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ARTICLE INFO ABSTRACT

Precipitation is a fundamental forcing variable in land surface modeling, controlling several hydrological and
biogeochemical processes (e.g., runoff, carbon cycling, evaporation, transpiration, groundwater recharge, and
soil moisture). However, precipitation estimates from rain gauges, ground-based radars, satellite sensors, and
numerical models are affected by significant uncertainties, which can be amplified when exposed to highly non-
linear land model physics. This work tests the hypothesis that precipitation data from different sources can be
optimally merged to minimize the hydrologic response error in surface soil moisture simulations and maximize
their correlation with ground observations (multi-objective optimization problem). This hypothesis is tested by
merging three precipitation products (one satellite product, a ground-based dataset, and model-base estimates)
that force a land surface model trained to minimize soil moisture anomalies. A Monte Carlo-based algorithm is
developed to generate weights to linearly combine these precipitation datasets. Optimal combinations of weights
are identified by minimizing the errors and maximizing the correlation between the model simulated soil
moisture and the satellite-based SMOS soil moisture product. The proposed methodology has been tested over
Oklahoma where high-quality, high-resolution (independent) ground-based soil moisture observations are
available for validation purposes. Results show that there exist optimal combinations of these precipitation
datasets that provide smaller errors and larger correlation coefficients between modeled soil moisture estimates
and ground-based data with respect to forcing the land surface model with single precipitation datasets.
Specifically, combining three precipitation products from different sources provides the largest correlation
coefficient and the lowest root mean square error at several locations across Oklahoma.

This manuscript was handled by Marco Borga,
Editor-in-Chief, with the assistance of
Francesco Marra, Associate Editor

1. Introduction

Precipitation is the most influential meteorological forcing variable
for land surface modeling, providing moisture for processes such as
runoff, biogeochemical cycling, evaporation, transpiration, ground-
water recharge, and soil moisture. Knowledge of the precipitation
characteristics and patterns is crucial for understanding the compli-
cated interactions among small- and large-scale components within the
water and energy cycles. The spatial and temporal variability of pre-
cipitation significantly impacts land surface state variables and fluxes
(Gottschalck et al., 2005).

Accurate precipitation information at fine space and time scales has
been shown to improve our ability to simulate land surface hydrological
processes and states, including extreme events, such as floods and
droughts (Scofield and Kuligowski, 2003). However, different types of
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precipitation estimates (ground-based estimates from rain gauges,
weather radars, space-based estimates from satellite sensors, and nu-
merical model-based estimates) might have variable accuracy and,
thus, distinct hydrological utility in different regions (Maggioni and
Massari, 2018).

Rain gauges are the only direct approach to measure precipitation.
Although they provide high temporal resolutions, obtaining a spatially
representative estimate requires a very dense network (Kidd et al.,
2012). Weather radars overcome this issue, but their observational
accuracy is affected by rain-path attenuation, lack of uniqueness in the
reflectivity-to-rain rate relationship, calibration issues, contamination
by ground returns, sub-resolution precipitation variability, and complex
terrain effects (Borga et al., 2000; Krajewski et al., 2006; Marzano et al.,
2004). Both rain gauges and radars require considerable financial and
technological investment for operational and maintenance cost.
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Satellite precipitation products are available globally and are de-
rived from a range of satellite sensor observations. Most algorithms
combine infrared (IR) imagery with passive microwave (PMW) ob-
servations (e.g., Huffman et al., 2007, 2014; Joyce et al., 2004). On one
hand, IR images are valuable because heavier rainfall is usually asso-
ciated with larger and taller clouds with colder tops. On the other hand,
emissions from raindrops cause an increase in the PMW radiation and
the scattering due to precipitating ice particles produces a decrease in
PMW radiation. The blending of complementary information from IR
radiances and PMW observations has been proven successful in rainfall
estimation (Turk et al., 1999). Nevertheless, satellite estimates can be
affected by detection uncertainties, biases, and random errors, which
depend on the accuracy of the remote sensor (retrieval error) and the
lack of continuity in the coverage by low earth-orbiting satellites
(sampling error; Bell et al., 2000). The performance of satellite pre-
cipitation products is influenced by seasonal precipitation patterns,
storm type, and background surface (Ebert et al., 2007; Maggioni et al.,
2016; Oliveira et al., 2016, 2018).

Numerical Weather Prediction (NWP) models represent a valid al-
ternative to estimate global precipitation. NWPs are more accurate
when predicting large-scale organized systems than more localized
events, whose spatial and temporal variability cannot be explicitly
captured by the model resolution. Moreover, model re-analysis pre-
cipitation products are the only available choice above 60° latitude and
a valuable option above ~35° latitude, where they ingest a high
number of ground observations. In summary, it is difficult to determine
which precipitation product is optimal for a certain region and a certain
season, due to inconsistency among different datasets. Moreover, ob-
taining precipitation information at the required accuracy level for
hydrological applications and water resources management still re-
mains a challenge.

There have been a number of attempts to improve the accuracy of
precipitation products by merging surface gauge measurements with
satellite-based estimates (Smith et al., 2006; Huffman et al., 2007; Tian
et al., 2010; Tobin and Bennett, 2010). For instance, the recently de-
veloped Multi-Source Weighted-Ensemble Precipitation (MSWEP; Beck
et al., 2017) is a global precipitation dataset that spans from 1979 to
2016 and has a 0.1°/3-hourly spatial/temporal resolution. MSWEP not
only blends information from gauge and satellites, but also with model
reanalysis and covers the entire globe, including the oceans. Similarly,
other attempts successfully used high-resolution simulations from
models, like the Weather Research and Forecasting Model (WRF), for
removing satellite rainfall biases in mountainous areas, using a prob-
ability density function matching approach (Zhang et al., 2013, 2016;
Nikolopoulos et al., 2015). More recently, Bhuiyan et al. (2018) pro-
posed the use of a nonparametric, tree-based, quantile regression forest
model to merge satellite and re-analysis precipitation products with an
air temperature dataset, satellite soil moisture data, and a terrain ele-
vation dataset. The merged product was used to force a hydrological
model across the Iberian Peninsula and it was shown to reduce both
systematic and random errors in streamflow simulations with respect to
the individual precipitation products.

Most merging techniques have been calibrated and evaluated to a
precipitation ground reference (e.g., rain gauge observations), but only
a few studies calibrated the merging algorithm based on the hydro-
logical response. For instance, Chiang et al. (2007) used the recurrent
neural network method to merge satellite and rain gauge estimates to
improve the accuracy of streamflow simulations for flash flooding
modeling. Yilmaz et al. (2010) developed a merging method for mul-
tiple types of precipitation estimates by minimizing land surface mod-
eling errors using the downhill simplex method. Their analyses have
indicated that results from the optimally merged precipitation product
present lower errors in land surface states and fluxes such as evapo-
transpiration, discharge, and skin temperature than do simulation re-
sults obtained by forcing the model using each precipitation product
individually.
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The main objective of this work is to develop an optimal pre-
cipitation dataset that combines the advantages of high-resolution
products for improving land surface modeling skills. We focused here
on improving a key land surface state — soil moisture — that determines
the critical surface fluxes and water balance. Surface soil moisture
controls the partitioning of available energy incident on the land sur-
face, and, therefore, it is a fundamental variable in the water cycle that
impacts local weather, such as cloud coverage and precipitation, and
hydrological parameters, such as runoff and evapotranspiration (Betts
and Ball, 1998).

Our hypothesis is that a combination of precipitation data from
different sources optimized to minimize the hydrologic response error
(soil moisture, runoff, evapotranspiration, etc.) has the potential to
improve land surface model forecast skills. Ultimately, this solution will
optimally merge a wide range of precipitation information from sa-
tellites, radars, gauges, and models trained to minimize errors in land
model evaporation, runoff, and soil moisture response resulting in
coupled forecast improvements in convection, clouds, precipitation,
boundary layer processes, and atmospheric circulation. This will be
possible if using the optimized land surface variables/fluxes to feed
back into atmospheric models for improved meteorological forecasts.
The hypothesis is tested here by merging three precipitation products
(from satellite, ground-based, and models) trained to minimize satellite
soil moisture (i.e., SMOS) anomalies. We conducted an uncoupled de-
monstration over Oklahoma where a high-quality, high-resolution, in-
dependent reference of ground-based soil moisture observations is
available for validating the proposed methodology. The proposed
methodology has been examined over Oklahoma where high-quality,
high-resolution (independent) ground-based soil moisture observations
are available for validation purposes. The next section describes all
precipitation and soil moisture datasets, the land surface model, and the
proposed methodological approach. Results are presented and dis-
cussed in Section 3, whereas Section 4 summarized the main conclu-
sions, highlights the limitations of this work, and suggests future re-
search directions.

2. Methodology

This work proposes a novel method to improve land surface model
skills by optimally merging precipitation estimates from different data
sources to minimize the land surface simulation errors (Fig. 1). Speci-
fically, three precipitation estimates (from satellite, ground
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Fig. 1. The methodological approach.
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Table 1
Dataset summary.
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Dataset Observation Type Spatial Resolution Temporal Resolution
CMORPH Precipitation Satellite 8km 30 min

NLDAS Precipitation Ground Radar + Model 12.5km 1h

NAM Precipitation Model 12km 6h

SMOS Soil Moisture Satellite 25 km daily 3-days running mean
MESONET Soil Moisture Ground Observations - 30 min

observations, and models) are merged to optimize surface soil moisture
model estimates. The experiment is conducted over Oklahoma during
2014, using the Community Noah land surface model that integrates
atmospheric forcings with land and vegetation parameters into a state-
of-art land surface modeling system. Precipitation and soil moisture
datasets (summarized in Table 1), the Noah land surface model, and the
proposed approach adopted to achieve the above objectives are de-
scribed next.

2.1. Precipitation dataset

Firstly, the National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center MORPHing (CMORPH; Joyce et al.,
2004; Joyce and Xie, 2011) product was chosen as the satellite-based
product in this study. The CMORPH algorithm integrates infrared ob-
servations from geostationary satellites with passive microwave data in
two steps: 1) cloud system advections vectors from 30-minute intervals
are generated; and 2) at each location a time-weighted linear inter-
polation is performed at consecutive times between the microwave
sensor overpasses. CMORPH is available every half hour on a grid with
a spacing of ~8km.

Secondly, a ground-based precipitation estimate was considered.
The multi-institutional North American Land Data Assimilation System
(NLDAS) provides retrospective and real time atmospheric forcing es-
timates to support land surface modeling. Hourly precipitation data are
derived from a combination of 1) daily National Center for
Environmental Prediction Climate Prediction Center (CPC) gauge-based
precipitation analyses and 2) hourly National Weather Service Doppler
radar-based (WSR-88D) precipitation data, which are used to tempo-
rally disaggregate the daily CPC analyses (Cosgrove et al., 2003). This
process exploits the accuracy of the rain gauge observations and the
temporal and spatial resolution of a radar-based dataset and it is con-
sidered to be one of the highest quality precipitation products over
CONUS.

Thirdly, the model based precipitation estimates are obtained from
the North American Mesoscale Forecast System (NAM) project (Rogers
et al., 2009). The NAM model is run four times daily and consists of two
components: the NOAA Environmental Modeling System (NEMS) ver-
sion of the Non-Hydrostatic Multi-scale Model in B-grid (NMMB) and
the NCEP regional Grid-Point Statistical Interpolation (GSI) analysis.
The NAM model is initialized with a 12-h run of the NAM Data As-
similation System, which runs a sequence of four GSI analyses and 3-h
NEMS-NMMB forecasts using all available observations to provide a
first guess to the NAM analysis. The NCEP High-Resolution Window
Forecast System (HIRESW) consists of daily runs of the NEMS Non-
hydrostatic Multiscale Model on B-grid and the NCAR Advanced Re-
search WRF (ARW) at ~ 3—-4 km resolution. Hereinafter we will refer to
NAM as to indicate the NAM precipitation dataset.

Maps of 2014 means and standard deviations of the three pre-
cipitation products are shown in Fig. 2. Oklahoma is characterized by a
wetter area in the southeastern region with a drying gradient moving
towards the panhandle. The yearly precipitation variability is low
across the study region, with higher standard deviations in the wetter
area. The spatial distribution of rainfall is similar in the three dataset
but, on average, NAM shows higher rainfall and higher variability
compared to CMORPH and NLDAS, particularly in the wetter

southeastern region. The differences in the three datasets prove the
inherent different information that each one of them provides.

2.2. Soil moisture dataset

The Oklahoma Mesonet is an observational network of 115 me-
teorological stations across Oklahoma that collects, archives, and
quality controls atmospheric, surface, and soil data in real time since
1994 (Brock et al., 1995). Although several variables are monitored at
these stations, only soil moisture measurements are used here. Soil
moisture (soil water potential) is recorded at four depths (5, 25, 60, and
75 cm) every 30 min. The high quality of this dataset has been proven in
several applications, spanning from numerical weather predictions to
fire monitoring (Carlson and Burgan, 2003) and estimation of down-
ward longwave radiation (Sridhar and Elliott, 2002). The Mesonet
stations used in this study are highlighted in Fig. 3. This ground-based
soil moisture dataset is used as a benchmark for comparisons with
model simulated soil moisture to evaluate the framework developed in
this study.

However, the coverage of soil moisture ground observations is ex-
tremely limited. Satellite observations of microwave brightness tem-
perature and backscatter can provide an estimate of soil moisture at
large scales. Two recent satellite missions have the goal of measuring
surface soil moisture globally. The NASA Soil Moisture Active Passive
(SMAP) mission (Entekhabi et al., 2010), launched on January 31st,
2015, measures land surface brightness temperature, providing in-
formation on surface soil moisture (top 5cm of the soil column). The
usefulness of the SMAP-based soil moisture product is limited by its
course resolutions (~36km). The Soil Moisture and Ocean Salinity
(SMOS; Kerr et al., 2010) is a European Space Agency (ESA) satellite
launched in 2009 with the goal of monitoring surface soil moisture with
an accuracy of 4% every three days. The calibration of the SMOS re-
trieval algorithm is based on in situ experiments and modeling activities
that do not include the Mesonet network observations. A study by Kerr
et al. (2012) compared area averaged SMOS soil moisture with in-
dependent ground-based soil moisture in the Little Washita watershed
in Oklahoma and found a good agreement between the two.

The SMOS soil moisture product is used in this work at its native
resolution of 25 km as the reference to minimize the error in the model
simulations of soil moisture. The choice of a satellite-based product as
reference is due to its global availability, making the proposed meth-
odology applicable anywhere around the world. Maps of the 2014 mean
and standard deviation of this product are shown in Fig. 3. A wetter
area is observed in the eastern part of Oklahoma, which also presents
the larger variability (higher standard deviation). This is consistent
with the precipitation spatial distributions presented in Fig. 2 for the
three rainfall products.

2.3. The Noah model

The Noah Land Surface Model (Noah-LSM) version 2.7.1 (Ek et al.,
2003) in one dimension, sponsored by the NOAA Office of Global
Programs (OGP), is adopted in this study. Noah-LSM was developed by
the National Centers for Environmental Prediction (NCEP), Oregon
State University (OSU), the Air Force, and the Hydrology Research
Laboratory at the National Weather Service. Noah-LSM is updated with
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Fig. 2. Mean (a, b, ¢) and standard deviation of precipitation (d, e, f) over Oklahoma for CMORPH, NLDAS, and NAM during 2014.
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Fig. 3. Mean (a) and standard deviation (b) of soil moisture over Oklahoma for
SMOS during 2014.

more advanced land physics compared to its ancestor Oregon State
University (OSU) LSM, including four soil layers, snowpack and frozen
soil physics (Koren et al., 1999), as well as snow cover-weighted sur-
face fluxes, among others. It has been implemented in operational
weather and climate models because of its moderate complexity and
computational efficiency.

The meteorological forcing used for Noah-LSM are from Phase 2 of
the North American Land Data Assimilation System, Phase 2 (NLDAS-
2), which has been improved over the previous version of NLDAS
(Cosgrove et al., 2003). The non-precipitation land-surface forcing
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fields for NLDAS-2 are derived from the NCEP North American Regional
Reanalysis (NARR; Mesinger et al., 2006), while NLDAS used the ETA
Data Assimilation System (EDAS; Rogers et al., 1996). NLDAS-2 has a
spatial resolution of 1/8° and temporal resolution hourly for the period
of 1979-present. Also, the parameterization used for vegetation type,
Leaf Area Index (LAI), soil type, and elevation in Noah-LSM is the one
from the NLDAS dataset.

2.4. The experimental approach

All precipitation and soil moisture products are rescaled and
homogenized to the Noah-LSM spatial and temporal and resolution of
0.125°/1 h for the year of 2014. Then, the model is forced with each
individual precipitation dataset, a combination of two of them, and a
combination of all three products to obtain surface soil moisture si-
mulations.

Precipitation products are linearly combined using a simple
weighted average. Weights are randomly generated through Monte
Carlo (MC) simulations. MC techniques are based on the idea of using
randomness to solve problems that are difficult to solve analytically
(like highly non-linear differential equations) and obtain numerical
results thanks to repeated random sampling. A MC approach is used to
generate 3000 different combinations of weights of the precipitation
products to force Noah-LSM. First, weights are only applied to single
precipitation products (i.e., weights equal to zero are assigned to the
other two products), which corresponds to assuming that there exists a
bias in the dataset and correcting for it. Then, a combination of two
products is considered (i.e., a weight equal to zero is assigned to one out
of the three products) and, finally, weights are applied to a combination
of all three products (Fig. 4). Only positive weights are considered in
this study as precipitation products are firstly tested individually with
their corresponding weights, and only secondarily in combination with
other products. In the first case, negative weights would translate into
negative precipitation and have not therefore used for the sake of
consistency. Moreover, weights are sampled independently for each
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grid point so that the same exact procedure could be applied to any
other region, since weights are not region dependent.

The performance of the merged precipitation estimates is then as-
sessed in terms of two criteria: minimum root mean square error
(RMSE) and maximum correlation coefficient (CC) between the model
simulated soil moisture and the reference SMOS soil moisture product.
However, the weight combination that minimizes the RMSE does not
necessarily maximize the CC and researchers and/or end-users may be
more inclined to use one criterion versus the other depending on the
research and/or operational application. Therefore, we are looking at a
multiple criteria decision-making problem where two objective func-
tions are optimized simultaneously.

The Pareto efficiency definition is used to identify the optimal
combination of weights. Specifically, a combination of weights is con-
sidered “optimal” (or “efficient”, or “non-dominated”) if there exist no
other weight combination that improves one criterion (e.g., RMSE)
without deteriorating the other criterion (e.g., CC). The Pareto frontier
(PF) is the set of all Pareto efficient points (Marler and Arora, 2004).
This concept was introduced in economics by Vilfredo Pareto
(1848-1923), but it has further expanded to several other fields, such as
engineering and science (Rubinstein and Osborne, 1994). The same
framework could be easily applied to other or more criteria.

Building the PF is a purely mathematical process, in which the de-
cision maker (DM) does not intervene. However, the question is: how to
choose one weight combination from all the points that belong to the
Pareto frontier? One option would be to either minimize the RMSE or to
maximize the correlation, depending on the DM’s interests, which
would reduce the problem to a simple single-criterion decision. Another
viable alternative is the Utopia point (U) method (Makowski, 2010).
According to this technique, the DM picks the point on the PF that
minimizes the distance from U, which is the point in the objective space
that minimizes (or maximizes) all the objectives. All these three ap-
proaches (minimum RMSE, maximum correlation, and closer point to
U) are considered and investigated in the next section.

3. Results and discussion

The performance of Noah-LSM forced with 3000 MC-generated
combinations of weights for the three different precipitation products is
initially assessed over a single grid-point (point P1 in Fig. 3). This study
considers weights ranging between 0 and 1, as a preliminary analysis
(shown in Fig. 5) demonstrated that increasing weights beyond 1 would
not improve surface soil moisture simulations in terms of RMSE (which
increases if weights greater than 1 are applied to the three precipitation
products) and CC (which drops if weights greater than 1 are applied to
CMORPH and NLDAS, whereas for NAM it is maximized if a weight of
~2 is applied). Since no a-priori knowledge on the bias in the pre-
cipitation products is assumed, the sum of the weights is not con-
strained to any value.

The 3-D plots in Fig. 6 show that there is no single combination of
weights of the precipitation products that optimizes both criteria, but
rather a region in the weight space that maximizes CC and minimizes
RMSE. This proves that our problem is a two-objective (or two-cri-
terion) problem. For P1, RMSE values range between 0.05 m®/m® and
0.2m>®/m?, whereas CC values range between 0.43 and 0.68, showing
overall satisfactory performance of Noah-LSM in modeling surface soil
moisture at this location.

The Pareto frontiers are then constructed using the two objective
functions defined above, one that minimizes the RMSE and the other
that maximizes the CC. The CC is multiplied by —1 in order to mini-
mize both objective functions for identifying the optimal combination
of weights to be applied to the precipitation products. PFs are built for
12 Mesonet Oklahoma stations and the corresponding model grid cells.
The optimization is performed independently for the 12 locations
during 2014.

Fig. 7 shows PFs for each single precipitation product and for the
combination of all three products. Since the goal is to minimize both
objective functions, the closer to the axes, the more efficient the points
are, according to the two identified criteria. Although at location P9 the
combination of three different precipitation datasets does not produce
any notable improvement in the soil moisture simulation (either in
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RMSE or in CC), at all other locations the single precipitation product-
forced simulation produces points that are dominated by the simulation
forced with the combination of three precipitation products (blue line).
In other words, the PFs obtained with the merged precipitation product
dominate (i.e., are more efficient than) the PFs obtained with the single
products, according to the RMSE and CC criteria. Overall, correlation
coefficients range between 0.30 and 0.70, whereas RMSEs are as low as
0.05m®/m® and as high as 0.24 m®>/m>. Combining three products is
particularly useful for improving the correlation between simulated soil
moisture and SMOS; as in most cases (9 locations out of 12) the PFs for
the merged product (blue solid lines) reach to higher CC values than the
single product-forced simulations (dashed lines).

Fig. 7 also shows that there is no single precipitation product that

a. Correlation
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Fig. 6. Correlation coefficient (a) and RMSE (b) of simulated and SMOS soil moisture for the weighted combination of all three precipitation products (CMORPH-

NLDAS-NAM) over the pixel centered in 96.5005 W, 34.0005N (P1).

consistently performs better than the others. If only one dataset had to
be chosen, NAM would be the one carrying the lowest RMSE and the
highest CC in surface soil moisture simulations with respect to SMOS,
followed by NLDAS and CMORPH. This suggests that overall both
NLDAS and CMORPH are underestimating rainfall across the central
southern part of Oklahoma and NAM produces precipitation estimates
that better characterize the hydrological processes in the area. How-
ever, there are cases (like P1) where CMORPH performs better than
NAM and NLDAS, and others (like P2) where NAM carries the lowest
CCs and largest RMSEs. Therefore, the safest choice would be to merge
all three products to guarantee an appropriate characterization of soil
moisture dynamics in the region.

Similarly, Fig. 8 shows the PFs for the combination of two and three
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Fig. 7. Pareto Frontier points of simulated and SMOS soil moisture for single products and the combination of all three precipitation products, where Y-axis is
correlation coefficient multiplied by (—1) and X-axis is RMSE, over the pixels shown in Fig. 2.

precipitation products to verify whether one of the three precipitation
products could be neglected without deteriorating the model skill.
Merging three products never worsens the performance of Noah-LSM in
estimating soil moisture. At several locations, by merging only two
products we obtain skill metrics that are comparable to the three-pro-
duct combination. Nevertheless, no two-product combination is optimal
for all locations. At four locations, the CMORPH + NAM combination
yields the worst performance, at three locations CMORPH + NLDAS

shows the poorest skill, at two locations NLDAS + NAM has the largest
RMSEs and lowest CCs, and at the three remaining locations the skill of
the four combinations is hardly discernible. This analysis corroborates
that the three-precipitation product merging is recommended for soil
moisture estimation in the region, as it consistently outperforms — or at
the very least performs as well as — any other option.

The next step would be to identify one combination of weights
among all the optimal points on the PF to estimate soil moisture time
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Fig. 8. Same as in Fig. 7 but for the combination of two and three precipitation products.
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series at the desired location. However, as discussed in the
Methodology section, this is a political decision that the DMs will make
based on their interest and applications. We here propose three possible
methods to make that decision: i) maximum correlation regardless of
RMSE (point A in Fig. 9); ii) minimum RMSE regardless of CC (point B
in Fig. 9); and iii) the closest PF point to the Utopia point (point U’ in
Fig. 9). We would like to stress that the choice of any point on the PF is
arbitrary.

We then performed a validation exercise using a high-quality, in-
dependent dataset, i.e., the Mesonet station observations. Specifically,
the modeled soil moisture is compared to the top layer (5cm) soil
moisture collected at the 12 Mesonet stations highlighted in Fig. 3. The
mean CC and RMSE between the Noah-LSM simulated soil moisture and
the Mesonet soil moisture observations across the 12 stations are listed
in Table 2 for all model simulations (with different combinations of
precipitation inputs) at the three decision points identified in Fig. 9.
Results in Table 2 show that the combination of three precipitation
products carries the maximum mean CC and minimum mean RMSE for
all the optimal points considered in the analysis (i.e., A, B and U). When
only one product was used, CMORPH outperformed NLDAS that out-
performed NAM when U’ was considered as the decision point. When
two products were combined, CMORPH + NAM outperformed
CMORPH + NLDAS that outperformed NLDAS + NAM when U’ was
considered as the decision point. Although improvements are small, this
study has demonstrated the hypothesis that a combination of pre-
cipitation data from different sources can be optimized to minimize the
error in soil moisture simulations. Moreover, this framework can be
applied to different datasets, different regions of the world, different
criteria, and different land surface variables and fluxes.

Table 2
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4. Conclusions

This work aims to merge precipitation estimates from different
sources including ground-based observations, satellites, and models to
produce an estimate of precipitation that optimizes land surface model
states and fluxes. Different sources of precipitation information (a sa-
tellite products, a ground-radar dataset, and model estimates) have
been considered to improve the skills of the Noah land surface model in
simulating surface soil moisture. We developed a Monte Carlo-based
algorithm that generates weights to linearly and optimally combine
these three precipitation datasets.

Results showed that there were optimal combinations of precipita-
tion data that provided better soil moisture model estimates than for-
cing Noah-LSM with single precipitation datasets, in terms of both
RMSE and correlation coefficient. Specifically, combining all three
precipitation products from different sources provided the best corre-
lations with ground observations and the lowest RMSEs at several lo-
cations across Oklahoma. However, no single linear combination of
weights of the precipitation products was found that optimized both
criteria, proving it to be a multi-objective problem.

The Pareto Frontier was adopted as a way to present all optimal
combinations of weights that would improve one criterion, without
deteriorating the other one. Then, a few options to pick one single
weigh combination from all the Pareto efficient points were proposed,
including maximizing one criterion alone (that being either CC or
RMSE) and the closest PF point to the Utopia point, defined as the
(unattainable) point in the objective space that optimizes all the ob-
jectives.

Results presented here are limited by the short time series and small
study region. However, this work is intended to propose a methodology
a methodological framework that should be tested in the future across
larger and more heterogeneous areas (potentially at the global scale)
and over longer time periods. Other criteria, such as relative bias and
unbiased RMSE, could also be easily included in the framework, if of
interest to the end-users. Another limitation is the comparison between
volumetric soil moisture content from the model and observations,
which may be problematic given the inherent biases in the model soil
moisture climatology and satellite observations, as well as ground ob-
servation measurement representativeness errors. This issue could po-
tentially be fixed by adopting a Cumulative Density Function (CDF)-
matching technique (Reichle and Koster, 2004) to remove any existing
bias in the soil moisture products prior to optimization. This may have
the potential to improve errors in the modelled land surface fluxes and
states. We would also like to point out that the Monte Carlo-based
sampling can be relatively computationally inefficient, but it is unlikely
to be confined within a local minimum. However, in the case of larger
domains, algorithms such as the simplex, simplex-swarm, or a posteriori
error estimator can be used to improve the framework computational
efficiency.

This work developed a technique that could potentially be applied
to any precipitation product, including the recent NASA Integrated
Multi-satellitE Retrievals for GPM (Global Precipitation Measurement;
Hou et al., 2008) product (IMERG; Huffman et al., 2014). Future work

Mean correlation coefficient and RMSE between Mesonet observations and simulated soil moisture at the 12 locations shown in

Fig. 3 for the three decision points identified in Fig. 9 (A/U’/B).

Noah LSM Precipitation Forcing

Correlation Coefficient (A/U’/B)

RMSE (A/U'/B)

CMORPH 0.708/0.713/0.716 0.095/0.087/0.082
NLDAS 0.725/0.711/0.701 0.083/0.099/0.107
NAM 0.696/0.697/0.696 0.112/0.111/0.111
CMORPH-NLDAS 0.705/0.719/0.705 0.101/0.088/0.098
CMORPH-NAM 0.718/0.721/0.715 0.084/0.084/0.087
NLDAS-NAM 0.715/0.715/0.707 0.090/0.089/0.095
CMORPH-NLDAS-NAM 0.730/0.729/0.719 0.080/0.079/0.084
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should also investigate how performing a weighted combination of
precipitation datasets may lead to extra days of precipitation — for in-
stance in cases when only one product has nonzero precipitation. While
this may improve soil moisture simulations, it could have significant
impacts elsewhere (e.g., increased canopy evaporation, decreased
runoff). When applying a similar method across a wider region, spa-
tially correlated weights should also be considered within the sampling
model using a spatial correlation function. Moreover, a similar ap-
proach that merges precipitation information from different sources
could be easily adapted to optimize other land surface fluxes and
variables, including runoff, evaporation, transpiration, and ground-
water recharge. Although of higher complexity, a multi-variate opti-
mization technique that simultaneously enhances two or more land
surface model variables would ensure that the water budget was not
altered to improve a model error.

Declaration of interests

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

Dr. Hazra, Dr. Maggioni, and Dr. Houser were supported by the
National Environmental Satellite Data and Information Service’s JCSDA
2015 Research in Satellite Data Assimilation for Numerical
Environmental Prediction Grant Program. Award Number
NA15NES4400002. Dr. Antil is partially supported by NSF grants DMS-
1521590 and DMS-1818772 and Air Force Office of Scientific Research
under Award NO: FA9550-19-1-0036. The authors would like to thank
Oklahoma Mesonet for making the ground observations available.

References

Beck, H.E., van Dijk, A.L, Levizzani, V., Schellekens, J., Miralles, D.G., Martens, B., de
Roo, A., 2017. MSWEP: 3-hourly 0.25 global gridded precipitation (1979-2015) by
merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 21 (1), 589.

Bell, T.L., Kundu, P.K., 2000. Dependence of satellite sampling error on monthly averaged
rain rates: comparison of simple models and recent studies. J. Clim. 13 (2), 449-462.

Betts, A.K., Ball, J.H., 1998. FIFE surface climate and site- average dataset 1987-89. J.
Atmos. Sci. 55, 1091-1108.

Bhuiyan, M.A.E., Nikolopoulos, E.I., Anagnostou, E.N., Quintana-Segui, P., Barella-Ortiz,
A., 2018. A nonparametric statistical technique for combining global precipitation
datasets: development and hydrological evaluation over the Iberian Peninsula.
Hydrol. Earth Syst. Sci. 22 (2), 1371.

Borga, M., Anagnostou, E.N., Frank, E., 2000. On the use of real-time radar rainfall es-
timates for flood prediction in mountainous basins. J. Geophys. Res. 105 (D2),
2269-2280.

Brock, F.V., Crawford, K.C., Elliott, R.L., Cuperus, G.W., Stadler, S.J., Johnson, H.L., Eilts,
M.D., 1995. The Oklahoma Mesonet: a technical overview. J. Atmos. Oceanic.
Technol. 12, 5-19.

Carlson, D.J., Burgan, E.R., 2003. Review of user's needs in operational fire danger es-
timation: the Oklahoma example. Int. J. Remote. Sens. 24, 1601-1620.

Chiang, Y.M., Chang, F.J., Jou, B.J.D., Lin, P.F., 2007. Dynamic ANN for precipitation
estimation and forecasting from radar observations. J. Hydrol. 334 (1), 250-261.

Cosgrove, B.A., et al., 2003. Real-time and retrospective forcing in the North American
Land Data Assimilation System (NLDAS) project. J. Geophys. Res. 108 (D22), 8842.
https://doi.org/10.1029/2002JD003118.

Ebert, E.E., Janowiak, J.E., Kidd, C., 2007. Comparison of near-real-time precipitation
estimates from satellite observations and numerical models. Bull. Am. Meteor. Soc.
88, 47-64. https://doi.org/10.1175/BAMS-88-1-47.

Ek, M.B., Mitchell, K.E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., Tarpley,
J.D., 2003. Implementation of Noah land surface model advances in the National
Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys.
Res. 108, 8851. https://doi.org/10.1029/2002JD003296.

Entekhabi, D., et al., 2010. The soil moisture active and passive (SMAP) mission. Proc.
IEEE 98, 704-716. https://doi.org/10.1109/JPROC.2010.2043918.

Gottschalck, J., Meng, J., Rodell, M., Houser, P., 2005. Analysis of multiple precipitation
products and preliminary assessment of their impact on Global Land Data
Assimilation System Land Surface States. J. Hydrometeorol. 6, 573-598.

Hou, A.Y., Kummerow, C., Skofronick-Jackson, G., Shepherd, J.M., 2008. Global
Precipitation Measurement, Chapter 6 in Precipitation: Advances in Measurement,
Estimation and Prediction. Springer - Verlag, pp. 540.

Huffman, G.J., et al., 2007. The TRMM Multisatellite Precipitation Analysis (TMPA):

462

Journal of Hydrology 570 (2019) 454-462

Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J.
Hydrometeorol. 8, 38-55.

Huffman, G.J., et al., 2014. Algorithm Theoretical Basis Document (ATBD) Version 4.1 for
the NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE
Retrievals for GPM (I-MERG). GPM Project, Greenbelt, MD, pp. 29.

Joyce, R.J., Xie, P., 2011. Kalman Filter Based CMORPH. J. Hydrometeorol. 12,
1547-1563. https://doi.org/10.1175/JHM-D-11-022.1.

Joyce, R.J., Janowiak, J.E., Arkin, P.A., Xie, P., 2004. CMORPH: a method that produces
global precipitation estimates from passive microwave and infrared data at high
spatial and temporal resolution. J. Hydrometeorol. 5, 487-503. https://doi.org/10.
1175/1525-7541(2004) 005 < 0487:CAMTPG > 2.0.CO;2.

Kerr, Y.H., et al., 2010. The SMOS Mission: new tool for monitoring key elements of the
global water cycle. P. IEEE 98 (5), 666-687. https://doi.org/10.1109/JPROC.2010.
2043032.

Kerr, Y., et al., 2012. The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci.
Remote Sens. 50, 1384-1403. https://doi.org/10.1109/TGRS.2012.2184548.

Kidd, C., Bauer, P., Turk, J., Huffman, G.J., Joyce, R., Hsu, K.-L., Braithwaite, D., 2012.
Intercomparison of high-resolution precipitation products over northwest Europe. J.
Hydrometeorol. 13, 67-83. https://doi.org/10.1175/JHM-D-11-042.1.

Koren, V., Schaake, J., Mitchell, K., Duan, Q., Chen, F., Baker, J., 1999. A para-
meterization of snowpack and frozen ground intended for NCEP weather and climate
models. J. Geophys. Res. 104 (19) 569-19 585.

Krajewski, W.F., Anderson, M.C., Eichinger, W.E., Entekhabi, D., Hornbuckle, B.K.,
Houser, P.R., Katul, G.G., Kustas, W.P., Norman, J.M., Peters-Lidard, C., Wood, E.F.,
Jul. 2006. A remote sensing observatory for hydrologic sciences: a genesis for scaling
to continental hydrology. Water Resour. Res. 42 (7), W07301. https://doi.org/10.
1029/2005WR004435.

Maggioni, V., Massari, C., 2018. On the performance of satellite precipitation products in
riverine flood modeling: a review. J. Hydrol. 558, 214-224.

Maggioni, V., Meyers, P.C., Robinson, M.D., 2016. A review of merged high resolution
satellite precipitation product accuracy during the tropical rainfall measuring mission
(TRMM) - Era. J. Hydrometeorol. 17 (4), 1101-1117.

Makowski, M., 2010. Multi-objective decision support including sensitivity analysis.
Environmental Systems-Volume III, p.17.

Marler, R.T., Arora, J.S., 2004. Survey of multi-objective optimization methods for en-
gineering. Struct. Multidiscip. Optim. 26 (6), 369-395.

Marzano, F.S., Picciotti, E., Vulpiani, G., 2004. Rain field and reflectivity vertical profile
reconstruction from C-band radar volumetric data. IEEE Trans. Geosci. Remote Sens.
42 (4), 1033-1046.

Mesinger, F., et al., 2006. North American regional reanalysis. Bull. Amer. Meteor. Soc.
87, 343-360.

Nikolopoulos, E.I., Bartsotas, N.S., Anagnostou, E.N., Kallos, G., 2015. Using high-re-
solution numerical weather forecasts to improve remotely sensed rainfall estimates:
the case of the 2013 Colorado flash flood. J. Hydrometeorol. 16 (4), 1742-1751.

Oliveira R., Maggioni, V., Vila, D., Morales, C. 2016: Characteristics and diurnal cycle of
GPM rainfall estimates over the Central Amazon Region, Remote Sensing — Special
Issue on Uncertainties in Remote Sensing, 8(7), 544; doi: 10.3390/rs8070544.

Oliveira R., Maggioni, V., Vila, D., Porcacchia, L. 2018: Using Satellite Error Modeling to
Improve GPM-Level 3 Rainfall, Remote Sensing — Special Issue on “Remote Sensing
Precipitation Measurement, Validation, and Applications”, 10(2), p.336, doi:10.
3390/rs10020336.

Reichle, R.H., Koster, R.D., 2004. Bias reduction in short records of satellite soil moisture.
Geophys. Res. Lett. 31, L19501. https://doi.org/10.1029/2004GL020938.

Rogers, E., Black, T.L., Deaven, D.G., DiMego, G.J., Zhao, Q., Baldwin, M., Junker, N.-W.,
Lin, Y., 1996. Changes to the operational “Early” Eta analysis/forecast system at the
National Centers for Environmental Prediction. Wea. Forecasting 11, 391-413.

Rogers, E., DiMego, G., Black, T., Ek, M., Ferrier, B., Gayno, G., Janjic, Z., Lin, Y., Pyle, M.,
Wong, V., Wu, W.S., 2009. The NCEP North American mesoscale modeling system:
Recent changes and future plans. Preprints, 23rd Conference on Weather Analysis
and Forecasting/19th Conference on Numerical Weather Prediction.

Rubinstein, Ariel, Osborne, Martin J., 1994. “Introduction”. In: Rubinstein, Ariel,
Osborne, Martin J. (Eds.), A Course in Game Theory. MIT Press, Cambridge,
Massachusetts, pp. 6-7 ISBN 9780262650403.

Scofield, R.A., Kuligowski, R.J., 2003. Status and outlook of operational satellite pre-
cipitation algorithms for extreme-precipitation events. Wea. Forecasting 18,
1037-1051.

Smith, T.M., Arkin, P.A., Bates, J.J., Huffman, G.J., 2006. Estimating bias of satellite-
based precipitation estimates. J. Hydrometeorol. 7, 841-856.

Sridhar, V., Elliot, R.L., 2002. On the development of a simple downwelling longwave
radiation scheme. Agric. For. Meteor. 112, 237-243.

Tian, Y.D., Peters-Lidard, C.D., Eylander, J.B., 2010. Real-time bias reduction for satellite-
based precipitation estimates. J. Hydrometeorol. 11, 1275-1285.

Tobin, K.J., Bennett, M.E., 2010. Adjusting satellite precipitation data to facilitate hy-
drologic modeling. J. Hydrometeorol. 11, 966-978.

Turk, F.J., Rohaly, G.D., Hawkins, J.E.F.F., Smith, E.A., Marzano, F.S., Mugnai, A.L.B. &
Levizzani, V., 1999. Meteorological applications of precipitation estimation from
combined SSM/I, TRMM and infrared geostationary satellite data. Microwave
Radiometry and Remote Sensing of the Earth's Surface and Atmosphere, 353-363.

Yilmaz, M.T., Houser, P., Shrestha, R., Anantharaj, V.G., 2010. Optimally merging pre-
cipitation to minimize land surface modeling errors. J. Appl. Meteorol. Climatol. 49,
415-423. https://doi.org/10.1175/2009JAMC2305.1.

Zhang, X., Anagnostou, E.N., Frediani, M., Solomos, S., Kallos, G., 2013. Using NWP si-
mulations in satellite rainfall estimation of heavy precipitation events over moun-
tainous areas. J. Hydrometeorol. 14 (6), 1844-1858.

Zhang, X., Anagnostou, E.N., Vergara, H., 2016. Hydrologic evaluation of NWP-adjusted
CMORPH estimates of hurricane-induced precipitation in the Southern Appalachians.
J. Hydrometeorol. 17 (4), 1087-1099.


http://refhub.elsevier.com/S0022-1694(19)30012-5/h0005
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0005
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0005
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0010
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0010
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0015
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0015
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0020
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0020
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0020
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0020
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0025
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0025
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0025
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0030
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0030
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0030
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0035
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0035
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0040
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0040
https://doi.org/10.1029/2002JD003118
https://doi.org/10.1175/BAMS-88-1-47
https://doi.org/10.1029/2002JD003296
https://doi.org/10.1109/JPROC.2010.2043918
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0065
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0065
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0065
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0070
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0070
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0070
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0075
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0075
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0075
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0080
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0080
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0080
https://doi.org/10.1175/JHM-D-11-022.1
https://doi.org/10.1175/1525-7541(2004) 005<0487:CAMTPG>2.0.CO;2
https://doi.org/10.1175/1525-7541(2004) 005<0487:CAMTPG>2.0.CO;2
https://doi.org/10.1109/JPROC.2010.2043032
https://doi.org/10.1109/JPROC.2010.2043032
https://doi.org/10.1109/TGRS.2012.2184548
https://doi.org/10.1175/JHM-D-11-042.1
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0110
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0110
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0110
https://doi.org/10.1029/2005WR004435
https://doi.org/10.1029/2005WR004435
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0120
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0120
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0125
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0125
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0125
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0135
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0135
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0140
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0140
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0140
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0145
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0145
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0150
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0150
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0150
https://doi.org/10.1029/2004GL020938
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0170
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0170
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0170
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0175
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0175
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0175
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0175
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0180
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0180
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0180
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0185
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0185
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0185
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0190
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0190
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0195
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0195
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0200
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0200
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0205
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0205
https://doi.org/10.1175/2009JAMC2305.1
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0220
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0220
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0220
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0225
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0225
http://refhub.elsevier.com/S0022-1694(19)30012-5/h0225

	A Monte Carlo-based multi-objective optimization approach to merge different precipitation estimates for land surface modeling
	Introduction
	Methodology
	Precipitation dataset
	Soil moisture dataset
	The Noah model
	The experimental approach

	Results and discussion
	Conclusions
	Declaration of interests
	Acknowledgements
	References




