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FRACTIONAL OPERATORS WITH INHOMOGENEOUS BOUNDARY
CONDITIONS: ANALYSIS, CONTROL, AND DISCRETIZATION∗

HARBIR ANTIL† , JOHANNES PFEFFERER‡ , AND SERGEJS ROGOVS§

Abstract. In this paper, we introduce new characterizations of the spectral fractional Laplacian
to incorporate nonhomogeneous Dirichlet and Neumann boundary conditions. The classical cases with
homogeneous boundary conditions arise as a special case. We apply our definition to fractional elliptic
equations of order s∈ (0,1) with nonzero Dirichlet and Neumann boundary conditions. Here, the
domain Ω is assumed to be a bounded, quasi-convex Lipschitz domain. To impose the nonzero boundary
conditions, we construct fractional harmonic extensions of the boundary data. It is shown that solving
for the fractional harmonic extension is equivalent to solving for the standard harmonic extension in
the very-weak form. The latter result is of independent interest as well. The remaining fractional
elliptic problem (with homogeneous boundary data) can be realized using the existing techniques. We
introduce finite element discretizations and derive discretization error estimates in natural norms, which
are confirmed by numerical experiments. We also apply our characterizations to Dirichlet and Neumann
boundary optimal control problems with fractional elliptic equations as constraints.

Keywords. New spectral fractional Laplace operator; nonzero boundary conditions; very weak
solution; finite element discretization; error estimates.
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1. Introduction
Let Ω⊂Rn with n≥2 be a bounded open set with boundary ∂Ω. We will spec-

ify the regularity of the boundary in the sequel. The purpose of this paper is to study
existence, uniqueness, regularity, and finite element approximation of the following non-
homogeneous Dirichlet boundary value problem

(−∆D)su=f in Ω,

u=g on ∂Ω.
(1.1)

Here g and f are measurable functions on ∂Ω and Ω respectively, and satisfy certain
conditions (that we shall specify later), s∈ (0,1) and (−∆D)s denotes the modified
spectral fractional Laplace operator with nonzero boundary conditions.

The nonlocality of (−∆D)s makes (1.1) challenging. Nevertheless, when g≡0, the
definition of the resulting nonlocal operator (−∆D,0)s incorporates the zero boundary
conditions and has been well studied, see [14, 16–19, 37, 40], however the case g 6= 0 has
been neglected by all these references. Imposing nonzero boundary conditions in the
nonlocal setting is highly nontrivial, which is the purpose of our paper. We will accom-
plish this by introducing a new characterization of (−∆D)s. We define our operator as

(−∆D)su :=
∞∑
k=1

(
λsk

∫
Ω

uϕk+λs−1
k

∫
∂Ω

u∂νϕk

)
ϕk, (1.2)
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where λk and ϕk denote the eigenvalues and eigenfunctions of the Dirichlet Laplacian,
see Section 2.3 for details. Obviously, if u= 0 almost everywhere on the boundary, then
(−∆D)s= (−∆D,0)s, see also Proposition 2.4. Notice at this point that one cannot
apply (−∆D,0)s to functions with nonzero boundary conditions as long as measuring
traces is reasonable, see Section 2.1.1 for details. In contrast, in Section 2.3.1, we will
exemplarily illustrate that (−∆D)s1 is meaningful in that case. Moreover, if we set s= 1
then (1.2) gives us

−∆u :=
∞∑
k=1

(
λk

∫
Ω

uϕk+

∫
∂Ω

u∂νϕk

)
ϕk,

i.e., the spectral characterization of the standard Laplacian (see Proposition 2.8 for
details). In other words, our characterization of (−∆D)s is a natural extension
of −∆. In addition, in Proposition 2.4, we will see that the semigroup property
(−∆D)s(−∆D)1−s=−∆, is valid.

To the best of our knowledge, there is only one work which is concerned with
inhomogeneous boundary conditions in the context of the spectral fractional Laplacian.
More precisely, in [1] the authors study well-posedness of

(−∆D,0)su=f in Ω,

u/ξ=g on ∂Ω,
(1.3)

where ξ is a reference function with a prescribed singular behavior at the boundary.
The (very) weak formulation of (1.3) is given by∫

Ω

u(−∆D,0)sv=

∫
Ω

fv−
∫
∂Ω

g∂νv ∀v∈ (−∆D,0)−sC∞0 (Ω),

see [1, Definition 3]. This formulation even allows for data in measure spaces. However,
we emphasize that they do not impose a boundary condition of the type u=g but instead
consider u/ξ=g, where ξ is a reference function with a prescribed singular behavior at
the boundary.

In contrast, in Section 3, we will prove the integration-by-parts-type formula∫
Ω

(−∆D)suv=

∫
Ω

u(−∆D,0)sv+

∫
∂Ω

u∂νwv,

where wv is defined as the solution to

(−∆D,0)1−swv =v in Ω,

wv = 0 on ∂Ω.

Based on this, we can show that the (very) weak formulation of (1.1) is given by∫
Ω

u(−∆D,0)sv=

∫
Ω

fv−
∫
∂Ω

g∂νwv ∀v∈H2s(Ω).

Thus, the condition u=g within our formulation can be interpreted as a Dirichlet bound-
ary condition.

From a practical point of view and also for the purpose of analyzing problem (1.1),
at first, we use a standard lifting argument by constructing a fractional harmonic map

(−∆D)sv= 0 in Ω, v=g on ∂Ω. (1.4)
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It may seem at first glance that solving (1.4) is as complicated as solving the original
problem (1.1). However, we show that solving (1.4) is equivalent to solving∫

Ω

v(−∆ϕ) =−
∫
∂Ω

g∂νϕ ∀ϕ∈dom(−∆), (1.5)

i.e., the standard Laplace equation in the very-weak form. To get u, it suffices to find
w by solving

(−∆D,0)sw=f in Ω, w= 0 on ∂Ω, (1.6)

then u=w+v. Thus instead of looking for u directly, we are reduced to solving (1.5)
and (1.6) for v and w, respectively.

Both (1.5) and (1.6) have received a great deal of attention, we only refer to [5, 7,
8, 12, 22, 32, 34] for the first case and [4, 13, 14, 16–19, 35, 37, 40] for the latter. We will
show that both (1.5) and (1.6) are well-posed (solution exists and is unique), thus (1.1)
is well-posed as well.

For the numerical computation of solutions of (1.5), we rely on well established
techniques, see for instance [7, 8, 12]. It is even possible to apply a standard finite el-
ement method especially if the boundary datum g is regular enough. However, the
numerical realization of the nonlocal operator (−∆D,0)s in (1.6) is more challenging.
Several approaches have been advocated, for instance, computing the eigenvalues and
eigenvectors of −∆D,0 (cf. [39]), Dunford-Taylor integral representation [13], or numer-
ical schemes based on the Caffarelli-Silvestre (or the Stinga-Torrea) extension, just to
name a few. In our work, we choose the latter even though the proposed ideas directly
apply to other approaches where (−∆D,0)s appears, for instance [13]. Notice that the
aforementioned extension of Caffarelli-Silvestre (or the Stinga-Torrea) is only applicable
to (−∆D,0)s and not directly to the operator (−∆D)s in (1.1).

The extension approach was introduced in [17] for Rn, see its extensions to bounded
domains [19, 40]. It states that (−∆D,0)s can be realized as an operator that maps a
Dirichlet boundary condition to a Neumann condition via an extension problem on
the semi-infinite cylinder C= Ω×(0,∞), i.e., a Dirichlet-to-Neumann operator. A first
finite element method to solve (1.6) based on the extension approach is given in [37].
This was applied to semilinear problems in [4]. In the context of fractional distributed
optimal control problems, the extension approach was considered in [3] where related
discretization error estimates are established as well.

An additional advantage is that our characterization allows for imposing other types
of nonhomogeneous boundary conditions such as Neumann boundary conditions (see
sections 2.4 and 5) and that it immediately extends to general second-order fractional
operators (see Section 8).

We remark that the difficulties in imposing the nonhomogeneous boundary condi-
tions are not limited to the spectral fractional Laplacian. In fact, the integral definition
of fractional Laplacian [2] requires imposing boundary conditions on Rn \Ω. On the
other hand, the so-called regional definition of fractional Laplacian with nonhomoge-
neous boundary conditions may lead to an ill-posed problem when s≤1/2, see [29,42].

This paper is organized as follows: We state the definitions of (−∆D,0)s and
(−∆N,0)s in Sections 2.1 and 2.2. Moreover, we introduce the relevant function spaces.
Some of the material in these sections is well-known. However, we recall it such that
the paper is self-contained. Our main work begins from Section 2.3 where we first state
the new characterization of Dirichlet fractional Laplacian. Next, we discuss the Neu-
mann case in Section 2.4. In Section 3, we state two not so well-known trace theorems
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for H2(Ω) functions in bounded Lipschitz domains and prove integration-by-parts-type
formulas for the spectral fractional Laplacians. Subsequently, in Section 4, we analyze
the boundary value problem (1.1) and derive a priori finite element error estimates. In
Section 5, we study corresponding results for the nonhomogeneous Neumann problem.
Afterwards, in Section 6, we consider Dirichlet and Neumann boundary optimal control
problems with fractional elliptic PDEs as constraints. We verify our theoretical rates
of convergence via two numerical examples in Section 7. We provide further extensions
to general second-order elliptic operators in Section 8.

2. Spectral fractional Laplacian
In this section, without any specific mention, we will assume that the boundary ∂Ω

is Lipschitz continuous.

2.1. Zero Dirichlet boundary data. Let −∆D,0 be the realization in L2(Ω)
of the Laplace operator with zero Dirichlet boundary condition. It is well-known that
−∆D,0 has a compact resolvent and its eigenvalues form a non-decreasing sequence
0<λ1≤λ2≤···≤λk≤··· satisfying limk→∞λk =∞. We denote by ϕk ∈H1

0 (Ω) the or-
thonormal eigenfunctions associated with λk. It is well known that these eigenfunctions
form an orthonormal basis of L2(Ω).

For 0<s<1, we define the fractional-order Sobolev space

Hs(Ω) :=

{
u∈L2(Ω) :

∫
Ω

∫
Ω

|u(x)−u(y)|2

|x−y|n+2s
dxdy<∞

}
,

and we endow it with the norm defined by

‖u‖Hs(Ω) =
(
‖u‖2L2(Ω) + |u|2Hs(Ω)

) 1
2

, (2.1)

where the semi-norm |u|Hs(Ω) is defined by

|u|2Hs(Ω) =

∫
Ω

∫
Ω

|u(x)−u(y)|2

|x−y|n+2s
dxdy. (2.2)

The fractional-order Sobolev spaces Ht(∂Ω) on the boundary with 0<t<1 are defined
in the same manner. We also let

Hs
0(Ω) :=D(Ω)

Hs(Ω)
,

where D(Ω) denotes the space of test functions on Ω, that is, the space of infinitely
continuously differentiable functions with compact support in Ω, and

H
1
2
00(Ω) :=

{
u∈H 1

2 (Ω) :

∫
Ω

u2(x)

dist(x,∂Ω)
dx<∞

}
,

with norm

‖u‖
H

1
2
00(Ω)

=

(
‖u‖2

H
1
2 (Ω)

+

∫
Ω

u2(x)

dist(x,∂Ω)
dx

) 1
2

.

We further introduce the dual spaces ofHs
0(Ω) andHt(∂Ω), and denote them byH−s(Ω)

and H−t(∂Ω), respectively.
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For any s≥0, we also define the following fractional-order Sobolev space

Hs(Ω) :=

{
u=

∞∑
k=1

ukϕk ∈L2(Ω) : ‖u‖2Hs(Ω) :=
∞∑
k=1

λsku
2
k<∞

}
,

where we recall that λk are the eigenvalues of −∆D,0 with associated normalized eigen-
functions ϕk and

uk = (u,ϕk)L2(Ω) =

∫
Ω

uϕk.

It is well-known that

Hs(Ω) =


Hs(Ω) =Hs

0(Ω) if 0<s< 1
2 ,

H
1
2
00(Ω) if s= 1

2 ,

Hs
0(Ω) if 1

2 <s<1.

(2.3)

The dual space of Hs(Ω) will be denoted by H−s(Ω).
The fractional-order Sobolev spaces can be also defined by using interpolation the-

ory. That is, for every 0<s<1,

Hs(Ω) = [H1(Ω),L2(Ω)]1−s, (2.4)

and

Hs
0(Ω) = [H1

0 (Ω),L2(Ω)]1−s if s∈ (0,1)\{1/2} and H
1
2
00 = [H1

0 (Ω),L2(Ω)] 1
2
. (2.5)

Definition 2.1. The spectral fractional Laplacian is defined on the space C∞0 (Ω) by

(−∆D,0)su :=
∞∑
k=1

λskukϕk with uk =

∫
Ω

uϕk.

By observing that∫
Ω

(−∆D,0)suv=

∞∑
k=1

λskukvk =

∞∑
k=1

λ
s/2
k ukλ

s/2
k vk≤‖u‖Hs(Ω)‖v‖Hs(Ω)

for any v=
∑∞
k=1vkϕk ∈Hs(Ω), the operator (−∆D,0)s extends to an operator mapping

from Hs(Ω) to H−s(Ω) by density. Moreover, we notice that in this case we have

‖u‖Hs(Ω) =‖(−∆D,0)
s
2u‖L2(Ω). (2.6)

In addition, the following estimate holds, by definition of the spaces Hs(Ω), Hs
0(Ω),

H
1
2
00(Ω), and Hs(Ω), and by relation (2.3).

Proposition 2.1. If u∈Hs(Ω) with 0<s<1, then there exists a constant C=
C(Ω,s)>0 such that

‖u‖Hs(Ω)≤C‖u‖Hs(Ω).
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2.1.1. A counter example. The purpose of this example is to illustrate that in
general, Definition 2.2 cannot be applied to functions with nonzero boundary conditions
as long as measuring traces is reasonable. Towards this end, we first observe that the
operator (−∆D,0)s can be extended to an operator mapping from Ht(Ω) to Ht−2s(Ω),
see the foregoing explanations for the special case t=s. Next, we apply this operator
to the function u≡1 as follows: We set Ω =(0,1). Thus, there holds ϕk = sin(kπx) and
λk =k2π2. Basic calculations yield

uk =

{
0 if k even,
2
kπ if k odd.

Moreover, we get, for t≥1/2

‖(−∆D,0)s1‖2Ht−2s(Ω) =
∞∑
k=1

λt−2s
k

(∫
Ω

(−∆D,0)s1ϕk

)2

= 4π2t−2
∞∑
k=1

(2k−1)2t−2

= 4π2t−2
∞∑
k=1

(2k−1)2t−1(2k−1)−1≥4π2t−2
∞∑
k=1

(2k−1)−1

≥2π2t−2
∞∑
k=1

k−1.

We observe that the series on the right hand side of the above inequality is not con-
vergent. Consequently, whenever it is possible to measure the Dirichlet trace in the
classical sense, the fractional operator from Definition 2.2 cannot be applied. In [1, In-
troduction], it is shown that in case of t= 0, the application of the fractional Laplacian
to the function 1 yields the killing measure. In Section 2.3.1, we will show that with our
definition of fractional Laplacian introduced in Section 2.3, the issues discussed above
can be fixed.

2.2. Zero Neumann boundary data. Let −∆N,0 be the realization of the
Laplace operator with zero Neumann boundary condition. It is well-known that there
exists a sequence of nonnegative eigenvalues {µk}k≥1 satisfying 0 =µ1<µ2≤···≤µk≤
··· with limk→∞µk =∞ and corresponding eigenfunctions {ψk}k≥1 in H1(Ω). We have

that µ1 = 0, ψ1 = 1/
√
|Ω|,

∫
Ω
ψk = 0 for all k≥2. Moreover, the eigenfunctions {ψk}k≥1

form an orthonormal basis of L2(Ω).

For any s≥0, we define the fractional-order Sobolev spaces Hs∫ (Ω) [18]:

Hs∫ (Ω) :=

{
u=

∞∑
k=2

ukψk ∈L2(Ω) : ‖u‖2Hs∫ (Ω) :=
∞∑
k=2

µsku
2
k<∞

}
.

Notice that any function u belonging to Hs∫ (Ω) fulfills
∫

Ω
u= 0.

Furthermore, we denote by H−s∫ (Ω) the dual space of Hs∫ (Ω).

Definition 2.2. For any function u∈C∞(Ω̄) with ∂νu= 0, we define the spectral
fractional Laplacian by

(−∆N,0)su :=
∞∑
k=2

µskukψk with uk =

∫
Ω

uψk.
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As in the previous section for the Dirichlet Laplacian, the operator (−∆N,0)s can
be extended to an operator mapping from Hs∫ (Ω) to H−s∫ (Ω). Notice as well that∫

Ω
(−∆N,0)su= 0 and ‖(−∆N,0)

s
2u‖2L2(Ω) =

∑∞
k=2µ

s
ku

2
k. Thus, we have

‖u‖Hs∫ (Ω) =‖(−∆N,0)
s
2u‖L2(Ω). (2.7)

We next recall [18, Lemma 7.1].

Proposition 2.2. For any 0<s<1, u∈Hs∫ (Ω) if and only if u∈Hs(Ω) and
∫

Ω
u= 0.

In addition, the norm in (2.7) is equivalent to the seminorm | · |Hs(Ω) defined in (2.2).

Remark 2.1. According to Proposition 2.2, we have that

‖u‖2Hs(Ω)∼u
2
1 +

∞∑
k=2

(1+µsk)u2
k.

Due to this, the Neumann Laplacian from Definition 2.2 is also extendable to an oper-
ator mapping from Hs(Ω) to Hs(Ω)∗. However, since we are going to treat associated
boundary value problems, we consider the Neumann Laplacian with the mapping prop-
erties from above, to ensure uniqueness of the solution.

2.3. Nonzero Dirichlet boundary data. To motivate our definition of frac-
tional Laplacian with nonzero Dirichlet boundary datum, we first derive such a charac-
terization for the standard Laplacian.

Proposition 2.3. For any u∈C∞(Ω̄) we have that

−∆Du :=

∞∑
k=1

(
λk

∫
Ω

uϕk+

∫
∂Ω

u∂νϕk

)
ϕk (2.8)

fulfills −∆Du=−∆u a.e. in Ω.

Proof. Standard integration-by-parts formula yields∫
Ω

−∆uϕk =

∫
Ω

∇u ·∇ϕk−
∫
∂Ω

∂νu ϕk︸︷︷︸
=0

=

∫
Ω

−∆ϕku+

∫
∂Ω

u∂νϕk

=λk

∫
Ω

ϕku+

∫
∂Ω

u∂νϕk, (2.9)

where, in the last equality, we have used the fact that ϕk are the eigenfunctions of the
Laplacian with eigenvalues λk. This yields the desired characterization, having in mind
that the eigenfunctions form an orthonormal basis of L2(Ω).

By density results, the operator −∆D extends to an operator mapping from H1(Ω)
to H−1(Ω) in the classical way.

We are now ready to state our definition of the fractional Laplacian (−∆D)s.

Definition 2.3 (nonzero Dirichlet). We define the spectral fractional Laplacian on
C∞(Ω̄) by

(−∆D)su :=
∞∑
k=1

(
λsk

∫
Ω

uϕk+λs−1
k

∫
∂Ω

u∂νϕk

)
ϕk. (2.10)
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Let us set

uΩ,k =

∫
Ω

uϕk and u∂Ω,k =

∫
∂Ω

u∂νϕk.

We observe that for any v=
∑∞
k=1vkϕk ∈Hs(Ω), there holds∫

Ω

(−∆D)suv=
∞∑
k=1

(
λskuΩ,k+λs−1

k u∂Ω,k

)
vk =

∞∑
k=1

λ
s
2

k

(
uΩ,k+λ−1

k u∂Ω,k

)
λ
s
2

k vk

≤

( ∞∑
k=1

λsk
(
uΩ,k+λ−1

k u∂Ω,k

)2)1/2

‖v‖Hs(Ω),

where we used the orthogonality of the eigenfunctions ϕk. Thus the operator (−∆D)s

can be extended to an operator mapping from

Ds(Ω) :=
{
u∈L2(Ω) :

∞∑
k=1

λsk
(
uΩ,k+λ−1

k u∂Ω,k

)2
<∞

}
to H−s(Ω), cf. Section 4, where we solve associated boundary value problems.

We notice that Definition 2.3 obeys the following fundamental properties.

Proposition 2.4. Let (−∆D)s be as in Definition 2.3, then the following holds:

(1) When s= 1, we obtain the standard Laplacian (2.8).

(2) For any u∈C∞0 (Ω) there holds

(−∆D)su= (−∆D,0)su

a.e. in Ω, i.e., we recover the Definition 2.1.
(3) For any s∈ (0,1) and any u∈C∞(Ω̄) there is the identity

(−∆D)s(−∆D)1−su=−∆u

a.e. in Ω.

Proof. The first two assertions are easy to check, thus we only elaborate on the
last one. Let u∈C∞(Ω̄) and define

vl :=
l∑

k=1

(
λ1−s
k

∫
Ω

uϕk+λ−sk

∫
∂Ω

u∂νϕk

)
ϕk.

Using the orthogonality of the eigenfunction ϕk and (2.9), we obtain, for any t∈ [0, 1
2 )

and for any l,m∈N with l≥m

‖vl−vm‖2H2s+t(Ω) =
l∑

k=m+1

λ2s+t
k

(
λ1−s
k

∫
Ω

uϕk+λ−sk

∫
∂Ω

u∂νϕk

)2

=
l∑

k=m+1

λtk

(
λk

∫
Ω

uϕk+

∫
∂Ω

u∂νϕk

)2

=
l∑

k=m+1

λtk

(∫
Ω

−∆uϕk

)2

≤‖∆u‖2Ht(Ω),
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where the last term is bounded independent of l and m, since ∆u∈Ht(Ω) =Ht(Ω).
Thus, according to the Cauchy criterion, the limit (−∆D)1−su := liml→∞vl exists in
H2s+t(Ω). Moreover, we can choose the parameter t such that 2s+ t> 1

2 which implies
zero trace of (−∆D)1−su according to the definition of Hs(Ω). Combining the last two
observations, we are able to apply (−∆D)s to (−∆D)1−su. To this end, we define

wl=
l∑

k=1

λsk

(∫
Ω

(−∆D)1−suϕk

)
ϕk.

As before, we deduce for any l,m∈N with l≥m

‖wl−wm‖2L2(Ω) =
l∑

k=m+1

λ2s
k

(∫
Ω

(−∆D)1−suϕk

)2

≤‖(−∆D)1−su‖2H2s(Ω),

where the last term is bounded independent of l and m, since (−∆D)1−su∈H2s+t(Ω).
Again, due to the Cauchy criterion, the limit (−∆D)s(−∆D)1−su := liml→∞wl exists in
L2(Ω). This allows us to conclude∫

Ω

(−∆D)s(−∆D)1−suϕk =λsk

∫
Ω

(−∆D)1−suϕk

=λsk

(
λ1−s
k

∫
Ω

uϕk+λ−sk

∫
∂Ω

u∂νϕk

)
=

(
λk

∫
Ω

uϕk+

∫
∂Ω

u∂νϕk

)
=

∫
Ω

−∆uϕk,

where we used the orthogonality of the eigenfunctions ϕk several times, and (2.9). Since
{ϕk}k∈N represents an orthonormal basis of L2(Ω), we get the desired result.

2.3.1. A fix to the counter example. Towards this end we shall apply our
definition of fractional Laplacian to the example discussed in Section 2.1.1. Since u≡1,
we have

(−∆D)s1 =

∞∑
k=1

(
λskuk+λs−1

k

∫
∂Ω

1∂νϕk

)
ϕk.

Recall that

uk =

{
0 if k even,
2
kπ if k odd.

It is easy to check that

∂νϕk =

{
kπ(−1)k x= 1,
−kπ x= 0.

This yields ∫
∂Ω

1∂νϕk =kπ(−1)k−kπ=

{
0 if k even,
−2kπ if k odd.
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Then

(−∆D)s1 =
∞∑
k=1

(
λs2k−1

2

(2k−1)π
+λs−1

2k−1(−2(2k−1)π)

)
ϕk

=
∞∑
k=1

(
(2k−1)2sπ2s 2

(2k−1)π
+(2k−1)2(s−1)π2(s−1)(−2(2k−1)π)

)
ϕk

= 0.

2.4. Nonzero Neumann boundary data. As in Section 2.3, in order to mo-
tivate our definition for the fractional nonhomogeneous Neumann Laplacian, we first
derive such a characterization for the standard Laplacian.

Proposition 2.5. For any u∈C∞(Ω̄), we have that

−∆Nu :=
∞∑
k=2

(
µk

∫
Ω

uψk−
∫
∂Ω

∂νuψk

)
ψk+ |Ω|−1

∫
Ω

−∆u

=
∞∑
k=2

(
µk

∫
Ω

uψk−
∫
∂Ω

∂νuψk

)
ψk−|Ω|−1

∫
∂Ω

∂νu. (2.11)

fulfills −∆Nu=−∆u a.e. in Ω.

Proof. Standard integration-by-parts formula yields∫
Ω

−∆uψk =

∫
Ω

∇u ·∇ψk−
∫
∂Ω

∂νuψk

=

∫
Ω

−∆ψku−
∫
∂Ω

∂νuψk+

∫
∂Ω

u∂νψk︸ ︷︷ ︸
=0

=µk

∫
Ω

ψku−
∫
∂Ω

∂νuψk, (2.12)

where, in the last equality, we have used the fact that ψk are the eigenfunctions of the
Laplacian with eigenvalues µk. This yields the desired representation of −∆ having in
mind that {ψk}k∈N represents an orthonormal basis of L2(Ω), and that(∫

Ω

−∆uψ1

)
ψ1 = |Ω|−1

∫
Ω

−∆u=−|Ω|−1

∫
∂Ω

∂νu.

As for the Dirichlet Laplacian, if
∫
∂Ω
∂νu= 0, the operator −∆N can be extended to

an operator mapping from H1∫ (Ω) to H−1∫ (Ω) in the classical way. We are now ready to

state our definition of fractional Laplacian with nonzero Neumann boundary conditions.

Definition 2.4 (nonzero Neumann). We define the spectral fractional Laplacian on
C∞(Ω̄) by

(−∆N )su :=
∞∑
k=2

(
µsk

∫
Ω

uψk−µs−1
k

∫
∂Ω

∂νuψk

)
ψk−|Ω|−1

∫
∂Ω

∂νu. (2.13)

Note that we have
∫

Ω
(−∆N )su=−

∫
∂Ω
∂νu by construction. However, different types

of normalization are possible as well. Similar to the foregoing section, let us set

uΩ,k =

∫
Ω

uψk and u∂Ω,k =

∫
∂Ω

∂νuψk.
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For any v=
∑∞
k=2vkψk ∈Hs∫ (Ω), we observe that

∫
Ω

(−∆N )suv=
∞∑
k=2

(
µskuΩ,k−µs−1

k u∂Ω,k

)
vk =

∞∑
k=2

µ
s/2
k

(
uΩ,k−µ−1

k u∂Ω,k

)
µ
s/2
k vk

≤

( ∞∑
k=2

µsk
(
uΩ,k−µ−1

k u∂Ω,k

)2)1/2

‖v‖Hs∫ (Ω),

where we employed the orthogonality of the eigenfunctions ψk. From (2.13), it follows
that

∫
Ω

(−∆N )su=−|Ω|−1
∫
∂Ω
∂νu, then under the assumption that

∫
∂Ω
∂νu= 0, the

operator (−∆N )s is extendable to an operator mapping from

Ns(Ω) :=
{
u=

∞∑
k=2

ukψk ∈L2(Ω) :
∞∑
k=2

µsk
(
uΩ,k−µ−1

k u∂Ω,k

)2
<∞

}
to H−s∫ (Ω); see also Section 5 where associated boundary value problems are considered.

Similar to the Dirichlet case, we get the following properties.

Proposition 2.6. Let (−∆N )s be as in Definition 2.4, then the following holds:

(1) When s= 1, we obtain the standard Laplacian (2.11).

(2) For any u∈C∞(Ω̄) with ∂νu= 0, there holds

(−∆N )su= (−∆N,0)su,

a.e. in Ω, i.e., we recover the Definition 2.2.
(3) For any s∈ (0,1) and for any u∈C∞(Ω̄) with

∫
∂Ω
∂νu= 0, there is the identity

(−∆N )s(−∆N )1−su=−∆u

a.e. in Ω.

Proof. The first two assertions are again easy to check. To show the third one, let
u∈C∞(Ω̄) with

∫
∂Ω
∂νu= 0 and define

vl :=
l∑

k=2

(
µ1−s
k

∫
Ω

uψk−µ−sk
∫
∂Ω

∂νuψk

)
ψk. (2.14)

Using the orthogonality of the eigenfunctions ψk several times, and (2.12), we deduce,
for any t∈ [0,1] and for any l,m∈N with l≥m≥2

‖vl−vm‖2H2s+t∫ (Ω)
=

l∑
k=m+1

µ2s+t
k

(
µ1−s
k

∫
Ω

uψk−µ−sk
∫
∂Ω

∂νuψk

)2

=

l∑
k=m+1

µtk

(
µk

∫
Ω

uψk−
∫
∂Ω

∂νuψk

)2

=
l∑

k=m+1

µtk

(∫
Ω

−∆uψk

)2

≤‖∆u‖2Ht∫ (Ω),
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where the last term is bounded independent of l and m, since ∆u∈H1(Ω). Thus,
according to the Cauchy criterion, there exists a function (−∆N )1−su∈H2s+1∫ (Ω)∩
H1(Ω) with

lim
l→∞
‖(−∆N )1−su−vl‖L2(Ω) = 0.

Next, using the definition and the orthogonality of the eigenvalues and eigenfunctions
once again, we deduce

‖∆vl−∆vm‖H1(Ω)∗ = sup
ϕ∈H1(Ω)
‖ϕ‖

H1(Ω)
=1

∣∣∣∣∫
Ω

∆(vl−vm)ϕ

∣∣∣∣
= sup

ϕ∈H1(Ω)
‖ϕ‖

H1(Ω)
=1

∣∣∣∣∣
l∑

k=m+1

µk

(
µ1−s
k

∫
Ω

uψk−µ−sk
∫
∂Ω

∂νuψk

)(∫
Ω

ϕψk

)∣∣∣∣∣
≤ sup

ϕ∈H1(Ω)
‖ϕ‖

H1(Ω)
=1

(
l∑

k=m+1

µk

(
µ1−s
k

∫
Ω

uψk−µ−sk
∫
∂Ω

∂νuψk

)2
)1/2( l∑

k=m+1

µk

(∫
Ω

ϕψk

)2
)1/2

≤

(
l∑

k=m+1

µ1−2s
k

(
µk

∫
Ω

uψk−
∫
∂Ω

∂νuψk

)2
)1/2

=

(
l∑

k=m+1

µ1−2s
k

(∫
Ω

−∆uψk

)2
)1/2

,

where the last term is again bounded independent of l and m, since ∆u∈H1(Ω). Again,
due to the Cauchy criterion, there exists a function v∗∈H1(Ω)∗ with

lim
l→∞
‖v∗−∆vl‖H1(Ω)∗ = 0.

Moreover, for all ϕ∈C∞0 (Ω), we have∫
Ω

(−∆N )1−su∆ϕ= lim
l→∞

∫
Ω

vl∆ϕ= lim
l→∞

∫
Ω

∆vlϕ=

∫
Ω

v∗ϕ.

Consequently, v∗ represents the Laplacian of (−∆N )1−su in the sense of distributions.
In addition, we obtain ∆(−∆N )1−su∈H1(Ω)∗ with

lim
l→∞
‖∆(−∆N )1−su−∆vl‖H1(Ω)∗ = 0.

According to [25, Appendix A] and [27, Section 3], the normal derivative can be defined
in a weak sense as a mapping from

{v∈H1(Ω) : ∆v∈H1(Ω)∗} to H−1/2(∂Ω)

by ∫
∂Ω

∂νuϕ=

∫
Ω

∆uϕ+

∫
Ω

∇u ·∇ϕ ∀ϕ∈H1(Ω),

which is an extension of the classical normal derivative. As a consequence, we obtain, by
means of the foregoing results and the definition of the eigenvalues and eigenfunctions,
for k≥2∫

∂Ω

∂ν(−∆N )1−suψk =

∫
Ω

∆(−∆N )1−suψk+

∫
Ω

∇(−∆N )1−su ·∇ψk
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= lim
l→∞

∫
Ω

∆vlψk+µk

∫
Ω

(−∆N )1−suψk

=−µk
(
µ1−s
k

∫
Ω

uψk−µ−sk
∫
∂Ω

∂νuψk

)
+µk

(
µ1−s
k

∫
Ω

uψk−µ−sk
∫
∂Ω

∂νuψk

)
= 0.

For k= 1, we get∫
∂Ω

∂ν(−∆N )1−suψ1 =

∫
Ω

∆(−∆N )1−suψ1 = lim
l→∞

∫
Ω

∆vlψ1 = 0.

The above observations allow us to apply (−∆N )s to (−∆N )1−su. For that purpose,
we define

wl=
l∑

k=1

µsk

(∫
Ω

(−∆N )1−suψk

)
ψk.

As before, we deduce for any l,m∈N with l≥m

‖wl−wm‖2L2(Ω) =
l∑

k=m+1

µ2s
k

(∫
Ω

(−∆N )1−suψk

)2

≤‖(−∆N )1−su‖2H2s∫ (Ω),

where the last term is bounded independent of l and m since (−∆N )1−su∈H2s+1∫ (Ω)∩
H1(Ω). As a consequence, due to the Cauchy criterion, the limit (−∆N )s(−∆N )1−su :=
liml→∞wl exists in L2(Ω). Finally, according to the orthogonality of the eigenfunctions
ψk and (2.12), we obtain, for k>1∫

Ω

(−∆N )s(−∆N )1−suψk =µsk

∫
Ω

(−∆N )1−suψk =µsk

(
µ1−s
k

∫
Ω

uψk−µ−sk
∫
∂Ω

∂νuψk

)
=µk

∫
Ω

uψk−
∫
∂Ω

∂νuψk =

∫
Ω

−∆uψk.

Moreover, we deduce∫
Ω

(−∆N )s(−∆N )1−suψ1 =−
∫
∂Ω

∂ν(−∆N )1−suψ1 = 0 =−
∫
∂Ω

∂νuψ1 =

∫
Ω

−∆uψ1.

Since {ψk}k∈N represents an orthonormal basis of L2(Ω), we conclude the result.

3. Trace theorems and integration-by-parts-type formulas
The purpose of this section is to state the Neumann trace space for H2(Ω)∩

H1
0 (Ω) and the Dirichlet trace space for functions belonging to {v∈H2(Ω) : ∂νv=

0 a.e. on ∂Ω}.
We begin by introducing the reflexive Banach space Ns(∂Ω) with s∈ [0, 1

2 ], which
is defined as

Ns(∂Ω) :={g∈L2(∂Ω) : gνk ∈Hs(∂Ω), 1≤k≤n} (3.1)

with norm

‖g‖Ns(∂Ω) =
n∑
k=1

‖gνk‖Hs(∂Ω). (3.2)
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Due to the fact that

‖g‖L2(∂Ω)∼‖g‖N0(∂Ω) ∀g∈L2(∂Ω),

we notice that

Ns(∂Ω) = [N1/2(∂Ω),L2(∂Ω)]1−2s, (3.3)

which can be deduced by classical results of real interpolation.
For s= 1

2 , we state the following trace theorem for the Neumann trace operator.

Lemma 3.1. Let n≥2 and Ω be a bounded Lipschitz domain. Then the Neumann
trace operator ∂ν

∂ν :H1
0 (Ω)∩H2(Ω)→N1/2(∂Ω)

is well-defined, linear, bounded, onto, and with a linear, bounded right inverse. Addi-
tionally, the null space of ∂ν is H2

0 (Ω), the closure of C∞0 (Ω) in H2(Ω).

Proof. See Lemma 6.3 of [26].

Remark 3.1 (Relation between Ns(∂Ω) and Hs(∂Ω) for s∈ [0, 1
2 ]). If Ω is of class

C1,r with r>1/2 then Ns(∂Ω) =Hs(∂Ω) for s∈ [0, 1
2 ], see [26, Lemma 6.2].

Next, we state an integration-by-parts-type formula which relates (−∆D)s to
(−∆D,0)s. In order to do so, we need to assume that the domain Ω is quasi-convex,
see [26, Definition 8.9]. The latter is a subset of bounded Lipschitz domains which
is locally almost convex. For a precise definition of an almost convex domain we refer
to [26, Definition 8.4]. In the class of bounded Lipschitz domains, the following sequence
holds (see [26]):

convex =⇒ UEBC =⇒ LEBC =⇒ almost convex =⇒ quasi-convex

where UEBC and LEBC stands for bounded Lipschitz domains which fulfill the uniform
exterior ball condition and local exterior ball condition, respectively. We further remark
that a bounded Lipschitz domain which fulfills UEBC is also known as a semiconvex
domain [36, Theorem 3.9].

Theorem 3.1 (Dirichlet: integration-by-parts formula). Let Ω be a bounded quasi-
convex domain. Moreover, let u∈D2s(Ω) with u|∂Ω∈N1/2(∂Ω)∗ and v∈H2s(Ω). Then
the following integration-by-parts formula holds∫

Ω

(−∆D)suv=

∫
Ω

u(−∆D,0)sv+

∫
∂Ω

u∂νwv, (3.4)

where wv ∈H2(Ω) is defined as the solution to

(−∆D,0)1−swv =v in Ω, wv = 0 on ∂Ω. (3.5)

Remark 3.2. We note that the boundary integral in (3.4) must be understood as a
duality pairing. We will use this convention whenever it is clear from the context.

Proof. Let us define

vl :=
l∑

k=1

(
λsk

∫
Ω

uϕk+λs−1
k

∫
∂Ω

u∂νϕk

)
ϕk.
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Using the orthogonality of the eigenfunctions ϕk, we obtain, for any l,m∈N with l≥m

‖vl−vm‖2L2(Ω) =
l∑

m+1

(
λsk

∫
Ω

uϕk+λs−1
k

∫
∂Ω

u∂νϕk

)2

=
l∑

m+1

λ2s
k

(∫
Ω

uϕk+λ−1
k

∫
∂Ω

u∂νϕk

)2

≤‖u‖2D2s(Ω),

where the last term is bounded independent of l and m, since u∈D2s(Ω). As a con-
sequence, by means of the Cauchy criterion, the limit (−∆D)su := liml→∞vl exists in
L2(Ω). In the same manner, we obtain for v∈H2s(Ω) that the limit

(−∆D,0)sv := lim
l→∞

l∑
k=1

λsk

(∫
Ω

vϕk

)
ϕk

exists in L2(Ω). Moreover, if we set

wv,k :=λs−1
k

(∫
Ω

vϕk

)
,

we can conlude that the solution wv to (3.5) is given by

wv = lim
l→∞

l∑
k=1

wv,kϕk = lim
l→∞

l∑
k=1

λs−1
k

(∫
Ω

vϕk

)
ϕk.

With similar arguments as above, it is straightforward to verify that wv ∈H2(Ω), ∆wv ∈
L2(Ω) and

‖∆wv‖L2(Ω) =‖wv‖H2(Ω) (3.6)

since v∈H2s(Ω). Combining the last observations yields∫
Ω

(−∆D)suv= lim
l→∞

l∑
k=1

(
λsk

∫
Ω

uϕk+λs−1
k

∫
∂Ω

u∂νϕk

)(∫
Ω

vϕk

)

= lim
l→∞

∫
Ω

u
l∑

k=1

λsk

(∫
Ω

vϕk

)
ϕk+ lim

l→∞

∫
∂Ω

u∂ν

l∑
k=1

λs−1
k

(∫
Ω

vϕk

)
ϕk

=

∫
Ω

u(−∆D,0)sv+

∫
∂Ω

u∂νwv+ lim
l→∞

∫
∂Ω

u∂ν

(
l∑

k=1

wv,kϕk−wv

)
.

The proof is complete, once we have shown that

lim
l→∞

∫
∂Ω

u∂ν

(
l∑

k=1

wv,kϕk−wv

)
= 0.

To this end, we notice that in quasi-convex domains, for ∆wv ∈L2(Ω), the solution wv
of (3.5) belongs to H2(Ω)∩H1

0 (Ω) and fulfills

‖wv‖H2(Ω)≤ c‖∆wv‖L2(Ω), (3.7)
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see e.g. [26, Theorem 10.4]. According to [26, Corollary 6.5], the duality pairing between
N1/2(∂Ω) and N1/2(∂Ω)∗ is compatible with the natural integral pairing in L2(∂Ω).
Consequently, using Lemma 3.1, (3.7) and (3.6), we obtain∣∣∣∣∣

∫
∂Ω

u∂ν

(
l∑

k=1

wv,kϕk−wv

)∣∣∣∣∣≤‖u‖N1/2(∂Ω)∗‖∂ν

(
l∑

k=1

wv,kϕk−wv

)
‖N1/2(∂Ω)

≤ c‖u‖N1/2(∂Ω)∗‖
l∑

k=1

wv,kϕk−wv‖H2(Ω).

Thus, the assertion is proved since liml→∞‖
∑l
k=1wv,kϕk−wv‖H2(Ω) = 0, as shown

above.

Remark 3.3.
(1) If in Theorem 3.1, we let u∈H1/2(∂Ω), then we do not need to assume quasi-

convexity; bounded Lipschitz domains are sufficient. Following e.g. [26], it may
even be possible to further relax the regularity requirements for u on the boundary,
in this case.

(2) If in Theorem 3.1, we let u∈D2(Ω), then ∆u∈L2(Ω). As a consequence, according
to [26, Theorem 6.4], we obtain u∈N1/2(∂Ω)∗.

We continue by introducing the space Ns(∂Ω) with s∈ [1, 3
2 ],

Ns(∂Ω) :={g∈H1(∂Ω) : ∇tang∈ (Hs−1(∂Ω))n}.

This space can be endowed with the norm

‖g‖Ns(∂Ω) =‖g‖L2(∂Ω) +‖∇tang‖(Hs−1(∂Ω))n .

Here ∇tang=
(∑n

k=1νk
∂g
∂τk,j

)
1≤j≤n

with ∂
∂τk,j

=νk
∂
∂xj
−νj ∂

∂xk
.

Similar to the explanations above, we obtain, by the fact that

‖g‖H1(∂Ω)∼‖g‖N1(∂Ω) ∀g∈H1(∂Ω),

the following characterization of the intermediate spaces

Ns(∂Ω) = [N3/2(∂Ω),H1(∂Ω)]3−2s, (3.8)

which is due to classical results of real interpolation.
For s= 3

2 , we have the following result for the Dirichlet trace operator.

Lemma 3.2. Let n≥2 and Ω be a bounded Lipschitz domain. Then the Dirichlet trace
operator γD

γD :{v∈H2(Ω) : ∂νu= 0 a.e. on ∂Ω}→N3/2(∂Ω)

is well-defined, linear, bounded, onto, and with a linear, bounded right inverse. Addi-
tionally, the null space of γD is H2

0 (Ω), the closure of C∞0 (Ω) in H2(Ω).

Proof. See Lemma 6.9 of [26].

Remark 3.4 (Relation between Ns(∂Ω) and Hs(∂Ω) for s∈ [1, 3
2 ]). If Ω is of class

C1,r with r>1/2 then Ns(∂Ω) =Hs(∂Ω) for s∈ [1, 3
2 ], see [26, Lemma 6.8].
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As for the Dirichlet fractional Laplacian, we are able to state an integration-by-
parts-type formula which relates (−∆N )s to (−∆N,0)s.

Theorem 3.2 (Neumann: integration-by-parts formula). Let Ω be a bounded quasi-
convex domain. Moreover, let u∈N2s(Ω) with ∂νu∈N3/2(∂Ω)∗ and v∈H2s∫ (Ω). Then

the following integration-by-parts formula holds∫
Ω

(−∆N )suv=

∫
Ω

u(−∆N,0)sv−
∫
∂Ω

∂νuwv,

where wv ∈H2∫ (Ω) is defined as the solution to

(−∆N,0)1−swv =v in Ω, ∂νwv = 0 on ∂Ω.

Proof. The proof is almost a word-by-word repetition of the proof of Theorem 3.1.
In contrast, it is crucial to show that

lim
l→∞

∫
∂Ω

∂νu

(
l∑

k=2

wv,kψk−wv

)
= 0

with wv,k :=µs−1
k

∫
Ω
vψk. It is again straightforward to verify that wv ∈H2∫ (Ω), ∆wv ∈

L2(Ω) and ‖∆wv‖L2(Ω) =‖wv‖H2∫ (Ω). As a consequence, according to [26, Theorem 10.8],

the solution wv belongs to {v∈H2(Ω) :∂νu= 0 a.e. on ∂Ω} and fulfills

‖wv‖H2(Ω)≤ c‖∆wv‖L2(Ω).

According to [26, Corollary 6.12], the duality pairing between N3/2(∂Ω) and N3/2(∂Ω)∗

is compatible with the natural integral pairing in L2(∂Ω). Using this in combination
with Lemma 3.2 and the foregoing results, we obtain∣∣∣∣∣

∫
∂Ω

∂νu

(
l∑

k=2

wv,kψk−wv

)∣∣∣∣∣≤‖∂νu‖N3/2(∂Ω)∗‖
l∑

k=2

wv,kψk−wv‖N3/2(∂Ω)

≤ c‖∂νu‖N3/2(∂Ω)∗‖
l∑

k=2

wv,kψk−wv‖H2∫ (Ω).

Again, the assertion is proved since liml→∞‖
∑l
k=2wv,kψk−wv‖H2∫ (Ω) = 0, as shown

above.

Remark 3.5.
(1) If in Theorem 3.2, we let ∂νu∈H−1/2(∂Ω), then we do not need to assume quasi-

convexity; bounded Lipschitz domains are again sufficient.
(2) If in Theorem 3.2, we let u∈N2(Ω) and ∂νu Lebesgue measurable, then ∆u∈L2(Ω).

Consequently, using [26, Theorem 6.10], we obtain ∂νu∈N3/2(∂Ω)∗.

4. Application I: fractional equation with Dirichlet boundary condition
We next apply our definition in (2.10) to (1.1). In order to impose the boundary

condition u=g on ∂Ω, we use the standard lifting argument, i.e., given g∈Ds− 1
2 (∂Ω)

with

Ds−
1
2 (∂Ω) :=


N

1
2−s(∂Ω)∗ for s∈ [0, 1

2 )

L2(∂Ω) for s= 1
2

Hs− 1
2 (∂Ω) for s∈ ( 1

2 ,1]

,
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we construct v∈Ds(Ω) solving

(−∆D)sv= 0 in Ω,

v=g on ∂Ω,
(4.1)

and given f ∈H−s(Ω), w∈Hs(Ω) solves

(−∆D)sw=f in Ω,

w= 0 on ∂Ω,
(4.2)

then u=w+v. Notice that in (4.2) (−∆D)s= (−∆D,0)s by Proposition 2.4 and density.
Study of (4.2) has been the focal point of several recent works, see [14, 16, 17, 19, 40]
and can be realized by using the Caffarelli-Silvestre extension or the Stinga-Torrea
extension [17,40], see, for instance, [37].

On the other hand, at the first glance, (4.1) seems as complicated as the original
problem (1.1). However, we will show that (4.1) is equivalent to solving a standard
Laplace problem with nonzero boundary conditions

−∆v= 0 in Ω, v=g on ∂Ω, (4.3)

in the so-called very-weak form, see [5,7,8,12,22,32,34] or in the classical weak form if
the regularity of the boundary datum guarantees its well-posedness.

We start with introducing the very weak form of (4.3). Given g∈N 1
2 (∂Ω)∗, we are

seeking a function v∈L2(Ω) fulfilling∫
Ω

v(−∆)ϕ=−
∫
∂Ω

g∂νϕ ∀ϕ∈V :=H1
0 (Ω)∩H2(Ω). (4.4)

Next, we show existence and regularity results for the very-weak solution of (4.3).

Lemma 4.1. Let Ω be a bounded, quasi-convex domain. For any g∈N 1
2 (∂Ω)∗, there

exists a unique very-weak solution v∈L2(Ω) of (4.3). For more regular boundary data

g∈Ds− 1
2 (∂Ω) with s∈ [0,1], the solution belongs to Hs(Ω) and admits the a priori esti-

mate

‖v‖Hs(Ω)≤ c‖g‖Ds− 1
2 (∂Ω)

. (4.5)

Moreover, if s=1, then the very-weak solution is actually a weak solution.

Remark 4.1. Notice that owing to Remark 3.1, when Ω is C1,r with r>1/2, we

have N
1
2 (∂Ω)∗=H−

1
2 (∂Ω) and thus Ds− 1

2 (∂Ω) =Hs− 1
2 (∂Ω). Moreover, by employing

similar arguments, in combination with [26], the results of Lemma 4.1 can be extended
to general Lipschitz domains at least for s∈ [ 1

2 ,1].

Proof. The idea of the existence and uniqueness proof of a solution to (4.4) is
based on applying the Babuška-Lax-Milgram theorem. This is already outlined in the
proof of Lemma 2.3 in [8]. However, in that reference, the focus was on two dimen-
sional polygonal domains. Since we are working in n space dimensions with different
assumptions on the boundary, we present the proof again, also for the convenience of
the reader. We also refer to [26] for related results.

First, we notice that the bilinear form associated with (4.4) is obviously bounded
on L2(Ω)×V . In order to show the inf-sup conditions, we use the isomorphism

∆ϕ∈L2(Ω), ϕ|∂Ω = 0 ⇔ ϕ∈V,
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which is valid under the present assumptions on the domain according to [26, Theo-
rem 10.4]. A norm in V is given by ‖ϕ‖V =‖∆ϕ‖L2(Ω) due to the standard a priori
estimate ‖ϕ‖H2(Ω)≤ c‖∆ϕ‖L2(Ω). Then, by taking v=−∆ϕ/‖∆ϕ‖L2(Ω)∈L2(Ω), we de-
duce

sup
v∈L2(Ω)
‖v‖L2(Ω)=1

|(v,−∆ϕ)L2(Ω)|≥
|(∆ϕ,∆ϕ)L2(Ω)|
‖∆ϕ‖L2(Ω)

=‖∆ϕ‖L2(Ω) =‖ϕ‖V .

If we choose ϕ∈V as the solution of −∆ϕ=v/‖v‖L2(Ω) with some v∈L2(Ω), then we
obtain

sup
ϕ∈V
‖ϕ‖V =1

|(v,−∆ϕ)L2(Ω)|≥
|(v,v)L2(Ω)|
‖v‖L2(Ω)

=‖v‖L2(Ω).

It remains to check that the right hand side of (4.4) defines a linear functional on V for

any g∈N 1
2 (∂Ω)∗. In view of Lemma 3.1, we have that∣∣∣∣∫

∂Ω

g∂νϕ

∣∣∣∣≤‖g‖N 1
2 (∂Ω)∗

‖∂νϕ‖
N

1
2 (∂Ω)

≤C‖g‖
N

1
2 (∂Ω)∗

‖ϕ‖V . (4.6)

Thus, all the requirements of the Babuška-Lax-Milgram theorem are fulfilled and we can
deduce the existence of a unique solution in L2(Ω) for any Dirichlet boundary datum

g∈N 1
2 (∂Ω)∗.

The a priori estimate in that case is a simple consequence of the above shown inf-sup
condition combined with (4.4) and (4.6). Indeed,

‖v‖L2(Ω)≤ sup
ϕ∈V
‖ϕ‖V =1

|(v,−∆ϕ)L2(Ω)|= sup
ϕ∈V
‖ϕ‖V =1

∣∣∣∣∫
∂Ω

g∂νϕ

∣∣∣∣≤‖g‖N 1
2 (∂Ω)∗

. (4.7)

Moreover, according to [26, Theorem 5.3], there holds

‖v‖
H

1
2 (Ω)
≤ c‖g‖L2(∂Ω). (4.8)

Next, we show that for any g∈H1/2(∂Ω), the very-weak solution belongs to H1(Ω)
and represents actually a weak solution. For the weak formulation of problem (4.3),
it is classical to show that for g∈H1/2(∂Ω), there is a unique weak solution in H1(Ω)
fulfilling the a priori estimate

‖v‖H1(Ω)≤ c‖g‖H1/2(∂Ω). (4.9)

According to the integration-by-parts formula in [24]

(∂νϕ,χ)∂Ω = (∇ϕ,∇χ)Ω +(∆ϕ,χ)Ω ∀ϕ∈V, ∀χ∈H1(Ω),

we can check that any weak solution represents a very-weak solution. Just set χ=v and
use (∇ϕ,∇v) = 0. Due to the uniqueness of both, the weak and the very-weak solution,
they must coincide. Finally, by real interpolation in Sobolev spaces, we can conclude,
according to (4.7)-(4.9) and (3.3), the existence of a solution in Hs(Ω) for any boundary

datum g∈Ds− 1
2 (∂Ω), and the validity of the a priori estimate, which ends the proof.



1414 FRACTIONAL OPERATORS WITH INHOMOGENEOUS BOUNDARY CONDITIONS

Next we show the uniqueness of the fractional problem for v solution to (4.1). We
shall use this result, in combination with Lemma 4.1, to show the existence of a solution
to (4.1).

Lemma 4.2. A solution v∈Ds(Ω) to (4.1) is unique.

Proof. Since (4.1) is linear, it is sufficient to show that when g≡0 then v≡0. The
function v∈Ds(Ω), solution to (4.1) with g= 0, fulfills

∞∑
k=1

λsk

∫
Ω

vϕk

∫
Ω

φϕk = 0 ∀φ∈Hs(Ω).

Setting φ=v, we arrive at the asserted result.

Theorem 4.1. Let the assumptions of Lemma 4.1 hold. Then, solving problem (4.1)
is equivalent to solving problem (4.3) in the very-weak sense. As a consequence, the
results of Lemma 4.1 are valid for the solution of the fractional problem (4.1).

Proof. Since both (4.1) and (4.3) have unique solutions, it is sufficient to show
that the solution v∈Ds(Ω) to (4.1) solves (4.3) in the very-weak sense. The solution
v∈Ds(Ω) to (4.1) fulfills

∞∑
j=1

(
λsj

∫
Ω

vϕj+λs−1
j

∫
∂Ω

g∂νϕj

)∫
Ω

φϕj = 0 ∀φ∈Hs(Ω).

Taking an arbitrary eigenfunction ϕk as a test function, and employing the orthogonality
of the eigenfunctions in L2(Ω), we obtain

0 =λsk

∫
Ω

vϕk+λs−1
k

∫
∂Ω

g∂νϕk =λs−1
k

(
λk

∫
Ω

vϕk+

∫
∂Ω

g∂νϕk

)
.

Since λk>0 and −∆ϕk =λkϕk, we have arrived at∫
Ω

v(−∆)ϕk =−
∫
∂Ω

g∂νϕk.

Since a basis of V := dom(−∆D,0) is given by the eigenfunctions ϕk, we have shown that
v∈Ds(Ω) solves (4.3). This concludes the proof.

Theorem 4.2 (Existence and uniqueness). Let Ω be a bounded, quasi-convex domain.

If f ∈H−s(Ω), g∈Ds− 1
2 (∂Ω) then (1.1) has a unique solution u∈Hs(Ω) which satisfies

‖u‖Hs(Ω)≤C
(
‖f‖H−s(Ω) +‖g‖

Ds−
1
2 (∂Ω)

)
, (4.10)

where C is a positive constant independent of u,f , and g.

Proof. Notice that solving (1.1) for u is equivalent to solving (4.1) and (4.2)
for v and w, respectively. Then u=w+v. The existence and uniqueness of w∈Hs(Ω)
for Lipschitz domains is due to [18, Theorem 2.5]. The existence and uniqueness of
v∈Hs(Ω) is given by Theorem 4.1 which says that (4.1) is equivalent to (4.3) such that
the results of Lemma 4.1 apply. Finally, using the triangle inequality, we obtain

‖u‖Hs(Ω)≤‖w‖Hs(Ω) +‖v‖Hs(Ω).
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From Theorem 4.1 and Lemma 4.1, we know that ‖v‖Hs(Ω)≤C‖g‖Ds− 1
2 (∂Ω)

. It remains

to estimate ‖w‖Hs(Ω). Using Proposition 2.1, we obtain

‖w‖Hs(Ω)≤C‖w‖Hs(Ω),

and from the weak form of (4.2) it immediately follows that ‖w‖Hs(Ω)≤C‖f‖H−s(Ω).
Collecting all the estimates we obtain (4.10).

In Section 4.2, we will be concerned with discretization error estimates for (1.1).
For that purpose we need to establish higher regularity for the solution u=w+v, given
more regular data f and g. Due to the fact that the solution w to (4.2) is formally given
by

w=
∞∑
k=1

λ−sk fkϕk with fk =

∫
Ω

fϕk,

we obtain that w belongs to H1+s(Ω) for any f ∈H1−s(Ω). The results about higher
regularity for the solution v to (4.1) are collected in the following lemma.

Lemma 4.3 (Regularity of v). Let one of the following conditions be fulfilled:

(1) 0≤s≤ 1
2 : Ω is Lipschitz, g∈Hs+ 1

2 (∂Ω),

(2) 1
2 <s≤1: Ω is quasi-convex, g∈ [γD(H2(Ω)),H1(∂Ω)]2(1−s),

where γD denotes the Dirichlet trace operator. Then v belongs to H1+s(Ω) and fulfills

‖v‖H1+s(Ω)≤C‖g‖Ds+ 1
2 (∂Ω)

with a constant C independent of g, and the trace space Ds+ 1
2 (∂Ω) defined by

Ds+
1
2 (∂Ω) :=

{
Hs+ 1

2 (∂Ω) if 0≤s≤ 1
2 ,

[γD(H2(Ω)),H1(∂Ω)]2(1−s) if 1
2 <s≤1.

Remark 4.2. Notice that, by definition, every quasi-convex domain is Lipschitz,
therefore condition 1 in Lemma 4.3 also holds in quasi-convex domains. Moreover,
when Ω is C1,r with 1/2<r<1 (cf. [26, Lemma 10.1]), then γD(H2(Ω)) =H3/2(∂Ω),
whence, the interpolation space in part 2 of Lemma 4.3 is

[γD(H2(Ω)),H1(∂Ω)]2(1−s) =Hs+1/2(∂Ω).

Notice as well that g∈γD(H2(Ω)) implies that on each side/face Γi of a polygo-

nal/polyhedral domain Ω, we have g∈H 3
2 (Γi). Consequently, in case of polygo-

nal/polyhedral domains, we conclude by real interpolation

‖g‖
Hs+

1
2 (Γi)

≤ c‖g‖
Ds+

1
2 (∂Ω)

for any g∈Ds+ 1
2 (∂Ω).

Proof. When 0≤s≤ 1
2 , this result follows from [26, Theorem 5.3]. Finally, when

1
2 <s≤1, we recall from [26, Eq. (10.16)-(10.17) in Theorem 10.4]

g∈H1(∂Ω) implies v∈H3/2(Ω),
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g∈γD(H2(Ω)) implies v∈H2(Ω).

Moreover, corresponding natural a priori estimates are valid. Using real interpolation
we arrive at

g∈ [γD(H2(Ω)),H1(∂Ω)]2(1−s) implies v∈H1+s(Ω),

which completes the proof.

4.1. The extended problem. It is well-known that (4.2) can equivalently be
posed on a semi-infinite cylinder. This approach in Rn is due to Caffarelli and Silvestre
[17]. The restriction to bounded domains was considered by Stinga-Torrea in [40], see
also [16,19]. For the existence and uniqueness of a solution to the problem on the semi-
infinite cylinder, it is sufficient to consider Ω to be a bounded open set with Lipschitz
boundary [18, Theorem 2.5].

We first introduce the required notation, we will follow [4, section 3]. We denote
by C, the aforementioned semi-infinite cylinder with base Ω, i.e., C= Ω×(0,∞), and its
lateral boundary ∂LC :=∂Ω× [0,∞). We also need to define a truncated cylinder: for
Y>0, the truncated cylinder is given by CY = Ω×(0,Y). Additionally, we set ∂LCY :=
∂Ω× [0,Y]. As C and CY are objects in Rn+1, we use y to denote the extended variable,
such that a vector x′∈Rn admits the representation x′= (x1,. ..,xn,xn+1) = (x,xn+1) =
(x,y) with xi∈R for i= 1,. ..,n+1, x∈Rn and y∈R.

Next, we introduce the weighted Sobolev spaces with a degenerate/singular weight
function yα, α∈ (−1,1), see [41, Section 2.1], [31], and [28, Theorem 1] for further
discussion on such spaces. Towards this end, let D⊂Rn× [0,∞) be an open set, such
as C or CY , then we define the weighted space L2(yα,D) as the space of all measurable
functions defined on D with finite norm ‖w‖L2(yα,D) :=‖yα/2w‖L2(D). Similarly, using a
standard multi-index notation, the space H1(yα,D) denotes the space of all measurable
functions w on D whose weak derivatives Dδw exist for |δ|= 1 and fulfill

‖w‖H1(yα,D) :=

∑
|δ|≤1

‖Dδw‖2L2(yα,D)

1/2

<∞.

To study the extended problems, we also need to introduce the space

H̊1
L(yα,C) :={w∈H1(yα,C) :w= 0 on ∂LC}.

The space H̊1
L(yα,CY ) is defined analogously, i.e.,

H̊1
L(yα,CY ) :={w∈H1(yα,CY ) :w= 0 on ∂LCY ∪Ω×{Y }}.

We finally state the extended problem in the weak form: Given f ∈H−s(Ω), find W∈
H̊1
L(yα,C) such that∫

C
yα∇W ·∇Φ =ds〈f,Φ〉H−s(Ω),Hs(Ω) ∀Φ∈ H̊1

L(yα,C) (4.11)

with α= 1−2s and ds= 2α Γ(1−s)
Γ(s) , where we recall that 0<s<1. That is, the function

W∈ H̊1
L(yα,C) is a weak solution of the following problem{

div(yα∇W) = 0 inC,
∂W
∂να =dsf on Ω×{0},

(4.12)
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where we have set

∂W
∂να

(x,0) = lim
y→0

yαWy(x,y) = lim
y→0

yα
∂W(x,y)

∂y
.

Even though the extended problem (4.11) is local (in contrast to the nonlocal prob-
lem (4.2)), however, a direct discretization is still challenging due to the semi-infinite
computational domain C. To overcome this, we employ the exponential decay of the
solutionW in certain norms as y tends to infinity, see [37]. This suggests truncating the
semi-infinite cylinder, leading to a problem posed on the truncated cylinder CY : Given

f ∈H−s(Ω), find WY ∈ H̊1
L(yα,CY ) such that∫

CY

yα∇WY ·∇Φ =ds〈f,Φ〉H−s(Ω),Hs(Ω) ∀Φ∈ H̊1
L(yα,CY ). (4.13)

We refer to [37, Theorem 3.5] for the estimate of the truncation error.

4.2. A Priori error estimates. To get an approximation of W, we apply
the approach from [37], i.e. the truncated problem is discretized by a finite element
method, and in order to obtain an approximation of v, we will use the approach de-
scribed in [7, 8, 12] or equivalently a standard finite element method, if the boundary
datum is smooth enough. From here on, we assume that the domain Ω is convex and
polygonal/polyhedral.

Due to the singular behavior of W towards the boundary Ω, we will use anistropi-
cally refined meshes. We define these meshes as follows: Let TΩ ={K} be a conforming
and quasi-uniform triangulation of Ω, where K ∈Rn is an element that is isoparamet-
rically equivalent either to the unit cube or to the unit simplex in Rn. We assume
#TΩ∼Mn. Thus, the element size hTΩ fulfills hTΩ ∼M−1. The collection of all these
meshes is denoted by TΩ. Furthermore, let IY ={I} be a graded mesh of the interval

[0,Y ] in the sense that [0,Y ] =
⋃M−1
k=0 [yk,yk+1] with

yk =

(
k

M

)γ
Y , k= 0,. ..,M, γ >

3

1−α
=

3

2s
>1.

Now, the triangulations TY of the cylinder CY are constructed as tensor product trian-
gulations by means of TΩ and IY . The definitions of both imply #TY ∼Mn+1. Finally,
the collection of all those anisotropic meshes TY is denoted by T.

Now, we define the finite element spaces posed on the previously introduced meshes.
For every TY ∈T, the finite element spaces W(TY ) are now defined by

W(TY ) :={Φ∈C0(CY ) : Φ|T ∈P1(K)⊕P1(I) ∀T =K×I ∈TY , Φ|∂LCY = 0}.

For the case that K in the previous definition is a simplex, then P1(K) =P1(K), the
set of polynomials of degree at most 1. If K is a cube, then P1(K) equals Q1(K), the
set of polynomials of degree at most 1 in each variable.

Using the just introduced notation, the finite element discretization of (4.13) is
given by the function WTY ∈W(TY ), which solves the variational identity∫

CY

yα∇WTY ·∇Φ =ds〈f,Φ〉H−s(Ω),Hs(Ω) ∀Φ∈W(TY ) (4.14)

with α= 1−2s and ds= 2α Γ(1−s)
Γ(s) , where we recall that 0<s<1.
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Next we are concerned with the discretization of (4.3). Since we will assume that the

boundary datum g belongs at least to H
1
2 (∂Ω), a standard finite element discretization

is applicable, see e.g. [11]. More precisely, let

V :={φ∈C0(Ω) :φ|K ∈P1(K)}, V0 :=V∩H1
0 (Ω), V∂ =V|∂Ω.

Moreover, let ΠTΩ
denote the L2-projection into V. Then we seek a discrete solution

vTΩ ∈V∗ :={v∈V :v|∂Ω = ΠTΩg} which fulfills∫
Ω

∇vTΩ
·∇φ= 0 ∀φ∈V0. (4.15)

Notice that, in case g /∈H 1
2 (∂Ω), the weak formulation of (4.3) is not well-posed.

However, the discretization (4.15) is still reasonable and corresponding error estimates
hold, see [7, 8, 12].

Finally, we define the discrete solution to (1.1) as

uTΩ =WTY (·,0)+vTΩ , (4.16)

where WTY and vTΩ
solve (4.14) and (4.15), respectively.

We conclude this section with the following theorem about discretization error es-
timates for uTΩ .

Theorem 4.3. Let Ω be convex polygonal/polyhedral, g∈Ds+ 1
2 (∂Ω) satisfies the

conditions of Lemma 4.3, and f ∈H1−s(Ω). Moreover, let u be the solution of (1.1) and
let uTΩ

be as in (4.16), then there is a constant C>0 independent of the data such that

‖u−uTΩ‖Hs(Ω)≤C|log(#TY )|s(#TY )−
1

(n+1)

(
‖f‖H1−s(Ω) +‖g‖

Ds+
1
2 (∂Ω)

)
(4.17)

and

‖u−uTΩ‖L2(Ω)≤C|log(#TY )|2s(#TY )−
(1+s)
(n+1)

(
‖f‖H1−s(Ω) +‖g‖

Ds+
1
2 (∂Ω)

)
(4.18)

provided that Y ∼ log(#TY ).

Proof. After applying the triangle inequality, we arrive at

‖u−uTΩ‖Hs(Ω)≤‖w−WTY (·,0)‖Hs(Ω) +‖v−vTΩ‖Hs(Ω).

We treat each term on the right hand side separately. Using Proposition 2.1, we obtain

‖w−WTY (·,0)‖Hs(Ω)≤C‖w−WTY (·,0)‖Hs(Ω).

Subsequently invoking [37, Theorem 5.4 and Remark 5.5], we arrive at

‖w−WTY (·,0)‖Hs(Ω)≤C|log(#TY )|s(#TY )−
1

(n+1) ‖f‖H1−s(Ω).

Condensing the last two estimates, we obtain

‖w−WTY (·,0)‖Hs(Ω)≤C|log(#TY )|s(#TY )−
1

(n+1) ‖f‖H1−s(Ω).

We now turn to ‖v−vTΩ
‖Hs(Ω). Using classical arguments (see e.g. [11]), in combination

with the regularity results of Lemma 4.3 and Remark 4.2, we infer the estimates

‖v−vTΩ
‖H1(Ω)≤ChsTΩ

‖g‖
Ds+

1
2 (∂Ω)

,
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‖v−vTΩ‖L2(Ω)≤Ch1+s
TΩ
‖g‖

Ds+
1
2 (∂Ω)

.

Due to the fact that Hs(Ω) is the interpolation space between H1(Ω) and L2(Ω), see
(2.4), we obtain

‖v−vTΩ
‖Hs(Ω)≤ChTΩ

‖g‖
Ds+

1
2 (∂Ω)

,

where the constant C>0 is independent of hTΩ
and the data. Collecting the estimates

for v, w, we obtain (4.17) after having observed that hTΩ
∼ (#TY )−

1
(n+1) .

Finally, (4.18) is due to the L2-estimate of WTY (·,0) [38, Proposition 4.7] and the
aforementioned L2-estimate of vTΩ

.

5. Application II: fractional equation with Neumann boundary condition

Given data f ∈Hs(Ω)∗, g∈Ns− 3
2 (∂Ω) with

Ns−
3
2 (∂Ω) :=


N

3
2−s(∂Ω)∗ for s∈ [0, 1

2 )

H−1(∂Ω) for s= 1
2

Hs− 3
2 (∂Ω) for s∈ ( 1

2 ,1]

,

we seek a function u∈Hs∫ (Ω) satisfying

(−∆N )su=f in Ω,

∂νu=g on ∂Ω.
(5.1)

We assume that the data f and g additionally fulfill the compatibility condition∫
Ω

f+

∫
∂Ω

g= 0. (5.2)

Now, we proceed as in Section 4. Given g∈Ns− 3
2 (∂Ω), we construct v∈Ns(Ω) solving

(−∆N )sv= |Ω|−1

∫
Ω

f in Ω

∂νv=g on ∂Ω,

(5.3)

and given f ∈Hs(Ω)∗, we seek w∈Hs∫ (Ω) fulfilling

(−∆N )sw=f+ |Ω|−1

∫
∂Ω

g in Ω,

∂νw= 0 on ∂Ω.

(5.4)

Finally, we have u=w+v.
We will show that (5.3) is equivalent to solving the following standard Laplace

problem with nonzero Neumann boundary conditions

−∆v= |Ω|−1

∫
Ω

f in Ω, ∂νv=g on ∂Ω, (5.5)

in the very-weak form or in the classical weak form, if the regularity of the boundary
datum guarantees its well-posedness.
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We start with introducing the very-weak form of (5.5). Given g∈N 3
2 (∂Ω)∗, we are

seeking a function v∈H0∫ (Ω) fulfilling∫
Ω

v(−∆)ϕ=

∫
∂Ω

gϕ ∀ϕ∈V, (5.6)

where V ={ϕ∈H1∫ (Ω)∩H2(Ω) : ∂νϕ= 0 on ∂Ω}.

Lemma 5.1. Let Ω be a bounded, quasi-convex domain. For any f and g∈N 3
2 (∂Ω)∗

fulfilling (5.2), there exists a unique very-weak solution v∈H0∫ (Ω) of (5.5). For more

regular boundary data g∈Ns− 3
2 (∂Ω), where s∈ [0,1], the solution belongs to Hs∫ (Ω) and

admits the a priori estimate

|v|Hs(Ω)≤ c‖g‖Ns− 3
2 (∂Ω)

.

Moreover, if s=1, then the very-weak solution is actually a weak solution.

Remark 5.1. Notice that due to Remark 3.4, when Ω is C1,r with r>1/2, we

have N
3
2 (∂Ω) =H

3
2 (∂Ω) and thus Ns− 3

2 (∂Ω) =Hs− 3
2 (∂Ω). Moreover, as for the Dirich-

let problem, by employing similar arguments, in combination with [26], the results of
Lemma 4.1 can be extended to general Lipschitz domains at least for s∈ [ 1

2 ,1].

Proof. The proof is similar to the proof of Lemma 4.1. We only elaborate on the
main differences. The proof of existence and uniqueness of a solution v in L2(Ω) with∫

Ω
v= 0 is again based on the Babuška-Lax-Milgram theorem using the isomorphism

∆ϕ∈L2(Ω), ∂νϕ= 0,

∫
Ω

ϕ= 0 ⇔ ϕ∈V,

see [26, Theorem 10.8], and Lemma 3.2. The higher regularity can be deduced by
real interpolation from classical regularity results for the solution of the corresponding
weak formulation, which is actually a very-weak solution due to the integration-by-parts
formula, and the regularity results in H

1
2 (Ω) from [26, Theorem 5.4].

The equivalence between (5.3) and (5.5) now follows along the same lines as in
Theorem 4.1. We collect this result in the following theorem.

Theorem 5.1. Let the assumptions of Lemma 5.1 hold. Then, solving problem (5.3)
is equivalent to solving problem (5.5) in the very-weak sense. As a consequence, the
results of Lemma 5.1 are valid for the solution of the fractional problem (5.3).

Finally, we conclude this section with the well-posedness of (5.1).

Theorem 5.2 (Existence and uniqueness). Let Ω be a bounded, quasi-convex domain.

If f ∈Hs(Ω)∗, g∈Ns− 3
2 (∂Ω) fulfill the compatibility condition (5.2), then the system

(5.1) has a unique solution u∈Hs∫ (Ω). In addition

|u|Hs(Ω)≤C
(
‖f‖Hs(Ω)∗ +‖g‖

Ns−
3
2 (∂Ω)

)
. (5.7)

Proof. The proof is similar to that of Theorem 4.2 and is omitted for brevity.
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6. Application III: Boundary control problems

6.1. Dirichlet boundary control problem. Given ud∈L2(Ω) and α>0, we
consider the following problem: minimize

J(u,z) :=
1

2

(
‖u−ud‖2L2(Ω) +α‖q‖2L2(∂Ω)

)
(6.1)

subject to the state equation

(−∆D)su= 0 in Ω,

u= q on ∂Ω,
(6.2)

and for given a,b∈L2(∂Ω) with a(x)<b(x) for a.a. x∈∂Ω, the control q belongs to the
admissible set Qad, defined as

Qad :={q∈L2(∂Ω) :a(x)≤ q(x)≤ b(x) for a.a. x∈∂Ω}. (6.3)

Notice that L2(∂Ω)⊂N 1
2 (∂Ω)∗. Consequently, owing to Theorem 4.1, we notice that

the state equation (6.2) is equivalent to

−∆u= 0 in Ω,

u= q on Ω,
(6.4)

where the latter is understood in the very-weak sense.
Without going into further details we refer to [6,22,34], where the (numerical) anal-

ysis for this problem is carried out. The advantage of our characterization of fractional
Laplacian is clear, i.e., it allows to equivalently rewrite the fractional optimal control
problem into an optimal control problem which has been well-studied.

6.2. Neumann boundary control problem. Given ud∈L2(Ω) and α>0, we
consider the following problem: minimize J(u,q) as defined in (6.1), subject to the state
equation

(−∆N )su= 0 in Ω,

∂νu= q on ∂Ω.
(6.5)

and the control q∈Qad with
∫
∂Ω
q= 0, where Qad is defined in (6.3). Since q∈L2(∂Ω)⊂

Ns− 3
2 (∂Ω), the state equation (6.5) is well-posed according to Theorem 5.2. Moreover,

it is equivalent to

−∆u= 0 in Ω,

∂νu= q on ∂Ω,
(6.6)

where the latter can be understood in the classical weak sense.
The optimization problem with constraints

−∆u+cu= 0 in Ω,

∂νu= q on ∂Ω,
(6.7)

where c>0, has been well-studied, see [9, 20,21,30,33].
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7. Numerics
Let n= 2. We verify the results of Theorem 4.3 by two numerical examples. In the

first example, we let the exact solution w and v to (4.2) and (4.1) to be smooth. In the
second example we will take v to be a nonsmooth function. All the computations were
carried out in MATLAB under the iFEM library [23].

7.1. Example 1: smooth data. Let Ω = (0,1)2. Under this setting, the eigen-
values and eigenfunctions of −∆D,0 are:

λk,l=π2(k2 + l2), ϕk,l= sin(kπx1)sin(lπx2).

Setting f = sin(2πx1)sin(2πx2), then the exact solution of (4.2) is

w=λ−s2,2 sin(2πx1)sin(2πx2).

We let v=x1 +x2 and g=x1 +x2. Recall that u=v+w. As g is smooth, the approxi-
mation error will be dominated by the error in w.

Recall that ‖u−uTΩ‖Hs(Ω)≤‖v−vTΩ‖Hs(Ω) +‖w−WTY ‖Hs(Ω), where u, v, and w
are the exact solutions and uTΩ , vTΩ , and WTY are the approximated solutions. Recall
from Proposition 2.1 that ‖w−WTY ‖Hs(Ω)≤C‖w−WTY ‖Hs(Ω). Then using the exten-
sion, in conjunction with Galerkin-orthogonality, it is straightforward to approximate
the Hs(Ω)-norm

‖w−WTY ‖2Hs(Ω)≤C‖∇(W−WTY )‖2L2(yα,C) =ds

∫
Ω

f(w−WTΩ
)dx.

However, it is more delicate to compute ‖v−vTΩ‖Hs(Ω), for instance, see [10, 15]. To
accomplish this, we first solve the generalized eigenvalue problem Ax=λMx, where A
and M denote the stiffness and mass matrices on Ω. If v and vTΩ

denote the nodal
values of the exact v and approximated vTΩ

, then we take(
‖v−vTΩ

‖2L2(Ω) +(v−vTΩ
)T (MV)TDs(MV)(v−vTΩ

)
) 1

2

as an approximation of ‖v−vTΩ
‖Hs(Ω), where D is the diagonal matrix with eigenvalues

and the columns of matrix V contain the eigenvectors of the aforementioned generalized
eigenvalue problem.

Figure 7.1 (left) illustrates the Hs-norm, computed as described above. Figure 7.1
(right) shows the L2-norm of the error between the u and uTΩ . As expected, we observe

(#TY )−
1
3 rate in the former case. In the latter case, we observe a rate (#TY )−

2
3 which is

higher than the stated rate in Theorem 4.3. However, this is not a surprise as we already
observed this in [4], recall that our result for L2-norm relies on [38, Proposition 4.7].

7.2. Example 2: nonsmooth data. We let Ω= (0,1)2. Moreover, let w and f
be the same as in Section 7.1 and we choose the boundary datum

g= r0.4999 sin(0.4999 θ).

This function belongs to H1−ε(∂Ω) for every ε>0.0001. The exact v is simply

v= r0.4999 sin(0.4999 θ).

Then u=w+v. In view of the regularity of g, we expect the approximation error of u
to be dominated by the approximation error in v if s>0.4999. On the other hand, if
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Fig. 7.1. Rate of convergence on anisotropic meshes for n= 2 and s= 0.2,0.4,0.6, and s= 0.8 is
shown. The solid line is the reference line. The panel on the left shows Hs-error, in all cases we

recover (#TY )−
1
3 . The right panel shows the L2-error which decays as (#TY )−

2
3 .

s<0.4999, the approximation error of w will dominate. More precisely, we expect in the

former case, a rate of about (#TY )−
1
3

(
3
2−s
)

in the Hs(Ω)-norm. In the latter case, we

expect a convergence rate of (#TY )−
1
3 in the Hs(Ω)-norm as in the foregoing example.

Figure 7.2 confirms this.

104 105
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10−2

(‖w−WTY‖
2
H s(Ω)+ ‖v−vTΩ

‖2H s(Ω))
1/2

Degrees of Freedom (DOFs)

E
rr
o
r

 

 
s = 0 .2
s = 0 .4
DOFs−1 / 3

s = 0 .6
DOFs−0 . 3

s = 0 .8
DOFs−0 . 2 3

Fig. 7.2. Rate of convergence on anisotropic meshes for n= 2 and s= 0.2,0.4,0.6, and s= 0.8 is

shown (dotted line). Starting from the top, the first solid line is the reference line with rate (#TY )−
1
3 .

The second and third solid lines shows the rate (#TY )−
1
3

(
3
2
−s

)
for s= 0.6 and s= 0.8, respectively.

8. Further Extensions: general second-order elliptic operators
We notice that our Definitions 2.3 and 2.4 immediately extend to general second-

order fractional operators. More precisely, let the general second-order elliptic operator
L be given as

Lu=−div(A∇u) in Ω. (8.1)

Here, the coefficients aij are measurable, belong to L∞(Ω), are symmetric, that is,

aij(x) =aji(x)∀ i,j= 1,. ..,n and for a.e. x∈Ω,
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and satisfy the ellipticity condition, that is, there exists a constant γ>0 such that

n∑
i,j=1

aij(x)ξiξj≥γ|ξ|2, ∀ ξ∈Rn.

Moreover, we use ∂Lν u to denote the conormal derivative of u, i.e.,

∂Lν u=
n∑
j=1

( n∑
i=1

aij(x)Diu
)
νj . (8.2)

The fractional operators corresponding to L are defined as follows.

Definition 8.1 (nonzero Dirichlet). For s∈ (0,1), we define the spectral fractional
Dirichlet Laplacian on C∞(Ω̄) by

LsDu :=
∞∑
k=1

(
λsk

∫
Ω

uϕk+λs−1
k

∫
∂Ω

u∂Lν ϕk

)
ϕk, (8.3)

where (λk,ϕk) are the eigenvalue-eigenvector pairs of L with ϕk|∂Ω = 0.

As we showed in Section 2.3, the operator LsD can be extended to an operator
mapping from

Ds(Ω) :={u∈L2(Ω) :
∞∑
k=1

λsk
(
uΩ,k+λ−1

k u∂Ω,k

)2
<∞}

to H−s(Ω), where uΩ,k =
∫

Ω
uϕk and u∂Ω,k =

∫
∂Ω
u∂Lν ϕk.

Definition 8.2 (nonzero Neumann). For s∈ (0,1), we define the spectral fractional
Neumann Laplacian on C∞(Ω̄) by

LsNu :=
∞∑
k=2

(
µsk

∫
Ω

uψk−µs−1
k

∫
∂Ω

∂Lν uψk

)
ψk−|Ω|−1

∫
∂Ω

∂Lν u, (8.4)

where (µk,ψk) are the eigenvalue-eigenvector pairs of L with ∂Lν ψk = 0.

Again, as in Section 2.4, we set uΩ,k =
∫

Ω
uψk and u∂Ω,k =

∫
∂Ω
∂Lν uψk. Then, if we

assume
∫
∂Ω
∂Lν u= 0, the operator LsN is extendable to an operator mapping from

Ns(Ω) :={u=
∞∑
j=2

ujψj ∈L2(Ω) :
∞∑
k=2

µsk
(
uΩ,k−µ−1

k u∂Ω,k

)2
<∞}

to H−s∫ (Ω).

Remark 8.1. For c∈L∞(Ω) and c(x)>0 for a.a. x∈Ω, we can further generalize L
in (8.1) to Lu=−div(A∇u)+cu. The definitions above of fractional operators remain
intact with the obvious modification in the Neumann case.
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[14] C. Brändle, E. Colorado, A. de Pablo, and U. Sánchez, A concave–convex elliptic problem in-
volving the fractional Laplacian, Proceedings of the Royal Society of Edinburgh, Section: A
Mathematics, 143:39–71, 2013. 1, 1, 4

[15] C. Burstedde, On the numerical evaluation of fractional Sobolev norms, Commun. Pure Appl.
Anal., 6(3):587–605, 2007. 7.1

[16] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the
Laplacian, Adv. Math., 224(5):2052–2093, 2010. 1, 1, 4, 4.1

[17] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm.
Part. Diff. Eqs., 32(7-9):1245–1260, 2007. 1, 1, 4, 4.1

[18] L.A. Caffarelli and P.R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity,
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