
Graph Matching and Pseudo-Label
Guided Deep Unsupervised Domain

Adaptation

Debasmit Das(B) and C. S. George Lee

School of Electrical and Computer Engineering, Purdue University,
West Lafayette, IN, USA

{das35,csglee}@purdue.edu

Abstract. The goal of domain adaptation is to train a high-performance
predictive model on the target domain data by using knowledge from
the source domain data, which has different but related data distribu-
tion. In this paper, we consider unsupervised domain adaptation where
we have labelled source domain data but unlabelled target domain data.
Our solution to unsupervised domain adaptation is to learn a domain-
invariant representation that is also category discriminative. Domain-
invariant representations are realized by minimizing the domain discrep-
ancy. To minimize the domain discrepancy, we propose a novel graph-
matching metric between the source and target domain representations.
Minimizing this metric allows the source and target representations to be
in support of each other. We further exploit confident unlabelled target
domain samples and their pseudo-labels to refine our proposed model.
We expect the refining step to improve the performance further. This
is validated by performing experiments on standard image classification
adaptation datasets. Results showed our proposed approach out-perform
previous domain-invariant representation learning approaches.

Keywords: Unsupervised domain adaptation · Transfer learning
Graph matching · Pseudo-labels

1 Introduction

Unsupervised Domain Adaptation (UDA) defines the problem when the target
domain is unlabelled and the source domain is fully labelled and these domains
have different marginal distributions [15]. UDA tries to transfer knowledge from
a source domain to help learning in a target domain. The assumption in UDA for
the classification problem is that the source and target categories are the same.
Because of shifting distributions and the lack of annotations, machine learning
models trained in the source domain will fail to perform well in the target domain
and hence UDA is necessary.

Most popular domain-adaptation methods involve feature transformation.
Among these methods, asymmetric feature-based methods transform the fea-
tures of one domain to more closely match another domain [3,10]. Symmetric
c⃝ Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11141, pp. 342–352, 2018.
https://doi.org/10.1007/978-3-030-01424-7_34

Graph Matching and Pseudo-Label Guided Deep Unsupervised DA 343

methods on the other hand transform the source and target domains to a com-
mon latent space where the distribution discrepancy is minimized. Deep-learning-
based domain adaptation methods allow symmetric feature-based methods to be
included in the form of learning a domain-invariant representation [7,13]. Among
these methods, minimizing the maximum mean discrepancy (MMD) [9] is com-
mon. MMD is a non-parametric metric that measures the distribution divergence
between the mean embeddings of two distributions in reproducing kernel Hilbert
space (RKHS), and MMD has been used as a domain discrepancy metric between
the deep activations of the source and target domains [13,20]. On the other hand,
the correlation alignment (CORAL) method [17] aligns the covariances of the
source and target distributions. They also extended their work to learn repre-
sentations that align correlations of features extracted from the deep neural net-
work [18]. A different class of symmetric feature-based methods uses an adversar-
ial objective to reduce domain discrepancy. Domain adversarial neural network
(DANN) [7] was proposed for learning domain-invariant representations by forc-
ing a minimax game between the domain discriminator and the feature extractor.
Tzeng et al. [19] generalized the idea of adversarial adaptation by choosing adver-
sarial loss for the domain classifier and also proposed a weight sharing strategy.
Shen et al. [16] also considers an adversarial adaptation method where it mini-
mizes the empirical Wasserstein distance between source and target features. Pre-
vious work on using graph-matching on hand-crafted features for unsupervised
domain adaptation was also proposed [4,5].

Our proposed method is a symmetric feature transformation method where
both the source and target samples are transformed to a common space using
the feature extractor of a deep neural network. This is done by carrying out
domain-invariant representation learning that uses graph-matching (GM) loss
as the domain discrepancy metric. The graph-matching loss considers the cost
of matching the source and target graphs constructed from the corresponding
representations. The matching consists of both node-to-node matching and edge-
to-edge matching between the source and target representation graphs. This
second-order matching of edges provides additional structural and geometric
information about the representations that are absent on just using the first-
order information [16]. The feature extraction network is iteratively optimized
to minimize this graph matching loss along with minimizing the mis-classification
loss using the source domain labelled data. Our proposed method adopts an iter-
ative adversarial training scheme where the adversarial loss is a combination of
first-order and second-order graph-based matchings between the source and tar-
get domain features. It is important to note that our matching approach is local
and it considers matching between each instance of the source and target domain
representations. On the other hand, methods like CORAL [18] and those based
on MMD [13,20] are global moment-matching methods that match statistics of
the source and target feature distributions.

After the learning has converged and the source and target representations
lie in support of each other, we perform an additional refinement of the model.
The pseudo-labels (PL) of the confident unlabelled target domain data are used
to make sure that target samples lie further from the softmax decision boundary.

344 D. Das and C. S. G. Lee

This allows better generalization to unseen target samples. Finally, to validate
our approach, we perform experiments on standard domain adaptation datasets
for image classification.

2 Proposed Approach

2.1 Problem Definition

For the unsupervised domain adaptation problem, we have ns labelled samples,
Xs = {(xs

i , y
s
i)}n

s

i=1 from the source domain Ds. We also have nt unlabelled sam-
plesXt = {xt

i}n
t

i=1 from the target domain Dt. We assume that the domains share
the same feature and label space but follow different marginal data distributions;
that is, P (Xs) ̸= P (Xt). The goal is to learn a transferable classifier K(·) and a
representation φ(·) to minimize the target risk ϵt = P(x,y)∼Dt

[K(φ(x)) ̸= y].

2.2 Minimizing Domain Discrepancy with Graph Matching

Our goal is to learn domain-invariant representations by minimizing a graph
matching loss between the source and target representations. In our case, we
realize feature extraction using a neural network. We force the feature extractor
to learn domain-invariant representations. Given an input sample x ∈ Rn from
a domain, the feature extractor learns a function φ : Rn → Rd that maps an
instance to a d-dimensional feature space. The parameters of the feature extrac-
tor can be represented by ΘF . In order to minimize the discrepancy between the
source and target domains, we minimize the graph matching loss between the
source and target representations. To encounter excess discrepancy between the
source and target domains, we allow an additional affine transformation on the
source domain representations. Thus, we have a modified source domain repre-
sentation φ′(·) such that φ′T (xs) = φT (xs)Wmap + bT

map, where Wmap ∈ Rd× d

and bmap ∈ Rd are scaling matrix and bias, respectively. Superscript T indi-
cates the transpose operation. The graph-matching loss considers minimizing a
combination of first and second-order matching cost between graphs constructed
from the source and target domains. So, if a mini-batch contains ns

b, n
t
b source

and target samples respectively, we represent the matching between the source
and target representations through a matching matrix C ∈ Rns

b× nt
b . An element

[C]ij is a measure of matching between mini-batch source sample i and mini-
batch target sample j. The source mini-batch features can be stacked to form
a matrix Φs ∈ Rns

b × d. Similarly, the target mini-batch features are stacked to
form Φt ∈ Rnt

b× d. Accordingly, for the first-order matching we want the corre-
sponding target representation to be close to the corresponding mapped source
representation. Mathematically, this implies minimizing ||CΦt − Φ′s||2F where
Φ′s is the modified source domain feature matrix after affine transformation on
Φs and || · ||F is the Frobenius norm. For the second-order matching, we try to
minimize the discrepancy between the adjacency matrix of graphs constructed
using the source and target mini-batches. Mathematically, this implies minimiz-
ing ||CDt − rDsC||2F , where Dt ∈ Rnt

b× nt
b and Ds ∈ Rns

b × ns
b are adjacency

Graph Matching and Pseudo-Label Guided Deep Unsupervised DA 345

matrices constructed from Φt and Φs, respectively. We use the dot product for
the similarity measure of the adjacency matrices and consequently Dt = ΦtΦtT

and Ds = ΦsΦsT , with diagonals set to 0. r = nt
b

ns
b
is a correction factor to account

for the difference in the size of the source and target mini-batches. In addition,
the constraints on C are as follows: C ≥0, C1nt

b
= 1ns

b
and CT1ns

b
= (n

s
b

nt
b
)1nt

b
.

The equality constraint C1nt
b
= 1ns

b
implies that the sum of the correspondences

of all target samples to each source sample is one. The second equality constraint
CT1ns

b
= (n

s
b

nt
b
)1nt

b
implies that the sum of correspondences of all source samples

to each target sample should increase proportionately by ns
b

nt
b
to allow for multiple

correspondences. Accordingly the optimization problem becomes

min
C,Wmap,bmap

L0GM =
1

(nsd)
||CΦt − Φ′s||2F + λs||CDt − rDsC||2F

s.t. C ≥0, C1nt
b
= 1ns

b
, CT1ns

b
= (

1
r
)1nt

b
(1)

In the context of training neural networks, the above optimization problem can
be solved using the projected gradient descent, where each iterate is projected
onto the constraint set. Training neural networks generally requires a lot of
time and further projection might increase the time complexity. As a result, we
propose to reformulate the equality constraints as penalties in addition to the
cost function. Thus our optimization problem becomes

min
C,Wmap,bmap

LGM =
1

(nsd)
||CΦt − Φ′s||2F + λs||CDt − rDsC||2F

+λp(||C1nt
b
− 1ns

b
||22 + ||CT1ns

b
− (

1
r
)1nt

b
||22) s.t. C ≥0, (2)

where λp weighs the penalty terms. As a result, we can carry out gradient descent
on LGM and project it onto the set of positive matrices after each iteration.

In addition, we can exploit the labels of the source domain data to build a
classifier on top of the feature extractor. We can add several layers as the classifier
on top of the feature extraction network. Since the graph-matching loss ensures
transferability of the learned representations, the shared classifier can be directly
applied to the target domain. The objective of the classifier K(·) : Rd → Rl is
to compute softmax prediction for the l classes. Let us denote the parameters of
the classifier as ΘK . The classifier loss function is the cross-entropy between the
predicted probabilistic distribution and one-hot encoding of the class labels:

Lc(xs, ys) = − 1
ns
b

ns
b∑

i=1

l∑

k=1

1(ysi = k)log(K(φ′(xs
i))k) (3)

where 1(ysi = k) is a 0-1 indicator function andK(φ′(xs
i))k corresponds to the kth

dimension value of the softmax output. Thus, the classification loss is combined
with the graph matching loss to obtain the following objective function

min
ΘF ,ΘK

{Lc + λ min
C≥ 0,Wmap,bmap

[LGM]} (4)

346 D. Das and C. S. G. Lee

where λ is the coefficient controlling the balance between classification and graph
matching loss. Note that the minimization is carried out using mini-batch gradi-
ent descent. As described in Algorithm 1, using a mini-batch containing labelled
source data and unlabelled target data, LGM is optimized with respect to C
and after that iteratively projecting onto positive matrices. After the optimized
matching matrix C∗ is obtained, we solve for Wmap,bmap, for which a closed
form solution exists. The solution for Wmap, bmap can be obtained as follows:
[
Wmap

bT
map

]
=

[
1

ns
bd

[
ΦsT

1T

]
[Φs 1] +

λw

d2

[
I 0
0T 0

]]− 1 [
1

ns
bd

[
ΦsT

1T

]
C∗Φt +

λw

d2

[
I
0T

]]
.(5)

Here λw regularizer is introduced to allow for a smooth mapping transforma-
tion. Subsequently, we optimize for the total loss as in Eq. (4) with respect to
the parameters of the feature extractor and the classifier. The learned represen-
tations are domain invariant as well as target discriminative since the feature
extractor parameter ΘF receives gradients from both the graph matching and
classification loss. The overall framework of our method is given in Fig. 1(a). The
detailed algorithm of the training procedure is illustrated in Algorithm 1.

Fig. 1. The overall neural network framework for training using (a) Graph Matching
(GM) Loss and (b) Pseudo-label (PL) Loss. On the right of (a) and (b), we see the
model we should use for inference.

Algorithm 1. Graph-Matching-Guided Deep Domain Adaptation
Given : Source Labelled Data Xs, Ys, Target Unlabelled Data Xt

Parameters : λs,λp,λ,m, Ti and learning rates
Randomly Initialize ΘF ,ΘK ,C,Wmap,bmap

Repeat
Sample mini-batch {xs

i , y
s
i }mi=1, {xt

i}mi=1 from Xs and Xt

Use mini-batch to form Φt and Φs

for ti = 1, 2, ...Ti

C ← C − α1∇CLGM (Φt,Φs)
C ← max(C,0)

end for
Use Eq. (5) to obtain Wmap, bmap

ΘK ← ΘK − α2∇ΘKLc(xs, ys)
ΘF ← ΘF − α3∇ΘF [Lc(xs, ys) + λLGM (Φt,Φs)]

Until Convergence

Graph Matching and Pseudo-Label Guided Deep Unsupervised DA 347

2.3 Refinement with Pseudo-labels

This is the second stage of our proposed unsupervised domain adaptation app-
roach. Till now, we have the mapped source domain representations in support
of the target domain representations. Since the domain discrepancy has been
minimized, we can think of all the source and target representations belonging
to a single domain. This single domain consists of labelled and unlabelled data.
This is a semi-supervised learning setting that has been explored from a low-
density separation, manifold regularization point of view [2]. In this paper, we
propose a novel approach to exploit the confident unlabelled target domain data
to further refine the classification decision boundary.

Initially, we select a subset of a mini-batch of the unlabelled target data
that provide highly-confident labels as output. In other words, we select those
samples whose maximum softmax probability output is greater than a threshold
(th). Mathematically, we select those xt

i for which max{K(φ(xt
i))k} ≥ th over

all classes k ∈ {1, 2, ...l} and we repeat this for all unlabelled target domain
samples in the mini-batch i ∈ {1, 2,m}. The pseudo-labels for those selected
samples would be argmax

k
{K(φ(xt

i))k}. After that, we use the original labelled

data {xs
i , y

s
i }mi=1 and the selected unlabelled samples as {xt

i}m
′

i=1, where m′ ≤ m
to further refine our model. The intuition for our method is that we want the
unlabelled samples to be as far as possible from the decision boundaries. This
would make it possible for unseen examples in the target domain to not be
misclassified easily. As a result, we expect performance in the target domain to
increase significantly.

In our model, we have a softmax classifier that returns probabilities of each
class that the sample belongs to. Also pairwise relations between the probabil-
ities give a measure of how far a sample is from a decision boundary between
the corresponding pair of classes. For example, if the softmax classifier returns
(p1, p2, ...pl) as outputs to input sample x, |pi − pj | is a measure of how far the
sample x is from the decision boundary between class i and class j. If pi = pj ,
then the sample lies on the decision boundary between class i and class j. The
general expression for maximizing the distance to the decision boundaries for all
selected unlabelled samples and all classes is as follows:

Lp(xt, ŷs) =
1
m′

m′∑

i=1

∑

j,k

1(ŷti = j OR ŷti = k)(pj − pk)2. (6)

Here, pj = K(φ(xt
i))j , and ŷti is the pseudo-label corresponding to the input

sample xt
i as obtained using thresholding. When ŷti = j or ŷti = k is true, we

have 1(ŷti = j OR ŷti = k) = 1, and 0 otherwise. We call Lp as the Pseudo-Label
(PL) loss. We also use the classification loss Lc introduced in Eq. (3) to regularize
Lp. Hence, we need to solve the following optimization problem,

min
ΘF ,ΘK

{−Lp + γLc}, (7)

348 D. Das and C. S. G. Lee

where γ weighs the classification cost term. In Fig. 1(b), we show the overall
neural network framework for using the Pseudo-Label (PL) loss. Algorithm 2
outlines the detailed approach of the training procedure.

Algorithm 2. Pseudo-label-guided Deep Domain Adaptation
Given : Source Labelled Data Xs, Ys, Target Unlabelled Data Xt

Parameters : γ, th,m and learning rates
Restart ΘF ,ΘK ,Wmap,bmap obtained from Algorithm 1
Repeat
Sample mini-batch {xs

i , y
s
i }mi=1, {xt

i}mi=1 from Xs and Xt

Obtain high-confidence samples and pseudo-labels {xt
i, ŷ

t
i}m

′

i=1 using th
criterion and use those samples for parameter update as follows

ΘK ← ΘK − α2∇ΘK [−Lp(xt, ŷt) + γLc(xs, ys)]
ΘF ← ΘF − α3∇ΘF [−Lp(xt, ŷt) + γLc(xs, ys)]

Until Convergence

3 Experiments and Results

To evaluate the effectiveness of our proposed approach on standard domain adap-
tation datasets for image classification, we utilized the Office-Caltech dataset, a
small-scale domain adaptation benchmark dataset, initially released by [8]. The
dataset is composed of 10 common categories across 4 domains - Amazon (A),
Webcam (W), DSLR (D) and Caltech (C). Each of these domains varies in terms
of image quality, viewpoints, presence/absence of backgrounds, etc. For domain
adaptation, we would have 12 tasks, where each task consists of a source domain
and a target domain picked from the 4 domains. For our experiments, we use
Decaf features as the input. These deep features [6] are 4096-dimensional FC7
hidden activations of the deep convolutional neural network AlexNet [12].

We compared our method to recent approaches in learning domain-invariant
representations. As a lower bound on recognition accuracy, we also compare
against the no-adaptation (NA) baseline which includes training the model using
only the source data and directly testing on the target data. The methods that
we compared against include: (a) DANN [7], (b) MMD [9], (c) CORAL [18] and
(d) WDGRL [16]. These approaches have been described in the Introduction
section. We have implemented our approach in Tensorflow [1] and the training
was carried out using Adam [11] optimizer. We followed the standard protocol
used in previous method as in [16]. Since hyper-parameter selection is not possi-
ble using deep unsupervised domain-adaptation methods, we reported the best
results of each approach after carrying out grid search on their respective hyper-
parameters. For training, we have used a batch size of 64 samples with 32 samples
from each domain. The feature extractor is a 2-layer neural network with 500
and 100 nodes and a ReLU activation. We used this same feature extractor in all
the methods for fair comparisons. For our method, we used the following values
of the penalty parameter λp = 10, threshold th = 0.8, and mapping regulariza-
tion λw = 0.1. We set λs,λ and γ as the tunable hyper-parameters over which

Graph Matching and Pseudo-Label Guided Deep Unsupervised DA 349

we reported the best results averaged over 10 trials in Table 1. From Table 1,
we see that in almost all cases our proposed graph-matching method (GM) is
close to the previous best method. However, with the additional pseudo-labelling
stage (PL), our proposed method produces better recognition accuracy in almost
all the domain-adaptation tasks. Also, in almost all cases, the improvement of
GM+PL over GM is 2–3%. This justifies the exploitation of labelled and unla-
belled data after minimizing domain discrepancy, leading to an improvement in
performance. For the task D→C, GM and eventually GM+PL do not produce
the best result. This is possibly because the datasets D and C do not have enough
structurally similar regions to be matched appropriately.

Table 1. Domain-adaptation results for object recognition using Office-Caltech
datasets using Decaf features for a pair of source → target domain.

Task NA MMD DANN CORAL WDGRL GM GM+PL

A→C 83.93 86.72 87.12 86.24 87.84 87.99 89.48

A→D 82.23 89.96 83.27 90.36 91.67 92.82 95.73

A→W 76.69 90.68 80.13 89.61 89.34 92.63 94.23

W→A 80.23 89.34 81.36 83.42 92.34 90.64 94.68

W→D 96.49 100 100 100 100 100 100

W→C 78.65 88.64 80.11 86.27 89.42 88.78 91.31

D→A 82.91 90.24 84.72 84.1 91.34 89.24 92.34

D→W 96.86 97.68 98.34 96.93 97.24 97.84 99.83

D→C 78.61 86.58 83.69 80.49 90.24 85.68 88.87

C→A 89.97 91.6 90.84 92.49 93.57 93.68 95.83

C→W 86.47 90.36 88.74 91.62 91.23 92.68 94.21

C→D 87.79 90.64 89.41 88.71 92.68 92.83 94.51

We chose a particular task A→W and studied the effect of varying hyper-
parameters on recognition performance. In Fig. 2(a), we see that the performance
reaches a peak at λs = 10. The red-dotted line is the base-line performance for
λs = 0. So, the presence of the second-order matching term increases the per-
formance over when it is not. Also, for λs = 100, the performance dips by a
large amount, suggesting that putting excess weight on second-order term is not
recommended. We saw a similar trend for the hyper-parameter λ in Fig. 2(b).
λ weighs the graph-matching loss with respect to the classification loss. As
expected, putting too much weight (λ = 10) ignores the classification loss in
domain adaptation and produces a dip in performance. Recognition performance
is comparatively less sensitive to γ as seen in Fig. 2(c). This is because domain
discrepancy has already been minimized and the presence of classification loss on
the source data does not affect target domain recognition rate much. Figure 2(d)
shows the convergence of source and target error. We used GM stage for the first
2000 iterations followed by the PL stage in the next 2000 iterations. We noticed

350 D. Das and C. S. G. Lee

Fig. 2. Accuracy results on the A→W task due to change in (a) λs, (b) λ, (c) γ and
(d) convergence results.

the drop in error rate when the PL stage was introduced after 2000 iterations.
We also visualized the learned features using t-SNE [14] in Fig. 3. The clusters
in the figure correspond to 10 classes. The blue and red points correspond to
the source and target data respectively. For the un-adapted data in Fig. 3(a),
the target domain classes do not form compact clusters. Also, there is a lot of
discrepancy between the corresponding source and target clusters, causing a lot
of mis-classification. For UDA, using only the GM procedure as in Fig. 3(b), the
target domain classes form clusters but there are still some divergence between
some of the corresponding source and target classes, which are reduced further
using the PL stage as shown in Fig. 3(c).

Fig. 3. Feature visualization for the A→W task for (a) no adaptation, (b) UDA with
only Graph Matching and (c) UDA with Graph Matching and Pseudo-labelling. (Color
figure online)

4 Conclusions

In this paper, we proposed a two-stage approach to learning domain-invariant-
feature representations for unsupervised domain adaptation. In the first stage, we
considered minimizing graph matching (GM) loss to minimize the discrepancy
between source and target domains. The graph matching loss includes a second-
order structural similarity term that allows us to consider structural similarity
between two domains. For the second stage, we refined the feature/classifier using
the confident pseudo-labels (PL) of the target domain data. Empirical results on
image classification datasets demonstrated that our proposed GM+PL method
outperforms previous domain-invariant representation learning approaches.

Graph Matching and Pseudo-Label Guided Deep Unsupervised DA 351

Acknowledgments. This work was supported in part by the National Science Foun-
dation under Grant IIS-1813935. Any opinion, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI,
pp. 265–283 (2016)

2. Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning, 1st edn. The MIT
Press, Cambridge (2010)

3. Courty, N., Flamary, R., Tuia, D., Rakotomamonjy, A.: Optimal transport for
domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1853–1865
(2017)

4. Das, D., Lee, C.S.G.: Sample-to-sample correspondence for unsupervised domain
adaptation. Eng. Appl. Artif. Intell. 73, 80–91 (2018)

5. Das, D., Lee, C.S.G.: Unsupervised domain adaptation using regularized hyper-
graph matching. In: Proceedings of IEEE International Conference on Image Pro-
cessing (2018, to appear)

6. Donahue, J., et al.: DECAF: a deep convolutional activation feature for generic
visual recognition. In: International Conference on Machine Learning, pp. 647–655
(2014)

7. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn.
Res. 17(59), 1–35 (2016)

8. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised
domain adaptation. In: Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2066–2073 (2012)

9. Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.:
Covariate shift by kernel mean matching. Dataset Shift Mach. Learn. 3(4), 5 (2009)

10. Hoffman, J., Rodner, E., Donahue, J., Kulis, B., Saenko, K.: Asymmetric and
category invariant feature transformations for domain adaptation. Int. J. Comput.
Vis. 109(1–2), 28–41 (2014)

11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (2015)

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

13. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with
deep adaptation networks. In: International Conference on Machine Learning, pp.
97–105 (2015)

14. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res.
9(Nov), 2579–2605 (2008)

15. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Engg.
22(10), 1345–1359 (2010)

16. Shen, J., Qu, Y., Zhang, W., Yong, Y.: Wasserstein distance guided representation
learning for domain adaptation. In: AAAI, pp. 3–9 (2018)

17. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In:
Thirtieth AAAI Conference on Artificial Intelligence (2016)

352 D. Das and C. S. G. Lee

18. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adap-
tation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8 35

19. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. arXiv preprint arXiv:1702.05464 (2017)

20. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion:
maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

