Role of stable modes in driven shear-flow turbulence
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Abstract

A linearly unstable, sinusoidal £/ x B shear flow is examined in the gyrokinetic framework in both
the linear and nonlinear regimes. In the linear regime, it is shown that the eigenmode spectrum
is nearly identical to hydrodynamic shear flows, with a conjugate stable mode found at every
unstable wavenumber. In the nonlinear regime, turbulent saturation of the instability is examined
with and without the inclusion of a driving term that prevents nonlinear flattening of the mean
flow, and a scale-independent radiative damping term that suppresses the excitation of conjugate
stable modes. A simple fluid model for how momentum transport and partial flattening of the
mean flow scale with the driving term is constructed, from which it is shown that, except at high
radiative damping, stable modes play an important role in the turbulent state and yield significantly
improved quantitative predictions when compared with corresponding models neglecting stable

modes.
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I. INTRODUCTION

The prevalence of sheared flows in diverse systems has motivated their study for over a
century. Their potential to drive instabilities and turbulence in fluids and plasmas is central
to angular momentum transport in astrophysical disks [1, 2], to transport in the Earth’s
magnetosphere [3], and to the possible generation and saturation of confinement-modifying
zonal flows in fusion devices [4]. The linear stability of simple shear flow configurations has
been thoroughly investigated from linear equations [5, 6] and provides a rough understanding
of the nature of more complex flow profiles early in their development, before unstable
perturbations grow too large [7, 8]. However, as these flows develop beyond the regime of
validity of linearized models, and nonlinear interactions between different components of the
fluctuation become important, capturing or understanding their behavior with any set of
constructs based on linear analysis becomes problematic [9-11].

Instead, studies generally rely on direct numerical simulations to investigate relevant
physical effects [3, 8, 12]. In many cases of interest, these methods cannot produce solutions
for physically relevant parameters, such as the high Reynolds numbers found in astrophys-
ical systems. This motivates the development of scaling models that can inform how the
system extrapolates to parameter regimes inaccessible to simulations. Valid scaling models
require an understanding of the physics of all relevant phenomena, including turbulent re-
sponses that modify the unstable flow, like nonlinear fluctuation structures, cascades, and
momentum transport.

Regarding nonlinear processes that become relevant as the linear growth phase ends,
recent analytical work on shear-flow instability saturation has demonstrated the importance
of fluctuation dissipation that arises at large scales due to excitation of stable modes [13].
When an unstable shear flow is perturbed from equilibrium, these linear modes are generally
a part of the initial perturbation, decaying from their small initial amplitude. Given this
initial decay, stable modes are typically ignored in constructing reduced nonlinear models
that draw from linear physics [9-11]. However, nonlinear interactions with unstable modes
can drive stable modes to large amplitude. Because they are linearly stable, they provide a
route for energy to be removed from fluctuations at large scales, before it is able to cascade to
small scales, thereby modifying the flow, its spectrum, and its transport [13]. This represents

a significant departure from the usual picture of instability-driven turbulence, where energy



injection by unstable modes is assumed to be balanced by conservative nonlinear energy
transfer to small, dissipative scales.

While it has been shown that nonlinear interactions with large-scale stable modes can
be important in saturating shear-flow instabilities, their amplitude and contribution to the
fluctuating flow and momentum transport in fully-developed turbulence remains an open
question, which we pursue in this paper. Additionally, we explore whether reduced models of
shear-flow-driven turbulence that are based solely on the linear instability might be improved
by including the effects of large-scale stable modes. This is a natural expectation given their
importance in saturating the instability, their introduction of a large-scale linear energy sink,
and their potential to modify momentum transport. This is also motivated by recent work
in the context of instability-driven turbulence in fusion devices, where reduced turbulence
models that include details of stable modes and instability saturation physics have shown
to be effective [14-16].

We address these questions by performing direct numerical simulations of an unstable
shear flow that develops into turbulence, and comparing the contribution of different linear
modes to the turbulent flow and the Reynolds stress. Our simulations are performed using
the gyrokinetic turbulence code GENE [17, 18], which has previously been used to examine
stable modes in other turbulent systems [19, 20|, and includes both initial value and eigen-
value solvers. This allows us to benchmark our calculated growth rates against previous
gyrokinetic studies of the same system [21], as well as investigate differences between shear
flow instabilities in hydrodynamics and gyrokinetics with regards to both the linear mode
spectrum and instability saturation. In particular, while it is understood that all unstable,
inviscid, incompressible, two-dimensional (2D) hydrodynamic flows include one stable mode
for every unstable mode [6], and previous work has shown that these stable mode are non-
linearly driven in the fluid system [13], whether these results apply to the gyrokinetic case
as well has not been explored. To allow for more direct comparisons with previous work, all
simulations presented in this paper are effectively 2D, with no variations in the direction of
the strong guide field (k, = 0).

The flow we examine is a sinusoidally-varying F x B parallel shear flow with periodic
boundary conditions. The hydrodynamic counterpart to this flow is often referred to as
Kolmogorov flow when it is maintained by a constant forcing term [22-24]. This flow profile

is particularly relevant to astrophysical disks, where its Kelvin-Helmholtz (KH) instability



is studied as a saturation mechanism for the magnetorotational instability [25-30] or its
collisionless counterpart [31], and in fusion devices, where it is studied as a potential sec-
ondary and tertiary instability to streamers and zonal flows [4, 32]. In order to admit a
quasi-stationary state of driven turbulence where energy dissipation is balanced by energy
injection, we continually reinforce the mean flow using a Krook operator previously em-
ployed similarly to reinforce current gradients in tearing mode studies [33], and referred to
as a linear relaxation term in studies of barotropic jets [34]. With this forcing term, the
system bears a strong resemblance to Kolmogorov flow [22-24], with the exception that it
is not a constant forcing. From a numerical perspective, Kolmogorov flow presents a conve-
nient choice of unstable shear flow to study due to its simple description in a Fourier basis
and the lack of no-slip boundary conditions that could otherwise generate boundary layers.
This also allows us to address whether the saturation physics active in the free shear layer
[13] is applicable to a driven periodic shear flow.

Our simulations also include damping terms in the form of hyperdissipation and scale-
independent radiative damping. The form of the radiative damping term is such that it
damps every mode equally. In systems with pairs of stable and unstable modes, this dispro-
portionately affects the stable mode amplitude relative to the unstable one in the nonlinear
state [35]. Thus, varying the degree of radiative damping in our system allows us to assess
whether different shear-driven turbulence regimes exist with significantly different stable
mode effects, and how these regimes might differ.

The remainder of this paper is organized as follows. Section II starts with a brief review
of hydrodynamic parallel shear flows for comparison with our gyrokinetic results, as well
as some unique aspects of the particular flow profile studied here, followed by a discussion
of the numerical implementation used in our work, including the specific forms of forcing
and dissipation. In Sec. III we show the full eigenmode spectrum for the gyrokinetic KH
instability. A description of the nonlinear evolution of the flow is presented in Sec. IV,
where we discuss saturation and decaying turbulence when forcing is absent, driven turbu-
lence with external forcing, and turbulent momentum transport in this system. Section V
examines the turbulence in terms of the role played by the linear eigenmodes, and compares
reduced descriptions and scaling models of the turbulence with and without stable modes.
Conclusions are presented in Sec. VI.

Throughout this paper, we adopt the notation that fl(:c, k,) denotes the Fourier transform



in y of A(z,y), and A(k,, k,) denotes the Fourier transform in z and y.

II. SHEAR FLOW INSTABILITY
A. Rayleigh’s Stability Equation

The stability of parallel shear flows is generally investigated by examining infinitesimal
perturbations about equilibrium solutions to the Navier-Stokes equation. When considering
a 2D, inviscid, incompressible flow that is perturbed from an equilibrium, the vorticity

equation becomes
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where V (z) is the y-directed equilibrium shear flow, and ¢(x,y,t) is the streamfunction of
the perturbation v = V¢ x z. The linear dynamics can then be explored by dropping the

nonlinearities and using the normal mode ansatz
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Equation (3) is known as Rayleigh’s stability equation, or as the Orr-Sommerfeld equation
when the effect of viscosity on ¢ is included. It can be solved as an eigenvalue problem,
yielding a set of eigenvalues w; and eigenmodes <;3j, with 7 enumerating the eigenmodes at
a given k,. The eigenvalue w; is complex, with real frequency Re(w;) and growth rate v; =
—Im(w;). If any eigenmode has a positive growth rate, the flow is unstable. Furthermore,
taking the complex conjugate of Eq. (3) shows that for each unstable solution there exists
a stable solution with equal and opposite growth rate [6]. Previous work [13] demonstrated
that nonlinear interactions with these stable modes play an important role in saturating
the growth of unstable modes. In the present work we perform nonlinear simulations of
an unstable shear flow and examine the role played by stable modes beyond the onset of

saturation.



B. Kolmogorov Flow

One unstable flow profile of relevance in fusion and astrophysical systems is a sinusoidal
equilibrium flow with periodic boundary conditions [2, 4, 21, 25-31]. For a sinusoidal flow
profile V(z) = Vjcos(kiz) in a periodic domain, Eq. (3) lends itself well to being solved
using spectral methods. Defining gz;j(k:x, k,) as the Fourier series expansion of gzgj(x, k,), the

Fourier representation of Eq. (3) is
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where ggji = ¢;(k, £ k2 k,). Equation (4) immediately demonstrates that each eigenmode
exhibits a discrete, comb-like structure when viewed through a Fourier transform: for a
given eigenmode QAﬁj(a:, ky), if its Fourier transform @(km, k,) is nonzero at some k,, then
it is also nonzero at k, + nk® for every integer n (though @ is still expected to fall off
at large |k;|, so that calculations with a finite number of k, can be expected to capture
the structure well). This property of the system will have important consequences in later
sections when we compare simulations with different box sizes, and when we explore the
possibility of approximating the turbulent state by truncating the summation over j in

Eq. (2) to a reduced number of modes.

C. Numerical implementation and benchmarking

We perform simulations of a KH-unstable sinusoidal F x B flow using the gyrokinetic
framework [36] as implemented in the GENE code [17, 18]. The gyrokinetic framework
applies to systems with a strong guide field, where the parallel length scale of fluctuations
is much larger than the perpendicular length scale, and the relevant frequencies are much
smaller than the ion cyclotron frequency. The use of gyrokinetics for this work is motivated
by GENE’s unique tools for performing eigenmode decompositions [19, 20]. We simulate a
system with two spatial dimensions, with a y-directed flow that varies sinusoidally in z, a
strong guide field in the z direction, and no variations in z. Our simulation domain is a
periodic box of dimensions L, x L, with no curvature or magnetic shear. The flow arises
from the E' x B drift of the particles, allowing the electrostatic potential ¢ to serve as the

streamfunction for the flow. We model the plasma with gyrokinetic ions and electrons with



hydrogen mass ratio, ion and electron background temperatures 7} = T, no collisions, and
no electromagnetic fluctuations (plasma 5 = 0).

We drive instability with a potential and corresponding distribution function that vary
sinusoidally in z. GENE uses a ¢ f formalism, where the full distribution function is sepa-
rated into equilibrium Fj and fluctuation f, with the code solving for the evolution of the
fluctuation. We let f(z,y, v, u,s,t) and f(kx, ky, v, pt, s,t) denote the (guiding-center) dis-
tribution function for species s in real and Fourier space. For the remainder of this paper,
we will generally use notation that suppresses the species and velocity dependence of f, and
instead focus on its dependence on the spatial coordinates and time.

For benchmarking against previous work [21], the instability is first examined by im-
plementing the sinusoidal flow with low-amplitude white noise as an initial condition in
the fluctuation, formally evolving the system nonlinearly, with a homogeneous Maxwellian

equilibrium Fj. This corresponds to solving the equation

of .
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with a sinusoidal initial condition f(t = 0), ¢(t = 0) ~ sin(k2%x) and low-amplitude noise to

seed instability. The only term on the right-hand side of Eq. (5),
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is the EFE x B nonlinearity, whose Fourier transform becomes

Z%% (k;k:y—k:xk’y) (K, k) f(ky — ki, k, — k). Here, ¢ is the gyro-averaged o,
whose Fourier transform is given by ¢(k, ky, i1, s) = Jo(\/k2 + k2p)d(ke, ky), where Jp is a
Bessel function, and p is the gyroradius of species s with magnetic moment p. The code
evolves f according to Eq. (5) and calculates ¢ using Gauss’s law as described in Refs. [37]
and [38]. The normalizations used by GENE are described in Ref. [37]; however, in this
paper we will follow the standard convention used in the fluids community and normalize
quantities with respect to the equilibrium flow velocity Vj and its wavelength £, which
are normalized in the code by V' = VipysprefCret/ Lret and ky = Kyphys/ Pret-

Consistent with fluid theory, our system is unstable to perturbations of the same form
as Eq. (2) for a range of perturbation wavenumbers k,, with the growth rate scaling with
the base flow amplitude V. Growth rates from this formally nonlinear setup are indicated

by crosses in Fig. 1. For direct comparison with previous work [21], the wavenumber of the
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FIG. 1: Dispersion relation for the KH instability of a sinusoidal flow V = Vj cos(kz'z)y. Growth
rate v is plotted against the wavenumber £, of the perturbation, with v normalized to the equilib-
rium shear k33V; and ky to the equilibrium wavenumber k3. Crosses are obtained from nonlinearly
evolving a perturbed sinusoidal flow in GENE according to Eq. (5), while dots are from solving the
linear Eq. (7). Results compare well with both previous gyrokinetic simulations (red curve, see
Ref. [21]) and hydrodynamic simulations of an equivalent system (magenta triangles). The sta-
bilization of the k, = 0.2 points at low k,/kz" (i.e. high kz') can be attributed to finite Larmor

radius effects. All modes have zero real frequency.

equilibrium £$? was varied at fixed k,, where perturbations are unstable for 0 < k,/kS® < 1.
For this reason, in the remainder of this paper we focus our discussion on modes that lie in
this range.

As demonstrated in Fig. 1, nonlinear simulations with appropriate initial conditions can
be used to investigate some of the linear dynamics of this system, such as the growth rate
and mode structure of the most unstable mode at each k,. However, to solve for other linear
modes, which are known to exist in fluid models [6], terms corresponding to interaction
with the driving flow need to be implemented as a linear operator, so that Eq. (5) can be

linearized similarly to Eq. (3), in the form

i
S = Ll ™

for a linear differential operator Lky. To that end, we have implemented the linear operator

Lk in the GENE code. This allows computations to be performed with Lxy[f] on the
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right-hand side of the equation for 0,f for

‘CKH[f] = {f07(z_5}+{f7(50}7 (8)
where ¢ is the electrostatic potential (streamfunction) for the sinusoidal base flow, and fj

is the self-consistent distribution function corresponding to ¢o. Specifically, we use
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where 0y, / is the Kronecker delta, Fy(s), ¢s, and T} are the equilibrium Maxwellian, charge,
and temperature of species s, and the Bessel functions J, and ['y relate to finite Larmor
radius (FLR) effects as detailed in Refs. [37] and [38]. This form of fj is used for secondary
instability tests in tokamak-relevant systems [39], and yields a sinusoidal ¢q(x) corresponding
to a sinusoidal equilibrium flow in the y direction with amplitude V;, and wavenumber k9.

Note that Lxy has = dependence but no y dependence, so its eigenmodes will have
Fourier dependence in y and more complex structure in x, similar to the hydrodynamic
case discussed in Sec. II. A. The dots in Fig. 1 are obtained by solving Eq. (7), and their
agreement with the corresponding crosses demonstrates successful implementation of the
linear drive. For both setups, convergence checks were performed in spatial and velocity
coordinates. Well-converged growth rates generally require 33 grid points in z, though far
fewer points were required for k,/k{* < 0.5. For the remainder of this paper, results are
presented with V5 = 10 and kS = 0.1 using the linearized Lxy. A convenient consequence
of these parameters is that times and frequencies have the same value when expressed in
standard GENE normalizations as they do in typical normalizations used in calculations of
unstable shear flow in the fluids community, where ¢ is often measured in units of (k¢1V4)~".

Cyan triangles in Fig. 1 are obtained from solving the Orr-Sommerfeld equation with the
Dedalus code [40, 41] (where k$9 is the only length scale in the system) with a Reynolds
number Re = 400. Their agreement with the other curves supports the notion that kinetic
effects do not play a significant role in determining the growth rate of this mode. Crosses and
dots in Fig. 1 corresponding to lower values of k, show especially good agreement with the
fluid results. As each curve represents a fixed k, with varying k2%, finite Larmor radius (FLR)
effects become more important as k4 increases (i.e. as k,/kS? decreases), suggesting that the
reduced growth rates in the k, = 0.2 simulations relative to the fluid results are due to FLR

effects. In non-periodic shear layers, such as V' ~ tanh(z), it is observed that FLR effects can
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be stabilizing or destabilizing depending on the alignment of the equilibrium vorticity and
magnetic field [3, 12]. Due to the sinusoidal nature of the flow studied here, the simulation
domain includes regions where vorticity and magnetic field are aligned and where they are
anti-aligned, suggesting that the FLR stabilization observed in our system is qualitatively
different from what is found in shear layers. We speculate that the FLR stabilization is due

to a reduction in the gyro-averaged potential ¢, as ¢/¢ generally decreases with increasing

k.

D. Forcing and dissipation terms

In this paper, nonlinear calculations often include additional terms corresponding to
forcing and dissipation, which we introduce here. Hyperdissipation —D (k% + k:;l) f [42] is
employed to provide small-scale dissipation in place of collisions, which are not expected to
sufficiently dissipate small-scale fluctuations at achievable resolutions within valid limits of
collision models. We note that our hyperdissipation term differs from what is more standard
in the fluids community, where k% + k;l is replaced by (k2 + k:;)2 A second dissipative term
—D.aaf is spatially uniform and sometimes referred to as radiative damping or friction [43].
It absorbs energy transferred to large scales [43, 44], while also serving as a “symmetry-
breaking” parameter that adjusts the relative growth rates of linear modes without modifying
their structure.

Finally, we introduce a Krook operator — Dy ook0, +x40%,,0 f , where 9; ; is the Kronecker
delta, to represent forcing of the unstable equilibrium and prevent it from decaying due
to turbulent fluctuations [33]. Aside from being linear in f and therefore not constant in
time, this is identical to the inhomogeneous body forcing used in studies of Kolmogorov
flow [22-24]. While the sign of the Krook operator seems to suggest that it removes energy
from the system, that is merely a consequence of our separation between equilibrium and
perturbation. As explained in Ref. [45], the kinetic energy of the full flow is E = [|V +
v|?dzdy, so that if the (k,, k,) = (k%1,0) component of v opposes that of V and is not larger
in magnitude, as we will see to be the case in Sec. IV, terms that appear to dissipate the
“perturbation energy” [ |v|?dzdy at that wavenumber will actually increase the true energy

E.

Having constructed a linear operator that yields consistent results for the most unstable
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FIG. 2: Eigenvalue spectra for k, /kz* = 2/3 with L, = A*? (a) and L, = 2X°? (b). With L, = A*4,
at each unstable k,, the spectrum includes one unstable and one stable mode with equal and
opposite growth rate 7, as well as a continuous spectrum of marginal modes corresponding to
resonances between the phase velocity w/k, and equilibrium flow [47]. As the box size is increased
to fit multiple wavelengths of the equilibrium, additional stable and unstable modes are introduced
[25, 27], and additional marginal eigenvalues appear due to an increase in number of values of

Vo cos(kg'z) sampled by the extended grid (thus additional resonances with w/k;).

eigenmode’s growth rate, we now address the rest of the spectrum of eigenvalues.

III. EIGENSPECTRUM
A. Subdominant modes

At each k, there exists a spectrum of eigenmodes fj and eigenvalues w;, with correspond-
ing potential structures qBj. For 0 < k,/k% < 1, we let j = 1 denote the fastest-growing
mode. The KH instability has been investigated in gyrokinetics before, but previous calcula-
tions did not address linear modes other than fl or their role in saturation. With the linear
operator Lky now implemented in GENE, its full spectrum of eigenmodes and eigenvalues
can be obtained [19, 20, 46]. Like the inviscid fluid analog, for each k, in the unstable
range there exist one unstable mode, one stable (damped) mode with equal and opposite

growth rate [6], and a continuum of marginally stable modes [47], shown in Fig. 2 (a) for
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k,/k:t = 2/3. The additional degrees of freedom gained in gyrokinetics relative to a fluid
calculation, by taking into account the velocity-space structure of multiple species, increases
the rank of the discretized linear operator considerably, and leads to many more marginally
stable modes. A single point on the marginally stable continuum in Fig. 2 corresponds to
hundreds of eigenmodes (depending on velocity-space resolution), each with similar electro-
static potentials but significantly different velocity-space structure.

Despite the added degrees of freedom in gyrokinetics, there are still only one stable and
one unstable eigenmode per k, for 0 < k,/k$? < 1 when the box size L, equals the wavelength
of the equilibrium flow, denoted by A*4 = 27/k%4. Consistent with magnetohydrodynamic
(MHD) studies of a similar system [25, 27|, we find that flows where multiple wavelengths of
the equilibrium are present (i.e. setting L, = nA®d where n > 2 is an integer) exhibit pairs
of subdominant unstable (0 < 7; < 71) and stable (y2 < v; < 0) modes, shown in Fig. 2
(b). This means that simulations with larger boxes but with an equilibrium flow of the same
wavelength are expected to have different dynamics than simulations with L, = \°4, as they
include additional modes through which Lxy can inject or remove energy. In Sec. IV we will
demonstrate that including Dgyoox and Dy.q admits a system where, for sufficiently large
L,, observables are converged with respect to a further increase in L,.

As stated above, for each k, in 0 < k,/k$? < 1, we let j = 1 refer to the dominant
unstable mode. We will further let 57 = 2 refer to the corresponding stable mode, and
j > 2 to all other modes. Figure 3 shows the z-dependence of ¢; at ky,/kSY = 1/2 alongside
the streamfunction for the equilibrium flow. Consistent with the fluid case [6, 13], we find
v, = —v (such that both |y,| are reduced by FLR effects), and ¢q(z, k,) = ¢%(z, k).
Accordingly, we refer to f, as a conjugate stable mode.

Consistent with the fluid case discussed in Sec. II. B, the sinusoidal nature of the equi-
librium gives eigenmodes a discrete, comb-like structure in k,, where f] is zero at every k,
except for a countably infinite number of k, that are each separated by k5. All of the modes
whose eigenvalues are plotted in Fig. 2 (a), including fl and fQ, have nonzero amplitudes
at integer multiples of k%4, Many of the additional modes gained in Fig. 2 (b) by extending
L, to 2X\°, such as the modes with finite growth rate and real frequency, are nonzero at
half-integer multiples of k$%. This implies that arbitrary linear combinations of the modes

in Fig. 2 (a) are only nonzero at integer multiples of k9.
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FIG. 3: The equilibrium potential ¢y considered throughout this paper, which generates an £ x B
flow along the y-axis that varies sinusoidally in the z direction with wavenumber k3, alongside the
real and imaginary parts of the potential corresponding to the unstable eigenmode q@l (x, ky) plotted
with respect to z at k,/kz? = 1/2. The stable eigenmode’s potential is the complex conjugate of

the unstable eigenmode’s potential, (]32 = (ﬁ’{
B. Forcing and dissipation effects

The additional physics effects introduced in Sec. II. D each modify the eigenmodes to
varying degrees. The Krook operator enters the Vlasov equation only at k, = 0, so it
has no impact on the k, > 0 eigenmode spectra. The radiative damping term reduces
the growth rate of every eigenmode by D,.q without changing the mode structure. The
hyperdissipation term has a more significant impact on the spectrum. It reduces the growth
rate of the unstable mode with minor modifications to its structure, and replaces both the
stable mode and marginal continuum with a set of damped modes that does not include any
mode resembling the conjugate stable mode.

We now turn our attention the nonlinear saturation of this system.
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FIG. 4: Left: Nonlinear simulations with dissipation quasilinearly flatten, then decay. Quasilin-
ear flattening is measured by investigating o at (ky,ky) = (£kz',0). The perturbation cancels
the drive once ¢(ks,0) (blue) reaches a magnitude of 0.5V /ksd (black dashed line). Linearly
unstable Fourier modes then turbulently decay over time. Right: Introducing a Krook opera-
tor (Dkrook/(kz'Vo) = 1 here) partially suppresses the Fourier mode responsible for quasilinear

flattening, driving the system and leading to a quasi-stationary state of driven turbulence.

IV. INSTABILITY SATURATION
A. Saturation and decaying turbulence

To investigate the saturation of this instability, we include in Eq. (7) the full £ x B
nonlinearity, yielding
af

= Lnlfl+ {56 (10)

Owing to the way in which the linear drive terms were derived and implemented, the evo-
lution of Eq. (10) with some initial condition fi,; is identical to the evolution of Eq. (5)
with the initial condition fy + fint, presuming no dissipation or drive is included. When
dissipation terms are added to Eq. (10), they do not act on fy, unlike those in Eq. (5).

As the system evolves according to Eq. (10), the nonlinearity transfers energy across a

range of scales, but with zero energy injection and nonzero dissipation, the initial energy
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FIG. 5: Contours of the full (equilibrium and fluctuation) electrostatic potential for a nonlinear
simulation with Dyoox = 0. From left to right, plots correspond to t(k3'Vp) ~ 46,101, and 502.
Center and right plots show the tendency for small-scale fluctuations to dissipate, leaving coherent

vortices that merge to progressively larger scales.

eventually decays away. In terms of saturation of a linear instability, this can be understood
as quasilinear flattening, where the fluctuations reduce mean gradients until the system is
linearly stable. This is observed in simulations of Eq. (10) with added hyperdissipation, as
shown in Figs. 4 and 5. Once unstable wavenumbers reach a sufficient amplitude, fluctuations
at the wavenumbers of the equilibrium flow, i.e. (k;,k,) = (£k29,0), quickly grow to offset
the unstable profile of the mean flow. From this point the system exhibits features of
decaying turbulence: the dynamics are highly intermittent, with long periods of coherent
behavior punctuated by the merging of vortices. This is consistent with previous 2D KH
simulations [3], and can be expected given the lack of external forcing; the linear drive
in Eq. (10) appears similar to an external forcing term, but as argued in the preceding
paragraph, that is merely a consequence of the formal separation between the equilibrium

and fluctuations.

B. Driven turbulence

In many physical systems where shear-flow instability saturation and turbulence are of
interest, the unstable shear flow is not some ideal initial condition but is brought about by
a separate process. Examples include shear flows driven by boundary conditions [48], drift-

wave instabilities [4, 21] in laboratory experiments, and jets, gravity, or another instability
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FIG. 6: Contours of the full (equilibrium and fluctuation) electrostatic potential for a nonlinear
simulation with Dkook/(kz Vo) = 1 and Dyaq/(kaVo) = 0.05. From left to right, plots correspond
to t(kz'Vp) ~ 46,102, and 501. Comparing with Fig. 5 shows the system no longer tends towards
large-scale coherent vortices with gradual decay of energy. Instead, multiple scales are excited and

form a quasi-stationary state.

[25] in astrophysical systems. We include a Krook operator, introduced in Sec. II, with the
intent of capturing some of the effects of such continual forcing but without modeling the
subtleties of any particular system where forcing produces a shear flow.

The result of including the Krook operator is readily seen in Figs. 4 and 6. When the
Krook operator is added to Eq. (10), it suppresses the tendency for the (k,, k,) = (££5%,0)
component of the fluctuation to cancel out fy, thereby injecting energy into the system by
reinforcing the unstable equilibrium. This in turn drives other Fourier modes via the KH
instability, as is seen in the timetrace of ¢(k%9,0), shown in Fig. 4: the (k,, k,) = (£k9,0)
component no longer reaches the amplitude necessary to cancel out the driving shear flow,
and other Fourier modes no longer decay over time, leading to a quasi-stationary state of
driven turbulence where the energy injected by the Krook drive is balanced by energy dissi-
pation. As Dk, ook increases, the saturated amplitude of &(j:k:gq, 0) decreases, corresponding
to an overall increase in ¢ + q;(j:k:gq, 0). The dominant balance that determines the ampli-
tude of gg(ik'gq, 0) in saturation is between the Krook drive and the Reynolds stress, which
we explore further in Sec. IV. C.

Also observed in Fig. 5 is the tendency for the system to form coherent vortices that
gradually merge to the largest scale allowed by the simulation domain. This behavior is

also observed in 2D shear layer simulations [3], and is consistent with the inverse energy
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cascade to large scales in 2D hydrodynamics. The inverse cascade leads to a system with
saturation properties that change as the box size is increased. The radiative damping term
D,,q introduced in Sec. II damps low-k fluctuations, preventing energy from continuously
building up at the largest scales, and thereby allowing fluctuation spectra to reach a sta-
tionary condition at low k. For this reason, and for the sake of presenting simulations where
observables are converged with respect to the box size, the majority of our simulations were
run with L, = 12X\°? and D,,q = 0.05, a rate that is roughly 20% of the maximum linear
growth rate in the dissipationless case. Figure 6 shows the results of a simulation with these
parameters and Dgyoox = 1. In contrast with Fig. 5, the system exhibits multiple excited
scales in a quasi-stationary saturated state, providing the type of turbulence desired for

studying momentum transport and eigenmode excitation.

C. Momentum transport

We investigate the momentum transport driven by turbulent fluctuations in this system,
examining the zy component of the Reynolds stress tensor, denoted as 7. From the average

of the product of the x and y components of the fluctuating £ x B flow in the homogeneous

_/ 0009
r=(-5a), .

where (A), denotes an average of some quantity A over a domain in the variable ¢. Due to

y direction,

the sinusoidal variation in x of the equilibrium, 7 changes sign along the z axis as the sign
of the equilibrium flow changes, an expected feature of Kolmogorov flow [23].

In nonlinear gyrokinetic simulations, numerical convergence is typically tested by mea-
suring changes of some scalar, time-averaged transport quantity with numerical parameters
such as resolution and domain size. Due to the changes in sign of 7, the average of 7 in
the x direction and time, (7)., is not appropriate for testing numerical convergence be-
cause it is typically 0. Instead, we calculate the root-mean-square (RMS) of 7, i.e., v/(72),,
and compare the time-average in the quasi-stationary state as resolution changes. For the
simulation shown in Fig. 6, the time-averaged Trys in saturation changes by at most 2%
when any spatial or velocity coordinate’s domain size or resolution is doubled except L,
(expected due to the subdominant unstable modes and inverse cascade), where it changes

by 9%. Therefore, despite creating additional unstable and stable eigenmodes as box size is
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FIG. 7: Comparison between average Krook drive amplitude |(¢(£kz?, 0))¢| Dkrook and the average
amplitude of the corresponding Fourier component of the Reynolds stress 7 in saturation across
a range of driving frequencies Dk ook Other simulation parameters are the same as in Fig. 6.
In the saturated state, the mean flow is governed by a competition between the external forcing
and the turbulent Reynolds stress. A small contribution is made by the influence of dissipation

on (ﬁ(ikgq,O), evidenced by the minor mismatch between the two curves at the lowest values of

DKrook .

increased, this simulation is numerically converged in L, with regards to Tgrus.

Consistent with studies of Kolmogorov flow (where a constant force is typically used,
while our forcing is proportional to f (k24,0)) [23], we find that as the forcing increases, both
the mean flow velocity and the Reynolds stress increase, such that at saturation the two are
in balance. This is shown in Fig. 7, where the force on the mean flow applied by Dgoox
is seen to balance the force due to 7. This can also be seen by considering the effect of a
similar Krook operator on Eq. (1). When Eq. (1) is Fourier transformed in both x and y,
our forcing term appears as DkyookOg, 44210k, 0(k2 + k:;)g?) The (ky, ky) = (k$%,0) component

of the equation then becomes

0 -~ k! ~ ~ ~
5Ok, 0) + > o (S0 — KL)? + k2] Dk, k) (kS — KL, —k}) = — Diroord(kS9, 0), (12)
K 7

where the nonlinear term is the k, = k$? component of the Fourier-transformed Reynolds
stress 7. For a quasi-stationary, saturated state, the time-average of Eq. (12) yields a
balance between the Reynolds stress and the Dgyoox term. Figure 7 compares these terms
for a range of simulations with different values of Dy,o0x, demonstrating good agreement

with expectations. A small mismatch occurs because the effect of dissipation on the flow
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makes a small contribution to the force balance, but the other forces are clearly dominant.
Because we only include dissipation on the fluctuation, not the equilibrium ¢, which is

independent of Dy ook, this contribution decreases as Dy ook increases.

V. EIGENMODE ANALYSIS
A. Eigenmode Expansion

We investigate the role of stable modes in this system by expanding the turbulent state in
a basis of the eigenmodes of the dissipationless operator Lxy. We expand in eigenmodes of
the dissipationless operator to focus on the role played by f5, which vanishes in the dissipative
system. This also allows for comparison with previous work [13], where the dissipationless
modes were considered.

As discussed in Sec. III, the operator Lk has a distinct set of N, eigenmodes { f]} for
each value of k,. Therefore, an expansion of an arbitrary state f(s,z,y, v, ) in a basis of

eigenmodes fj may be written as

Nev

Flsiwy,opm) =YY Bi(ky) fi(s, @, ky, vy, )™ (13)

ky j=1
As in Sec. II1, the index j is a positive integer that enumerates the eigenmodes at a given
k,, and for 0 < k,/k{* < 1,5 = 1 and j = 2 label the most unstable mode and its stable
conjugate, respectively. The number of eigenmodes N., obtained by the eigenmode solver
is equal to the number of degrees of freedom in the discrete numerical representation, i.e.,
the product of the number of grid points and the number of species, and the modes were
verified to be linearly independent, so expansions of this form exist and are unique assuming
the numerical resolutions of both sides of Eq. (13) are identical. Figure 8 shows timetraces
of |f1] and |B,|, as well as the time-averaged |3;| in saturation for every j at k,/k$? = 0.25
for the same simulation shown in Fig. 6.

The values f3;, which we refer to as the amplitudes of each eigenmode, can be understood
as coordinates or components of f in the basis {f;}. When such an expansion is performed
at multiple time steps of a given simulation so that f is a function of time, each 3; becomes
a function of time that indicates the relative contribution of eigenmode f; to the state of the

system over time. In linear simulations, 3;(k,,t) = B;(k,, 0)e™s* for each j and k,. Previous
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FIG. 8: Left: Amplitudes of the unstable and stable eigenmodes, |31| and |f2|, respectively, as
functions of time on a logarithmic scale (top, horizontal axis reduced to highlight the parametric
growth of |3;]) and a linear scale (bottom) at horizontal wavenumber k,/kz! = 0.25 for the simu-
lation with Dyrook = 1, Drag = 0.05, and D = 1.6. Right: Full spectrum of eigenvalues w; (real
part w, on y-axis, growth rate v on z-axis), with color indicating time-averaged (starting from
t = 300) amplitudes (|3;]), and dot size scaled proportionally to allow multiple |3;| with the same
wj to be shown. The decay of 2 is followed by nonlinear growth much faster than i, while $;
continues its linear growth, consistent with Ref. [13]. The remarkable similarity of the values of
|B1| and |f32] in the saturated state was predicted in Ref. [13]. Results are qualitatively similar for

other unstable k,.

work showed how f; and [y interact nonlinearly in a fluid system, derived equations for
0p;/0t by inserting expansions of the form Eq. (13) into the governing equations of the
system, and compared the relative sizes of different terms leading into instability saturation
[13, 49, 50]. Here we directly calculate the evolution of each f; over time in nonlinear
simulations, extending analysis beyond the onset of saturation. Our procedure for calculating
each f3; relies on the left eigenmodes of Lxy and is described in Refs. [19, 20].

Similar analyses have been performed for gyroradius-scale instabilities in reduced fluid

models [50], and gyrokinetic models [19, 51]. These eigenmode expansions are related to the
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“projections” calculated in related work [16, 51, 52], defined as

—1/2
p; = ‘/dXdVZf;fNL </ddeZ|fj|2/dXdVZ|fNL|2> (14)

(where fyr, is the nonlinearly-evolved distribution function, and the summations are over

each species), but the two are generally quite different. Identifying (g, h) = [ dxdvg*h as
an inner product on the space of distribution functions f, projections p; are inner products
normalized by the lengths of f; and f so that p; = 0 if they are orthogonal (under this
inner product) and p; = 1 if they are parallel. The eigenvectors of an arbitrary linear
operator are not guaranteed to be mutually orthogonal under a given inner product (we
have verified that the eigenmodes of our system are not mutually orthogonal under the
above inner product), which leads to the possibility that the projection onto one eigenvector
depends on the amplitudes of every eigenvector. For example, one could find that the
projection p; onto a stable mode counterintuitively grows over time in a linear simulation
due to nonorthogonality, even though the amplitude j3; of the stable mode decays. Likewise,
if the projection onto a stable mode is large in the saturated state, it is not immediately clear
whether this is due to a large stable mode amplitude, significant nonorthogonality with the
dominant unstable mode, or even due to nonorthogonality with an entirely different mode
that has a large amplitude. This situation is avoided if the linear operator has mutually
orthogonal eigenvectors (e.g. if it is Hermitian), if the set of modes f; are replaced by an
orthogonal set, such as from a proper orthogonal decomposition [19], or by applying an
orthogonalization procedure like Gram-Schmidt [51]. However, the relationship between the
eigenmode amplitudes and the orthogonalized mode amplitudes is not immediately clear.
We focus our attention on the eigenmode amplitudes [3; rather than projections p because
linear energy transfer due to Ly is directly related to 3;, not p [49], and to facilitate
comparison with Ref. [13].

For the simulation shown in Fig. 6, we use the parameters L, = 12A°Y, Dxioox = 1, Dyaq =
0.05, and D, = 1.6, with 512 grid points in the x direction. Calculating every eigenmode
of the system at that resolution is prohibitively expensive. Instead, to generate Fig. 8 we
perform eigenvalue computations with L, = A°d. Due to the discrete, comb-like eigenmode
structure in k, discussed in Secs. II. B and III. B, this reduced set of modes does not describe
the full state of Eq. (13) because it lacks modes obtained when L, > A\*? [see Fig. 2]. But

this does allow for a full expansion of the components of f (ky, ky) given by k, = nk$? for
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integer n, and this does not affect the obtained values of 5, and fSs.

Consistent with analytical calculations and reduced models [13, 49, 50|, Fig. 8 shows
that |fa| decays before being nonlinearly driven at a rate faster than the unstable mode’s
concurrent exponential growth. We stress that the evolution of |f3;| is remarkably consistent
with the inviscid fluid problem [13] despite the influence of nonzero D, in the nonlinear
simulation, which modifies the structure of f; and eliminates the conjugate stable mode f,
from the eigenmode spectrum of the dissipative operator. A similar observation was made in
studies of I'TG pseudospectra, where a similar conjugate stable mode vanished in the dissi-
pative case, but was nonetheless a part of the pseudospectrum and was significantly excited
in saturation [53]. Figure 8 only shows amplitudes for the k,/kS? = 0.25 eigenmodes, but
every other k, in 0 < k,/kS% < 1 exhibits similar results. The amplitude of f; in saturation
nearly matches that of f; both at saturation onset and for the rest of the simulation. Since
the two modes are nearly conjugate symmetric, this suggests that the linear energy dissipa-
tion due to fs is a significant fraction of the linear energy injection due to f; at the onset
of saturation and throughout the quasi-stationary state. This suggests that the predictive
capabilities of the threshold parameter P; analysis studied in Refs. [49, 50] carry over to
systems more general than plasma microturbulence, and that a significant amount of the
energy transferred to k, > 0 fluctuations via Lxy makes its way back into the mean flow

rather than smaller scales.

B. Truncated eigenmode expansions

In turbulence models, it is common practice to separate the flow into mean and fluctuating
parts. If there is further separation between large and small scale structures, the former are
often approximated by the most unstable eigenmode [7, 9, 10]. Here we demonstrate the
potential for improving such models by including the stable mode in the approximation for
the large scales.

Figure 9 compares part of the flow structure at ¢ ~ 501(Vpk4) ! to three different expan-
sions. The top-left contours show the electrostatic potential ¢ for the simulation described
in Fig. 8. To focus on the components of ¢ where the eigenmodes discussed in Figs. 1 and
2 can be used to approximate the flow, a filtering procedure has been applied in Fig. 9 to

remove all but a subset of Fourier components (k,, k,) have been artificially removed. Only
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FIG. 9: Comparison between the components of ¢ that are spanned by the eigenmodes in Fig. 8 (top
left), a summation over all of the eigenmodes in Fig. 8 at every unstable k, (top right), summation
over just the most unstable mode at every unstable k, (bottom left), and summation over the most
unstable and conjugate stable mode at every unstable k, (bottom right) at ¢ ~ 501(Vokg?) ! for the
same simulation as Fig. 6. Due to only integer multiples of k! contributing to these eigenmodes,
they are unable to effectively reproduce the full flow profile, plotted in Fig. 6. However, those
components of ¢ that can be expressed as a linear combination of the eigenmodes in Fig. 8 are

very well-described even by just the unstable ¢; and stable ¢s.

k,in 0 < k,/k$% < 1 are included, and only k, = nkS? for integer n are included. This allows
the eigenmodes in Fig. 8, and the equivalent eigenmodes at other unstable k,, to be used as
a basis in the sense of Eq. (13). The top-right contours show the ¢ structure obtained from
summing over these eigenmodes at each unstable k,, verifying that they indeed serve as a
basis. The excellent agreement helps demonstrate that the wavenumber filtering only affects
the amplitudes 3; of eigenmodes that arise from having L, > A°4, and fully captures the

structure and amplitudes of the L, = \°? eigenmodes. Extremely minor differences between
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FIG. 10: Error in ¢ of each of the eigenmode expansions of Fig. 9 relative to the filtered nonlinear

data. Including ¢ significantly improves fluctuation estimates in the quasi-stationary state.

the top-left and top-right contours arise due to the higher x resolution in the nonlinear
simulation than in the linear eigenmode calculations. To investigate the differences between
these large-scale flows and the results of approximating them using just the unstable mode,
the bottom-left contours show the result of excluding every eigenmode in Eq. (13) except the
most unstable at each k,, as is often done in reduced models. The bottom-right contours are
obtained similarly, but both the most unstable mode ¢; and the conjugate stable mode ¢,
at each k, are included. Including ¢, produces a flow structure that is remarkably similar to
the top-left and top-right flow structures, unlike what one obtains when only ¢; is included.
Unsurprisingly, the more accurate flow structure leads to a more accurate Reynolds stress
(not shown).

To compare the efficacy of these three eigenmode expansions over time, rather than the
one timestep shown in Fig. 9, we calculate the error error = ||¢ — > . B;¢;]|/||8|| of each
relative to the filtered nonlinear data (the top-left plot in Fig. 9). Here ¢ refers to the filtered
nonlinear ¢, and ||.|| is the standard L, norm. Due to differences in z resolution, the full
expansion (in green) has minor errors that decay away as the simulation progresses. Errors
in both the unstable-only expansion (blue) and the combined unstable-stable expansion
(orange) start large due to choice of initial condition, gradually decay as the most unstable

mode grows in the linear phase, and peak at the onset of saturation before fluctuating about
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FIG. 11: Time-averaged ratio of unstable mode amplitude to stable mode amplitude in saturation
at each k, for a range of D;nq with Dgroox = 1. The growth rate dependence of the P; analysis
[35, 49, 50] suggests that higher D,,q causes (2 to be driven less leading into saturation. Here we
see that this is reflected in the eigenmode amplitudes in the saturated state. The £, dependence

of the ratio |f1/P2| roughly follows that of ;.

an average value in the quasi-stationary state, with the inclusion of the stable mode reducing

the average error in the saturated state by a factor of three.

C. Influence of forcing and dissipation

Figure 8 shows significant excitation of the stable mode in the saturated state for a
simulation with Dgyoox = 1, Dyag = 0.05, and D, = 1.6, with Figs. 9 and 10 demonstrating
its importance in describing the large-scale fluctuations in ¢. To investigate the role of these
parameters in determining the influence of stable modes in saturation, we vary them between
different simulations. In particular, we pay close attention to the relative amplitudes of 5,
and [y as D,.q and Dok are varied. Because D,,q is a symmetry-breaking term in the sense
that it decreases the growth rate of f; and increases the damping of f; without changing
their mode structures, it reduces the parametric driving of f by fi. (The parametric
driving of f, by fi depends on their mode structures, the form of the nonlinearity, and ~, /v,
[13, 35, 49, 50]. Of those, only ~9/v is affected by D,,q, making its influence on |3/ 5s]

more transparent.) Figure 11 shows that this leads to significantly smaller |fs| relative to
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FIG. 12: Time-averaged ratio of unstable to stable mode amplitude in saturation at each k, for
a range of Dirook. Between Dkroox = 0.5 and 4, increasing Dirook generally pushes the ratio of
amplitudes closer to unity. Above Dk ook = 4, increasing Dy ook has a less pronounced impact on
the ratio. We stress that, in both regimes, the mean flow amplitude and Reynolds stress increase

with Dgrook-

|A1] in the saturated state. This also suggests that for unstable shear flow in systems without
radiative damping |fs] &~ || is expected, consistent with Ref. [13]. The k, dependence of
the ratio |f;/fs| roughly follows that of ~;, except that it approaches 1, rather than 0, at
ky, =0 and k, = k.

Figure 12 shows how the time-averaged large-scale values of |f82/fs] in saturation vary
with Dgrook. The shape of the curves remains fairly consistent as Dgpoox changes. Two
regimes are apparent: below Dgyoox = 4, increasing Dgyoor drives the ratio |3;/fs| closer
to unity, while above Dgoox = 4 the ratio is significantly less affected. This behavior is
consistent with the notion that reinforcement of the unstable profile by larger Dk ook allows
(2 to be nonlinearly pumped to its maximal level, whereas for smaller D,k the quasilinear
depletion of the profile cuts off the pumping of B, before it reaches its maximal level. Note
that f> tends to reduce the Reynolds stress 7, suggesting that the increase in 7 with Dgyook

must be due to an increase in overall fluctuation level, rather than a change in |51/5s].
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D. Influence of stable modes in analytical models

To better understand how the unstable and stable modes affect the mean flow in satu-
ration, we develop a reduced model that expresses the mean flow amplitude in terms of ;
and f5. The model considers a 2D inviscid, incompressible fluid, assumes ¢ ~ 51¢1 + [ao
for 0 < k,/kS3 < 1, and assumes that the force applied by the Krook operator balances the
turbulent Reynolds stress in saturation. These assumptions are consistent with the findings
presented in Figs. 7 and 9.

For perturbations about a sinusoidal equilibrium flow, the linearized system becomes
Eq. (4), which was derived in Sec. II but is repeated here:

~ kW
w2+ )y + B

[(ki — Qe kS 4 2) 7 + (K2 + 2k, kS + B2)F| = 0.

Equation (4) can be expressed as a matrix equation qugj + M(EJ = 0 where the components
of 5j are <;~5j at different k, and the dimension of @ and M is infinite. Reasonable approxi-
mations of the eigenmodes and eigenvalues can be obtained by solving the matrix equation
with gz~5]7é 0 for some finite number of k, values, and g?)j = 0 for all other k,. This has pre-
viously been found useful in similar KH and tearing mode calculations [28]. For example,

solving the system with £k, = 0, £k yields

" .
w1 = —Z y‘/O ¢1 - (17 _Z.’%v ]-)T
K
I .
Wy = M ¢2 = (17“{'7 1)T
K
wsg = 0 53 = (_1707 1>T7

where the vectors are written in the form (¢(—kS),5(0),d(k)” and w(k,) =

V2 + K2) /(K2 = 2).

To arrive at an expression of force balance between the Reynolds stress and Krook drive,

we return to Eq. (12) which we repeat here:

8 ~
keq O + Z keq keq kl) kf)‘b(k;a kg,/)(b(kfcq - k;:v _kgl;) = _DKrook(b(kfcqu O)

Considering a steady state where 8q~5(k§q,0)/8t = 0, and assuming ¢ = B1¢1 + Boy with
just the k, = 0, £k Fourier modes considered, Eq. (12) can be manipulated to yield

(b(keq 0 22]{36 Z ]{Z/ ]{Z/ ‘61‘2 |B2|2) ) (15)

D
Krook K}, >0
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FIG. 13: A comparison between the true value of |¢(ksz",0)| (blue dots) and values predicted by
Eq. (15) with (orange diamonds) and without (green crosses) the stable mode contribution [,
included over multiple values of Dkyoox and Dy,q. In each frame, the models are scaled by a
constant coefficient to match the true value at Dgyoox = 4 so that the scaling with Dk ook can be
investigated, rather than the absolute agreement. For the base case D;,q = 0.05 (center frame), the
scaling of |¢(kz?,0)| with Dk.ook is qualitatively captured by the model with 35 neglected, however
the scaling is significantly improved when stable modes are included. For the larger value of D,q
(right frame), where stable modes are largely suppressed in saturation (c.f. Fig. 11), including S5 in
the model produces little change, and decent quantitative agreement is observed by the model both
with and without (5 included. For the smaller value of D,,q (left frame), where stable modes are
more important, the model fails to even qualitatively agree with simulations unless 5 is included,

in which case the overall trend is captured.

From here, values for |5;| and |fs] can be inserted to arrive at values for the mean flow
amplitude. In other systems, |3;| have been calculated using statistical closures [15, 54, 55].
Extending the above approach with such a calculation would yield a complete model, but
is outside the scope of this paper. Instead, we insert values of || and |53| from nonlinear
simulations into Eq. (15). Our interest is in the scaling of ¢(k,0) with Dyyeok, and what
role 5 plays in that scaling. Thus, we perform simulations with a range of Dgyoox and
compare three quantities: the time-averaged value of é(k;& 0) in saturation, the result of
Eq. (15) using both 8; and (35, and the result obtained when S5 = 0 is assumed. In Fig. 13,
this comparison is made for three values of D,,q4, corresponding to three systems with varying
degrees of stable mode excitation (recall stable modes are more excited at lower values of

Dyaq, see Fig. 11). For D,,q = 0.05, where stable modes were shown in Fig. 8 to be significant,
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the B2 = 0 model is qualitatively correct, but significantly improved when [, is properly
included. For D.,q = 0.025, where stable modes are even more important, the 5, = 0 model
fails to even capture the decrease in |p(kS%,0)| with Diyoox, while the model that includes
[ does capture the correct qualitative and often even quantitative behavior. At D,.q = 0.1,
where stable modes are significantly weakened, their inclusion does not have a significant
impact on the model. For each value of D,,q, the two models are scaled by a constant so that
they agree with the simulation results at Dg.oox = 4, which is where the change in scaling
with respect to Diyoox Was noted in Fig. 12. (It is the scaling properties of the models that
we are assessing, not the absolute values.) Note that this model neglects all eigenmodes
except ¢1 and ¢y, including the modes with nonzero £, at noninteger multiples of k$?.
Comparing the two models at different values of D,.q demonstrates that when stable
modes are excited in this system as in Fig. 8, they not only modify the shape of the flow,
as shown in Fig. 9, but have an important impact on how the system responds to forcing.
By nonlinearly transferring energy into large-scale stable modes, the fluctuating flow adjusts
in a way that changes the feedback onto the large-scale mean flow, thus affecting how the
system is forced. We also note that Eq. (15) was derived assuming an inviscid fluid, while the
inserted values for || and |f5;| were obtained from gyrokinetic simulations with finite D,
suggesting gyrokinetic effects may not play a significant role in the eigenmode excitations

and force balance in this system.

VI. CONCLUSIONS

We have studied an unstable gyrokinetic shear flow, finding that the system includes a
conjugate stable eigenmode that is nonlinearly driven to a large amplitude leading into sat-
uration, and continues to make important contributions to the Reynolds stress in the quasi-
stationary turbulent state, except at high values of radiative damping. This demonstrates
that previous findings on the role of stable eigenmodes in shear-flow instability saturation of
a fluid shear layer are consistent with the quasi-stationary turbulent state of a gyrokinetic
periodic shear flow. Furthermore, our results point to the potential for reduced models of
shear-driven turbulence to be significantly improved by including stable mode physics.

We have investigated the saturation of a linearly unstable E x B shear flow in gyrokinetics

as it relates to the full eigenmode spectrum. We find that the gyrokinetic system compares
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well with its hydrodynamic counterpart with regards to the unstable mode, as well as the rest
of the spectrum. Specifically, the dissipationless linear operator includes a single conjugate
stable eigenmode for every unstable eigenmode, along with a continuum of marginally stable
modes. Nonlinear simulations characterize the behavior of the flow in saturation, and we
examine cases both with and without an external driving term. The drive is implemented
in the form of a Krook operator, and reinforces the unstable mean flow in a manner similar
to Kolmogorov flow.

In simulations without the drive term, the system lacks any energy injection to maintain
the unstable equilibrium. This causes fluctuations to quickly relax the unstable flow shear
once nonlinear interactions become significant, and the turbulence subsequently decays.
In simulations with forcing, we include a scale-independent radiative damping term that
prevents accumulation of energy at the largest scales, and allows a quasi-stationary state
of driven turbulence. In driven simulations, a partial relaxation of the mean flow is still
observed, with the final state mostly determined by a force balance between the Krook
drive and the turbulent Reynolds stress.

With a well-resolved system of quasi-stationary, driven turbulence, we investigate the
role of different linear eigenmodes by performing an eigenvalue decomposition, where the
turbulent state is expressed as a linear combination of the eigenmodes. The evolution of
the dominant pair of stable and unstable modes leading into saturation compares well with
previous analytic calculations of an inviscid fluid shear layer [13], and the ensuing excitation
of the stable mode in the turbulent state is broadly consistent with previous findings in
plasma microturbulence [50]. By demonstrating that the role of stable modes in shear-flow
instability saturation is consistent with their role in the fully-developed turbulent system,
we have extended the set of systems in which instability saturation analyses has proven to be
predictive of the turbulent state to include fully global fluid instabilities, further motivating
these sorts of analyses in other global instabilities where stable modes exist, such as the
magnetorotational instability [56].

The significant excitation of linearly stable modes in the saturated state indicates that
an important aspect of shear-driven turbulence is this previously-neglected tendency for
large-scale fluctuations to lose energy back into the mean flow via the linear operator. This
idea is in contrast with the standard picture of instability-driven turbulence, where it is

assumed that the largest scales are dominated by a balance between linear energy injection
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and nonlinearly energy transfer to smaller scales. While many other modes are also excited
in the saturated state, we have shown that the stable/unstable pair of modes is sufficient
to capture many aspects of the flow. This also presents a significant modification to the
existing understanding of shear-driven turbulence, where reduced models generally assume
that large-scale fluctuations are dominated by unstable modes alone [7, 9-11].

Consistent with previous work where the conjugate symmetry between unstable/stable
pairs of modes was broken with dissipative terms [35], we find that the added radiative
damping term, which increases the damping rate of the stable mode and reduces the growth
rate of the unstable mode, suppresses the importance of the stable mode relative to the
unstable one. This is observed by comparing the amplitudes of the two modes for a range
of radiative damping values. Making use of the observations that the gyrokinetic and fluid
systems behave similarly, that the mean flow amplitude at saturation is determined by
force balance between driving and Reynolds stress, and that the stable and unstable modes
alone describe large-scale fluctuations well, we construct a reduced model that allows us
to examine the role of stable modes in determining the mean flow in saturation. The
model results in an equation where the contributions from stable modes can be isolated
from unstable modes. We find that lower values of radiative damping, where stable modes
exhibit higher amplitudes, require the inclusion of stable modes in the model in order for
it to be even qualitatively correct. At higher radiative damping, where stable modes are
suppressed, their inclusion in the model has no significant impact on its performance. Thus,
in shear-flow systems where stable modes play an important role in instability saturation,
they may also be expected to play an important role in understanding how fluctuations
affect the mean flow, and thus how the system responds to external forcing. We further
conclude that when effects observed to change turbulence characteristics also break the
conjugate symmetry of an unstable/stable eigenmode pair [8], the change in turbulence may

be related to differences in stable mode excitation.
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