
PULS: Processor-Supported Ultra-Low Latency Scheduling
Simon Yau, Ping-Chun Hsieh, Rajarshi Bhattacharyya, Kartic Bhargav K. R.,

Srinivas Shakkottai, I-Hong Hou, and P. R. Kumar
Texas A&M University, College Station

{symoyau, lleyfede, rajarshibh, kbhargav, sshakkot, ihou, prk}@tamu.edu

ABSTRACT
An increasing number of applications that will be supported by
next generation wireless networks require packets to arrive before
a certain deadline for the system to have the desired performance.
While many time-sensitive scheduling protocols have been pro-
posed, few have been experimentally evaluated to establish realistic
performance. Furthermore, some of these protocols involve high
complexity algorithms that need to be performed on a per-packet
basis. Experimental evaluation of these protocols requires a flexible
platform that is readily capable of implementing and experimenting
with these protocols.

We present PULS, a processor-supported ultra low latency sched-
uling implementation for testing of downlink scheduling protocols
with ultra-low latency requirements. Based on our decoupling ar-
chitecture, programmability of delay sensitive scheduling protocols
is done on a host machine, with low latency mechanisms being
deployed on hardware. This enables flexible scheduling policies on
software and high hardware function re-usability, while meeting
the timing requirements of a MAC. We performed extensive tests
on the platform to verify the latencies experienced for per packet
scheduling, and present results that show packets can be scheduled
and transmitted under 1 ms in PULS. Using PULS, we implemented
four different scheduling policies and provide detailed performance
comparisons under various traffic loads and real-time requirements.
We show that in certain scenarios, the optimal policy can maintain
a loss ratio of less than 1% for packets with deadlines, while other
protocols experience loss ratios of up to 65%.

CCS CONCEPTS
• Networks → Programmable networks; Wireless access net-
works;

KEYWORDS
MAC Scheduling, Ultra-low latency, Software Defined Radio

ACM Reference Format:
Simon Yau, Ping-Chun Hsieh, Rajarshi Bhattacharyya, Kartic Bhargav K. R.,
Srinivas Shakkottai, I-Hong Hou, and P. R. Kumar. 2018. PULS: Processor-
Supported Ultra-Low Latency Scheduling. In Proceedings of ACM MobiHoc

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiHoc ’18, June 2018, Los Angeles, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

conference (MobiHoc ’18). ACM, New York, NY, USA, 10 pages. https://doi.
org/10.475/123_4

1 INTRODUCTION
Strict latency requirement for some flows, while maintaining high
overall system throughput, is currently one of the most critical
challenges for next-generation wireless networks. Emerging appli-
cations, such as virtual reality (VR) [1], factory Internet of Things
(IoT), and tactile Internet [9], require an end-to-end latency between
1 to 10 milliseconds (ms) to provide seamless user experience. Other
traffic might simply require high throughput, such as data down-
loads, or intermittent connectivity with low data rates, such as IoT
applications. However, existing wireless networks cannot provide
such stringent latency guarantees, especially with heterogeneous
networks consisting of real-time and non-real-time traffic. For ex-
ample, the round-trip time of LTE is estimated to be at least 20
ms, including the transmission time, scheduling overhead, and pro-
cessing delay [5]. In practice, the current LTE technology can only
support voice or video streaming applications with round-trip time
in the range of 20-60 ms [14]. For Wi-Fi networks, due to the nature
of random access, the round-trip time could vary from several ms
to hundreds of ms depending on the traffic load [22]. Therefore,
compared to the current technology, the latency budget is expected
to be at least one order of magnitude smaller in next-generation
wireless networks.

To provide strict per-packet latency guarantees, numerous theo-
retical solutions have been proposed to accommodate per-packet
deadline constraints in wireless scheduling. For example, [7] pro-
poses a theoretical framework to study wireless scheduling with
per-packet deadline constraints. In this framework, packets not
delivered on time are dropped, and the goal is to attain an average
percentage of on-time deliveries. Later on, this framework has been
applied to many other scenarios, such as utility maximization [8],
scheduling for both latency-constrained and best-effort traffic [10],
broadcast traffic [6], and multicast traffic [11]. The performances of
these protocols are usually measured by timely-throughput, i.e. the
time average of the amount of data delivered within their deadlines.
While the above proposals are promising, there has been no im-
plementation for these ultra-low-latency wireless protocols while
supporting other types of traffic. As such, we do not know what
kinds of system throughputs and capacity regions are achievable
with these systems. Without knowledge of the throughputs and
capacity regions, these protocols may not function as expected.

Furthermore, future networks are expected to support many het-
erogeneous applications. Such diversity necessitates a system that
is capable of switching between a set of MAC protocols for different
applications. For example, onemight choose to use backpressure/max-
weight scheduling for throughput maximization [4, 23], deadline

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://doi.org/10.475/123_4


constrained scheduling for latency sensitive flows [7, 17] or per-
haps a time division solution to support polling of IoT devices or
in vehicular communication [12, 13]. Thus, a range of scheduling
algorithms need to be instantiated, with the scheduling algorithm
that is to be applied to a particular aggregate of packets being cho-
sen based on its requirements. This can be difficult to implement
on hardware due to the development time required, and the fact
that instantiating each algorithm occupies hardware resources (on
either FPGA or ASIC) that cannot easily be shared.

Another constraint appears in the form of the computational
resources needed to support these algorithms. For example, the
Max-Weight Independent Set problem that needs to be solved re-
peatedly for scheduling in multihop wireless networks is known to
be NP-hard, and even polynomial approximations need significant
computational resources [21]. More recently, scheduling algorithms
that take a given schedule and “puncture” it with delay sensitive
packets have been proposed to increase the efficiency of the MAC
for 5G applications, and these algorithms also require significant
computational resources [2]. As machine learning approaches make
their way into MAC algorithms, the need for high speed computa-
tion at each scheduling decision will only become more pressing.
Hence, the desire to support a diverse range of scheduling algo-
rithms, coupled with the fact that some of these algorithms might
require significant computational resources suggests the need for
a platform that can support processor-assisted software schedul-
ing. Thus, to prototype these ultra-low-latency wireless protocols
and achieve realistic timely-throughput and system throughput,
a powerful software-defined radio (SDR) platform with dedicated
architectural design is required to compute complex algorithms
quickly, provide enough latency budget for checking deadlines,
as well as minimize the software and hardware processing and
interfacing overhead.

Our main contribution is to bridge the gap between theory and
implementation for heterogeneous wireless networks supporting
flows with strict per-packet latency constraints (real-time flows), as
well as flows that have no latency constraints (non-real-time flows),
while maintaining high overall system throughput by proposing
PULS, a processor-supported software-defined wireless platform
that can support ultra-low-latency scheduling protocols. The PULS
platform consists of a host machine that has significant compu-
tational power in the form of a general purpose multicore CPU,
coupled with an SDR platform with FPGAs for low-level processing.
PULS aims to leverage the higher clock speeds, and memory avail-
able at the host machine (which are at least an order of magnitude
higher than what is available on SDRs) for performing complex
scheduling algorithms, while leveraging the deterministic perfor-
mance of the FPGA while performing simple repetitive tasks asso-
ciated with PHY and low-level MAC layers. To achieve the required
per-packet latency performance while performing scheduling on
the host, PULS needs to address the following challenges:

(1) Low interfacing latency between software host and hard-
ware. There are three major factors that affect the end-to-end
latency: (i) queuing delay on software host, (ii) interfacing la-
tency between software host and hardware, and (iii) hardware
processing time. Queuing delay depends mainly on the schedul-
ing policy, and hardware processing time can usually be made

small due to the high clock rate supported by current technol-
ogy. Therefore, with a proper choice of scheduling policy and
hardware component, interfacing latency between software
host and hardware needs to be minimized in order to achieve
ultra-low latency. In Section 5, we present a simple experiment
that demonstrates the interfacing latency of PULS is indeed
small compared to packet deadlines.

(2) Enforce per-packet deadline on a software-defined wire-
less platform. PULS aims to support per-packet latency as low
as 1 ms. When packets arrive at software host, they are first
queued and start waiting for transmission according to some
scheduling policy. The deadline of each packet in the queue
needs to be tracked and checked before transmission. A packet
that misses its deadline should be dropped from the queue.
Moreover, due to the nature of SDRs, packet transmission is
carried out on hardware while packet scheduling is often done
on software host.

(3) Achieve realistic per-flow timely-throughput and over-
all system throughput. Ultra-low latency needs to come with
realistic timely-throughput. Given the same physical data rate,
the overhead of enforcing per-packet deadlines could be quan-
tified by the difference in total MAC-layer throughput between
the networks with and without packet deadlines. However, this
should not come at the cost of reduced system throughput. In
Section 6.1, through an experimental study on system capac-
ity, we show that PULS achieves almost the same MAC-layer
throughput as that with no deadlines.

(4) Support functionsworking onheterogeneous time scales.
MAC layer functions operate on very different time scales. For
example, an ACK response needs to be done within tens of
microseconds. The transmission time of a typical data packet is
between 0.5 to 1 ms. The target per-packet deadline is between
1 to 10 ms. The parameters of wireless protocols usually change
over a period of at least several seconds to several minutes. In
Section 3, we describe the separation principles of PULS which
inherently incorporates the heterogeneity in time scale.

(5) Support various ultra-low-latency downlink applications.
For example, VR requires latency as low as 1 ms with moderate
timely-throughput while factory automation needs ultra-low
packet loss rate with latency of about 5-10 ms. PULS is able to
support applications with totally different performance require-
ments and provide a programmable environment for different
wireless protocols.

To tackle the above challenges, PULS follows three major de-
sign principles. First, as a software-defined wireless testbed, PULS
addresses the heterogeneous time scales of MAC functions by ap-
plying a Host-FPGA separation principle by performing scheduling
on the host, and low-level MAC processing on FPGA. Next, PULS
uses a Mechanism-Policy separation for both flexibility and per-
formance by ensuring that mechanisms (specific function blocks),
are decoupled from the policy, the specification of how particular
scheduling protocol should be performed. Third, to support a broad
class of scheduling policies, we borrow ideas from both WiFi as
well as LTE standards, and build up a set of basic MAC functions
required by most of the wireless protocols.



The rest of the paper is organized as follows. Section 2 summa-
rizes the related works on low-latency wireless networks. Section
3 describes the design principles of PULS. The implementation of
PULS is detailed in Section 4. Section 5 discusses the interfacing
latency. Section 6 provides an extensive experimental study on
ultra-low-latency protocols. In Section 7, we provide possible re-
search directions for future work. Finally, Section 8 concludes the
paper.

2 RELATEDWORK
Various SDR architectures have been proposed to mitigate the inter-
facing overhead between software host and hardware. Just to name
a few, [18] proposes a split-functionality framework to significantly
reduce the communication overhead between software host and
hardware. Similarly, [3] introduces Decomposable Medium Access
Control (MAC) Framework to identify basic functional components
according to both timeliness and degree of code reuse. However, nei-
ther of them considers per-packet deadline constraints nor provides
any experimental results for ultra-low-latency wireless networks.

Most of the existing experimental studies for wireless LANs focus
primarily on maximizing system throughput or throughput-based
network utility. For example, to achieve maximum throughput, the
well-known backpressure algorithm has been tailored and imple-
mented for various scenarios, such as multi-hop wireless networks
[25], TDMA-based MAC protocol [15] and wireless networks with
intermittent connectivity [20]. Besides, for wireless LAN with ran-
dom access, [16] implements an enhanced version of 802.11 DCF
and demonstrates that it achieves near-optimal throughput as well
as fairness with the original DCF. However, all of the above studies
provide no support for packets with latency constraints. To address
latency requirement for industrial control applications, RT-WiFi,
a WiFi-compatible TDMA-based protocol, has been proposed and
implemented on commercial 802.11 interface cards [26]. However,
it cannot achieve both ultra-low latency and satisfactory timely-
throughput performance for each user at the same time due to the
nature of TDMA.

On the cellular side, several preliminary studies about 5G provide
candidate solutions to enhance the low-latency capability via either
numerical and experimental evaluation. [28] studies the trade-off
between latency budget and required bandwidth by applying the
conventional OFDM framework to 5G networks through numerical
analysis. However, these numerical results do not take the possible
signaling and processing overhead into account. [29] provides ex-
perimental study for latency performance of 5G millimeter-wave
networks with beam-forming. However, this solution relies heavily
on the beam-tracking technique and frame structure employed by
cellular networks and cannot be directly applied to wireless LAN
applications. Besides, [19] demonstrates a wireless testbed that is
potentially capable of supporting millisecond-level end-to-end la-
tency requirement. However, it supports only single link and does
not take wireless scheduling issue into account.

3 DESIGN OF PULS
Our objective was to implement ultra-low latency protocols that
require scheduling on a per packet basis, with a focus on downlink
protocols, while concurrently supporting flows that do not have
deadlines. These protocols may include algorithms with a high

complexity that may not be suitable for implementation on the
FPGA. In this section, we will explain the basic design principles
upon which PULS was built to achieve the goals described in the
previous sections.

3.1 Basic MAC Functions for Wireless
Scheduling

Our platform borrows ideas from both the WiFi and LTE standards.
From the WiFi side, we used features such as Carrier Sense for
loose synchronization between the nodes and some robustness to
interference.We also use the same interframe space timing intervals
as WiFi for transmission (and reception) of packets. Furthermore,
ACKs are sent immediately following transmission of data packets
after a SIFS period, which allows us to know in a short period of time
whether the packet was transmitted successfully. On the other hand,
we are using a completely centralized framework for scheduling
the different queues, which is similar to what LTE does. By using
ideas from WiFi and LTE, we are able to obtain a deployment that
is both lightweight and can be incorporated more easily into our
framework for ultra low latency scheduling.

3.2 Mechanism-Policy Separation
In our design of PULS, we utilize a mechanism-policy separation
used in [27]. Mechanisms can be functions or blocks used to han-
dle the operations needed for per packet transmissions over the
network, whereas policy refers to the high-level specification of
the scheduling protocol itself. This mechanism-policy separation
builds on the framework of Wireless MAC Processors, introduced
by Tinnirello et al in [24].

Each mechanism has a set of inputs, outputs, events, conditions
to check and possible actions that can be performed. Inputs and
outputs of amechanism take the form of register values (e.g. channel
state and average energy), or an array of bytes (e.g. my address and
packet).

Mechanisms provide the set of actions, events and also act as
condition checkers, whereas the policy specifies the set of enabling
functions, the parameters for the conditions, the set of update func-
tions and the transition relations for the state machine of the sched-
uling protocol. Having the distinction between the different mech-
anisms and its associated events, actions, and conditions allows
us to design new mechanisms more cleanly and reuse previously
developed mechanisms. In addition to the mechanisms used in [27]
and in [24], we implemented mechanisms to allow for backing off,
deadline checking, packet dropping, controlling the packet arrival
process, as well as features to increment and decrement some no-
tion of deficit according to user-specified conditions. Deficits can
be used in various ways to achieve some performance guarantees
in delay-sensitive traffic, or to control the ratio of service times
between inelastic and elastic flows. We will focus more on these
mechanisms since they allow us to achieve certain guarantees on
delay-sensitive traffic. These mechanisms can also be changed at
runtime, allowing us to switch between different protocols on-the-
fly. The implementation details of these mechanisms are laid out
in section 4. Note, in the design of our testbed, mechanisms are
implemented both on the FPGA as well as on the host machine.
Furthermore, the inputs and outputs for each mechanism can be
modified accordingly to allow for cross-layer designs. For example,



the update deficit mechanism can use the packet’s MCS as an input
for the function to increment and decrement the deficits.

3.3 Flexible MAC through Host-FPGA
Separation

For flexible MAC scheduling decisions, we employed a Host-FPGA
separation, where high-level MAC functions such as packet sched-
uling, and packet dropping, are done on the host, and low-level
functions such as packet encoding/decoding, carrier sensing, ACK
processing, and CRC checking are done on the FPGA. This is done
to allow for easy changes in packet scheduling decisions, while still
being able to achieve our latency requirements for the platform.

4 IMPLEMENTATION OF PULS
We will discuss the implementation details of PULS in this section,
namely, the flow of events, and the design of mechanisms for the
nodes, illustrated in Figure 1. On the host, a continuous loop checks
whether whether the current time mod the inter-arrival time is
equal to zero using a tick count call supplied by the LabVIEW
library, which returns a tick count with millisecond resolution. If it
is, then the packet generator will generate a specified number of
data packets with random bytes to emulate data traffic. Even when
generating packets, this loop is capable of running approximately
ten times per millisecond when no other applications are running.
These data packets are then prepended with header bytes that are
IEEE 802.11a PHY layer compliant. In addition to those headers, we
also add deadlines to the packets that have been generated before
putting them in a queue.

While packets are being generated, there is another loop running
concurrently that is responsible for updating the states of the queue
based on the number of packets that have been generated and
feedback about the previous transmission. To obtain feedback about
the previous transmission, the host will poll two registers per queue;
an ACK counter and a timeout counter. Each of these counters will
increment when an ACK or a timeout is received respectively. (A
timeout occurs if an ACK is not received within 75 microseconds of
the end of a transmission). This loop also schedules the next queue
for transmission and push the packet to the FPGA for transmission.

Since our platform focuses on downlink scheduling, the mecha-
nisms shown here are geared towards that, although most can be
re-used for uplink scheduling as well. Starting with the National
Instruments 802.11 Application Framework, we implemented addi-
tional mechanisms on the Host machine and on a USRP-2953R for
flexible scheduling protocols. To support packets with strict dead-
lines, PULS presents a data transmission procedure which enables
per-packet scheduling on the host while keeping the FPGA design
simple.

4.1 Packet Generation
For packet generation, we implemented a packet generation mech-
anism that allows three main parameters that can be tweaked to
replicate the different kinds of traffic that a user might want to
experiment with: 1) interarrival times, 2) probability that packets
get generated, 3) number of packets that are generated. Packets can
be generated with interarrival times up to 1 ms in resolution, with a
certain number of packets being generated at each time. In addition

Figure 1: Architecture of PULS. Packet generation and
Packet Processing happen at the host simultaneously (indi-
cated by “Fork”), while low-level functionalities occur at the
hardware (FPGA) level.

to that, packets can be generated deterministically or stochastically.
At each interrival time, users can specify the probability that a
certain number of packets get generated. Furthermore, the number
of packets can be set to be a fixed number, or can take on a random
number based on a distribution. For our purposes, in the random
case, we use a simple uniform distribution for the number of pack-
ets that are generated. The maximum number of packets that can
be generated are specified by the user. These arrival patterns and
rates are by no means exhaustive, but it is sufficient for us to justify
the performance of the platform and of particular protocols that
we’ve implemented. (The details of the results are in Section 6.)

4.2 Queueing, Deadlines and Types of Flows
Each data flow, either elastic or inelastic, is associated with a queue
on the Host. To add deadlines to the packets, we implemented a
simple mechanism to prepend deadlines to each packet arriving at
the queue. The input of this block is the current tick count of the
system, the deadline, the incoming packet, and all the references to
the queues associated with each flow. This block takes the current
tick count of the system, adds the correct tick count corresponding



to the deadline of the packet and prepends it to the packet before
adding it to the correct queue. For inelastic flows, when a packet
is generated (according to the Packet Generation mechanism), the
corresponding deadline identifier, in the format of Host reference
timer, is prepended onto the packet and then the packet is queued
for scheduling. Since the absolute packet deadlines of each flow
are assumed to form a non-deceasing sequence, every queue on
the Host is always inherently arranged in an earliest-deadline-first
manner. (Note, this may not be true if packet deadlines are changed
frequently in a non-increasing manner. However, applications typi-
cally just require a baseline performance guarantee so this is valid
for most cases. In the event that deadlines for packets are not ar-
ranged in an earliest-deadline-first manner, we can sort the packets
while packets are being transmitted.) On the other hand, for elastic
flows, the packet deadlines are set to be negative one for simplicity
and better modularity in design.

4.3 Scheduling and Transmission Procedures
Once packets are generated and the packets are in their respective
queues, scheduling is performed and repeated on a per-packet basis.
In PULS, scheduling is aided by the use of several mechanisms to
achieve our desired latency goals. First, we have packet dropping
mechanism which scans the head-of-line packet of each queue, and
drops the packets that have expired. This block only requires the
references of each queue, and the current tick count of the system as
inputs. It also has an output to inform other mechanisms whether
or not a packet has been dropped. Next, we have a mechanism
to update the state of the flows. Its job is to update the deficits
associated with each flow based on whether or not an ACK was
received and if a packet has been dropped from the queue. It uses
the references of the queues, ACK received count, ACK timeout
count, and the output of the packet dropping mechanism as its
inputs. Lastly, we have a scheduling decision block that decides
which flow to schedule based on the current states of the flows.
This mechanism uses the deficits associated with each flow, the
ACK counters for each of the flow, and the output of the packet
dropping mechanism as inputs. All scheduling-related mechanism
blocks are executed on the Host.

Scheduling and transmission executions are triggered when at
least one queue is non-empty, and the scheduling state is UN-
LOCKED. The scheduling state becomes LOCKED as soon as a
packet has been scheduled and is being processed for transmission.
The state becomes UNLOCKED again when either of the two follow-
ing FPGA events happen: an ACK reception or an ACK timeout. A
successful ACK reception happens when an ACK packet is decoded
successfully. This in turn increments the number of ACKs that have
been received. The Host machine polls the register that stores the
number of ACKs that have been received, and when the numbers
differ from one iteration of the while loop to the next, the Host
registers an ACK reception. For ACK timeouts, we implemented a
mechanism that starts a counter after a packet has been transmitted
on the FPGA. If an ACK is not received within a specified time pe-
riod (set to be 75 microseconds), the count for timeout is increased
on the FPGA. As in the case of ACK reception, if the count for ACK
timeouts that the Host polls from the FPGA differ from one while
loop iteration to the next, an ACK timeout event is registered. The
timing of loop executions will be described further in Section 5. In

Table 1: Partial list of Mechanisms in PULS

Mechanism Input Ouptut Description

Packet Generation
Interarrival times
Probability of generation
Max packets generated

Packets
Generates packets
based on user
specified parameters.

Prepend Deadlines

Current tick count
Deadline
Packets
Queue references

N/A

Prepends deadlines to
incoming packets and
puts the packets
into the correct queues.

Packet Dropping Queue references
Current tick count

Packet
dropped?

Drops packets if
deadlines have elapsed.

Update States

Queue references
Packet dropped?
ACK received count
ACK timeout count
Current state

Updated
states

Updates the states
associated with
each flow.

Scheduling Decision Current state
Policy to use

Flow to
schedule
(or
retransmit)

Decides which flow
to schedule based
on specified policy.

Retransmission

Current tick count
Queue references
ACK received count
ACK timeout count
Re-TX attempts

N/A

Stores transmitted
packet, and
retransmits if ACK
was not received
and deadline has not
elapsed.

every loop cycle, exactly one packet is scheduled for transmission.
Before making a scheduling decision, the Host first “cleans up” the
queues and updates the deadline-related state information by drop-
ping expired packets in each queue using the mechanisms detailed
above. Given the computing power of the Host, this cleanup can
be finished almost instantaneously compared to the transmission
time of a packet. (We should note that there will be more overhead
if a batch of packets have expired, since we are only dropping one
packet per loop execution, but this time is also negligible relative to
the packet transmission time.) Given the queues in a clean state, the
flow scheduler sets priorities of the flows according to the sched-
uling policy and schedules the flow with a non-empty queue and
the highest priority. The scheduled queue then sends the head-of-
line packet to the Prepare Interface Communication Protocol (ICP)
Packet block, which removes the deadline identifier and appends
the ICP header to the packet. The ICP header carries the informa-
tion required by the FPGA, such as packet length, modulation and
coding scheme, source MAC address, destination MAC address, and
flow identifier, etc. Upon receiving the scheduled packet from the
Host, FPGA simply triggers the required channel access procedure
of the MAC layer as well as the physical transmission procedure
in the PHY layer. By placing all the scheduling complexity on the
Host, the design of PULS can be easily reproduced on an existing
wireless interface card. The Access Point (AP) packet transmission
procedure is summarized in Algorithm 1 and the function blocks
associated with the transmission procedure are shown in Figure 2.

4.4 Retransmission
As reliable transmission is often required by mission-critical low-
latency applications, PULS also supports retransmission for both
elastic and inelastic flows to recover packet losses. Note that while
MAC-layer retransmission is usually implemented in the hardware
for conventional SDRs tominimize latency, the retransmission block
of PULS is located in the Host for two reasons: (i) Packet deadlines
need to be checked before any retransmission. Since deadlines are
tracked in the Host, it is straightforward to handle retransmission in



DMA 
Channel

Flow 
Scheduler

Prepare 
ICP 

Packet

ICP 
Packet 
to MAC 
MPDU

TX

Flow 1

Flow 2

Flow N

Carrier 
Sense Backoff

HOST FPGA

RF
Front
End

Figure 2: Packet transmission on PULS.

the Host. (ii) The Host-to-FPGA interfacing latency is low enough
for supporting retransmission in the Host.

In PULS, retransmission is built on top of the scheduling and
data transmission procedure described in Section 4.3. An additional
retransmission mechanism with retransmission queue is created
on the Host for temporarily storing the duplicate of the scheduled
packet in the current loop cycle. The inputs to this block are the
references to all the queues, the ACK counts for the flows, and the
maximum retransmission attempts which can be easily configured
in the Host according to the user specified scheduling policy. If an
ACK timeout is received and the maximum retransmission count
is not met, then the scheduler will attempt to retransmit the same
packet in the next cycle; otherwise, the duplicate packet is removed
from the retransmission queue.

The ICP packet is sent to the SDR’s FPGA fabric via a Direct
Memory Access (DMA) Channel. All PHY layer processing required
to transmit the packet is performed on the FPGA using the Intellec-
tual Properties (IP) provided by the 802.11 AF. While the platform
supports mechanisms for random backoff, we set backoffs to zero
since our scheduling algorithms are completely centralized.

After the packet is transmitted, the Received Packet mechanism
will determine whether an ACK was received or not. If an ACK
was received, then ACK count will be incremented. Otherwise, the
ACK timeout count will be incremented. Received packets are then
sent back to the Host for processing, again via a DMA Channel.
Concurrently, the Host polls the FPGA registers for transmitted
packet count, ACK count, and ACK timeout count, and updates the
deficits accordingly based on these counts.

Algorithm 1: AP transmission procedure.
1 Initialize the state variables and the Host queues;
2 while station is ON do
3 update Host queues and state variables;
4 schedule the flow with the highest priority;
5 send the scheduled packet to Prepare ICP Packet;
6 state of flow scheduler← LOCKED;
7 while state of flow schedule is LOCKED do
8 if receive ACK response then
9 state of flow scheduler← UNLOCKED;

10 end
11 end
12 end

5 MEASURING HOST-TO-FPGA
INTERFACING LATENCY AND
ROUND-TRIP LATENCY

The interfacing latency between hardware and software signifi-
cantly affects the achievable link throughput of a software-defined
wireless testbed. As discussed in Section 4, flow scheduling is re-
peated on a per-packet basis in a loop where scheduling-related
function blocks are executed. The time between two consecutive
loop executions depends on the round-trip transmission time of
each packet plus the Host-to-FPGA interfacing latency. The inter-
facing latency between Host and FPGA needs to be low enough to
support a packet deadline as low as 1 ms. Meanwhile, round-trip
latency, which is defined as the elapsed time between a packet ar-
rival at the Host and the ACK reception of the packet, indicates the
minimum achievable per-packet deadline of a wireless platform.
To measure interfacing latency and round-trip latency, we devise a
simple experiment by using the FPGA counter for the timestamps
of the packet events. The connection used was a PCIe bus via an Ex-
pressCard slot on the laptop connected to the USRP-2953R through
an ExpressCard-MXI Interface Kit for USRP RIO.

The experiment can be summarized as follows:
(1) Test packets of fixed payload size arrive at the Host periodically.

The period is set to be large enough such that at each time there
is only 1 test packet waiting for transmission in the Host queue.
This completely eliminates the effect of queueing delay in the
Host.

(2) When a test packet arrives at the Host, it is given a timestamp
generated on the FPGA, denoted by th (read by the Host from
an FPGA register) and then forwarded to the FPGA through a
DMA Channel immediately.

(3) When FPGA detects the new test packet, FPGA starts processing
the ICP header and retrieves th from the header. Along with
the current FPGA counter denoted by tf , the Host-to-FPGA
interfacing latency can be derived as tf − th .

(4) The packet is then transmitted. When the corresponding ACK
is received, FPGA reads the current timestamp tr and calculates
the round-trip latency as tr − th .

In the experiments, we measure both latency metrics for 50000
packets with a fixed interarrival time of 10 ms. Figure 3 shows the
empirical cumulative distribution function (CDF) of the Host-to-
FPGA interfacing latency for packets with 1500 bytes payload at a
data rate of 54Mbps. The mean interfacing latency is around 192
µs, and the 90, 95, and 99 percentiles are 233.4, 257.6, and 316.1
µs, respectively. Table 2 further summarizes the statistics of the
interfacing latency for different data rates and payload sizes. We
see that both the mean and the percentiles of the Host-to-FPGA
latency are almost invariant, regardless of data rate and payload size.
Therefore, PULS indeed exhibits low and predictable interfacing
latency.

Next, Figure 4 shows the empirical CDF of round-trip latency, and
Table 2 summarizes the statistics of round-trip latency for different
data rates and payload sizes. Since round-trip latency consists of
both transmission time and Host-to-FPGA interfacing latency, it
varies with the physical data rate and the payload size. For the six
test cases listed in Table 2, the maximum 99 percentile round-trip
latency is 933.7 µs. Therefore, PULS is indeed able to guarantee a



0 0.1 0.2 0.3 0.4 0.5 0.6

Measured Host-to-FPGA Latency (ms)

0

0.2

0.4

0.6

0.8

1

E
m

p
ir
ic

a
l 
C

D
F

54 Mbps,1500 Bytes

Figure 3: Empirical CDF of Host-to-FPGA latency for pay-
load size = 1500 bytes and data rate = 54Mbps.

0 0.5 1 1.5 2
Measured Round-Trip Latency (ms)

0

0.2

0.4

0.6

0.8

1

E
m

p
ir
ic

a
l 
C

D
F

54 Mbps,500 Bytes

54 Mbps,1000 Bytes

54 Mbps,1500 Bytes

24 Mbps,500 Bytes

24 Mbps,1000 Bytes

24 Mbps,1500 Bytes

Figure 4: Empirical CDFs of round-trip latency for various
data rates and payload sizes.

round-trip latency of less than 1 ms with high probability even for
large packet sizes and moderate physical data rates.

Table 2: Host-to-FPGA latency results

Data rate
(Mbps)

Payload size
(bytes)

Host-to-FPGA latency (µs)
Mean 90% 95% 99%

54 500 185.2 227.6 251.5 301.8
54 1000 189.7 235 259 315
54 1500 192.2 233.4 257.6 316.1
24 500 187.8 228.4 252.7 305.7
24 1000 188.3 230.6 254.3 304
24 1500 189.2 231.5 255 304.6

Table 3: Round-trip latency results

Data rate
(Mbps)

Payload size
(bytes)

Round-trip latency (µs)
Mean 90% 95% 99%

54 500 377.0 419.2 443.4 494.4
54 1000 459.9 505.1 529.2 585.0
54 1500 536.9 578.5 602.3 660.8
24 500 479.5 520.2 544.4 598.1
24 1000 646.6 688.9 712.7 762.8
24 1500 817.9 860.2 883.9 933.7

6 EXPERIMENTAL RESULTS
We provide experimental results for a network with one AP and two
downlink clients in various scenarios. Each client is associated with
one real-time flow with per-packet deadlines as well as one non-
real-time flow without deadline constraints. Each of the nodes (AP
and clients) is a USRP-2953R that is connected to a Windows laptop
acting as the Host machine. A specific scenario will have a certain
arrival process, as well as predefined requirements for deadlines and
delivery ratios for the real-time flows. These experiments were run
using 1500B packets and IEEE 802.11a MCS 7 (54Mbps theoretical
link data rate). While the packets are IEEE 802.11a PHY compliant,
we do not consider all the features available in the standard. We
consider four scheduling policies: Largest Deficit First (LDF) [7],
Longest Queue First (LQF), Round Robin (RR), and Random. Based
on the definition of deficit introduced in [7], LDF schedules the
real-time flows with the largest deficit and selects non-real-time
flows with the largest queue length if the real-time flows are empty.
Ties are broken randomly. LQF, as the name suggests, schedules the
flow with the longest queue, with ties broken randomly. Random
policy randomly picks a flow to schedule among non-empty queues.
RR schedules flows in the following order: real-time flow for client
1, real-time flow for client 2, non-real-time flow for client 1, and
then non-real-time flow for client 2. If any of the queues are empty,
it will schedule the next queue. A point to note is that dropping
expired packets is not done in most implementations today. To
ensure a fair comparison, we decided to enable packet dropping for
all policies, which improves the performance for all policies.

The results are presented in this section as follows. In section 6.1,
we show the capacity regions of a single client under the different
policies for one scenario to show the achievable regions of our
system. Then, in section 6.2, we present the throughputs of the
policies under different scenarios to compare the system perfor-
mance. In these sections, packets are generated every 5 ms and the
number of packets generated are uniformly distributed from 0 to
KRT for real-time flows, and KNRT for the non-real-time flows. We
used a different arrival process in section 6.3 to have packets to
arriving more frequently to show that ultra low latencies with 1
ms deadlines are indeed achievable.

6.1 Capacity Regions
For our capacity region experiments, we defined achievable regions
as regions where the system deficit (accumulated when packets are
dropped) and queue length of the clients does not grow to infinity.
Per-packet deadline is set to 5 ms and the delivery ratio is set to 0.99,
which means that the deficit increases by 0.99 every time a packet
is dropped, and decreases by 0.01 when the packet is successfully
delivered. In other words, if we require 99% of real-time packets to
arrive in 5 ms, we say the policy can achieve that for any incoming
packet rate where the deficits do not grow to infinity. As we can
see from Figure 5, the LDF policy has a bigger achievable region
than LQF, Random and RR. Random and RR has similar capacity
regions, but Random performs slightly better than RR when KRT is
higher, and worse when KRT is smaller. This is because the amount
of time waiting for service is bounded for RR, so for small number
of real-time packets, they will always be served before the packets
expired. On the other hand, when KRT is high, RR will not be able
to serve the packets in time, but random has a chance of serving the



0 5 10 15

K
RT

0

5

10

15

20

K
N

R
T

LDF Policy

Achievable

Non-Achievable

0 5 10 15

K
RT

0

5

10

15

20

K
N

R
T

LQF Policy

Achievable

Non-Achievable

0 5 10 15

K
RT

0

5

10

15

20

K
N

R
T

Random Policy

Achievable

Non-Achievable

0 5 10 15

K
RT

0

5

10

15

20

K
N

R
T

Round-Robin Policy

Achievable

Non-Achievable

Figure 5: Capacity Regions for the different Policies with 5 ms deadline and 0.99 delivery ratio.
packets before they expire. LQF works better for higher value of
KRT than Random and RR, since it would schedule real-time flows
more frequently, but suffers significantly when the value of KNRT
is higher than KRT , since non-real-time flows will be schedule first.
LDF always schedules real-time flows first, so the drop off in the
capacity region is linear until KRT = 11, after which the deficits
start increasing to infinity for this delivery ratio and deadline. In
this scenario, all policies can support up to a KRT = 11, and serve
up to 20 packets every 5 ms.

6.2 Throughput Performance
Using the capacity region plots, we can know what kind of arrival
rates our platform is capable of supporting. However, this did not
tell us much about system performance is affected, in terms of the
throughputs for real-time and non-real-time flows when operat-
ing in different scenarios. For brevity, in this section, throughputs
for real-time flows will be referred to as timely-throughput, and
throughputs for non-real-time flows will just be referred to as
throughputs. So, the next thing we did was to run experiments
for multiple clients, each with a real-time and non-real-time flow,
under various scenarios to see how each protocol performed. We
ran two symmetric scenarios (clients have the same traffic and re-
quirements), and two asymmetric scenarios. In the first scenario,
we had KRT = 4 and KNRT = 4 for both clients, with deadlines
set to 3 ms and delivery ratio set to 0.98. As we can see in Figure
6, while most protocols perform relatively well, LDF has a higher
timely throughput and overall throughput for both clients. Next, we
increased non-real-time traffic (KNRT = 6) and decreased real-time
traffic (KRT = 3), and changed the requirements of the real-time
flows to 2 ms deadlines and 0.95 delivery ratios to see how the
system performs with lower latencies. This could be an example
of two clients downloading a large file while streaming videos. As
we can see in Figure 7, LQF has the worst performance since it will
tend to serve non-real-time traffic first, followed by Random and
RR. LDF has the best performance in both of these scenarios.

For the first asymmetrical scenario, we set KRT = 3 and KNRT
= 5 for client 1, KRT = 4 and KNRT = 6 for client 2. For client 1,
deadline of real-time packets was set to 2 ms, with 0.97 delivery
ratio, whereas client 2 has a deadline of 3 ms with 0.98 delivery ratio
i.e. client 1 has a real-time flow requirement where 97% of packets
have to arrive in 2 ms and client 2 has a real-time flow requirement
where 98% of packets arrive in 3 ms. As we can see in figure 8, LDF
outperforms the other policies in terms of timely throughput and
overall throughput. This difference is even more apparent when
we ’increase’ the asymmetry between the requirements of both

Table 4: Loss Ratios of Real-Time Flows

Arrival Rate Deadline (ms) Delivery Ratio Policy Loss Ratio (%)
C1 C2 C1 C2 C1 C2

KRT 1 = 4

3 3 0.98 0.98

LDF <2 <2
KNRT 1 = 4 LQF 23.51 17.12
KRT 2 = 4 Rand 15.17 15.62
KNRT 2 = 4 RR 15.07 16.03
KRT 1 = 3

2 2 0.95 0.95

LDF <5 <5
KNRT 1 = 6 LQF 60.24 54.97
KRT 2 = 3 Rand 26.48 27.22
KNRT 2 = 6 RR 19.96 21.27
KRT 1 = 3

2 3 0.97 0.98

LDF <3 <2
KNRT 1 = 5 LQF 61.45 27.35
KRT 2 = 4 Rand 27.2 18.07
KNRT 2 = 6 RR 20.09 17.13
KRT 1 = 7

5 2 0.98 0.99

LDF <2 <1
KNRT 1 = 4 LQF 7.18 63.51
KRT 2 = 3 Rand 17.01 29.46
KNRT 2 = 5 RR 19.14 21.42

clients. In our second asymmetrical scenario, we set KRT = 7 and
KNRT = 4 for client 1, KRT = 3 and KNRT = 5 for client 2. Client
1’s deadline was set to 5 ms with 0.98 delivery ratio, and client 2’s
deadline was 2 ms with 0.99 delivery ratio. This could be a case
where client 1 is streaming a video where 5 ms latency is tolerable
but it generates a lot of traffic, and client 2 was running a control
application that does not produce as many packets but has stricter
latency and delivery ratio requirements. We see that Random and
RR does not have a good timely throughput for client 1, while LQF
does not perform well for client 2. LDF outperforms all policies in
both clients since it smartly schedules client 1 and client 2’s real-
time flows so that both requirements are met, without sacrificing
overall system throughput. Note, since we are operating on the
boundaries of LDF, the deficits of LQF, Random and RR are growing
to infinity as well. The deficit evolution from the first symmetrical
scenario is shown in Figure 11.

Even though the throughput does not differ by much, the picture
becomes very different when we examine the number of real-time
packets that were dropped. Using the deficits of the clients, we
calculated the loss ratios of the real-time flows for all the scenarios
above. (Since the deficits of LDF stays at 0, the most we can conclude
is the loss ratio is below 1 - delivery ratio). In Table 4, we see that
the loss ratios of LQF, Random and RR are much higher than LDF.
The biggest difference is for the fourth scenario, when LDF can
maintain less than 1% loss rate for Client 2, but LDF, Rand and RR
experience loss rates of 63.5%, 29.5% and 21.4% respectively.



LDF LQF Rand RR LDF LQF Rand RR
0

2

4

6

8

10

T
hr

ou
gh

pu
t (

M
bp

s)

RT Throughput

NRT Throughput

Client 1 Client 2

Figure 6: Throughputs for KRT =4 and
KNRT =4.

LDF LQF Rand RR LDF LQF Rand RR
0

2

4

6

8

10

12

T
hr

ou
gh

pu
t (

M
bp

s)

RT Throughput

NRT Throughput

Client 1 Client 2

Figure 7: Throughputs for KRT =3 and
KNRT =6.

LDF LQF Rand RR LDF LQF Rand RR
0

2

4

6

8

10

12

T
hr

ou
gh

pu
t (

M
bp

s)

RT Throughput

NRT Throughput

Client 1 Client 2

Figure 8: Throughputs for KRT 1=3,
KNRT 1=5, KRT 2=4, KNRT 2=6.

LDF LQF Rand RR LDF LQF Rand RR
0

2

4

6

8

10

12

14

T
hr

ou
gh

pu
t (

M
bp

s)

RT throughput

NRT Throughput

Client 1 Client 2

Figure 9: Throughputs for KRT 1=7,
KNRT 1=4, KRT 2=3, KNRT 2=5.

LDF LQF Rand RR LDF LQF Rand RR
0

2

4

6

8

10

12

14
T

hr
ou

gh
pu

t (
M

bp
s)

RT throughput

NRT Throughput

Client 1 Client 2

Figure 10: Throughputs for the arrival
process with P(KRT 1) = 0.8, P(KNRT 1) =
0.3, P(KRT 2) = 0.1, P(KNRT 2) = 0.5.

0 5 10 15 20 25 30

Time (s)

0

500

1000

1500

2000

2500

3000

D
ef

ic
it

LDF

LQF

Rand

RR

Figure 11: Deficit growth for the
KRT =4 and KNRT =4 for both clients.

6.3 Changing the Arrival Process
In our final experiment, we modified the arrival process to further
evaluate the policies under more stringent deadline requirements.
Instead of packets being generated periodically every 5 ms, packets
can now be generated every 1 ms. However, instead of generating
it uniformly from 0 to KRT (or KNRT ), 1 packet is generated with
some probability, which is specified for each flow by the client. Thus,
we move away from the frame-by-frame packet arrival process
analyzed in [7] to a more general arrival process. While the proof
of stability of the LDF algorithm under such arrivals in unknown,
our system offers the ideal way of understanding its real-world
performance.

Let P(KRT i ) and P(KNRT i ) be the probability of generating a
packet for client i’s real-time flow and non-real-time flow respec-
tively. As in the previous experiment, the contrasts are most stark in
the asymmetrical case, which is presented in the following scenario.
Client 1 has P(KRT 1) = 0.8, P(KNRT 2) = 0.3 with the real-time flow
requirement of 2 ms and 0.99 delivery ratio. This could be a user
streaming a video while downloading some files in the background.
Client 2 on the other hand has P(KRT 2) = 0.1, P(KNRT 2) = 0.5 with
a deadline of 0 ms and 0.99 delivery ratio. Note that packets are
only expired when the current time exceeds the deadlines, and
hence even 0 ms deadlines give some throughput. This could be a
mission-critical application which does not generate much traffic
but requires control packets to be delivered within 1 ms. As we
can see in Figure 10, client 1’s timely throughput is lower for Ran-
dom and RR and LQF causes client 2’s timely throughput to suffer.
However, LDF is able to support both clients and give good timely

throughput and throughputs as well. Furthermore, this also shows
that the system is capable of delivering packets under 1 ms.

These results show that our system is indeed capable of support-
ing experimentation of policies for ultra-low latency applications
with various packet arrival patterns and deadline requirements.

7 FUTUREWORK
Crossing hardware-software boundaries always incurs interfacing
overhead that can reduce the throughput of wireless systems. In our
system, this overhead was in the order of hundreds of microseconds,
which led to a throughput loss of about 30%. This is due to the fact
that packets were being transferred with the scheduling decision
through the use of DMA channels. DMA channels provide high
throughput for data transfer at the cost of increased latency. To
mitigate the effects of the interfacing delay overhead, one possible
solution is to load packets onto separate queues on the FPGA via
DMA channels, but convey the scheduling decision from the host
to the FPGA through registers. Decisions can be written to an
FPGA register in about 20 µs. This will reduce the interfacing delay
overhead. However, this limits the decision space to the number of
queues available on hardware, which could be significantly lower
than the number of queues on software. In addition to that, it is
not clear how queues on the host should be mapped to hardware
queues. The other solution is to make several decisions at each
decision stage e.g. decide which queues will transmit for the next
three time slots. However, this will force protocols to commit their
decision for the next few time slots which can lead to sub-optimal
scheduling decisions. Neither of these solutions are fully compatible



with existing policies, and we need new research to develop policies
that work under these constraints as well.

Another method of obtaining both per-packet scheduling and
mitigating the effects of interfacing latency is by using one-step
look-ahead scheduling. Instead of scheduling and pushing a packet
to the transmit queue only after receiving an ACK or timing out,
we load two packets onto two separate queues during the current
packet transmission; one for the case if the transmission was suc-
cessful, and one if the transmission failed. The moment an ACK is
received, or a timeout happens, the corresponding queue is sched-
uled on the hardware immediately. In this way, the effects of inter-
facing latency can still be mitigated while still allowing users the
flexibility of per-packet scheduling. However, this also increases
the complexity of the scheduler on the host.

8 CONCLUSION
Applications today have increasingly stringent requirements, es-
pecially in terms of latency and throghput. This presents next
generation networks with one of its critical challenges: provid-
ing some measure of guarantee for applications with strict latency
and throughput requirements. There exist theoretical frameworks
to develop protocols that are able to do this, but there is still a
gap between theory and implementation of these protocols. We
aim to bridge this gap by developing PULS, which we have shown
to be capable of supporting per-packet scheduling for downlink
with latencies on the order of 1 ms, with realistic system through-
puts. PULS was developed for with reprogrammability in mind,
so new scheduling policies can be more easily implemented and
experimented on it. Using PULS, we tested the performance of LDF,
LQF, Random and RR under various scenarios and showed that
LDF performs equally well or better than the other policies in all
scenarios. The difference between LDF and the other policies are
even more apparent when we observe the loss ratios of the policies
under different traffic loads.

ACKNOWLEDGMENTS
This material is based upon work partially supported by NSF un-
der Contract Nos. CCF-1619085, CNS-1646449, CNS-1719384, CNS-
1149458, AST-1443891, Science & Technology Center Grant CCF-
0939370, Office of Naval Research under Contract N00014-18-1-2048,
and the U.S. Army Research Office under Contract No. W911NF-15-
1-0279.

REFERENCES
[1] 2016. NSF Workshop on Ultra-Low Latency Wireless Networks. (November

2016).
[2] Arjun Anand, Gustavo de Veciana, and Sanjay Shakkottai. 2018. Joint Scheduling

of URLLC and eMBB Traffic in 5G Wireless Networks. In INFOCOM (to appear),
2018 Proceedings IEEE.

[3] Junaid Ansari, Xi Zhang, Andreas Achtzehn, Marina Petrova, and Petri Mahonen.
2010. Decomposable MAC framework for highly flexible and adaptable MAC
realizations. In New Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on.
IEEE, 1–2.

[4] Atilla Eryilmaz and R Srikant. 2006. Joint congestion control, routing, and MAC
for stability and fairness in wireless networks. IEEE Journal on Selected Areas in
Communications 24, 8 (2006), 1514–1524.

[5] Harri Holma and Antti Toskala. 2011. LTE for UMTS: Evolution to LTE-advanced.
John Wiley & Sons.

[6] I-Hong Hou. 2015. Broadcasting delay-constrained traffic over unreliable wireless
links with network coding. IEEE/ACM Transactions on Networking 23, 3 (2015),
728–740.

[7] I. H. Hou, V. Borkar, and P. R. Kumar. 2009. A Theory of QoS for Wireless. In
IEEE INFOCOM 2009. 486–494.

[8] I-Hong Hou and PR Kumar. 2010. Utility maximization for delay constrained
QoS in wireless. In INFOCOM, 2010 Proceedings IEEE. IEEE, 1–9.

[9] ITU-T. 2014. The Tactile Internet. (August 2014).
[10] Juan José Jaramillo and R Srikant. 2011. Optimal Scheduling for Fair Resource

Allocation in Ad Hoc Networks With Elastic and Inelastic Traffic. IEEE/ACM
Transactions on Networking 4, 19 (2011), 1125–1136.

[11] Kyu Seob Kim, Chih-ping Li, and Eytan Modiano. 2014. Scheduling multicast
traffic with deadlines in wireless networks. In INFOCOM, 2014 Proceedings IEEE.
IEEE, 2193–2201.

[12] Ray K Lam and PR Kumar. 2010. Dynamic channel partition and reservation for
structured channel access in vehicular networks. In Proceedings of the seventh
ACM international workshop on VehiculAr InterNETworking. ACM, 83–84.

[13] Ray K Lam and PR Kumar. 2010. Dynamic channel reservation to enhance channel
access by exploiting structure of vehicular networks. In Vehicular Technology
Conference (VTC 2010-Spring), 2010 IEEE 71st.

[14] Markus Laner, Philipp Svoboda, Peter Romirer-Maierhofer, Navid Nikaein, Fabio
Ricciato, and Markus Rupp. 2012. A comparison between one-way delays in
operating HSPA and LTE networks. In Modeling and Optimization in Mobile, Ad
Hoc and Wireless Networks (WiOpt), 2012 10th International Symposium on. IEEE,
286–292.

[15] Rafael Laufer, Theodoros Salonidis, Henrik Lundgren, and Pascal Le Guyadec.
2011. XPRESS: A cross-layer backpressure architecture for wireless multi-hop
networks. In Proceedings of the 17th annual international conference on Mobile
computing and networking. ACM, 49–60.

[16] Jinsung Lee, Hojin Lee, Yung Yi, Song Chong, Edward W Knightly, and Mung
Chiang. 2016. Making 802.11 DCF near-optimal: Design, implementation, and
evaluation. IEEE/ACM Transactions on Networking 24, 3 (2016), 1745–1758.

[17] Ruogu Li, Atilla Eryilmaz, and Bin Li. 2013. Throughput-optimal wireless sched-
uling with regulated inter-service times. In INFOCOM, 2013 Proceedings IEEE.
2616–2624.

[18] George Nychis, Thibaud Hottelier, Zhuocheng Yang, Srinivasan Seshan, and Peter
Steenkiste. 2009. Enabling MAC Protocol Implementations on Software-Defined
Radios.. In NSDI, Vol. 9. 91–105.

[19] Jens Pilz, Matthias Mehlhose, Thomas Wirth, Dennis Wieruch, Bernd Holfeld,
and Thomas Haustein. 2016. A Tactile Internet demonstration: 1ms ultra low
delay for wireless communications towards 5G. In Proc. of INFOCOM WKSHPS.
IEEE, 862–863.

[20] Jung Ryu, Vidur Bhargava, Nick Paine, and Sanjay Shakkottai. 2010. Back-
pressure routing and rate control for ICNs. In Proceedings of the sixteenth annual
international conference on Mobile computing and networking. ACM, 365–376.

[21] Sujay Sanghavi, Devavrat Shah, and Alan S Willsky. 2008. Message passing
for max-weight independent set. In Advances in Neural Information Processing
Systems. 1281–1288.

[22] Kaixin Sui, Mengyu Zhou, Dapeng Liu, MinghuaMa, Dan Pei, Youjian Zhao, Zimu
Li, and Thomas Moscibroda. 2016. Characterizing and improving WiFi latency in
large-scale operational networks. In Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services. ACM, 347–360.

[23] Leandros Tassiulas and Anthony Ephremides. 1992. Stability properties of con-
strained queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE transactions on automatic control 37, 12 (1992),
1936–1948.

[24] Ilenia Tinnirello, Giuseppe Bianchi, Pierluigi Gallo, Domenico Garlisi, Francesco
Giuliano, and Francesco Gringoli. 2012. Wireless MAC processors: Programming
MAC protocols on commodity hardware. In INFOCOM, 2012 Proceedings IEEE.
IEEE, 1269–1277.

[25] Ajit Warrier, Sankararaman Janakiraman, Sangtae Ha, and Injong Rhee. 2009.
DiffQ: Practical differential backlog congestion control for wireless networks. In
INFOCOM 2009, IEEE. IEEE, 262–270.

[26] Yi-Hung Wei, Quan Leng, Song Han, Aloysius K Mok, Wenlong Zhang, and
Masayoshi Tomizuka. 2013. RT-WiFi: Real-time high-speed communication
protocol for wireless cyber-physical control applications. In Real-Time Systems
Symposium (RTSS), 2013 IEEE 34th. IEEE, 140–149.

[27] Simon Yau, Liang Ge, Ping-Chun Hsieh, I Hou, Shuguang Cui, PR Kumar, Amal
Ekbal, Nikhil Kundargi, et al. 2015. WiMAC: Rapid Implementation Platform for
User Definable MAC Protocols Through Separation. In ACM SIGCOMM Computer
Communication Review, Vol. 45. ACM, 109–110.

[28] Osman NC Yilmaz, Y-P Eric Wang, Niklas A Johansson, Nadia Brahmi, Shehzad A
Ashraf, and Joachim Sachs. 2015. Analysis of ultra-reliable and low-latency 5G
communication for a factory automation use case. In Communication Workshop
(ICCW), 2015 IEEE International Conference on. IEEE, 1190–1195.

[29] Shohei Yoshioka, Yuki Inoue, Satoshi Suyama, Yoshihisa Kishiyama, Yukihiko
Okumura, James Kepler, and Mark Cudak. 2016. Field experimental evaluation
of beamtracking and latency performance for 5G mmWave radio access in out-
door mobile environment. In Personal, Indoor, and Mobile Radio Communications
(PIMRC), 2016 IEEE 27th Annual International Symposium on. IEEE, 1–6.


	Abstract
	1 Introduction
	2 Related work
	3 Design of PULS
	3.1 Basic MAC Functions for Wireless Scheduling
	3.2 Mechanism-Policy Separation
	3.3 Flexible MAC through Host-FPGA Separation

	4 Implementation of PULS
	4.1 Packet Generation
	4.2 Queueing, Deadlines and Types of Flows
	4.3 Scheduling and Transmission Procedures
	4.4 Retransmission

	5 Measuring Host-to-FPGA Interfacing Latency and Round-Trip Latency
	6 Experimental Results
	6.1 Capacity Regions
	6.2 Throughput Performance
	6.3 Changing the Arrival Process

	7 Future Work
	8 Conclusion
	Acknowledgments
	References

