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Bacteria represent the most commercially successful

entomopathogenic microbial group, with most commercialized

insecticides containing gram-positive bacteria in the

Bacillaceae family. Resistance to entomopathogenic bacteria

threatens sustainable agriculture, and information on the

mechanisms and genes involved is vital to develop

management practices aimed at reducing this risk. We provide

an integrative summary on mechanisms responsible for

resistance to commercialized entomopathogenic bacteria,

including information on resistance to transgenic crops

producing insecticidal proteins from Bacillus thuringiensis (Bt

crops). The available experimental evidence identifies

alterations in binding of insecticidal proteins to receptors in the

host as the main mechanism for high levels of resistance to

entomopathogenic bacteria.
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Introduction
The use of microbial pesticides continues to grow driven

by the demand for organic produce and their benefits

compared to synthetic pesticides, including environmen-

tal safety, efficacy, and amenability to use in integrated

pest management (IPM) programs. Among commercial-

ized microbial pesticides, bacteria account for >76% of

the biopesticide market worldwide [1], and evolution of

target resistance threatens their sustainable use. Informa-

tion on the mechanisms and genes involved in high levels

of resistance to entomopathogenic bacteria is critical to

develop effective management practices and improved

products that reduce this risk in the field.
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Most available information on resistance mechanisms to

bacterial insecticides is limited to strains of Bacillus thur-
ingiensis (Bt), as it accounts for about 90% of the available

microbial pesticides. Insecticidal proteins (IPs) are the

main virulence factor produced by Bt, and these IP genes

have been cloned and transformed into plants (Bt crops) for

increased efficacy and durability of control. Microbial pro-

ducts based on Bt subsp. kurstaki (Btk) and aizawai (Bta) for

control of lepidopteran larvae, Bt subsp. tenebrionis (Btt) for

control of coleopteran larvae, and Bt subsp. israelensis (Bti)
and Lysinibacillus sphaericus (Ls, synonymous with Bacillus
sphaericus) for control of dipteran larvae such as mosquitoes

and black flies, are widely used microbial pesticides.

Another commercialized gram-positive entomopathogenic

bacterium is Paenibacillus popilliae, which was commercial-

ized to control Japanese beetle (Popillia japonica). Exam-

ples of gram-negative entomopathogenic bacteria success-

fully developed commercially are Serratia entomophila
strain 154 controlling coleopteran larvae [2], and Yersinia
entomophaga which displays a broader range of activity [3].

This minireview will concentrate on resistance against Bt
and Ls as models, and will include resistance to IPs

produced by transgenic Bt crops. The goal of this work is

to summarize current knowledge and identify the most

relevant mechanism of resistance to entomopathogenic

bacteria and Bt crops to guide strategies minimizing the

risk of resistance evolution in the field.

Entomopathogenic bacteria mode of action
In general, many species of entomopathogenic bacteria

share similar pathogenesis characterized by the production

of multiple virulence factors, among which distinct insec-

ticidal proteins (IPs) have a major role in lethality. Since

commercialized entomopathogenic bacteria infect insects

orally, these IPs bind to receptors on midgut cells, and are

then internalized or form pores that kill the cell. Disruption

of the gut epithelial barrier allows access of the bacteria to

the nutrient-rich hemolymph, where they proliferate to

cause host death by septicemia (Figure 1). Consequently,

the IPs produced by a bacterium mostly dictate its speci-

ficity and that of the Bt crop producing the IP.

In the case of Bt, the bacterium produces IPs targeting

midgut cells during the vegetative phase of growth (veg-

etative insecticidal proteins or Vip toxins) and as crystal-

line inclusions during the sporulation phase (crystal

proteins or Cry toxins). Interestingly, targeting of midgut

cells by Vip3 toxins seems to contradict the observation

that insects are the optimal site for Bt spore germination.

Accordingly, Vip toxins would be expected to occur in the
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Integrative model of pathogensis for gram-positive entomopathogenic bacteria. The figure illustrates the steps in pathogenesis, detailing the

interaction of insecticidal proteins (IPs) produced by the bacteria and target midgut cells. The two routes of intoxication described involving cell

killing by membrane pore formation (in the case of Cry toxins) or internalization and apoptosis (Bin and MTX toxins) are shown. While resistance

can emerge from alteration of any of the steps in pathogenesis, available evidence identifies prevention or reduction of IP binding to midgut

receptors as the most relevant resistance mechanism to entomopathogenic bacteria, based on levels of resistance and frequency.
late stages of Bt pathogenesis, once the insect midgut

barrier has been already disrupted by Cry toxins and the

Bt spores have germinated to vegetative cells. Research is

needed to confirm if midgut or alternative cells are the

primary target of Vip toxins. To date, >700 cry toxin and

101 vip3 genes, the only vip genes used for insect control

in Bt crops, have been described, named and classified

according to their amino acid sequence identity (Bacillus
thuringiensis toxin nomenclature database; URL: http://

www.btnomenclature.info/). Some Bt crystals also contain

cytolytic (Cyt) proteins, which bind to midgut membrane

lipids and cause detergent-like defects resulting in

cytolysis.

Even though Vip3 and Cry toxins do not share sequence

or three-dimensional structural features [4], they are both

processed by host gut proteases, bind to distinct receptors

and then form pores on the membrane of midgut cells

[5,6]. A number of receptors, including aminopeptidase-

N (APN), cadherin, alkaline phosphatase (ALP), ATP-

binding cassette (ABC) transporters and glycolipids have

been described as Cry toxin receptors [4]. Comparatively,

less is known about the mode of action and receptors
www.sciencedirect.com 
recognized by Vip3 toxins. Scavenger receptor-C has

been described as a receptor mediating internalization

of the Vip3Aa toxin [7��], which has also been shown to

interact with ribosomal S2 protein [8]. The high levels of

resistance and lack of cross-resistance to Cry toxins,

reported for Vip3A-resistant insects [9�,10�,11], are

suggestive of alterations in Vip3A toxin receptors as

resistance mechanism, yet only alterations in proteolytic

processing are reported for Vip3A-resistant insects [9�].

In the case of Ls, strains produce mosquitocidal toxins

(MTX) in the vegetative phase and binary (Bin) proteins

(BinA and BinB) during sporulation as main virulence

factors targeting midgut cells. The mode of action of both

MTX and Bin proteins involves binding to midgut cells

and internalization to induce either ADP-ribosylation, as

is the case of the best studied MTX1 toxin [12], or

activation of caspases and apoptosis via an intrinsic or

mitochondrial pathway, as described for Bin toxins [13].

Binding of Bin toxins to maltases as receptors in midgut

cells is mediated by the BinB subunit [14], while the BinA

subunit is traditionally considered responsible for toxicity

by a yet uncharacterized mechanism. Similarly to Cyt
Current Opinion in Insect Science 2019, 33:56–62

http://www.btnomenclature.info/
http://www.btnomenclature.info/


58 Pests and resistance
toxins, MTX and Bin proteins synergize Cry toxicity and

overcome resistance to Cry toxins [15,16]. Some Ls strains

produce crystal inclusions containing the binary Cry48Aa/

Cry49Aa toxins.

Resistance mechanisms to Bt and Bt crops in
Lepidoptera
Resistance to Bt toxins in lepidopteran pests involves

alterations in steps of the mode of action of an IP.

Resistance was first described to Btk in the laboratory

for a population of the Indian meal moth (Plodia inter-
punctella), a pyralid typically collected from storage bins

[17]. In that case, resistance was associated with reduced

binding of the main IP produced by Btk (Cry1Ab) [18].

Since then, a number of lepidopteran species especially in

the family Noctuidae have shown the ability to develop

resistance to diverse Bt toxins [19]. However, for yet

unknown reasons, only the diamondback moth (Plutella
xylostella) in the family Plutellidae has evolved resistance

to Bt products under field conditions [20]. In contrast,

three noctuids, and one species in the families Gelechii-

dae and Crambidae have developed field-evolved resis-

tance to single IPs from Bt produced in Bt crops [21]. This

more common type of resistance that evolves in response

to Bt crops compared to Bt sprays can be explained by the

presence of multiple IPs and virulence factors (including

bacterial spores) in Bt formulations that are sprayed

compared with Bt crops producing single IPs.

In the vast majority of Bt resistance cases in Lepidoptera,

resistance is associated with reduced binding of at least

one of the Cry toxins in the Bt formulation [19]. This type

of resistance mechanism results in the highest levels of

resistance reported to particular Bt formulations or IPs.

When observed, cross-resistance in these cases involves

IPs sharing binding sites with the most active Cry toxin in

the Bt formulation, which is the expected selecting agent.

This observation strongly supports the utility of binding

site models to identify IPs that may be combined to delay

resistance evolution [22]. This phenotype characterized

by high levels of resistance and cross-resistance associated

with reduced toxin binding is the most common resis-

tance mechanism to Bt formulations and Bt crops produc-

ing IPs from Bt.

In rare examples, selection with a Bt toxin resulted in cross-

resistance to toxins not sharing binding sites with the

selective toxin [23,24]. As expected, in these cases IP

binding in resistant insects is not affected and resistance

is explained by alteration of a common step affecting the

mode of action of the toxins. Examples include alterations

in gut proteolytic activity [25], toxin sequestration [26] or

enhanced midgut healing [27]. While these mechanisms

lead to a broad resistance phenotype, they commonly result

in comparatively lower levels of resistance [19], which may

explain why they are not commonly observed in the field.

This is especially true for Bt crops, as resistant insects must
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survive exposure to high levels of toxins produced by the

plants, and explains why reduced toxin binding is the only

mechanism described for resistance to Bt crops [28,29].

Resistance mechanisms to Bt and Bt crops in
Diptera and Coleoptera
The Bti bacterium harvests a megaplasmid encoding Cry

(Cry11Aa, Cry4BA, Cry4Aa, Cry10A) and Cyt (Cyt1Aa,

Cyt1Ca, Cyt2Ba) proteins [30]. Unfortunately, quantita-

tive binding competition analyses and binding site mod-

els determining sharing of receptors between Bti toxins

are not available for mosquito larvae. However, available

information on functional receptors for mosquitocidal

toxins [31], and cross-resistance in mosquitoes resistant

to a single Bti toxin [32] suggest that Bti IPs share at least

some binding sites. Consequently, one would expect

resistance to multiple Bti toxins to evolve easily by

alteration of a single receptor, yet resistance to Bti is rare

and limited to selection in the laboratory environment.

One of the reasons for this observation is the synergism of

Cry toxicity by the Cyt1Aa protein serving as a surrogate

receptor [33], which hinders evolution of resistance to Bti
through reduced toxin binding. In fact, in mosquitoes and

beetles, Cyt1 proteins synergize and overcome resistance

to Cry toxins and are currently being explored as tools to

delay resistance evolution [34,35,36��].

Pesticides based on formulations of Btt contain the

Cry3Aa toxin, which is highly effective against larvae

of selected Coleoptera. Selection with Btt resulted in

resistance associated with reduced Cry3Aa toxin binding

in Colorado potato beetle (Leptinotarsa decemlineata) [37].

Similarly, resistance to Cry3Aa in the cottonwood leaf

beetle (Chrysomela scripta) was suppressed by Cyt1Aa [35],

suggestive of a resistance mechanism involving reduced

binding. Transgenic corn producing Cry3Bb and Cry3Aa-

derived toxins, and/or the binary Cry34/Cry35 protein

targets Western corn rootworm (Diabrotica virgifera virgi-
fera) larvae. Field-evolved resistance and cross-resistance

has been observed against Cry3Bb and Cry3A-derived

toxins, but not to the binary Cry34/35 toxins produced in

Bt corn. Since Cry3 and Cry34/35 toxins do not share

binding sites, this observation suggests (although it has

not been experimentally tested) that altered receptors

may be involved in resistance [38��]. However, the mod-

est levels of resistance to Bt corn (<20-fold) in rootworm

compared to lepidopteran pests, may suggest receptor-

independent resistance. Unfortunately, there is no

available empirical evidence for reduced IP binding in

resistant rootworms or for identification of the mechanism

involved in rootworm resistance.

Genes involved in receptor-mediated
resistance to Cry toxins
Identification of the genes and alleles responsible for

reduced toxin binding has been mostly done with labora-

tory-selected insects. Mutations or disruptions in
www.sciencedirect.com
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cadherin genes resulting in truncated cadherin proteins or

reduced presence of the cadherin protein on the mem-

brane are linked to reduced binding and resistance against

Cry1Ac in laboratory-selected Heliothis virescens [39] and

in field-derived Helicoverpa armigera [40,41] and Pectino-
phora gossypiella [42,43]. Alternative cadherin splicing was

associated with field-evolved resistance and reduced

Cry1Ac binding in P. gossypiella from India that were

resistant to Bt cotton [28,44]. In all these cases, resistance

was transmitted as a recessive trait, yet non-recessive

resistance linked to a cadherin mutation was reported

in a field-derived strain of H. armigera, yet it was not

associated with reduced Cry1Ac binding but with altered

unknown post-binding steps [45].

Mutations in ABC transporter genes are linked with high

levels of resistance to Cry1Ac in H. virescens [46] and

H. armigera [47], to Cry1Ab in Bombyx mori [48], to Cry2Ab

in H. armigera and Helicoverpa punctigera [49], to Bt corn

producing the Cry1F toxin in Spodoptera frugiperda from

Puerto Rico [50��], and to transgenic poplar producing the

Cry3Aa toxin in Chrysomela tremulae [51]. Resistance to

Cry2Ab in P. gossypiella is associated to ABC transporter

mis-splicing [52��]. When tested, reduced toxin binding

was detected in all these cases, except in cases where

alternative, putatively non-functional receptors,were avail-

able [48]. Importantly, these alterations in ABC transpor-

ters may affect their role in detoxification processes and

result in increased susceptibility to alternative pesticides

[53�], and unintended yet positive effect of resistance to Bt
that could be helpful for resistance management.

Resistance to Cry1Ac in Trichoplusia ni and P. xylostella,
and to Cry1Ca in Spodoptera exigua was mapped to an ABC

transporter gene locus [54,55], although in these cases

resistance implies trans-regulatory reduction in expres-

sion of APN and ALP as putative receptor genes [56–58].

Reduced levels of an ALP in the midgut were also

associated to resistance against Cry1Ac in H. virescens
[59], Helicoverpa zea [60], and in S. frugiperda with

field-evolved resistance to Cry1F [61]. However, no

strong genetic linkage between reduced ALP levels

and resistance is observed [50��]. These observations

suggest the existence of multiple genes that may have

major and/or minor contributions to resistance.

While all cases discussed above involved recessive or near-

recessive resistance to Bt toxins, a mechanism for dominant

resistance to Cry1Ac has been recently reported for field-

derived H. armigera [62��]. In this case, resistance was linked

to a mutation in a tetraspanin gene, supporting the need for

research to identify the role of this protein in the mode of

action of Cry1Ac and potentially other Bt toxins.

Resistance mechanisms to L. sphaericus
Commonly used microbial pesticides based on Ls contain

spores and the Bin toxin produced by the bacterium.
www.sciencedirect.com 
There are examples of laboratory and field-evolved resis-

tance to Ls formulations in mosquito populations world-

wide [63]. This high relative propensity to resistance

evolution compared to Bti is due to a major toxin (Bin)

targeting a single receptor (maltases) being the main Ls
virulence factor. This observation also explains why resis-

tance to Ls and Bin toxin is commonly associated with

reduced toxin binding and mutations affecting toxin

receptors [64]. Neither Mtx nor Cry48Aa/Cry49Aa toxins

recognize Bin receptors, and are active against Ls-resis-
tant mosquito larvae [65,66]. As the only known

exception, the mechanism of high levels of field-evolved

resistance in West Mediterranean Culex pipiens popula-

tions is sex-linked and independent of reduced Bin

binding or improper digestion of the toxin [67], indicating

the existence of alternative, unknown resistance

mechanisms.

Final considerations and conclusions
The body of evidence in the literature strongly supports the

fact that resistance to commercialized entomopathogenic

bacteria in the family Bacillaceae targets disruption of IP

binding. Accordingly, theuseofmixturesof IPs recognizing

diverse receptors significantly delays the risk of high levels

of resistance and is the current resistance prevention tactic

for Bt crops. However, evidence also supports that this

tactic reduces but does not completely eliminate the risk of

resistance evolution by receptor-independent mecha-

nisms. In the case of Bt toxins, development of Cyt and

peptides enhancing toxin binding should contribute to

delay resistance evolution. Receptor-mediated resistance

is recessive and autosomal, except for very rare exceptions

of dominant resistance mechanisms for which more infor-

mation is urgently needed.
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19. Ferré J, Van Rie J: Biochemistry and genetics of insect
resistance to Bacillus thuringiensis. Annu Rev Entomol 2002,
47:501-533.

20. Tabashnik BE, Groeters FR, Finson N, Liu Y-B, Johnson MW,
Heckel DG, Luo K, Adang MJ: Resistance to Bacillus
thuringiensis in Plutella xylostella: the moth heard round the
world. In Molecular Genetics and Evolution of Pesticide
Resistance. Edited by Brown TM. American Chemical Society;
1996:130-140. ACS Symposium Series 645.

21. Tabashnik BE, Carriere Y: Surge in insect resistance to
transgenic crops and prospects for sustainability. Nat
Biotechnol 2017, 35:926-935.
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