Accurate Learning or Fast Mixing?
Dynamic Adaptability of Caching Algorithms

Jian Li, Member, IEEE,, Srinivas Shakkottai, Senior Member, IEEE, John C.S. Lui, Fellow, IEEE, and Vijay
Subramanian, Member, IEEE

Abstract—Typical analysis of content caching algorithms using
the metric of steady state hit probability under a stationary
request process does not account for performance loss under
a variable request arrival process. In this work, we instead
conceptualize caching algorithms as complexity-limited online
distribution learning algorithms, and use this vantage point to
study their adaptability from two perspectives: (a) the accuracy
of learning a fixed popularity distribution; and (b) the speed
of learning items’ popularity. In order to attain this goal, we
compute the distance between the stationary distributions of
several popular algorithms with that of a genie-aided algorithm
that has knowledge of the true popularity ranking, which we
use as a measure of learning accuracy. We then characterize the
mixing time of each algorithm, i.e., the time needed to attain the
stationary distribution, which we use as a measure of learning
efficiency. We merge both measures above to obtain the “learning
error” representing both how quickly and how accurately an
algorithm learns the optimal caching distribution, and use this
to determine the trade-off between these two objectives of many
popular caching algorithms. Informed by the results of our
analysis, we propose a novel hybrid algorithm, Adaptive-LRU
(A-LRU), that learns both faster and better the changes in
the popularity. We show numerically that it also outperforms
all other candidate algorithms when confronted with either a
dynamically changing synthetic request process or using real
world traces.

Index Terms—Caching Algorithms, Online Learning, Dynamic
Adaptability, Markov Process, Wasserstein Distance, Mixing
Time, Learning Error

I. INTRODUCTION

The dominant application in today’s Internet is streaming
of content such as video and music. This content is typically
streamed by utilizing the services of a content distribution net-
work (CDN) provider such as Akamai or Amazon. Streaming
applications often have stringent conditions on the acceptable
latency between the content source and the end-user, and

Manuscript received December 10, 2017; revised April 08, 2018; accepted
April 18, 2018. This work was supported in part by NSF grants CNS
1149458, AST 1443891, CNS-Intel 1719384, AST 1343381, AST 1516075,
IIS 1538827, ECCS 1608361. The work by John C.S. Lui was partially
supported by the GRF Grant 14200117.

J. Li is with the College of Information and Computer Sciences, Uni-
versity of Massachusetts Amherst, Amherst, MA, 01003, USA (e-mail:
jianli@cs.umass.edu).

S. Shakkottai is with the Department of Electrical and Computer Engi-
neering, Texas A&M University, College Station, TX, 77843 USA (e-mail:
sshakkot@tamu.edu).

J. C.S. Lui is with the Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, Hong Kong, China (e-mail:
cslui @cse.cuhk.edu.hk).

V. Subramanian is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI, 48109 USA
(email: vgsubram@umich.edu).

CDNs use caching as a mean to reduce access latency and
bandwidth requirements at a central content repository. The
fundamental idea behind caching is to improve performance
by making information available at a location close to the end-
user. Managing a CDN requires policies to route requests from
end-users to near-by distributed caches, as well as algorithms
to ensure the availability of the requested content in the cache
that is polled.

While the request routing policies are optimized over several
economic and technical considerations, they end up creating
a request arrival process at each cache. Caching algorithms
attempt to ensure content availability by trying to learn the
distribution of content requests in some manner. Typically,
the requested content is searched for in the cache, and if not
available, a miss is declared, the content is then retrieved from
the central repository (potentially at a high cost in terms of
latency and transit requirements), stored in the cache, and
served to the requester. Since the cache is of finite size,
typically much smaller than the total count of content, some
content may need to be evicted in order to cache the new
content, and caching algorithms are typically described by the
eviction method employed.

Some well known content eviction policies are Least Re-
cently Used (LRU) [1], First In First Out (FIFO), RANDOM
[1], CLIMB [1], [2], LRU(m) [3], k-LRU [4], and Adaptive
Replacement Cache (ARC) [5]; these will be described in
detail later on. Performance analysis typically consists of de-
termining the hit probability at the cache either at steady-state
under a synthetic arrival process (usually with independent
draws of content requests following a fixed Zipf popularity
distribution, referred to as the Independent Reference Model
(IRM)), or using a data trace of requests observed in a real
system. It has been noted that performance of an eviction
algorithm under synthetic versus real data traces can vary
quite widely [4]. For instance, 2-LRU usually does better
than LRU when faced with synthetic traffic, but LRU often
outperforms it with a real data trace. The reason for this
discrepancy is usually attributed to the fact that while the
popularity distribution in a synthetic trace is fixed, real content
popularity changes with time [6], [7]. Thus, it is not sufficient
for a caching algorithm to learn a fixed popularity distribution
accurately, it must also learn it quickly in order to track the
changes on popularity that might happen frequently.

Underlying restrictions on memory usage and computation
forces caching algorithms to adopt a low complexity finite-
state automata scheme. A key contribution of this paper is
to argue that caching algorithm design should be viewed

as the design of online distribution learning algorithms but
using low complexity finite-state automata schemes. Note that
the low complexity finite-state automata restriction precludes
the use of complex dictionary constructions from universal
source coding, the use of (dynamic) index policies from bandit
problems or even the use of accurate empirical distribution
estimation procedures. Additionally, as the complexity is held
fixed (determined by cache size), no causal algorithm can
learn perfectly, and hence, it places a distribution on all
possible cache configurations. Therefore, the correct measure
of absolute performance of an algorithm is the closeness of the
distribution it assigns to the distribution of an ideal algorithm.

Caching Algorithms as Markov Chains: Given the finite-
state automata structure, each caching algorithm generates
a Markov process over the occupancy states of the cache.
Suppose there are a total of n content items in a library, and
the cache size is m < n. Then each state x is a vector of size
m indicating the content in each cache spot; we call the state
space of all such vectors S. Each cache request generates a
state transition based on the caching algorithm used via item
entrances and evictions. Hence, for a given request arrival
process, a caching algorithm is equivalent to a state transition
matrix over the cache states. Since there is one state transition
per request, time is discrete and measured in terms of the
number of requests seen.

The typical performance analysis approach is then to de-
termine the stationary distribution of the Markov process
of occupancy states, and from it derive the hit probability.
However, this approach loses all notion of time, and also does
not allow us to compare the performance of each algorithm
with the best possible (assuming causal knowledge! of the
request sequence). A major goal of this paper is to define an
error function that captures the online distributional learning
perspective, and hence accounts for both the error due to time
lag of learning, as well as the error due to the inaccuracy
of learning the popularity distribution. Such an error function
would allow us to understand better the performance of
existing algorithms, as well as aid in developing new ones.

Main Contributions: Our goal is to design a metric that
accounts for both the accuracy of and the lag in learning.
To develop a good accuracy metric, we need to characterize
the nearness of the stationary distribution of an algorithm to
the best-possible cache occupancy distribution. If the statistics
of the cache request process are known, the obvious approach
to maximizing the hit probability (without knowing the re-
alization of requests) is to simply cache the most popular
items as constrained by the cache size, creating a fixed vector
of cached content (a point mass). How do we compare the
stationary distribution generated by a caching algorithm with
this vector? A well known approach to comparing distri-
butions is to determine the Wasserstein distance between
them [9]. However, since we are dealing with distributions
of permutations of vectors, we need to utilize a notion of
a cost that depends on the ordering of elements. Such a
notion is provided by a metric called the generalized Kendall’s

I'The provably optimal Bélady’s algorithm [8] uses the entire sequence of
future requests, and is neither causal nor Markovian.

tau [10]. Coupling these two notions together, we define a
new metric that we call the “r-distance”, which correctly
represents the accuracy of learning the request distribution.
Being a distance between cache occupancy distributions, the
7-distance can also be mapped back to hit probability or any
other performance measure that depends on learning accuracy.
The closest existing work to our approach is [11], in which
distributions over permutations of n items over n spots are
studied with a cost function resembling Kendall’s tau. We
also emphasize that the 7-distance formalizes the conceptual
remark made earlier on assessing the performance of a caching
algorithm by comparing it to an ideal algorithm in terms of the
distance between the distributions they engender. Additionally,
this is not meant to be calculated for any realistic cache
parameters; in fact, in such settings even the stationary hit
probability of an algorithm cannot be calculated.

To characterize lag, we need to study the evolution of the
Markov chain associated with caching algorithm to understand
its rate of convergence to stationarity. The relevant concept
here is that of mixing time, which is the time (number
of requests in our case) required for a Markov process to
reach within e distance (in Total Variation (TV) norm) of its
stationary distribution. To the best of our knowledge, except
for [12] that studies LRU, there is comparatively little work
on analyzing the mixing time of caching algorithms, although
there has been some brief commentary on the topic [2], [11].
However, this metric is crucial to understanding algorithm
performance, as it characterizes the speed of learning.

Once we have both the 7-distance and the mixing time for a
caching algorithm, we can determine algorithm performance
as a function of the number of requests. Using the triangle
inequality and combining the 7-distance and mixing time (with
appropriate normalization), we define a metric that provides
an upper bound on the performance at any given time. We
call this metric the learning error, which effectively combines
accuracy and learning lag. Whereas comparisons of learning
error may not reflect the true performance differences between
two algorithms, nevertheless it correctly determines the trade-
off achieved by separately calling out the speed and accuracy
of learning achieved.

If we know the time constant of the changes in the requests
process by studying the arrival process over time, we can use
this knowledge to pick a caching algorithm that has the least
learning error, and hence the highest hit probability over a
class of caching algorithms. Could we also design an optimal
caching algorithm for a dynamic arrival process? While this
is a difficult problem to solve optimally, in this paper, we
first characterize the performance of an isolated cache through
7-distance and mixing time to study the adaptability of the
candidate caching algorithms with simple and meta caches. We
use the insights gained in this process to develop an algorithm
that operates over the hybrid paradigm. We call the resulting
algorithm as Adaptive-LRU (A-LRU). In particular, we focus
on a two-level version of A-LRU, and are able to ensure
that its learning error at a given time can be made less than
either LRU or 2-LRU. We also show that it has the highest
hit probability over a class of algorithms that we compare it
with using both synthetic requests generated using a Markov-

modulated process, as well as trace-based simulations using
traces from YouTube and the IRCache project.

Related Work: Caching algorithms have mostly been ana-
Iytically studied under the IRM Model. Explicit results for
stationary distribution and hit probability for LRU, FIFO,
RANDOM, CLIMB [1], [2], [13], [14] have been derived
under IRM, however, these results are only useful for small
caches due to the computational complexity of solving for
the stationary distribution. Several approximations have been
proposed to analyze caches of reasonably large sizes [15], and
a notable one is the Time-To-Live (TTL) approximation, which
was first introduced for LRU under IRM [16], [17]. It has been
further generalized to other cache settings [3], [4], [15], [18].
Theoretical support for the accuracy of TTL approximation
was presented in [18]. Closest in spirit to our work is [19] that
studies TTL caching under non-stationary arrivals, but does
not consider mixing times. A rich literature also studies the
performance of caching algorithms in terms of hit probability
based on real trace simulations, e.g., [4], [5], [7], and we do
not attempt to provide an overview here.

Paper Organization: The next section contains some tech-
nical preliminaries and caching algorithms. We consider our
new notions of learn error, r-distance and mixing time in
Section III. We derive steady state distributions of caching
algorithms in Section IV and analyze the mixing time in
Section V. We characterize the performance of different algo-
rithms in terms of permutation distance and learning error in
Section VII. Finally, we provide trace-based numerical results
in Section VIII. We conclude in Section IX. Some additional
discussions and proofs are provided in [20].

II. PRELIMINARIES

Traffic Model: We assume that there is a library of n items.
The request processes for distinct content are described by
independent Poisson processes with arrival rate A; for content

i=1,---,n. Without loss of generality (w.l.o.g.), we assume
that the aggregate arrival rate is 1, then the popularity of
content i satisfies p; = A;. W.Lo.g., we assume that the

reference items are numbered so that the probabilities are in
a non-increasing order, i.e., p; 2 p2 = -+ = py.

Popularity Law: Whereas our analytical results are not for any
specific popularity law, for our numerical investigations we
will use a Zipf distribution as this family has been frequently
observed in real traffic measurements, and is widely used in
performance evaluation studies in the literature [6]. For a Zipf
distribution, the probability to request the i-th most popular
item is p; = A/i, where « is the Zipf parameter depending on
the application considered, and A is the normalization constant
so that 3} | p; = 1 if there are n unique items in total.
Dimensions of Caching: A cache is fundamentally a block of
memory that can be used to store data items that are frequently
requested. Over the years, different paradigms have evolved on
how best to utilize the available memory. Most conventional
caching algorithms, such as LRU, RANDOM and FIFO, have
been designed and analyzed on a simple (isolated) cache, as
shown in Figure 1 (a). New caching algorithms have been
proposed that have been shown to have better performance

[omez] [] [oa]red]

cache 1 [meta-cache]

(a) (b) (c) (d)

Fig. 1. Dimensions of caching.

than the classical paradigm, often through numerical studies.
The different dimensions that have been explored are two
fold. On the one hand, the memory block can be divided into
two or more levels, with a hierarchical algorithm attempting
to ensure that more popular content items get cached in the
higher levels. For example, a simple 2-level cache (also called
a linear cache network) is shown in Figure 1 (b), and it has
been empirically observed that under an appropriate caching
algorithm, it could display a higher hit probability than that
of a simple cache of the same size. On the other hand, a
meta-cache that simply stores content identities can be used
to better learn popularity without wasting memory to cache the
actual data item. The idea is illustrated in Figure 1 (c) with
one level of meta caching. A concept that we will explore
further in this paper is to mix both ideas, shown in Figure 1
(d). However, in all cases, it is not clear how the different
dimensions enhance the hit probability, and how they impact
convergence to stationarity.

Caching Algorithms: There exist a large number of caching
algorithms, with the difference being in their choice of inser-
tion or eviction rules. In this paper, we consider the following
three dimensions of caching algorithms as illustrated in Fig-
ure 1. First, we consider the conventional signle-level caching
algorithms to manage a single cache shown in Figure 1 (a),
including LRU [1], [12], [13], FIFO [1], [13], RANDOM
[1] and CLIMB [1], [2]. Second, we consider meta-cache
caching algorithms to manage caches as shown in Figure 1
(c), including k-LRU [3], [4]. Third, we consider multi-level
caching algorithms to manage caches as shown in Figure 1 (b),
including LRU(m) [3] and ARC. Due to space constraints, a
detailed explanation on the operations of these algorithms are
available in [20].

Based on the learning error analysis of these algorithms
in the following sections, we also propose a novel hybrid
algorithm, Adaptive-LRU (A-LRU). Detailed operation of A-
LRU is presented in Section VI.

III. LEARNING ERROR

We desire a notion of error that accounts for the tradeoff
between accuracy and speed of learning. The accuracy can be
characterized by the nearness of the stationary distribution of
an algorithm to the best-possible cache occupancy distribution.
The speed of learning can be characterized by the mixing time
of the caching algorithm. Clearly, a figure of merit of this kind
is the distance

Sa(t) = sup |ma(x, 1) — |
xeS

< |my = €'lr + sup |ma(@, 1) — myle, (D

xzeS
measured in some metic 7 after 7 requests, where 7, is the
stationary distribution of algorithm A, c¢* is the best-possible

occupancy vector and ma(ax,t) is the row corresponding to
state * € S of the 7-step transition matrix of algorithm A;
these will be described in detail later. The first term above is
the error in the (eventual) learning of the algorithm (accuracy),
and the second term is the error due to time lag of learning
(efficiency). We could then argue that if the time-constant of
the change in the request distribution is ¢, then the caching
algorithm A that has a low value of the RHS would have
attained some fraction of optimality by that time. We pause to
reemphasize that the utility of the learning error is in revealing
the trade-off achieved by an algorithm by disentangling the
speed and accuracy of learning. In the rest of this section, we
will posit an appropriate metric 7 and characterize both the
error terms.

A. Permutation Distance

We seek a refinement that would allow us to determine “how
close” the stationary performance of an algorithm is to the
best-possible. If we have full knowledge of the popularity
distribution at any time, we could simply cache the most
popular items in the available cache spots, placing the most
popular element in first cache spot, and then proceeding
onwards until the m-th spot. This approach would maximize
the hit probability, as well as any other metric that yields better
performance when more popular items are cached. We denote
this ideal occupancy vector as ¢*; this ideal distribution is then
a point-mass at ¢*. As a means to determine closeness of the
stationary performance of an algorithm to the ideal scheme, we
start by discussing an appropriate distance between the ideal
occupancy vector and any possible cache occupancy state.

1) Generalized Kendall’s Tau Distance: Let [n] =
{l,---,n} be a library of items and [n],, be the set of m
items chosen from [n]. Let S be the set of permutations on
[7],,,. Consider a permutation o € S}, we interpret o (i) as
the position of item i in o, and we say that i is ahead of j in
o if o) < o(j). W.lo.g, we take o (i) = 0 for i € [n]/[n]n,
i.e., all items absent in the cache have position 0.

The classical Kendall’s tau distance [21] % is given by

K(oy,07) = Ligs(iy<oa ()) ()
@@.)):01(D)>01(j)

where 1 4 is the indicator function and 1.4 = 1 if the condition
A holds true, otherwise 14 = 0.

However, this conventional definition does not take into
account the item relevance and positional information, which
are crucial to evaluating the distance metric in a permutation.
Since we wish to compare with ¢*, in which the most popular
items are placed in lower positions, the errors in lower
positions in the permutation need to be penalized more heavily
than those in higher positions. Many alternative distance
measures have been proposed to address these shortcomings.
In the following, we consider the generalized Kendall’s tau
distance proposed in [10] that captures the importance of each
item as well as the positions of the errors.

2We consider p = 0 for the definition given in [21], which is an “optimistic
approach” that corresponds to the intuition that we assign a nonzero penalty
to the pair {7, j} only if we have enough information to know that i and j
are in the opposite order in the two permutations o and 0.

Let w; > 0 be the element weight for i € [n]. For simplicity,
we assume that w; € Z%*; all the subsequent results hold
for non-integral weights as well. In addition to the element
weight, as discussed earlier, we wish to penalize inversions
early in the permutation more than inversions later in the
permutations. In order to achieve this, we define position
weights to differentiate the importances of positions in the
permutation. We first consider the cost of swapping between
two adjacent positions. Let £; > O be the cost of swapping
an item at position j — 1 with an item at position j, and
let go = 0, qr = 1and q; = g1+ for 1 < j < m.
Define gy, , = % to be the average cost that item i
encountered in moving from position o (i) to position 07 (i),
with the understanding that cjf,l,az =1if o1 (i) = o2(i). We set
the value of q"'fl’gz similarly. We then define the generalized
Kendall’s tau distance as follows:

Ky, s (01,02) = Z

o1(H)<oi(j)

WiWj G o im0 s (i)} ()

Remark /: Note that if we are interested only in cache hits
and misses (eg., if there is no search cost within the cache),
the ordering is irrelevant and only content presence or absence
matters. The Kendall’s tau still applies with weights being just
0 and 1, to indicate presence and absence, respectively. Further,
we now need only consider distances between equivalent
classes of cache states, where two cache states with identical
content are equivalent.

2) Wasserstein Distance: While the generalized Kendall’s
tau distance is a way of comparing two permutations, the
algorithms that we are interested in do not converge to a single
permutation, but yield distributions over permutations with
more elements in their support. Hence, we should compare
the stationary distribution 7, of an algorithm A, with ¢
using a distance function that accounts for the ordering of
content in each state vector. Given a metric on permutations,
the Wasserstein distance [9] is a general way of comparing
distributions on permutations.

Let (S, d) be a Polish space, and consider any two proba-
bility measures u and v on S, then the Wasserstein distance®
between u and v is defined as

W)= inf {BX. V)] Px()=pPy()=v), @
Px,y(+")
which is the minimal cost between p and v induced by the
cost function d.

3) t-distance: We are now ready to define the specific form
of Wasserstein distance between distributions on permutations
that is appropriate to our problem. We define the 7-distance
as the Wasserstein distance taking the generalized Kendall’s
distance in (3) as the cost function in (4).

Since the ideal occupancy vector ¢* is unique and fixed, the
infimum in (4) over all the couplings is trivially given by the
average distance, i.e.,

Iy = €l = Wy,) =) K (@ian, € @), - (5)
x

3W.l.o.g., we are interested in the L!-Wasserstein distance, which is also
commonly called the Kantorovich-Rubinstein distance [9]. For convenience,
we express Wasserstein distance by means of couplings (joint distributions)
between random variables with given marginals.

where K,, /(-,-) is the generalized Kendall’s tau distance
defined in (3), and x4y is the component of state under
algorithm A corresponding to real items. Thus, x4y = = for
all the conventional algorithms considered in Section IV-A,
and the multi-level caching algorithms in Section IV-C, but
Tra) = xx for k-LRU as discussed in Section I'V-B.

B. Computation of Mixing Time

While comparing the 7-distance of the stationary distance of
an algorithm to the ideal occupancy vector does provide insight
into the algorithm’s accuracy of learning, it says nothing
about how quickly the algorithm can respond to changes in
the request distribution—a critical shortcoming in developing
and characterizing the ideal algorithm for a given setting.
How does one come up with a metric that accounts for both
accuracy and speed of learning? It seems clear that one ought
to study the evolution of the caching process over time to
understand how quickly the distribution evolves. Within the
Markovian setting of our algorithms, the metric of relevance
in this context is called mixing time, which is the time required
for a Markov process to reach within € distance (in Total
Variation (TV) norm) of the eventual stationary distribution. If
we denote the row corresponding to state € S of the ¢-step
transition matrix of algorithm A by m4(x,t), then the mixing
time is the smallest value of ¢ such that

sup |ma(x, 1) — mylry < € (6)
xeS

for a given € > 0 [22]; denote it as tyix(€). As mentioned
earlier, we will also think of 74 (x,) and ”Z as distributions
on permutations of the n objects.

Mixing times can be estimated using many different pro-
cedures. Here, we use conductance to build bounds on the
mixing time through Cheeger’s inequality. We first introduce
these techniques and then characterize the mixing time of
various caching algorithms in Section V. These bounds will
allow us to compare all the algorithms on an equal footing,
and also to determine the first-order dependence on algorithm
parameters.

1) Spectral Gap and Mixing Time: Let y* be the spectral
gap of any Markov chain with transition matrix P, and denote
mp as its corresponding stationary distribution. Then defining
Tmin := Minges mp(x), an upper bound on the mixing time
in terms of spectral gap and the stationary distribution of the
chain is given as follows [22], [23]:

1) . @

€T min

1
tmix(€) <1+ —*ln(
Y

2) Conductance and Mixing Time: For a pair of states
x,y € S, we define the transition rate Q(x, y) = n(x)P(x, y).
Let Q(S1,82) = Yzes, Lyes, Q(x, y), for two sets 51, 5, € S.
Now, for a given subset S € S, we define its conductance

— 9(S.5) — . S) i
as O(S) = ()7 E)’ where 7T(S_) = Yies . and (S, S) is
a cut of the graph. Note that Q(S, S) represents the “ergodic
flow” from S to S. Finally, the conductance of the chain P is
the conductance of the “worst” set, i.e.,

O = O(S). ®)

min
SscS,n(S)<

The relationship between the conductance and the mixing
time of a Markov chain (the spectral gap) is given by the
Cheeger inequality [23], [24]:

(DQ
5 <y" <20.)

Combining (9) with the previous result in (7), we can relate
the conductance directly to the mixing time as follows:

Imix(€) < q% (ln 7Tnl11n +In é) . (10)

While the spectral gap and conductance of a Markov chain
can provide tight bounds on the mixing time of the chain,
these values are often difficult to calculate accurately. If we
are interested in proving rapid mixing*, we can provide a lower
bound on the conductance. Canonical paths and congestion are
used in this regard as they are easier to compute, and bound
the conductance from below. For any pair x,y € S, we can
define a canonical path 5y = (= x,- -+, 2; = y) running
from x to y through adjacent states in the state space S of
the Markov chain. Let ¥ = {y/;,} be the family of canonical
paths between all pairs of states. The congestion of the Markov
chain is then defined as

1
= p(P) = - 11
p=pH) (IB,a’L)’() m(uw) Py Z (an
x,yeS

3 Yy using (u,v)

(@) (y) ¢

where the maximum runs over all pairs of states in the state
space, and the number of canonical path is of the order of
I'2, with T being the number of possible states. Therefore,
high congestion corresponds to a lower conductance, and as
demonstrated in [26]

o) (12)

1

> —.

2p
Note that the above result applies to all possible choices of
canonical paths, for example, no requirement is made that the
shortest path between two states has be chosen.

3) Mixing Time Bound: Based on the above analysis, we
are ready to present an explicit general bound on mixing time

as follows.

Lemma 1: Suppose the Markov chain associated with
caching algorithm A has a reversible transition matrix P, and
denote the corresponding stationary distribution as 7},. Based
on the analysis of the relations between conductance and
mixing time in (8) - (12), we can directly characterize the
mixing time of a caching algorithm’:

8(713’; max)4 -t
— 3 In
(ﬂp’mianin)

tmix (€) < (13)

~ +In l),
”P,min €
where n;,max = Maxges Tp(T), n;’min = Minges np(x), and
Pnin is the minimal transition probability from one state to

another state.
The proof of this lemma is straightforward given (8) - (12),
since we only need to find an upper bound on the congestion

4A family of ergodic, reversible Markov chain with state space of size |S|
and conductance ®s) is rapidly mixing if and only if @5 > ﬁfor some
polynomial # [25]. This result is commonly used to show rapid mixing of
Markov chains.

SWe omit the superscript A for brevity.

p through characterizing 7, . and 7}, . given the steady
state distribution. As the analysis for different algorithms
varies considerably in terms of the characterization of the
spectral gap, we will use the above result for an equal footing
comparison.

4) Non-Reversibility and Mixing Time: Many results on
mixing times have been developed in the context of a re-
versible Markov chain. However, many of the popular caching
algorithms such as the LRU family generate non-reversible
Markov chains. From [23] it follows that several of results
that apply to reversible Markov chains hold even without
reversibility but with the modifications described below.

For any non-reversible Markov chain with transition matrix
P, first determine P*, which is the time-reversed transition
matrix:

mp(@) P (2, y) = 7p(y) P(y, ©), (14)

where x,y € S. Then we can construct a reversible Markov
chain with transition matrix £ EP *, for which the following
result holds.

Lemma 2: Let P be the transition matrix of a non-reversible
Markov chain, and P* be the time-reversal. Denote 7}, and y},
be the corresponding stationary distribution and spectral gap,
then we have

Tp(x) = Mpe (&) = Tppe (), Y € S, andyp = yp. = Vp,pr -
2 2
(15)

This result was originally presented in [27], and the proof
in our context is presented in [20] for completeness. Then
from (7), we can equivalently use the reversible Markov
chain £ +2P " to bound the mixing time of the non-reversible
Markov chain P through applying existing results on reversible
Markov chains. This procedure will be utilized in the following
subsections.

Given the results in Lemma 1 and Lemma 2, and the
fact that @(m, y) > P(x,y)/2 we immediately have the

following result:

Corollary 1: Suppose the Markov chain associated with
caching algorithm A has a non-reversible transition matrix P.
Then we have

8(71'*)4 . r4 1 1
Imix(€) < P max (hl " +1In —),

P .
(”;’,min ?m)2 ﬂP,min

(16)

%

where n;’mx = MaxXges p(T), Tp min = minges np(x), I is
the number of possible states and P, is the minimal transition
probability from one state to another state.

Remark 2: From (13) and (16), it is clear that for both
reversible and irreversible Markov chains, we need to charac-
terize n;, max? n;’min and P, in order to obtain mixing time
bounds. Thus, identification of the steady state distribution ﬂ';
(discussed in Section IV) in a way that allows us to determine
these bounds is crucial in obtaining mixing time bounds.

C. Learning Error

Since the space of all permutations on n objects is finite, it
has a finite diameter in terms of the generalized Kendall’s tau

distance. Let this diameter be denoted as x-. Then (1) can be
bounded using the triangle inequality as

SA(t) S|y — €'l + ke sup |ma(z, 1) — 7ylry = ea(r). (17)
xzeS

We refer to ea(t) as the learning error of algorithm A at
time 7, which is now only a function of the accuracy and
mixing time of the algorithm. In order to compute the learning
error e4(t) in (17), we need the stationary distribution of
algorithm A. In the following sections, we first characterize
the stationary distributions of different caching algorithms in
Section IV, then analyze their mixing time in Section V, and
finally evaluate their performance in Section VII.

IV. STEADY STATE DISTRIBUTION

We consider the question of determining the stationary
distribution of the contents of a cache based on the caching
algorithm used. Each (known) caching algorithm A under any
Markov modulated request arrival process (IRM too) results
in a Markov process over the occupancy states of the cache.

A. Classical Results on Single-Level Caching Algorithms

Suppose there are a total of n content items in a library
L, and the cache size is m < n. Then each cache state x is
a vector of length m that indicates the content in each cache
spot. We denote x; € L as the identity of the item at position
j in the cache, i.e., € = (x1,---,X;;,). As mentioned earlier,
we call the state space of all such vectors S. Our notation for
state is consistent with respect to the algorithm descriptions
in Section II and represents motion from “left-to-right” under
our candidate algorithms. For example, under LRU x; has been
requested more recently than xj if j < k.

One can potentially determine the stationary distribution of
the Markov process generated by a particular algorithm A,
denoted 7%,. This procedure has been carried out for several
classical caching algorithms in the literature [1], but the results
are not available in the desired form (viewed in terms of
permutations) so we present them for the Markov chains
generated by FIFO, RANDOM, CLIMB and LRU.

Theorem 1: Under the IRM, the steady state probabilities
o (®)s TR anpom (B)s T vp (€) and 7 (), with ¢ € S
are as follows:

m
71';“::0((3) = —Z Hi:]}[I:;i s
yeS Y= Pyi
m
RANDOM (%) = ZH‘%
yes’ 1-:1Py,-
m ,m—i+1
TeLmvp (®) = it P i+l
Zyes T2, 5"
m
i@ = T

_..._pxm_l)’
(18)
where S’ denotes the set of all combinations of elements of
{1,---,n} taken m at a time. Note that elements of S’ are
subsets of {1,---,n}, while elements of S are ordered subset
of {1,---,n}, satisfying 3\, es Hj";1pyj =m!Yyes Hjmzlpyj.
These are the well-known steady state probabilities for FIFO,
RANDOM, CLIMB and LRU [1], [2], [13], [14], [28]. The

(1 _le)(l — Px; —ng)"'(l — Px;

result for LRU is obtained by a probabilistic argument [29].
We detail this in [20] for completeness, and since we will use
the method for other related algorithms.

B. Meta-cache Caching Algorithms

A closed form result of the stationary distribution of the
Markov chain generated by k-LRU (see Figure 1 (c) for
typical configuration) is not available currently. Motivated
by the approach to determining the stationary distribution
of LRU [29], we use a probabilistic argument to obtain the
general form of the stationary distribution of k-LRU. While
the expression that we obtain is complex from the perspective
of numerical computation, it will provide us with the necessary
structure to obtain mixing time bounds in Section III-B.

Consider a cache system with k — 1 levels of meta-cache,
followed by a level of real cache. We denote x(; ;) € L
as the identity of the item at position j in cache i. Here,

i € {1,---,k — 1} refer to meta caches, while i = &k
refers to the real cache. We denote the state of level j as
x; = (X¢j,1) "> X(,m)), and the state of the whole cache as
x = (xy,---,xr). Note that only x; caches the real items,

while all other levels cache only meta-data. Finally, let X c L
be the set of items present in .

Definition 1: Sample Path: A sample path y(x) for state
x is a sequence of requests that leads to the state « under the
k-LRU algorithm starting from any fixed initial state (such as
the empty cache).

For any item y € X, let h(y) = max{i : x¢ ;) =y}, i.e., h(y)
is highest cache level at which item y is present. Each sample
path y(x) must contain a set of the final h(y) requests for
each y € X. Call the union of all these requests as X. Hence,
X will contain exactly h(y) copies of each item in X. Note
that |X| is at most Zj?:] Jjm, which occurs when all the items
in x are distinct from each other.

Let & represent an arrangement of the items in X. Again,
note that this arrangement has exactly 4(y) copies of each item
in X. Then an arbitrary request sequence (&) following &
interspersed with any other items drawn from £, which does
not violate the condition that & is the ordering of the final A(y)
requests for each y € X, is a candidate sample path leading to
x. However, 7(&) might not be consistent with k-LRU, i.e.,
not all arrangements of X can be used to generate sample paths
using k-LRU. Hence, we denote a sample path consistent with
k—LRU by y (&), which gives rise to the following definition.

Definition 2: Class of Sample Paths: We define a valid
class of sample paths A(&#) as a set of sample paths y(&)
each of which follows arrangement &, and is consistent with
the operation of k-LRU. Let Y'(x) be the set of the classes of
sample paths associated with state x, i.e., T(x) = {A(Z)}.

Definition 3: Subclass of Sample Paths: We define a valid
subclass of sample paths A(&) as a set of sample paths y(&) €
A(Z) and the set of items that can be requested between any
two items on the arrangement & are identical. Let T)(x)
be the set of the subclasses of sample paths associated with
class A(Z).

Thus, each valid sample path y(x) leading to state = under
k-LRU belongs to a valid subclass A(E£) € A(E).

We present one illustrative example to explain the above
definitions with a more simple one (k = 1) detailed in [20].
We consider n = 5, m = 2, and denote the items as 1,2,3,4, 5,
with popularities p; > p» > p3 > ps > ps and Z?zl pi = 1.

Example 1: Consider k = 2, i.e., the 2-LRU algorithm.
Consider state x = ((34), (12)), i.e., (12) are in the second
level and (34) are in the first level. So there are totally 2 % 1 +
2«2 = 6 items that need to be fixed to obtain a sample path,
i.e., items X = {2,2,1,1,3,4}. Based on the 2-LRU policy,
there are totally 9 valid arrangements (and hence classes) over
these 6 items, i.e., |T(x)| = 9. It can be verified that these
valid arrangements are: 2 - 2 - 1 - 1 - 4 = 3;2 —
25154 ->51-532-52-54->51->1- 3
254-2->1->21->34-52-2->1-1-3
251-22->1-24-532>1-22->54—>1->3;
12-22->51-24-531->52->2->54->51->3.
Each arrangement & above can be used to generate infinite
sample paths that belong to the corresponding class A(&). In
each class A(&), the items can be requested between any two
fixed items on arrangement & define the subclass A(&).

Consider a valid sample path y(x) € A(£) € A(Z). It can
be split into the requests following & and all other requests.
Define E(y(x)) as the probability of requesting all these other
items. Hence, the probability of any sample path is the product
of E(y(x)) and the probability of requesting the items in &.
Now, consider an item x(; ;) € €. According to our notation
h(x,jy) is the highest cache level in which the item appears.
Define a function

_ [Pxipy =G)
“zc“"') - {1, otherwise. (19)
We then have a characterization of the steady state distri-

bution of k-LRU.
Theorem 2: Under the IRM, the steady state probability
distribution of k-LRU satisfies the following form

k<w>ﬁ(ﬁ3) IEED DY

i=1 A@)eT () A(&)eA(x) y(x) eA(E)

E(y (@),

(20)

Proof: We consider a particular cache state x =
(x1,-- -, xr), where ©; = (x,1)," ", X(,m)), and attempt to
reconstruct the past history by looking backwards in time. Note
that only the k" level caches real data items (contents are),
while all other levels cache meta-data.

However, it is not as easy as in the case of LRU to find a
particular path to reconstruct the past history. Essentially, we
need to deteremine all the possible paths that result in the state
x under k-LRU. Recall that according to our notation 2(x;;))
is the highest cache level in which the item appears, and that

= h(xap)
Fris) = {p o o @)

1, otherwise.
As discussed in Section IV-B, any sample path y(&) leading
to 2 must contain an arrangement & over the set X in which
h(x,jy) copies of x(; j appear (these are the final requests for
that item in that sample path). This arrangement is common to
all paths in subclass A(&) and then class A(2). Also, every

class must contain some arrangements of the elements in X.
The probability of occurrence of any of these arrangements,
which is common to every sample path leading to x is
e (7 Free) -

Next, consider a particular class of sample paths A(Z).
Denote the sequence of items fixed by the arrangement & by
&1, , &5+ &x, where &5 stands for the identity of the 6-th
item in this arrangement. A sample path can be constructed by
adding other items from L between these fixed items in such a
way that the end result is & under k-LRU (i.e., it is valid). Let
the probability of requesting these other items for a particular
sample path be Z(y(x)). Then the probability of a valid
sample path y(x) is simply ?:1 (;.":1 jqi,j))l E(y(x)).

Thus, the sum of the probabilities of all the possible sample
paths in the subclass A(&), is

k m i
D]—[(3;“,,-)) E(y(@)).
j=1

y(@)eA@) i=1

(22)

Following this argument, we consider all the possible sub-
classes of sample path A(&) € A(&), and all the possible
classes of sample path A(Z) € Y(x), and sum all the
corresponding probabilities to obtain (20).]

Here, we work through Example 1 to illustrate the above
approach for calculating the stationary probabilities; again a
more illustrative and simple example (k = 1) is in [20].

Example 2: Consider k£ = 2, i.e., 2-LRU algorithm. Con-
sider state « = ((34), (12)), i.e., (12) are in the second level
and (34) are in the first level. From Example 1, |T(x)| = 9.
Consider a the set of sample paths A2 - 2 -1 -1 —
4 — 3). Each sample path y(x) in this set must satisfy one
of the following conditions: (a) There is no request between
any fixed items in y(x). In this case, E(y(x)) = 1; (b) In
general, between the two fixed instances of 2 — 2, we can
request one of the items in {1,3,4,5} any number of times.
Give these requests, between the two fixed items 2 — 1,
we can request item 1 any number of times if it has been
requested between 2 — 2, or request one item in {1,3,4, 5}
once that has not been requested between 2 — 2. Given these
requests, between the fixed items 1 — 1, we can request
one item in {3,4,5} once that has not been requested before.
Given these requests, between the two fixed items 1 — 4,
we can request one item from {3,4, 5} once that has not been
requested before. Given these requests, between the two fixed
items 4 — 3, we cannot request any other item. Note that the
way of choosing different items between any fixed two items
on the arrangement 2 - 2 — 1 — 1 — 4 — 3 define different
subclass of sample paths A2 -2 - 1 - 1 — 4 — 3). In
this way, we consider all the possible y(x) for the subclass
of sample path A 52 > 151 -54-53)cAR—>2—
1 - 1 - 4 — 3). Computing the corresponding probabilities,
we can obtain E(y(x)) for each y(x). Then summing them
all up, we get Xy (z)ens) =(y(x)) for this particular class
A2—-2->51->1-4->3).

Similarly, we can consider sample paths corresponding to
all the classes in Y (x) to obtain the steady state probability
7 gy (@) for state x.

C. Multi-level Caching Algorithms

Suppose there are h caches in the linear cache network (see
Figure 1 (b)). Each item enters the cache network via cache 1
and moves up one cache upon a cache hit. For simplicity, we
denote x(; jy as the identity of the item at position j in cache

i,where i=1,---,hand j=1,---,m;. Denote 712(:13) as the
stationary probability of state * = (x1,---,xp), with x; =
(X(i,1) " * » X(i,m;))- Following a similar sample path argument

as discussed for k-LRU in Section IV-B, we have
Theorem 3: Under the IRM, the steady state probabilities
of LRU(m) satisfies the following form ﬂ]’iRU(m)(af;) =

E(y(z)). (23)

(ft) 55 5

i=1\j A@) €T () A(2)eA(x) y(x)eA(®)

The proof is presented in [20]. This form allows us to
analyze the mixing time of LRU(m,)® through the conductance
argument in Section III-B.

Remark 3: We can directly compute the hit probability of
each algorithm once we have the stationary distribution. Due
to space constraints, we relegate the details to [20].

V. ANALYSIS OF MIXING TIME

We characterize the mixing times of LRU, FIFO, RAN-
DOM, CLIMB, k-LRU, LRU(m) using the result in Lemma 1
and Corollary 1. As it is convention to present mixing time
results with € = %, here onwards we will omit (€) in fix. Due
to space constraints, we only present the proof for k-LRU and
relegate all other proofs to [20].

A. Mixing Time of Single-Level Cache

1) Mixing Time of LRU: We consider the IRM arrival
process and denote the probability of requesting item i by p;.
It is easily shown that the Markov chain associated with the
LRU algorithm is non-reversible, e.g., using the Kolmogorov
condition [30]. Hence, as discussed in Section III-B4, we first
need to construct the time reversal PFRU-* given the transition
matrix PMRY of LRU. Then the Markov chain with transition

. pLRU, pLRUx . .
matrix ———— is reversible.
Theorem 4: The mixing time of LRU satisfies

J

LRU _

mix

(n4m (1_[m:1 Pj)4 H;n;ll (1 - 2{21 pn,l“)z
t

: 4
2 -1 J 5
Pn (H;nzl (l - Zl:l Pl)) I—[;l=n—m+l pj

.1;1(1_[;”;11 (1 - Zi:ﬂ’ﬂ“')))

n]
[Pi

(24)

Corollary 2: If the popularity distribution is Zipf(a), then
the mixing time of LRU satisfies

LRU _ (4a+2)m+2
th, = 0@ nn).

(25)

SCLIMB is LRU(m) with & = m and size 1 for all levels.

2) Mixing Time of RANDOM and FIFO: Since these al-
gorithms have reversible Markov chains, we can use (13) in

Lemma 1 to bound the mixing times.

Theorem 5: The mixing times of RANDOM and FIFO
satisfy ¢RANDOM, FIFO) _
mix

6
n2m (H;’;lp,‘) | (nn n;i]pi)
n .
6 " :
p% (H?:n—m.;.] Pi) Hz:n—m+1 Pi

0 (26)

Corollary 3: If the popularity follows a Zipf distribution,
then the mixing times of RANDOM and FIFO satisfies

tl(-IIEXANDOM’ FIFO) — O(n(6a+2)m+2 In I’l)

27

3) Mixing Time of CLIMB: We now turn to the CLIMB
algorithm. Again we have a reversible Markov chain, and (13)
in Lemma 1 is applied.

Theorem 6: The mixing time of CLIMB satisfies 1S-™MB =

i—-n+m

2 —i+1)0 —i

e (I e)" (G LY/
6

2 n

Pn (Hi:n—m+l Py)

- lp§n+m) : (28)
i=n—-m+1 i

Corollary 4: If the popularity distribution is Zipf(«), then
the mixing time of CLIMB satisfies

tgli;gMB — O(nSa/m(m+l)+2m+2 In l’l) (29)
In the worst case, the most likely item takes m — 1 steps to
attain its final position, the next item takes m — 2 steps, etc.,
giving the quadratic exponent term in the mixing time bound
of CLIMB.

4) Comparison of Mixing Times: We are now in a position
to compare the bounds on mixing times of our candidate
algorithms for the simple cache system under a Zipf(«@)
distribution. While the results are all upper bounds on mixing
time, they should allow us to make a judgement on the worst
case behaviors of each algorithm, and are a conservative
estimate on likely performance in practice. From Corollaries 2,
3, and 4, for any m > 2, the expected ordering in mixing times
from smallest to largest is likely to be

CLIMB

LRU t(RANDOM, FIFO)
mix

tmix = mix < 2 (30)
The phenomenon of LRU mixing faster than CLIMB has been
observed in earlier in simulation studies [11], [31]. However,
analytical characterization and comparison of mixing times of
single and multi-level caching algorithms has not been done
earlier.

Finally, we note that under the Zipf distribution, the conges-
tion of LRU, FIFO, RANDOM, CLIMB are all polynomial in
the size of the state space, i.e., the corresponding associated
Markov chains are all rapid mixing. The same phenomenon
holds for a uniform distribution. However, if we consider non-
heavy-tailed distributions, such as a geometric distribution,
mixing time is likely to be severely degraded. This observation

for LRU algorithm is discussed in [12].

B. Mixing Time of Meta-Cache: k-LRU

We next characterize the mixing time of the meta-cache
algorithm, k-LRU. Again the Markov chain associated with
the k-LRU algorithm is non-reversible (using the Kolmogorov
condition [30]). Hence, using Corollary 1 and the general
form of the stationary distribution of k-LRU presented in
Theorem 2, we should obtain mixing time bounds for this

algorithm.
Theorem 7: The mixing time of k-LRU satisfies
(*-LRU _ 0(pkm4(m=1)[k(k+1)m/2-1]
mix

. im k—i+1\2 5
(Hi=l(l:1+([_1)mpnfl+l)) *Pn

k(erm 4
x)
u 1
[17
J=1

I - maxgegs,s (Zje/\/(/::;i(ﬁ) Pj)
n ! .) G1)
f im k—i+1
[Tz (I=1+(i-1)m p"*l“)
Proof: Consider the stationary probability 7, | ()

given in Equation (20). We will first obtain an upper bound
Thax and a lower bound 77 . . We omit the subscript k-LRU
for brevity.

First, we characterize n,,. Recall that we denote
the sequence of items fixed by the arrangement & by
F PRI X A ’flz?l’ where &5 stands for the identity of the
o-th item in this arrangement. A sample path contains other
items from £ between these fixed items in such a way that the
end result is & under k-LRU, with the probability of requesting

these other items being Z(y(x)).

We obtain an upper bound on 7}, by taking the maximum
of each part in (20) as follows: (i) We take the maximum of
the product form H{.‘zl (;”: | jx(w.))l over all states « € S;
(i1) We consider the maximum number of subclasses of sample
paths and classes of sample paths; and (iii) We maximize the
sum of Z(y(x)) over all states, sample paths and classes. Then
we have

k

7' (@) < max]_[(]]:!un,n) ATa) @) - 1T (@)]

i=1

- max [max Z E(y(:z:)))) .
wes (A(m) (y(w)eA(@)

There are three terms in the above expression. We upper
bound the first term by using our assumption that p; > --- >
Pn- . X

. . L
It is obvious maxg, (Hf:l (]—[;”:1 jc(,;j))) = (]—[;":1 pj) .

(32)

The second term is upper bounded by (Zj]':l jm)! =
(k(k + 1)m/2)!, and the third term is upper bounded by

n \\k(k+Dm/2-1 . .
((m_l)) since at most m — 1 unique items can be
requested between any two fixed items on the arrangement.
We then consider the fourth term in the expression. Now,
for any =

N ¢
1X]

> za@ =112 2. »il |

y(@)eA(Z) o=1\4=0\jerh@

(33)

where XAé(511) is the set of items that can be requested

between the o-th and (6 + 1)-th fixed items on the class of
sample path A(Z).

It is clear that this term is maximized when the number of
product terms is in maximum, since each term in the product
is greater than or equal to one. The maximum number of items
that need to be fixed in a sample path leading to a state & is
Z§=1 jm = k(k +1)m/2 (which happens when all the items in
state x are distinct from each other).

Denote A™(2) = argmaxae) (Zymen E(r(@)) as
the class of sample path that achieves the maximum in the
third term (33). Let y . 6(m)) be the set of items that can be
requested between the 6 th and (6 + 1)-th fixed items on this

class of sample path.
Then we have

max | max Z E(y(m)))) = max(Z E(y(m)))
wes (A(‘”) (y(m)eA@) 25 \y (@) R (@)

¢
» k(k+1ym/2—1{ oo
a
= max Pj
zeS 5=1 ;) Azm;ww)
J€X(5,6+1)
4
(1 ke Dm/2-1 [0
< max P
JE€X (5,541
k(k+1ym/2-1
1
= . (34)
1 — max . @) Dj
©€S,6 (ZJEX(A;;T”) R/)

Note that in (34), (a) follows from the discussion above, and
(b) is true since we take the maximum of the probabilities over
all the items that can be requested between any two fixed items

over all possible states, sample paths and classes.
Hence, we have

m k Kk + 1) k(erhm

+1)m n 2

coo=([) (452 ()
j=1
k(k+1)m/2—-1
1 .
:ﬂ':nax. (35)
I -maxgzes s (Zje)((zg"gwlm)) Pj)
,0+

Next, we characterize n. . We obtain x . by taking the
minimum of each part in Equation (20): (i) We take the
minimum over the product form]_[f.‘=1 (]_[;": L I, J-))l over
all states € S; (ii) We consider the minimum number of
subclass of sample path and the minimum number of class of
sample path, i.e., I'TA@)(:B)I =1 and |Y(x)| = 1; and (iii) We
minimize the sum of E(y(x)) over all states, sample paths

and classes.
Then we have

k m i
n (:c)>m1n n(ﬂjx(m) 1.1
=1

i=1

- min [min Z E(y(:c)))).
wes (A(m) (y(m)eA(@)

(36)

Again, there are three terms in the above expression. We
may lower bound the first term by using our assumption that
p1 = -+ = pyn. It is obvious that this term is lower bounded
when the least popular km distinct items are stored in the
cache, following the sequence of popularity decreasing with
increasing levels. Thus, we have the least popular m items in
the k-th level, the next least popular items m + 1 to 2m items
in the (k — 1)-level, and so on until the whole cache is filled
with the least popular km distinct items, i.e.,

ﬂ(ﬂ:fm,,-)) =(l_[pn_j+1) (/ [p,,_j+1)
i=(k—1)m+1
k im k—i+1
= l_[(n pnl+l) . (37)

I=1+(-1)m
The second and third terms are both already lower bounded
by 1.

We then consider the fourth term in the expression. Again,
by (33), we know that this term is greater than or equal to
one (which happens when all terms equal to one). Since we
only consider one class of sample path, we fix the items of the
current state (which leads to the first term), and then consider
all the possible requests between each two fixed items. Since
we want to lower bound the third term, we consider the case
where there are no further requests between any two fixed
items, i.e., Mingegs (min,\(@) (Zy(m)eA(@) E(y(:c)))) =

Hence, we have

' (x) > m1n 1_[(1_[jx(,l))

k . k—i+1
m
>]_[(1 pn_m) o AR)
i=1 \I=1+(i-Dm
Therefore, given that I' = O(nk’"), we have
1 2 w32
P T (mnax)
ﬂ-r*nianin e
2km _2(m=1D)[k(k+1)m/2-1] m k
n -n
-o[== e (([17)
Hi:l (H;r:nl_,_(i_])m pn—l+l) “pn - J=1
k(k;l)m 1
2
1
)) 39)
1- max max (g,
28,6 (Zj ex! 6+(”)P])
Then follow Corollary 1, we have (31). |

Corollary 5: If the popularity distribution is Zipf(a), then
the mixing time of k-LRU satisfies

k-LRU
mix

¢ 0((k+D)k(2m-1)m+4(ka—1)m+6 1nn)

(40)

Remark 4: From (40), it is clear that increasing the number
of levels k, the upper bound of mixing time increases. We will
see in Figure 4 in Section VII-A that the meta-cache enhances
the hit probability. However, as 2-LRU has a larger mixing
time upper bound than LRU, this accuracy is at the expense
of an increased mixing time.

C. Mixing time of Multi-level Cache: LRU(m)

Finally, we characterize the mixing time of the multi-
level caching algorithm, LRU(m). The LRU(m) algorithm
Markov chain is also non-reversible (by using the Kolmogorov
condition [30]). Hence, we should obtain mixing time bounds
for this algorithm based on Corollary 1, by using the general
form of the stationary distribution of LRU(m) presented in

Theorem 3.
Theorem 8: The mixing time of LRU(m) satisfies

LRU(m) _ pAm+a(m=1)(my+--+hmp—1)
£, =0 -
mix Zi e 2i
h j=1" ")
Hi:l (Hk:1+2;;11 m; pn+k—m) Pn
, h—i+1\4
Z}:] mp—j+1

h
[T [T m
i=1 k:1+2j-:11 Mp—ji1

oo 4
o jmi-1
1

l-maxges,s |2 A"“X(m)l")
e J€X6.501y

In : !) (41)
>t om; !
h j=1""J

Hi:l (Hk=1+ ;;11 m; Pn+k—m)
where m = m; + mp + -+ - + my, and define Z;-_:l] Mp_js1 =0
fori=1.

Corollary 6: If the popularity distribution is Zipf(«), then
the mixing time of LRU(m) satisfies

tll;lli{xU(m) — O(n(4m+4a—6)(m1 +2my+---+hmy,)+6 Inn),

(42)

where m = my +my + - - - + my,.

Remark 5: The mixing time bounds obtained in the above
analysis are not as tight as ones that could be obtained directly
by the characterization of the spectral gap of a Markov Chain
and using the bound presented in (7). However, accurate
determination of the spectral gap using the eigenvalues of
a Markov chain (if real and positive) is typically difficult.
In the special case of LRU, [12], [32], [33] provide all the
eigenvalues, which can then be used to tighten the mixing
time bound to O(mlnn). However, such eigenvalue-based
results are not generalizable to 2-LRU and above, or indeed to
any of the other algorithms considered in this paper. Hence,
we use the simpler and uniform bound that, nevertheless,
brings out first-order dependence on algorithm parameters:
e.g., the exponent of the mixing time upper bound depends
quadratically in k and & for k-LRU and for h-level LRU(m)
paralleling the dramatic increase in mixing time observed in
practice/numerically.

VI. A-LRU

Our analysis thus far shows that different caching algorithms
choose a different trade-off between speed and accuracy of
learning. LRU has been widely used due to its speed of learn-
ing and ease of implementation. FIFO and RANDOM have
been used to replace LRU in some scenarios since they are
easier to implement with tolerable performance degradation.

CLIMB has been numerically shown to have a higher hit ratio
than LRU, at the expense of increased time to reach this steady
state in comparison to LRU. ARC is an online algorithm with
a self-tuning parameter, which has good performance in some
real systems but with complex implementation. k-LRU has
relatively low complexity, which requires just one parameter,
i.e., the number of meta caches k — 1. We will see that these
meta caches will provide a significant improvement in hit
probability over LRU even for small values of k, with most
of the gain achieved by k£ = 2. LRU(m) too has relatively
low complexity, and provides much higher hit probability over
LRU. Both schemes pay for the higher hit probability in terms
of much slower speed of learning.

Based on the previous analysis, we propose a novel hybrid

algorithm, Adaptive-LRU (A-LRU), which captures advan-
tages of LRU, 2-LRU and LRU(2), i.e., it learns both faster and
better about the changes in the popularity. A k-level version of
A-LRU will allow for an interpolation between LRU, 2-LRU,
-+, k-LRU, while at the same time incorporating multi-levels
as in LRU(m).
Adaptive-LRU (A-LRU): We define the quantities ¢; =
min(L, [(1 = B)m]), c2 = [(1 = B)m], c3 = [(1-B)m]| +1 and
¢y = max(m, (1 - B)m]+1), where g € [0, 1] is a parameter.
We partition the cache into two parts with C2 defined as
the positions from c;---c; and C1 as the positions from
c3---cq4. We also define the quantities m; = min(l, | Sm]),
my = |Bm], m3 = |Sm] + 1 and my = max(m, | Bm] + 1).
We associate positions m; - - - mp with meta cache’” M2 and
ms3 - - - myg with meta cache M 1. Note that value m; = mp =0
is an extreme point that yields behavior similar to 2-LRU,
while m3 = mqy = m + 1 yields LRU. See Section VII. The
cache partitions are shown in Figure 2.

Let us denote the meta-data associated with a generic item
i by M(i). If item i is requested, the operation of A-LRU is
illustrated in Figure 2. There are two possibilities:

(1) Cache miss, then there are three cases to consider:

(la) M(i) ¢ M1UM?2 : If c3 # m+1, i is inserted into cache
position [= c3, else (extreme case similar to 2-LRU) M (i) is
inserted into meta cache position [= m3. Cache/meta cache
items in positions greater than / move back one position, and
the last meta-data is evicted;

(1b) M(i) € M1 : Ttem i is inserted into position ¢y, all
other items in C2 move back one position, the meta data of
item in cache position ¢, is placed in position mj, all other
meta-data items move back one position, and the meta data in
position my moves to position ms3;

(Ic) M(i) € M2 : If ¢y = 1, item i is inserted into position
| = c1. All other items in C2 move back one position, and the
meta data of item in cache position ¢; is placed in position
my. Note that this situation cannot occur in the extreme case
of LRU, since M2 is always empty for LRU;

(2) Cache hit, then there are two cases to consider

(2a) i € C1 (suppose in position j): If ¢; = 1, then item i
moves to cache position / = ¢y, else (extreme case of LRU)
item i moves to cache position / = c¢3. If [= ¢y, all other items
in C2 move back one position, the item in cache position ¢

"Meta cache is also called virtual cache, which only stores meta-data.

3 ca a3 a N
a o«) a_e]
m m2

m1 m2 m . m2
cache partitions (1b) (2a)

3 4 3 c4 3 c4
cl 2 cl 2 cl 2
m3 ma m3 ma
ml m2 \ /

12) S 10) — @2b)

Cache 1

Fig. 2. Operation of the A-LRU algorithm.

is placed in position c3, all other items in C1 upto position j
move back one position. If / = ¢3 (extreme case of LRU), all
other items in C1 upto position j move back one position.

(2b) i € C2 (suppose in position j): Item i moves to cache
position cy, and all other items in positions min(2, ¢;) to j —1
move back one position.

Finally, note that the A-LRU setup can be generalized to
as many levels as desired by simply “stacking up” sets of
real and meta caches, and following the same caching and
eviction policy outlined above (where (1a) would apply to the
top level, while (1c) and (2b) would apply to the bottom level).
In that case, it would be parameterized by By, --, Sx with

f:l Bi = 1, for a k-level A-LRU. The cache size at level i
is m — [(1 — B;)m], and meta-cache size at level i is [(1 —
Bi)m]. Note that small corrections have to be made to the
above selections for a particular value of k (as we did in the
case of k = 2 described above) to ensure that the total amount
of cache space is limited to m.

Dynamic A-LRU: Whereas in our description of A-LRU,
we use a fixed partitioning parameter (3, the algorithm (and
an implementation of it) can easily consider time-varying S
values. For concreteness, we consider a k levels A-LRU with a
sequence { y1(2), y2(t), -+ »Xk—l(t)}fip with each term going
to 0 as the number of requests go to infinity, satisfying (i)
e xi(t) = 005 (i) X, x2(t) < o0; and (iii) x;(t)/ xis1(t) —
0. Here, x stands for the proportion of LRU to the rest, y»
stands for the proportion between 2-LRU and 3-LRU to the
rest, etc. A typical choice of sequences will be x;(¢) = m/(m+
max (0, — T,-)% /ci), where ¢ counts the number of requests,
and T;, ¢; > 0 are parameters to be varied. Under such setting,
the Bs in the previous definition of A-LRU satisfy that (i) at
level i < k—1,itis (1= x1 (1) (1= x2(2)) - - - (1= xi-1 () xi (),
and (i) at level &, itis (1— x1(#))(1— x2()) - - - (1 — xx-1(2)).

In particular, we consider the 2-level A-LRU shown in
Figure 2. Here, the Bs are 81 (t) = m/(m+max{0,7—T}/c) and
B2(t) = 1 — B1(t), where T and ¢ are parameters. With such
a sequence of Bs, A-LRU will start at 1 (LRU) and (slowly)
decrease to 0 (2-LRU).

Remark If the popularity distribution changes with time (in
Section VIII), we should only consider constant 8 algorithms.
These two distinctions follow from stochastic approximation
ideas where while decreasing step-size algorithms can con-
verge to optimal solutions in stationary settings, constant step-
size algorithms provide good tracking performance for non-
stationary settings. Therefore, we denote A-LRU(f) and A-
LRU(d) to distinguish A-LRU with a fixed or dynamic g,
respectively.

VII. PERFORMANCE EVALUATIONS
A. Permutation Distance

Since the 7-distance characterizes how accurately an algo-
rithm learns the popularity distribution, a smaller 7-distance
should correspond to a larger hit probability. We illustrate how
different algorithms perform using a content library size of
n = 20, and using caches of size 2,3,4,5. Figures 3 and 4
compare the 7-distance and hit probabilities of various caching
algorithms. The points on each curve correspond to cache size
of 2,3,4,5 from left to right. For example, all the points in
the dashed pink circle correspond to cache size of 3. Since
the cache size should be an integer, we partition the cache for
LRU(m) and A-LRU such that the size of cache 1 is always
1, and the remaining cache size is allocated to cache 2. Note
that this is simply for illustration, and A-LRU’s highest hit-
probability is when it mirrors 2—LRU. From Figures 3 and 4,
we can see that the 7-distance and hit probability follow the
same rule, i.e., a smaller 7-distance corresponds to a larger hit
probability, which is as expected.

Remark 6: The specific parameters in (3) used to produce
Figures 3 and 4 are as follows. We consider a Zipf popularity
distribution with @ = 0.8; for simplicity, we set the element
weights as w; = n —i + 1, and the swapping cost {; = logi
for i > 1, and {; = 0.1. Since different choices of weights
result in different values of the t-distance, the y-axis value in
Figures 3 and 4 is only used to show the relative difference
between algorithms.

B. Learning Error

We consider a cache system with (n,m) = (20,4), where
n is the total number of different items in the library and m
is the cache size. We consider requests following the IRM
model, with a Zipf popularity law with parameter @ = 0.8.
We compare the performance of LRU, FIFO, RANDOM,
CLIMB, LRU(m), 2-LRU, ARC and A-LRU with respect
to the stationary hit probability and learning error. In par-
ticular, we consider a two-level version of A-LRU which
is characterized by a parameter S € [0, 1] that determines
the interpolation rate between LRU and 2-LRU; the detailed
description is in Section VI. For LRU(m), we consider the
capacity allocation as (mi,m;) = (1,3). The corresponding
stationary hit probability of these algorithms are 0.325, 0.308,
0.308, 0.414, 0.407, 0.408, 0.352, 0.408, respectively.

The learning error of these algorithms as a function of
the number of requests received is illustrated in Figure 5
for single-level caching algorithms (from Figure 1 (a)), and
Figure 6 for multi-level caching algorithms, (from Figure 1
(b), (c), (d)), respectively, where the y-axis is shown in a
logarithmic scale. Note that the results for A-LRU presented
in Figure 6 used ¢ = 500 and T = 1250. We see immediately
that FIFO and RANDOM have higher learning error than the
other algorithms, regardless of the number of requests, which
corresponds to the smallest stationary hit probability. This
shows why their performance is poor, no matter how long
they are trained. The learning error for LRU decreases fast
initially and then levels off, whereas 2-LRU and LRU(m)
have a slower decay rate, but the eventual error is lower

9000 (g o LRU

+—* FIFO
a—-a RANDOM
+—e CLIMB

8000

7000

6000

5000

Tau-distance

4000

3000

pz

«

2000,

1000
0.15

0.25 0.30 0.35

hit probability

0.20 0.40 0.45 0.50

Fig. 3. Stationary 7-distance vs. hit probability for
single-level caching with IRM arrivals.

9000 (g9 LRU

LRU(m):h=2
2-LRU

~— ARC

— A-LRU(f)

8000

7000

@
3
S
S

Tau-distance
«
3
3
3

4000

3000

2000

-

0.25

1000
0.15

0.20 0.30 0.35

hit probability

0.40 0.45 0.50

Fig. 4. Stationary 7-distance vs. hit probability for
multi-level caching with IRM arrivals.

28000 o—o LRU

+—¢ FIFO
44 RANDOM
«—e CLIMB

26000

24000

22000

g error

learnin

200001 \§

18000

0 7500 15000 30000

number of requests

22500

Fig. 5. Dynamic learning error of single-level
caching under IRM arrivals.

o—o LRU
28000
LRU(m):h=2 05
26000] 2-LRU
*—+ ARC
24000 »— A-LRU(d) 04

22000

g error

learnin,

20000

hit probability
ol
w

18000

hit probability
o
w

_ e LRU
o—e LRU /) LRU(m):h=2
+— FIFO o/l 2-LRU
A4 RANDOM +—=+ ARC
+—e CLIMB »— A-LRU(d)

0 7500 15000 22500 30000 107

number of requests

Fig. 6. Dynamic learning error of multi-level
caching under IRM arrivals.

Fig. 7.
under IRM arrivals.
than that of LRU. This corresponds to faster mixing of LRU
but a poorer eventual accuracy (7-distance) as compared to
2-LRU and LRU(m), which are formally characterized in
Section III. ARC has a good performance initially, but it too
levels off to an error larger than 2-LRU. CLIMB eventually has
good performance, but it has a much slower decay rate. This
corresponds to the slow mixing of CLIMB when compared
to LRU, FIFO and RANDOM, consistent with our analysis in
Theorems 5, 6 and 7, Section III-B. A-LRU learns fast initially,
and then smoothly transitions to learning accurately, which
captures both the merits of LRU and 2-LRU, i.e., accurate
learning and fast mixing, and is able to attain a low learning
error quickly.

C. Hit Probabilities

The effects seen in Figures 5 and 6 are also visible in the
evolution of hit probabilities shown in Figures 7 and 8, respec-
tively, where the x-axis is on a logarithmic scale. Here, we
choose (n = 150, m = 30) in order to explore a range of cache
partitions for LRU(m) and A-LRU from (0,30)—(30,0). We
compare the upper envelope of achievable hit probability by
LRU(m) and A-LRU with various other caching algorithms.
We find that for any given learning time (requests), there is
a cache partition such that A-LRU will attain a higher hit
probability after learning for that time. These effects become
more pronounced as the partition space (cache size) available
for A-LRU increases.

Finally, we characterize the impact of the number of levels
on the performance. We compare the hit probability of k-LRU
for k = 1,2,3,4 with (n, m) = (50, 10). We observe that as the
number of cache levels k increases, the resulting algorithm

number of requests

Hit probability of single-level caching

10° 10
number of requests

10° 10* 10%

Fig. 8. Hit probability of multi-level caching under
IRM arrivals.

achieve a higher hit probability (i.e., higher accuracy) at the
expense of much larger number of requests (i.e., larger mixing
time), which is consistent with the mixing time analysis of k-
LRU shown in Section V-B. Due to space constraints, the plot
is shown in [20].

VIII. TRACE-BASED SIMULATIONS

The ideas presented thus far have been based on the hy-
pothesis that the request distribution changes dynamically, and
hence an optimal caching algorithm should track the changes
at a time scale consistent with the time scale of change. We
now validate this hypothesis and the benefits of using the A-
LRU algorithm using two different trace-based simulations.

A. YouTube Trace

We use a publicly available data trace [7] that was extracted
from a 2-week YouTube request traffic dump between June
2007 and March 2008. The trace contains a total of 611,968
requests for 303,331 different videos. About 75% of those
videos were requested only once during the trace. There is
no information on the video sizes. We therefore assume that
the cache size is expressed as the number of videos that
can be stored in it. This should have a low impact if the
correlation between video popularity and video size is low.
We find that @ = 0.605 is the best fit for a Zipf distribution.
However, a detailed inspection shows that this trace exhibits
significant non-stationarity, i.e., the popularity distribution is
time-varying.

We compare the hit performance of different algorithms
by varying cache size. Figures 9 and 10 depicts the hit

40

w
]

o
4
a-a

LRU
FIFO
RANDOM
CLIMB

hit probability (%)
g
hit probability (%)
N w
& 3

—a

~
)

-
&

&

~ o LRU
2, +— FIFO
2 a2 RANDOM
3 e—e CLIMB
2
§15
«—e LRU <
LRU(m):h=2 0
2-LRU
~— ARC
< A-LRU(H)-0.2

10 10
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.02

ratio=cache size/total number of unique items

0.10 0.03 0.04 0.05

Fig. 9. Hit probability vs. cache size for vari-
ous single-level caching algorithms with two-week
long YouTube trace [7]. YouTube trace [7].

30 18

ratio=cache size/total number of unique items

Fig. 10. Hit probability vs. cache size for various
multi-level caching algorithms with two-week long

5
0.06 0.07 0.08 0.09 0.10 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

ratio=cache size/total number of unique items

0.10

Fig. 11. Hit probability vs. cache size for various
single-level caching algorithms with one particular
day YouTube trace [7].

2 /)

g £ |[[ee LrRU
=% 24f| ¢4 FIFO
z 3 ||+ » RANDOM
s 3 |[s— cums
215 512
z =

o LRU

0 LRU(m):h=2 10 s
2LRU
+— ARC
= A-LRU(H-0.5

R

18

€ [~ 1rU

21 LRU(m):h=2
3 2-LRU

S ||~ ARC

512

=

Z

*— A-LRU(f)-0.2
& a b /
&
&

5
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

ratio=cache size/total number of unique items

0.10

Fig. 12. Hit probability vs. cache size for various
multi-level caching algorithms with one particular

day YouTube trace [7]. trace [34] for ICN.

probability as a function of the cache size when the total
number of unique videos is n = 303,331, and we use the
ratios m/n = 0.01, - - - ,0.10. For ease of visualization, we only
depict A-LRU with the optimal S, which outperforms all the
other caching algorithms.

We also conduct experiments on a one-day YouTube trace
to illustrate the adaptability of A-LRU. We randomly pick one
day from the two-week traces, in which the total number of
uniques videos is 3 x 107 and the Zipf distribution parameter
a = 0.48 (but popularity varies with time). Figures 11 and 12
depicts the hit probability as a function of the cache ratio.
We see that A-LRU again outperforms all other caching
algorithms.

B. ICN Traces

We run similar experiments using the traces from the
IRCache project [34], with attention on data gathered from
the SD Network Proxy (the most loaded proxy to which end-
users can connect) in Feb. 2013. A detailed study shows
that such traces capture regional traffic and exhibit significant
non-stationaries due to daily traffic fluctuations. We only
considered the traces in the 4 hour peak traffic period of each
day in order to measure the performance expected in the busy
hour. The traces contain 3416817 to 4121865 requests for
811827 to 993711 different data. About 67.61% to 69.27%
of those data were requested only once during the trace. We
find that @ = 0.814 to @ = 0.821 are the best fits for Zipf
distributions.

8
1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
core cache size

Fig. 13. Hit probability vs. cache size for various
single-level caching algorithms with SD Network

8
1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
core cache size

Fig. 14. Hit probability vs. cache size for various
multi-level caching algorithms with SD Network
trace [34] for ICN.

Figures 13 and 14 show the overall cache hit probability
versus the core cache size. We again observe that there is a
significant improvement using A-LRU, especially with 8 =
0.2.

IX. CONCLUSION

In this paper, we attempted to characterize the adaptability
properties of different caching algorithms when confronted
with non-stationary request arrivals. For this we cast caching
algorithm design as an online popularity distribution esti-
mation problem with stringent computational and memory
restrictions. In this context we proposed the 7-distance metric
to measure the accuracy of learning of any given caching
algorithm with respect to an ideal genie-aided scheme. To
elucidate our online learning perspective, we first considered
the stationary distributions of various caching algorithms under
a stationary request process, and computed the t-distance
between each one and the optimal content placement in the
cache. We then analyzed the mixing time of each algorithm,
to determine how long each one takes to attain stationarity.
By combining both of these metrics, we constructed the
learning error, which characterizes the tradeoff between speed
and accuracy of learning achieved by each known caching
algorithm. The learning error provides insight into the likely
performance of each algorithm under non-stationary requests,
and using the insights learned we developed a new algorithm,
A-LRU, that can adapt to different non-stationary request
processes and consequently has a higher hit probability than
any of the standard algorithms that we compared against, under
both synthetic and trace-based evaluation.

REFERENCES

[1] E. G. Coffman and P. J. Denning, Operating Systems Theory. Prentice-
Hall Englewood Cliffs, NJ, 1973.

[2] D. Starobinski and D. Tse, “Probabilistic Methods for Web Caching,”
Performance evaluation, 2001.

[3] N. Gast and B. Van Houdt, “Asymptotically Exact TTL-Approximations
of the Cache Replacement Algorithms LRU(m) and h-LRU,” in Proc.
of ITC, 2016.

[4] V. Martina, M. Garetto, and E. Leonardi, “A Unified Approach to the
Performance Analysis of Caching Systems,” in Proc. of INFOCOM,
2014.

[5] N. Megiddo and D. S. Modha, “ARC: A Self-Tuning, Low Overhead
Replacement Cache.” in Proc. of FAST, 2003.

[6] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “Analyzing the
Video Popularity Characteristics of Large-Scale User Generated Content
Systems,” IEEE/ACM Transactions on Networking (TON), 2009.

[71 M. Zink, K. Suh, Y. Gu, and J. Kurose, “Watch Global, Cache Local:
YouTube Network Traffic at a Campus Network: Measurements and
Implications,” in Electronic Imaging, 2008.

[8] L. A.Belady, “A Study of Replacement Algorithms for a Virtual-Storage
Computer,” IBM Systems journal, 1966.

[9] C. Villani, Optimal Transport: Old and New.

Business Media, 2008.

R. Kumar and S. Vassilvitskii, “Generalized Distances between Rank-

ings,” in Proc. of ACM WWW, 2010.

J. R. Bitner, “Heuristics that Dynamically Organize Data Structures,”

SIAM Journal on Computing, 1979.

J. A. Fill, “An Exact Formula for the Move-to-Front Rule for Self-

Organizing Lists,” Journal of Theoretical Probability, 1996.

W. E. King-III, “Analysis of Demanding Paging Algorithms,” in Proc.

of IFIP Congress, 1971.

E. Gelenbe, “A Unified Approach to the Evaluation of a Class of

Replacement Algorithms,” Computers, IEEE Transactions on, 1973.

E. J. Rosensweig, J. Kurose, and D. Towsley, “Approximate Models for

General Cache Networks,” in Proc. of INFOCOM, 2010.

R. Fagin, “Asymptotic Miss Ratios over Independent References,” Jour-

nal of Computer and System Sciences, vol. 14, no. 2, pp. 222-250, 1977.

H. Che, Y. Tung, and Z. Wang, “Hierarchical Web Caching Systems:

Modeling, Design and Experimental Results,” Selected Areas in Com-

munications, IEEE Journal on, Sep 2002.

D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact Analysis of TTL

Cache Networks,” Performance Evaluation, 2014.

S. Basu, A. Sundarrajan, J. Ghaderi, S. Shakkottai, and R. Sitaraman,

“Adaptive TTL-Based Caching for Content Delivery,” in Proc. of Sig-

metrics, 2017.

J. Li, S. Shakkottai, J. C. S. Lui, and V. Subramanian, “Accurate Learn-

ing or Fast Mixing? Dynamic Adaptability of Caching Algorithms,”

Arxiv preprint arXiv:1701.02214, 2017.

R. Fagin, R. Kumar, and D. Sivakumar, “Comparing Top k Lists,” SIAM

Journal on Discrete Mathematics, 2003.

D. A. Levin, Y. Peres, and E. L. Wilmer, Markov Chains and Mixing

Times. American Mathematical Soc., 2009.

R. R. Montenegro and P. Tetali, Mathematical Aspects of Mixing Times

in Markov Chains. Now Publishers Inc, 2006.

F. Chung, “Laplacians and the Cheeger Inequality for Directed Graphs,”

Annals of Combinatorics, 2005.

M. Mihail, “Conductance and Convergence of Markov Chains-A Com-

binatorial Treatment of Expanders,” in Proc. of IEEE FOCS, 1989.

A. Sinclair, “Improved Bounds for Mixing Rates of Markov Chains

and Multicommodity Flow,” Combinatorics, probability and Computing,

1992.

J. A. Fill, “Eigenvalue bounds on convergence to stationarity for non-

reversible markov chains, with an application to the exclusion process,”

The annals of applied probability, pp. 62-87, 1991.

O. I. Aven, E. G. Coffman, and I. A. Kogan, Stochastic Analysis of

Computer Storage. Springer Science & Business Media, 1987.

'W. Hendricks, “An Account of Self-organizing Systems,” SIAM Journal

on Computing, pp. 715-723, 1976.

F. P. Kelly, Reversibility and Stochastic Networks.

sity Press, 2011.

J. H. Hester and D. S. Hirschberg, “Self-organizing Linear Search,” ACM

Computing Surveys (CSUR), 1985.

R. Phatarfod, “On the Transition Probabilities of the Move-to-Front

Scheme,” Journal of applied probability, 1994.

D. Tang and V. Subramanian, “Eigenvalues of LRU via a linear algebraic

approach,” Operations Research Letters, 2018.

Springer Science &
[10]
[11]
[12]
[13]
[14]
[15]
[16]

(17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]
[25]

[26]

[27]

(28]
[29]
[30] Cambridge Univer-
(31]
[32]

[33]

[34] G. Bianchi, A. Detti, A. Caponi, and N. Blefari Melazzi, “Check before
Storing: What is the Performance Price of Content Integrity Verification
in LRU Caching?” ACM SIGCOMM Computer Communication Review,
2013.

Jian Li (S’16-M’17) received the Bachelor of Engineering degree in electrical
engineering from Shanghai Jiao Tong University, Shanghai, China, in 2012,
and his Ph.D. degree in computer engineering from Texas A&M University,
College Station, TX, USA, in 2016. He is currently a postdoctoral research
associate with College of Information and Computer Sciences, University of
Massachusetts Amherst, MA, USA. His research interests include modeling,
analysis and algorithm design of social and computer networks; data science
and large-scale data analytics; Internet of Things; optimization in large-
scale systems; online learning and online algorithm design; game theory and
network economics.

Srinivas Shakkottai (S’00-M’08-SM’15) received the Bachelor of Engineer-
ing degree in electronics and communication engineering from Bangalore
University, Bangalore, India, in 2001, and his M.S. and Ph.D. degrees in
electrical engineering from the University of Illinois at Urbana-Champaign,
Urbana, IL, USA, in 2003 and 2007, respectively. He was a Postdoctoral
Scholar with Stanford University, Stanford, CA, USA in 2007. He is currently
an Associate Professor with the Department of Electrical and Computer
Engineering, Texas A&M University, College Station, TX, USA. His research
interests include content distribution systems, pricing approaches to network
resource allocation, game theory, congestion control, and the measurement
and analysis of Internet data.

He is the recipient of the Defense Threat reduction Agency Young
Investigator Award (2009) and the NSF Career Award (2012), as well as
research awards from Cisco (2008) and Google (2010). He also received an
Outstanding Professor Award (2013) and was selected as a TEES Select Young
Faculty Fellow (2014) at Texas A&M University.

John C. S. Lui received the Ph.D. degree in computer science from UCLA.
He is currently the Choh-Ming Li Chair Professor in the Department of Com-
puter Science and Engineering, The Chinese University of Hong Kong. His
current research interests include communication networks, network/system
security, network economics, network sciences, cloud computing, large-scale
distributed systems, and performance evaluation theory. He serves on the
editorial boards of the IEEE/ACM Transactions on Networking, the IEEE
Transactions on Computers, the IEEE Transactions on Parallel and Distributed
Systems, the Journal of Performance Evaluation, and the International Journal
of Network Security. He was the chairman of the CSE Department from 2005-
2011. His personal interests include films and general reading. He received
various departmental teaching awards and the CUHK Vice-Chancellor?s
Exemplary Teaching Award. John is a co-recipient of the best paper award
in the IFIP WG 7.3 Performance 2005, IEEE/IFIP NOMS 2006, SIMPLEX
2013, and ACM RecSys 2017. He is an elected member of the IFIP WG 7.3,
Fellow of ACM, Fellow of IEEE, Senior Research Fellow of the Croucher
Foundation and was the past chair of the ACM SIGMETRICS (2011-2015).

Vijay Subramanian is an Associate Professor in the EECS Department at the
Univ. of Michigan, Ann Arbor. He got his Ph.D. from the ECE Department
at UIUC in 1999. Thereafter, he spent a few years as a researcher at Motorola
Inc. and the Hamilton Insitute in Maynooth, Ireland, and a research faculty in
the EECS Department at Northwestern University before moving to the Univ.
of Michigan in Fall 2014. His research interests are in stochastic analysis,
random graphs, game theory and mechanism design with applications to
social, economic and technological networks.

