — 27a*
b | a, and the integers b, d, 256d — 27¢*, and Wb?’ﬂ;la‘*) are all

square-free. Using the Montes algorithm, we show that a root of f, (z)
or gq(z) defines a monogenic extension of Q and serves as a generator
for a power basis of the ring of integers. In fact, we show monogeneity
for slightly more general families. Further, we obtain lower bounds on
the density of polynomials generating monogenic Sy fields within the
families fp(z) and g1 4(z).

1. INTRODUCTION AND OVERVIEW OF RESULTS

Let K be a number field and let Ok be its ring of integers. If there
exists a monic irreducible polynomial f(z) € Z[x] with a root # such that
Z[0] = Ok, then we say K is monogenic. In other words, K is monogenic if
Ok admits a power integral basis. A quantity related to monogeneity is the
field index. The field index is defined to be the pair-wise greatest common
divisor ged [Ok : Z[a]]. Note that K can have field index 1 and still not be

a0k

monogenic. Define the minimal index to be m(ign Ok : Z]al]. Monogeneity
acOk

is equivalent to having minimal index equal to 1.

Many of the number fields we are most familiar with are monogenic. For
example, all quadratic extensions and cyclotomic extensions are monogenic.
An example of a non-monogenic field, due to Dedekind [5], is the field
obtained by adjoining a root of 2 — 22 — 22 — 8 to Q. The problem of
classifying monogenic number fields is often called Hasse’s problem, as it is
believed to have been posed to the London Mathematical Society by Helmut
Hasse in the 1960’s. See the remark on page 193 of [22].

We can now state concise, less-general versions of our main results. The
following are consequences of Theorems and and Theorems and
B.4] respectively.
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Corollary 1.1. Consider f,,(z) = 2% + bz + b with b € Z and let 6 be a
root. Suppose b and 256 — 27b are square-free and b # 3,5. Then, Q(0) is

a monogenic Sy quartic field and 0 is a generator of a power integral basis.
Further, at least 29.18% of b € Z satisfy these conditions.

Corollary 1.2. Consider gy 4(x) = x* + 2° +d with d € Z and let T be a
root. Suppose d and 256d — 27 are square-free and d # —2. Then Q(1) is
a monogenic Sy quartic field and T 1s a generator of a power integral basis.
Further, at least 41.849% of d € Z satisfy these conditions.

Heuristically, the best possible percentages in Corollaries and
seem to be 55.3%. See Remark [7.4]

2. PrREVIOUS WORK

Before a more detailed exposition of our work, we list some results
pertaining to Hasse’s problem. It has been shown that almost all abelian
extension of Q with degree coprime to 6 are not monogenic; see Gras [19].
Gassert [16] shows that all fields obtained by adjoining a root of 2" — a,
where a is square-free and a? #Z a modulo p? for all primes p | n, are
monogenic. In [27], Jones and Phillips identify infinitely many monogenic
fields coming from polynomials of the shape " + a(m, n)x + b(m, n), where
a(m,n) and b(m,n) are prescribed forms. They consider two families of
forms, one yielding Galois group S,, and the other A,. Recently, Bhargava,
Shankar, and Wang [2] have shown that the density of monic, irreducible
polynomials f(z) € Z[z] such that a root, 6, of f(x) yields a power basis
for the ring of integers of Q(F) is 55 = ((2)~' ~ 60.79%. In the same
paper, they also show that the density of monic integer polynomials with

square-free discriminants is

11 (1 _Ly ?_—1)2> ~ 35.82%.
. p plp+1)

Note that these polynomials are a subset of the monic, irreducible polynomials

f(z) € Z[z] such that a root, 6, yields a power basis for the ring of integers

of Q(0).

Many of the approaches to Hasse’s problem have focused on fields with a
given Galois group. We summarize the state of the art for degree 4 number
fields. For a nice treatise on approaches to monogeneity using index form
equations, see Gaal’s book [9], “Diophantine Equations and Power Integral

Bases.” In particular, Chapter 6 deals with the quartic case. A general
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algorithm for solving the quartic index form equations is presented, with
the author expanding upon specific cases.

A biquadratic field is an extension having Z/2Z x 7Z/27Z as the Galois
group. A biquadratic extension can be written Q (v/m,/n). Gadl, Pethd,
and Pohst [L1] parametrize the field indices that can occur based on congruence
conditions on m and n. Gras and Tanoé’s article [20] gives necessary and
sufficient conditions for a biquadratic field to be monogenic. Jadrijevi¢ [24]
describes the minimal and field indices of the two families Q (\/ (c—2)e,v/(c+ 2)c>

and Q (\/ (c—2)e,v/(c+ 4)c> . This investigation is continued for the family
Q <\/(c —2)c,/(c+ 4)0) in [25]. When ¢ and ¢ + 4 are square-free, Gaél

and Jadrijevié¢ [10] show Q (\/ 2¢,+/2(c + 4)) is not monogenic, compute an
integral basis, and determine the elements of minimal index.

Dihedral quartic fields have received a significant amount of attention.
In [23], Huard, Spearman, and Williams compute the discriminant and an
integral basis of quartic fields with quadratic subfields. Further, they find
infinitely many monogenic Dy fields. Specifically, they show that for each
square-free ¢ there are infinitely many fields of the form Q <\/E, va+ b\/E>
that are monogenic. Gaal and Szabd [15] solve index form equations to
show that the power integral bases found in [23] are the only possible power
integral bases. In [28], Kable resolves the question of monogeneity when
the Dg field in question has an imaginary quadratic subfield and establishes
some bounds in all cases. Using their algorithm from [I3], Gadl, Pethé,
and Pohst [I2] compute “small” indices of totally real quartic fields with
Galois group either Z/4Z or Dg and discriminant of absolute value less than
10%. The indices may not be minimal since the algorithm they implemented
checks only for solutions to the index form equation with absolute value less
than 10°.

A pure quartic field is a field obtained by adjoining a root of a polynomial
of the form z* — a to Q. In [7], Funakura gives necessary and sufficient
conditions for pure monogenic quartic fields. Gaal and Remete [14], characterize
the only power integral bases of a number of infinite families of pure quartic
fields using binomial Thue equations and extensive calculations on a supercomputer.

The simplest quartic fields are given by a root of 2* — tz3 — 622 +tx +1,
where t # +3,0. They are totally real with Galois group Z/4Z. If t* + 16
is not divisible by an odd square, Olajos [30] has shown that the only two
simplest quartics that are monogenic occur when ¢t = 2 and t = 4. In [1§],
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Gras shows there are only two monogenic imaginary cyclic quartic fields.
These are Q(¢5) and Q (Qﬁ — Cfesl)-

For Ay fields, Spearman [32] shows z* + 1822 — 4tz + ¢* + 81 defines an
infinite family of monogenic fields when ¢ (t* + 108) is square-free.

With [8], Gaal considers five families of totally complex quartic polynomials.
The polynomials are shown to be irreducible and the Galois groups are
classified; Ay, Dg, Z /A7, and Z /27 x 7,/ 27, all occur. Further, Gadl computes
all power integral bases of the orders generated by the roots.

As for Sy quartics, work by Bérczes, Evertse, and Gydry [I] restricts
multiply monogenic orders. A recent paper [I7] by Gassert, Smith, and
Stange shows z* — 622 — tx — 3 with ¢ + 8 and ¢t — 8 square-free defines
an infinite family of monogenic Sy quartic fields. It is worth noting that
the methods of [I7] are distinct from much of the other literature in that
arithmetic properties of elliptic curves are central to proving monogeneity.

3. RESULTS

In this paper we identify two families of monogenic quartic fields:

2560° — 27a%
ged (25603, 27a%)
free. Suppose that f,u(x) = x* + ax + b is irreducible and let 6 be a root.

Theorem 3.1. Let a and b be integers such that 1S square-

Further, suppose every prime, p, dividing ged (2560, 27a*) satisfies one of

the following conditions:

(1) p divides a and b, but p* does not divide b.

(2) p=2,ptb, and (a,b) is congruent to one of the following pairs in
Z]AZ x 7./AZ: (0,1), (2,3).

(8) p=3, pta, and (a,b) is congruent to one of the following pairs in
Z)97Z x Z.J9Z: (1,3), (1,6), (2,0), (2,3), (4,0), (4,6), (5,0), (5,6),
(7,0), (7,3), (8,3), (8,6).

Then, Q(6) is monogenic and 0 is a generator of the ring of integers.

Theorem 3.2. Let ¢ and d be integers such that d is square-free and 256d —
27¢* is not divisible by the square of an odd prime. If 4 | (256d — 27¢*), we
require that va(d) = 1, or (¢,d) is congruent to either (0,1) or (2,3) in
ZJAZL x ZJAZ. Suppose that g.q(x) = x* + ca® +d is irreducible and let T be

a root. Then, Q(T) is monogenic and T is a generator of the ring of integers.

If we restrict the above families we can classify the Galois groups and
analyze densities. Note the infinitude of the restricted families below shows

the more general families described above are infinite.



MONOGENIC Sy QUARTICS 5

Theorem 3.3. With the notation as in Theorem consider fyp(xr) =

xt + bx + b. Suppose the coefficients of fyp(x) satisfy the conditions given

in Theorem . If b # 3,5, then Q(0) has Galois group Sy. Moreover, the

density of polynomials satisfying Theorem %Toni golynomials of the
—4r

form x* + bz + b with b € Z arbitrary is at least e ~ 29.18%.
T

Theorem 3.4. With the notation as in Theorem consider g1 q4(r) =
xt + 2% + d. Suppose the coefficients of g1.4(z) satisfy the conditions given
in Theorem . If d # =2, then Q(7) has Galois group Sy. Moreover, the
density of polynomials satisfying Theorem among onlynomz'als of the

~ 41.85%.

form x* + 23 + d with d € Z arbitrary is at least 5
T

The primary reason for choosing the restricted families in the above
theorems was so that we could easily analyze their densities. Within the
larger class of polynomials which we prove yield monogenic fields, one
can find other restrictions on the coefficients that yield families with a
specific Galois group. However, in these cases studying density becomes
more difficult, as one is concerned with square-free values of higher degree
polynomials. Our methods could achieve similar results for polynomials of
the form z* + ax? + b or z* 4 c¢. However, these families have already been
well-studied.

The outline of our paper is as follows: To prove Theorems [3.1]and [3.2| our
main tool is the Montes algorithm, which we will briefly describe in Section
[ In Section[5] we show that the restricted families are irreducible and have
Galois group Sy. Section []is concerned with applying the Montes algorithm
to prove monogeneity. Lastly, in Section [7| we analyze the densities of our

restricted families.

4. THE MONTES ALGORITHM

We prove monogeneity with a simple application of the Montes algorithm.
We follow [6] for our exposition of the algorithm. Those interested in more
general situations are advised to consult [21]. For the purposes of our work,
the goal of the Montes algorithm is to compute the p-adic valuation v,([Ok :
Z19).

We begin by fixing notation. Let f(x) € Z[x] be monic and irreducible,
0 a root of f(x), K = Q(0), Ok the ring of integers of K, and p a prime in
Z. We extend the p-adic valuation on Z to Z[z] in the following manner. If

g(x) = by + by + - - - + bra®, define v,(g(2)) = min (uv,(by)).
0<j<k
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Now we describe a version of the Montes algorithm. Consider the reduction
of f(z) modulo p. Let ¢(x) be an irreducible factor of f(x) modulo p and
let () be a lift of ¢(z) to Z[x]. We may write

f(x) = ao(z) + ar(2)p(x) + - - + ar(2)p(x)"

where a;(x) € Z|x] has degree strictly less than deg(¢(x)). We call this the ¢-
adic development of f. To any coefficient, a;(x), of the ¢-adic development of
f we attach the point (4, v,(a;(x))) in the plane. The lower convex envelope
of these points is called the ¢-Newton polygon of f. The polygon determined
by the sides of the ¢-Newton polygon with negative slope is called the
principal ¢-polygon of f. We denote this polygon by N. The integer lattice
points on or below N contain the arithmetic information we are interested
in. Specifically, the ¢-index of f is deg(¢) times the number of points in the
plane with integral coordinates that lie on or below N, strictly above the
z-axis, and strictly to the right of the y-axis. We denote this number, the
number of points in the integer lattice satisfying the above conditions, by

indg(f).

Example 4.1. To illustrate how the p-Newton polygon is obtained, consider
flz) = 25 4+ 32° + 2* + 1523 + 922 + 18z + 27. We reduce modulo 3
and obtain x*(xz? + 1). Working with the irreducible factor z, we take
the lift x and the z-adic development is again our original polynomial
f(x) = 2% + 32° + 2* + 1523 + 922 + 18x + 27. Now the x-Newton polygon

1s:

(0,3) ¢

(40)  (60)
The z-Newton polygon for f(x)

The principal z-polygon merely excludes the side between (4,0) and (6,0).
Further, accounting for (1,1), (2,1), and (1,2), we see ind,(f) = 3.

Continuing with our description of the Montes algorithm, to any integral
z-coordinate 0 < ¢ < r of the principal ¢-polygon N, we attach the residual
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coefficient ¢; € Fy[x]/¢(x), defined to be

0, if (i, vp(a;(x))) lies strictly above N
or vp(a;(r)) = oc.

C;, =
pii(gﬁ)) € Fplz]/o(x), if (4, vp(ai(x))) lies on N.

Note we have covered all cases since (7, v,(a;(x))) cannot lie below N, as N
is the lower convex hull of the (i, v,(a;(z))).
—h
Let S be one of the sides of N. Suppose S has slope A = — where h, e
e
are positive, coprime integers. Define the length of S, denoted [, to be the

length of the projection onto the z-axis. The ramification index of S is e,

[
the denominator of X\. The degree of S, denoted d, is —.
e

Definition 4.2. Let ¢ be the z-coordinate of the initial vertex of S. We
define the residual polynomial attached to S to be

Ra(f)y) = ¢t + cryey + -+ + Ct+(d—1)eyd_1 + crraey” € Fplx]/o(z)[y].

Now we state the Theorem of the index, our key tool in proving monogeneity.
This is Theorem 1.9 of [6].

Theorem 4.3. Choose monic polynomials ¢1, . .., or whose reduction modulo
p are the different irreducible factors of f(x). Then,

u([Ok = Z[0]]) = indy, (f) + - - - + indg, ().

Further, equality holds if and only if, for every ¢;, each side of the principal
¢;-polygon has a separable residual polynomaial.

Remark 4.4. The Montes algorithm is concerned with separability. With
the notation as above, suppose f(z) = 7(z)y¥(x) modulo p where ()
is separable and ged(vy(x),4(x)) = 1. Then, () contributes nothing to
v,([Ok @ Z[0]]). To see this, let n(z) be an irreducible factor of v(z) and
consider the n(x)-adic development of f(z):

f(x) = ao() + ar()n(z) + - - - + ar(z)n(2)".

Because f(z) has only one factor of 7(z) modulo p, we note p { a;(z). Hence
the principal n-polygon has only one side and that side terminates at (1,0).
Thus ind, (f) = 0. Furthermore, the residual polynomial will be separable

since linear polynomials are always separable.
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5. GALOIS GROUPS AND IRREDUCIBILITY

Consider the two families f,5(z) = 2* + az + b and g.q4(x) = z* +
cx® + d. These polynomials have discriminants Ay = 2560 — 27a* and
A, = d?(256d — 27¢*). To prove monogeneity, we require the conditions
outlined in Theorems [3.1] and [3.2 However, to obtain families with Galois
group Sy, we impose further restrictions. Namely, we require a = b # 3,5 for
fap(z) and ¢ =1, d # —2 for g.q4(x). There are less restrictive S, families,
but we have chosen these parameters so that we can analyze the densities
of these families.

In this section we are concerned with proving the first claims of Theorems

and [3.4] which we restate.

Theorem 5.1. The polynomials fy(z) = x*+bx+b and g1 4(z) = z*+23+d
where b, d, 256 — 27b, and 256d — 27 are square-free, b # 3,5, and d # —2

are 1rreducible and have Galois group Sy.

Before proving Theorem [5.1] we state two results we will need. We begin
with some definitions. Given a quartic polynomial h(z) = 2%+ azz® +asz? +
a1 4 ag with roots aq, as, as, ay, we define the resolvent cubic to be

Ru(y) = y° — aoy® + (asay — 4ag)y — ajap — af + 4azaq.
Ry, has roots ajag + azay, agas + asay, and ajay + asag. Given h(z), a
a
depressed quartic is obtained by the substitution x = X — Zg and has the
form

9.2 3
haep(X) = X4 + ( za?’ +a2> X%+ (% — a32a2 +a1> X

a3 aiay  aza
+(‘ﬁ+1—6— ;M)

If we have a depressed quartic hge,(x) = 2* + baa? + by + by, we define the
resolvent cubic to be

Rh,dep(z) =2° + 2b2Z2 + (b% — 4b0) zZ — b%

Though Ry (y) and Ry 4e(2) are both called the resolvent cubic, they are
actually different polynomials even if h(z) is depressed to begin with. More

specifically, the substitution y = z — % +ay sends Ry (y) to Ry gep(z). Thus
R}, has a root in Q if and only if R}, 4¢, has a root in Q.
Now we recall a classical theorem. One can see [3] for a clear, elementary

exposition.
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Theorem 5.2. With the notation as above, h(z) factors into quadratic
polynomials in Q|x] if and only if at least one of the following hold:

(1) R gep has a nonzero root in Q2. That is, Ry gep has a root that is the

square of a nonzero rational number.

(2) b1 =0 and b% —4b0 € @2.

We will also use the following result of Kappe and Warren [29, Theorem
1] to determine the Galois groups. One can also consult [4] for a nice
exposition with ample examples.

Theorem 5.3. Let h(x) be a quartic polynomial that is irreducible over Q
and let Ay be the discriminant. Further, let G, be the Galois group of h.
Then, with the notation as above, the first two columns of the following table

imply the third column.

Ay Ry, Gh
not a square | irreducible Sy
a square wrreducible Ay

not a square | reducible | Dg or Z/AZ
a square reducible | 7/27 x 7./27

We proceed with the proof of Theorem [5.1]

Proof. We begin with the irreducibility f,,(z) = z* + bz 4+ b. If b is not +1,
then f;,; is Eisenstein at any prime dividing b. If b = +£1, then the rational
root test shows that there is not a root in Q. To show fi; 1 does not split
into quadratic factors we consider Ry,, ,, 4ep(2) = 2° F 4z — 1. The rational
root test shows Ry, ., 4ep does not have a root in Q, let alone Q7. Since
by = +£1, Theorem shows fi; 4, is irreducible. Note that since Ry, ., dep
is irreducible, Ry, ., is irreducible.

It remains to consider Ry, = y* — 4by — b* for b # +1. Suppose we
have a root k. The rational root test shows k € Z divides b?. If p is a
prime divisor of b, then reduction modulo p shows p divides k. Since b is
square-free, b divides k. Write k = bkg. We have b*(bkj — 4ky — 1) = 0.
Thus, bki — 4kg — 1 = 0. If any prime divides kg, reduction modulo that
prime yields a contradiction. Hence, kg = £1. If kg = 1, then b = 5, and if
ko = —1, then b = 3. Therefore, if b # 3,5, then Ry, , is irreducible.

For g1 4(x) = z* + 2 + d, suppose we have a root [. By Gauss’s lemma,
| € Z. We have I3(I + 1) = —d. Since d is square-free, we must have [ = 1
and d = —2. Thus for d # —2, we conclude g; 4 does not have a root in

Q. To see that g; 4 does not factor into quadratics, we make the change of
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1
variables x = X — 1 to obtain the depressed quartic

3 1 3
X=X+ X — —+d.
s TR T s
1
= 3 so condition of Theorem does not hold. Consider
Ry, ,(y) = y° — 4dy — d. If d # £1, then R,,

dividing d and hence irreducible. If d = +1, the rational root test shows

is Eisenstein at any prime

Ry, , is irreducible. Thus condition of Theorem does not hold since
Ry, , has a root in Q if and only if Ry, , 4e has a root in Q. We conclude

g1.4 1s irreducible.

We have demonstrated that, with the conditions given in Theorem [5.1]
Jops 91,4, Ry, and Ry, , are all irreducible. A quick computation shows that
Ay, , and A, are not squares. Thus, Theorem shows that f;;, and g1 4

91,d
have Galois group Sj.
O
Remark 5.4. Let 8 be a root of Ry, ,. Note that g; 4 and Ry, , both have

discriminant d*(256d — 27). The methods of Section [6] show 3 generates a
power basis for the ring of integers of the cubic field Q(/) exactly when T,
a root of g; 4, generates a power basis for the ring of integers of the quartic

field Q(7).

6. MONOGENEITY

For the following we recall a classical formula from algebraic number
theory. Let K be a number field obtained by adjoining a root, «, of some
monic irreducible polynomial h(z) € Z[x]. Write O for the ring of integers,
disc(K) for the discriminant of K, and Ay, for the discriminant of h(z). Let
p be a prime. We have

vp(disc(K)) + 2v,([Ok : Z[a]]) = v,(Ap).

Note this implies any prime dividing [Of : Z|«]] also divides Aj. Before we
proceed with the proof, we recall Theorem [3.1}

2566 — 27a*
ged (25603, 27a%)
free. Suppose that f,u(x) = x* + ax + b is irreducible and let 6 be a root.

Theorem 6.1. Let a and b be integers such that

1S square-

Further, suppose every prime, p, dividing ged (2560, 27a*) satisfies one of
the following conditions:

(1) p divides a and b, but p* does not divide b.
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(2) p=2,ptb, and (a,b) is congruent to one of the following pairs in
Z]AZ x 7./AZ: (0,1), (2,3).

(3) p=3, pta, and (a,b) is congruent to one of the following pairs in
Z)9Z x Z.J9Z: (1,3), (1,6), (2,0), (2,3), (4,0), (4,6), (5,0), (5,6),
(7,0), (7,3), (8,3), (8,6).

Then, Q(6) is monogenic and 6 is a generator of the ring of integers.

Proof. Recall Ay = 256b°—27a*. Let p be a prime dividing A ;. We will show

that v,([Og : Z[6]]) = 0. First, suppose p | Ay, but p { ged(2566%, 27a*).
) 25663 — 27a* .

Since is square-free, we see

ged (25603, 27a%)
1 = v,(Ay) = v,(disc(Q(6))) + 2v,([Oge) : Z[8]]).
Thus v, ([Og) : Z[0]]) = 0.
So we consider primes p dividing ged(256b%, 27a*). Suppose p satisfies

condition . We apply the Montes algorithm. Considering f, ;(x) modulo
p we obtain z*. Thus the only irreducible factor we must consider is z.

Taking the lift ¢(z) = z, the principal xz-polygon of f,,(z) has one side,
originating at (0,1) and terminating at (4,0). Thus ind,(f,s) = 0. The
residual polynomial attached to this side is y — 1%, which is clearly separable.
By Theorem [4.3} v,([Og) : Z[0]]) = 0.

Now suppose p = 2 satisfies condition . We apply the Montes algorithm.
Note that 2 necessarily divides a, so modulo 2 we have

far(@) =2 +b=(z+ 1)
The (z + 1)-adic development of f,,(x) is
far(@) =@+ D4z +1)*+6(x+1)*+(a—4)(z+1)+b—a+ 1.

To show monogeneity, we need ind, 1 (fap) = 0. Thus we want vy(b—a+1) =
1. One checks this is equivalent to the criteria given in condition . The
residual polynomial is linear and hence separable. Thus, Theorem tells
us v2([Oqgqey : Z[0]]) = 0.

Finally, suppose p = 3 satisfies condition . We begin applying the
Montes algorithm. Note that 3 necessarily divides b, so that modulo 3 we
have

fap(z) = zt+ar= :c(x3 +a).

From Remark [4.4] the separable factor = contributes nothing to the index.

For the factor (z3 + a), we have two cases:
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Case 1: Suppose a = 1 modulo 3. Thus f,;(z) = z(z 4+ 1)* modulo 3,
we take the (x + 1)-adic development

far(@) = (@ + D =4z + 1) +6(x+ 1) +(a—4)(z+1)+b—a+ 1.

In order to have ind,;1(fss) = 0, we need v3(b —a + 1) = 1. This is
satisfied by the following pairs (a,b) in Z/9Z x Z/9Z: (1,3), (1,6), (4,0),
(4,6), (7,0), (7,3). The residual polynomial is linear and hence separable.
Applying Theorem .3 we conclude vs([Og) : Z[0]]) = 0.

Case 2: Suppose a = —1 modulo 3. Thus f,; = z(z — 1)* modulo 3, we
take the (x — 1)-adic development

fap(@) = (x =D +4(x -1 +6(x —1)*+(a+4)(x — 1)+ b+a+ 1.

In order to have ind,_1(f,») = 0, we need v3(b + a + 1) = 1. This is
satisfied by the following pairs (a,b) in Z/9Z x Z/9Z: (2,0), (2,3), (5,0),
(5,6), (8,3), (8,6). The residual polynomials is linear and hence separable.
Applying Theorem [4.3| we conclude v3([Ogg) : Z[0]]) = 0.

Since we have covered all primes dividing the discriminant of f,;, we see
[Oqqo) : Z[A]] = 1. We conclude that Q(¢) is monogenic and 6 generates the
ring of integers. U

Before proving Theorem we remind ourselves of the statement:

Theorem 6.2. Let ¢ and d be integers such that d is square-free and 256d —
27¢* is mot divisible by the square of an odd prime. If 4 | (256d — 27c*), we
require that va(d) = 1, or (¢,d) is congruent to either (0,1) or (2,3) in
ZJAZL x ZJAZ. Suppose that g.q(x) = x* + ca® +d is irreducible and let T be

a root. Then, Q(T) is monogenic and T is a generator of the ring of integers.

Proof. Recall A, = d*(256d — 27¢*). Let p be a prime dividing A,. We will
show v, ([Og(ry : Z[7]]) = 0. First, suppose p | (256d — 27¢*), but p t d and
p # 2. By assumption, v,(256d — 27¢*) = 1. Hence

1= vp(Ag) = vp(disc(Q(7))) + 20p([Og(r « Z7]]).

Thus v,([Og(r : Z[7]]) = 0.

Now suppose p | d. Applying the Montes algorithm, we consider g.q(x)
modulo p. We have two cases:

Case 1: Suppose p | ¢. The reduction of g.4(z) is simply z?, so we only
consider the irreducible factor x. Taking the lift ¢(x) = x, the principal z-
polygon of g. 4(z) has one side, originating at (0, 1) and terminating at (4, 0).
Thus ind;(g.q) = 0. The residual polynomial attached to this side is y — ]i‘f,
which is clearly separable. Thus, by Theorem [4.3} v,([Og(r) : Z[7]]) = 0.
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Case 2: Suppose p 1 c. Modulo p we have
Ged(r) = 2 + ca® = ¥ (x + ¢).

We treat the irreducible factor = exactly as above. Again, the principal z-
polygon is one-sided and the residual polynomial is separable. We conclude
ind;(geq) = 0.

Considering the factor x + ¢, we note it is separable. From Remark
we see ind,4.(g.q) = 0 and the residual polynomial is separable. We apply
Theorem |4.3| to see v,([Oq(r : Z[7]]) = 0.

For the final scenario, suppose 4 | (256d — 27¢*) and 2 { d. Modulo 2 we

have

gea(z) =2t +d = (z - 1)~
Beginning the Montes algorithm, the (x — 1)-adic development is
(z—D*+(c+d)(x—1P2+Bc+6)(z—1)2+Bc+4)(z—1)+c+d+ 1.

To ensure ind,—1(g.q) = 0, we need va(c + d + 1) = 1. One checks this
is equivalent to the conditions given in the theorem statement. Finally, if
vo(c + d + 1) = 1 the residual polynomial is linear and hence separable.
Thus, by Theorem v2([Oqry = Z[7]]) = 0.

Since we have covered all primes dividing the discriminant of g.q, we
conclude [Oq(r) : Z[7]] = 1. Thus Q(7) is monogenic and 7 generates the
ring of integers.

0

7. DENSITY

In this section, we will show the families of monogenic S, fields defined
by the polynomials f;,(z) = z* + bz + b and g1 4(x) = 2* + 2° + d with
the conditions imposed in Theorem are infinite. In fact, we will give a
lower bound on the density of each family. The families f,; and g¢; 4 are
parametrized by b and d respectively. So, by density, we mean the natural
density of b € Z or d € 7Z yielding monogenic fields.

To begin with, it is well-known that the natural density of square-free

integers is
1 6
—— = — ~60.79%.
@) = )
See [26] for example. Now let S(z;m, k) denote the number of square-free
integers that do not exceed x and are congruent to m modulo k. We will

also need a result of Prachar from [31]:
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Theorem 7.1.

S(zim, k) ~ — (1——2)_1 (z — 0)

for ged(m, k) =1 and k < 23~
Before the proof, we recall the second claim of Theorem [3.3}

Theorem 7.2. The density of monogenic Sy fields within the number fields
51 — 472
defined by fop(z) = 2 + bx + b is at least 4—27T ~ 29.18%.
T
Proof. From Theorem [6.1], to show that there are infinitely many monogenic
fields defined by a root of f, it suffices to show there are infinitely many
square-free b such that 256 — 27b is square-free. The density of square-free
b is —. By Theorem , the density of square-free numbers congruent to

256 modulo 27 among numbers congruent to 256 modulo 27 is

6 (1) _2
2 9 A2

Thus, at worst, the density of monogenic fields in this family is

6 27 51 — 472
- (1 _ ) — "~ 29.18%.

2 472 472

g

As above, before beginning the proof, we recall the second claim of

Theorem [3.4}

Theorem 7.3. The density of monogenic Sy fields within the number fields
2
~ 41.85%.

defined by g1 4(z) = 2* + 2® + d is at least

™

Proof. From Theorem[6.2] to show that there are infinitely many monogenic
fields defined by a root of g 4, it suffices to show there are infinitely many
square-free d such that 256d — 27 is square-free. The density of square-free
d is % By Theorem , the density of square-free numbers congruent to

27 modulo 256 among numbers congruent to 27 modulo 256 is

6(,_1 T
2 4 T 3p2

Thus, at worst, the density of monogenic fields in this family is

6 24 14 — 72
——(1— ): T~ 41.85%.

2 372 2
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Remark 7.4. As above, let 6 be a root of f,,(z) = 2* +br +b and T a
root of gy 4(x) = z* + 2* + d. Computationally, it appears that 55.3% of
fields of the form Q(f) have 0 as a generator of Og(). Likewise, it appears
that 55.3% of fields of the form Q(7) have 7 as a generator of Og.y. If
Q(7) is monogenic, it seems that 7 is almost always a generator of the ring
of integers, since Q(7) appears to be monogenic about 55.3% of the time.
However, Q(6) seems to be monogenic about 58.7% of the time. Thus there
are some cases where Q(#) is monogenic, but 6 does not generate the ring
of integers. We obtained these heuristics using SageMath [33] and testing b
and d between -2,500,000 and 2,500,000.
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