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Abstract— In networked cyber-physical systems, the inter-
delivery time of data packets becomes an important quantity of
interest. However, providing a guarantee that the inter-delivery
times of the packets are “small enough” becomes a difficult task
in such systems due to the unreliable communication medium
and limited network resources. We design scheduling policies
that meet the inter-delivery time requirements of multiple clients
connected over wireless channels. We formulate the problem as
an infinite-state risk-sensitive Markov decision process, where
large exceedances of inter-delivery times for different clients
over their design thresholds are severely penalized. We reduce
the infinite-state problem to an equivalent finite-state problem
and establish the existence of a stationary optimal policy and
an algorithm for computing it in a finite number of steps.
However, its computational complexity makes it intractable when
the number of clients is of the order of 100 or so that is
found in applications such as in-vehicle networks. To design
computationally efficient optimal policies, we, therefore, develop a
theory based on the high reliability asymptotic scenario, in which
the channel reliability probabilities are close to one. We thereby
obtain an algorithm of relatively low computational complexity
for determining an asymptotically optimal policy. To address the
remaining case when the channels are not relatively reliable,
we design index-based policies for the risk sensitive case, which
extends key ideas for index policies in risk-neutral multi-armed
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bandit problems. Simulation results are provided to show the
effectiveness of our policies.

Index Terms— Scheduling policy, packet inter-delivery time,
high reliability asymptotic approach, index-based policy.

I. INTRODUCTION

IN CYBER-PHYSICAL systems, where physical processes
are often monitored and controlled by embedded computers

through feedback control over a network [2], the traditional
quality of service (QoS) metrics such as delay and through-
put, that are often used to judge the effectiveness of data
networks [3], [4], are inadequate. As an example, a low value
of end-to-end latency does not imply the absence of long time-
gaps between successive packet deliveries. A recent metric of
interest that has attracted attention for networks transporting
sensor measurements for control, such as for in-vehicular
wireless network shown in Figure 1, is the packet inter-
delivery time [1], [5]–[9]. Figure 1 illustrates an in-vehicular
network. In such a cyber-physical system, there are of the order
of a hundred wireless sensor nodes that monitor processes such
as pressure and temperature. The sensor measurements thus
obtained are then transmitted to controllers so that the actuator
signals can be chosen appropriately. A key distinguishing
feature is that the arrival process, which corresponds to sensor
measurement generations, can be controlled. When a packet
transmission attempt fails, the sensor can re-sample the phys-
ical process and attempt to transmit a fresh measurement next
time, instead of retransmitting the same measurement. Thus,
delay experienced by packets is not the right performance
measure. A more appropriate measure is the time-gap between
successive packet deliveries of sensor measurements, since
long gaps might cause the underlying physical processes to
suffer from poor control or even instability. In this paper,
we consider the problem of optimizing data networks with
respect to the regularity of the inter-delivery times of mea-
surement packets. Our goal is the design of a scheduling
policy for making new measurements and transmitting the
resulting data packets, which ensures that the deviations of
packet inter-delivery times exceeding specified thresholds have
small expected value.

We formulate the problem of obtaining an optimal
policy as an infinite-state risk-sensitive Markov Decision
Process (MDP) [10]–[15]. Different clients may have het-
erogeneous packet inter-delivery time regularity requirements
manifested through different inter-delivery time thresholds τn.
In order to severely penalize large deviations of inter-delivery
times exceeding their corresponding thresholds, we employ
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Fig. 1. An in-vehicular network with an access point and several wirelessly
connected sensors and actuators.

an exponential cost function, E[exp(θ ·
!N

n=1(D
(n)− τn)+)],

where D(n) is the inter-delivery time of client n, θ > 0 is a
risk-aversion parameter, and (a)+ := max{0, a}.

We begin by showing that though the above problem
involves an infinite number of states, it can be solved via
a finite-state MDP. We prove that there exists a stationary
policy that is optimal for the original problem, and provide an
algorithm that determines the optimal policy in a finite number
of steps. However, this algorithm suffers from significant
computational complexity when the number of sensors is of
the order of a hundred nodes, as is the case in in-vehicular
networks.

In order to design a policy that can be implemented in an
online fashion, we analyze the “high reliability asymptote”
when the channel failure probabilities for different clients
are of the same order, and asymptotically approach zero.
The resulting asymptotically optimal policies are expected
to have near-optimal performance when the channel failure
probabilities are small or even moderate. This asymptotic
approach has a similar motivation as the study of high SNR
asymptotics in network information theory [16]. It yields a
policy that can be obtained with relatively low computational
complexity. Extensive simulations show that the resulting
policy performs well even in the pre-asymptotic regime, jus-
tifying the effectiveness of this approach. We also address
the scheduling problem in the scenario when the channel
reliabilities are arbitrary and not necessarily close to one.
We generalize the well studied and easily computable “index
policies” [17] for the risk neutral setting to the problems
of interest. Finally, to provide a qualitative insight into the
nature of policies produced by this approach, we thoroughly
analyze the simple two-client scenario and show that it results
in a certain “modified-least-time-to-go” policy that is both
structurally clean and asymptotically optimal.

The rest of the paper is organized as follows. We present an
account of related work in Section II, and the system model
in Section III. In Section IV, we exhibit the equivalent finite-
state problem. We establish the algorithm to determine the
stationary optimal policy for the risk-sensitive MDP approach
in Section V. We develop the high reliability asymptotic
approach in Section VI, and design the asymptotically optimal
policies in Section VII. In Section VIII, we derive the index
policies for non-asymptotic cases. We provide the results of
simulation testing in Section IX, and conclude in Section X.

II. RELATED WORK

To the best of the author’s knowledge, Li et al. [5] and
Li et al. [18] are the first to regard inter-delivery time as
a performance metric in packet transmission. They consider
inter-delivery time in a different queueing system scenario,
where the outdated packets cannot be replaced by newer pack-
ets. The periodic nature of wireless packet transmissions has

drawn increasing attention recently, as in Sadi and Ergen [19].
Singh et al. [6] have addressed the trade-off between through-
put and variation in the inter-delivery times. Guo et al. [9]
have designed scheduling policies that jointly optimize inter-
delivery time and transmission power consumption. However,
in this work, there is no modeling effort to severely penalize
the large inter-delivery exceedance. Singh and Stolyar [20]
have investigated service regularity under the Max Weight
policy, and shown that the service process is asymptotically
smooth.

Risk-sensitive MDPs introduced by Howard and Matheson
[10], have attracted increasing attention [12]–[14], [21]. How-
ever, unlike risk-neutral MDPs, a risk-sensitive MDP need
not have a stationary optimal policy even with a discounted
cost [11], which further complicates our problem. Risk-
sensitive MDPs have also been employed in wireless com-
munications. For example, Altman et al. [22] have employed
a risk-sensitive MDP model to study power control strategies
in delay tolerant networks.

Our high-reliability asymptotic approach is philosophi-
cally similar to the high SNR asymptotics studied in the
field of network information theory. Avestimehr et al. [16]
have obtained constant gap approximations to the capac-
ity of wireless networks based on a deterministic channel
model, which yields near optimal communication schemes
for Gaussian relay systems. Kittipiyakul et al. [23] and
Zhang and Tepedelenlioglu [24] have further analyzed error
performance in fading channels by employing such an asymp-
totic approach.

The high reliability asymptotic approach may be com-
pared with the periodic scheduling approach [25], [26], which
focuses on the scenario of exactly zero failure probabilities.
However, in contrast to the asymptotic approach proposed and
analyzed in this paper, there is no guarantee that an optimal
periodic scheduling policy will have good performance under
non-zero but small failure probabilities. In fact, as we show in
Section IX, periodic scheduling policies can have extremely
bad performance even with rather small failure probabilities.

III. SYSTEM MODEL

Consider a wireless network comprising of one access
point (AP) and N sensors. Time is discretized with the network
evolving over time slots indexed by t = 1, 2, . . .. At the
beginning of each time slot, the AP broadcasts a control
signal that indicates the index of the sensor that is supposed
to transmit a packet in that time-slot. This eliminates the
problem of multiple clients attempting to transmit packets
simultaneously, which leads to packet losses due to collisions.
In Section VIII, we generalize this problem to the case where
several orthogonal wireless channels are used. The probability
that a packet sent by client n is delivered to the AP is pn, and
is called the channel reliability of client n. The model can be
extended by considering fading channels.

Each client n = 1, 2, . . . , N has an inter-delivery threshold
τn modeling the inter-delivery requirement of client n. The
system cost incurred over T time-steps is modeled as,

E

"
exp

#
θ

N$

n=1

M
(n)
T$

i=1

(D(n)
i − τn)+ + (T − t

D
(n)

M
(n)
T

− τn)+
%&

(1)
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where D(n)
i is the time between the (i− 1)-th and i-th packet

deliveries of client n, M (n)
T is the number of packets delivered

for client n by time T , t
D(n)

i
is the time slot in which the i-

th packet for client n is delivered, and (a)+ := max{a, 0}.
The last term is included since, otherwise, the policy of never
transmitting any packet at all will result in the least cost.
This is because if there is no successful transmissions of
client n in an interval of T time-steps, the total number of
inter-delivery times will be 0, and thus leading to the first

term
!M(n)

T
i=1 (D

(n)
i − τn)+ = 0. The parameter θ > 0 is a

risk-aversion parameter. The larger the value of θ, the more
severely are the exceedances of inter-delivery times over the
thresholds penalized. At each time slot t, the scheduling
policy decides which client should transmit a packet, so as
to minimize the above cost.

Now, we formulate the system as a risk-sensitive MDP. The
system state at time-slot t is denoted by,

X(t) := (X1(t), . . . , XN(t)) ,

where Xn(t) is the time elapsed since the previous delivery
of a packet from client n. Consequently, the state space is
{0, 1, . . .}N . Although the state-space is finite when a finite
time horizon problem is considered, it exponentially grows to
infinity as the horizon increases. Let U(t) denote the system
control in time slot t; it specifies the client that is to transmit
in slot t. Then, the system state evolves as

Xn(t+ 1)

=

'
0, if a packet is delivered for client n in t;
Xn(t) + 1, otherwise.

Thus, the system can be described by a controlled Markov
Chain [27], with associated transition probabilities

P
(
X(t+ 1) = y

))X(t) = x, U(t) = u
*

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pu, if y = (x1 + 1, . . . , xu−1

+ 1, 0, xu+1 + 1, . . . , xN + 1);
1− pu, if y = x+ 1;
0, otherwise,

where 1 := (1, . . . , 1). The T -horizon optimal cost-to-go from
initial state x is as follows

VT (x) := min
π
Eπ

×
/
exp
0

θ
T−1$

t=0

N$

n=1

(Xn(t) + 1− τn)
+

× 1{Xn(t+ 1) = 0}
1)))X(0) = x

2
, (2)

where 1{·} is the indicator function, and X(T ) := 0 is
assumed to introduce the last term in the cost (1). Our aim
is to find an optimal policy amongst all history-dependent
scheduling policies π, which achieves the optimal cost-to-go
VT (x) for any value of the initial state x.

We also consider the infinite-horizon problem when
T → ∞, and denote the infinite-horizon cost by
J(π,x)(shown in equation (13) in the sequel).

We employ the following notation: Vectors are denoted in
bold font, e.g., τ := (τ1, . . . , τN ) and x := (x1, . . . , xN ). Let
an∧bn := min{an, bn}, and a∧b := (a1 ∧ b1, . . . , aN ∧ bN).

IV. REDUCTION TO FINITE STATE PROBLEM

The problem in Section III is denoted as MDP-1. Although
it has an infinite state space for the infinite time horizon
problem, we now show that there is an equivalent finite-state
problem.

The dynamic programming (DP) recursive relationship for
the optimal cost-to-go functions in MDP-1 is:

VT (x) = min
n

3
pn exp

4
θ (xn + 1− τn)+

5
VT−1

6
Sn(x)

7

+(1−pn)VT−1 (x+ 1)
8
, (3)

where

Sn(x) := (x1 + 1, . . . , xn−1 + 1, 0, xn+1 + 1, . . . , xN + 1)
(4)

is the state that succeeds the state x in the event of a
successful transmission for client n. This directly follows from
the optimal cost-to-go definition in (2).

Lemma 1: For MDP-1, the following results hold:
1) For all n ∈ {1, . . . , N}, and ∀x1, . . . , xN ≥ 0,

VT

6
x1, . . . , xn + τn, . . . , xN

7

= exp (θxn) · VT

6
x1, . . . , τn, . . . , xN

7
. (5)

Further, the optimal controls in the two states,
(x1, . . . , xn + τn, . . . , xN ) and (x1, . . . , τn, . . . , xN ),
are the same.

2) The optimal cost function starting with any system state x
such that xn ≤ τn, ∀n satisfies:

VT (x) = exp
4
θ

N$

n=1

1{xn = τn}
5

×min
u

9
puVT−1 (Su(x) ∧ τ )

+(1− pu)VT−1 ((x+ 1) ∧ τ )
:

, (6)

where Su(x) is as in (4);
3) Y (t) := X(t) ∧ τ is a Markov Decision Process, i.e.

P
(
Y (t+ 1)

))Y (t), . . . , Y (0), U(t), . . . , U(0)
*

= P
(
Y (t+ 1)

))Y (t), U(t)
*
. (7)

Proof: The proof is omitted due to space constraints. More
details can be found in the online supplementary material. !

Now we construct a new MDP, denoted by MDP-2. We
will show in Theorem 1 that this MDP-2 is equivalent to the
MDP-1 in an appropriate sense. In the new MDP-2, we still
use U(t) ∈ {1, . . . , N} to denote the system control at time
slot t. The system state is an N -dimensional vector Y (t) :=
(Y1(t), . . . , YN (t)) with each element Yn(t) ∈ {0, 1, . . . , τn}.
The state space is Y :=

;N
n=1 {0, 1, . . . , τn}, which is finite

even for the infinite time horizon problem. The transition
probabilities of the MDP-2 are set as

P
(
Y (t+ 1) = y

))Y (t) = x, U(t) = u
*

=

⎧
⎪⎨

⎪⎩

pu if y = Su(x) ∧ τ ,

1− pu if y = (x+ 1) ∧ τ ,

0 otherwise,
(8)

where Su(x) is as in (4).
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This system incurs the following cost in a T -time horizon
problem with initial state x ∈ Y when policy π applied:

V π
T (x) = Eπ

<
exp

4
θ

T−1$

t=0

N$

n=1

1 {Yn(t) = τn}
5)))Y (0) = x

=
.

(9)

The optimal cost-to-go function is

ṼT (x) := min
π

V π
T (x), ∀x ∈ Y. (10)

Here we differentiate this optimal cost-to-go function from
that for the MDP-1 (recalling (2)) by the superscript tilde.

Theorem 1: The MDP-2 is equivalent to MDP-1 in the
following senses:
1) The optimal cost-to-go functions of the two MDPs are

equal in each time slot t for any initial state x such that
xn ≤ τn, ∀n, i.e.

VT (x) = ṼT (x), ∀x ∈ Y; (11)

2) Any optimal control for MDP-1 in state x is also optimal
for MDP-2 in state x∧ τ , and conversely.
Proof: The DP recursion for the optimal cost in MDP-2

is

ṼT (x) = exp
4
θ

N$

n=1

1{xn = τn}
5

×min
u

9$

y

Pu(x,y)ṼT−1(y)
:

, (12)

where Pu(x,y) := P
(
Y (t + 1) = y

))Y (t) = x, U(t) = u
*
,

which can be obtained from (8). By comparing the r.h.s.
of (12) with the r.h.s. of (6), we note that the optimal cost-
to-go function ṼT (·) for MDP-2 and the optimal cost-to-go
function VT (·) (restricted to the state space Y) for MDP-1
evolve in exactly the same way. Further, the initial costs satisfy
V0(x) = Ṽ0(x) = 0, ∀x ∈ Y. Thus, statement 1) holds.

In order to prove statement 2), note that since we have
already shown that MDP-2 and MDP-1 have identical recur-
sive relationships on state space Y, it directly follows that the
two systems have identical optimal controls at any state x ∈ Y.
Further recalling the first statement of Lemma 1, statement 2)
directly follows. !

One can interpret the control in MDP-2 as the client to
transmit in slot t, and the evolution of the MDP-2 as

Yn(t+ 1)

=

⎧
⎪⎨

⎪⎩

0 if a packet delivered for client
n in slot t,

(Yn(t) + 1) ∧ τn otherwise.

It can be observed that, under the same scheduling policy,
the system state of the MDP-2 and the accompanying process
of the MDP-1, defined in (7), evolve in the same way statis-
tically. (This is also the reason why the symbol Y (t) is used
to denote both these processes.) Therefore, we use the symbol
U(t) for the controls of both MDP-1 and MDP-2.

V. THE RISK-SENSITIVE APPROACH

By Theorem 1, we can focus exclusively on MDP-2 which
involves only a finite number

;N
n=1 (τn + 1) of states. We

begin with some notation. The (risk-sensitive infinite horizon)
average cost under policy π starting at state x is defined as

J(π,x) := lim sup
T→∞

1
θ
· 1
T
lnV π

T (x), ∀x ∈ Y, (13)

where V π
T (x) is as in (9). A stationary policy can be described

by a mapping f from state space Y to control set {1, . . . , N},
i.e., the control U(t) = f (Y (t)).

We now define a special class of stationary policies,
called Non-Exclusionary (NE) policies, which have the fol-
lowing property: Under an NE policy, for any n, client
n is not selected to transmit when the system state is
(τ1, . . . , τn−1, 0, τn+1, . . . , τN ). We can show that, any non-
NE stationary policy is either out-performed by some NE pol-
icy, or associated with a cost that is trivial to obtain (see online
supplementary material). Consequently, we focus exclusively
on NE policies.

Denote by Pf the transition probability matrix of a station-
ary policy f , i.e.

(Pf )x,y := P
(
Y (t+ 1) = y

))Y (t) = x, U(t) = f(x)
*
.

Further, denote by Lf the disutility matrix of f , i.e.,

(Lf )x,y := exp
4
θ

N$

n=1

1{xn = τn}
5
· (Pf )x,y, ∀x,y ∈ Y.

Also, denote by ρ(Lf ) the spectral radius of this matrix.
The standard notations of transient/non-transient states and

communicating classes (of states) of Markov Chain are also
used here. In a communicating class, any two states are
accessible from each other. Further, any two different com-
municating classes are disjoint. The reader may refer to [28]
for details.

Lemma 2: The following results hold for any NE policy f :
1) There is one and only one non-transient communicating

class, which contains the state τ = (τ1, . . . , τN ).
2) If a state y is transient, then (Pf )y,y = 0.
3) If there is only one communicating class, then, the average

cost under policy f is,

J(f,y) =
1
θ
ln ρ(Lf ), ∀y. (14)

Proof: To show statement 1), it is sufficient to show that
the state τ is accessible from any state x ∈ Y. This is because,
since pn < 1 for each client n, by (8), when Y (t) = x,
no matter which value of control U(t) is chosen, there is a
positive probability that Y (t+1) = (x+1)∧τ . We continually
apply this argument for τmax := maxN

n=1 τn time slots. Then,
it can be shown that for any x ∈ Y, when Y (t) = x, there is
a positive probability that Y (t+ τmax) = τ , no matter which
policy is applied. Thus, statement 1) follows.

For statement 2), by analyzing (8), it can be shown that if
(Pf )y,y ̸= 0 holds, then one of the following holds:

(i) y = (τ1, . . . , τN );
(ii) y is such that ∃n, yn = 0, yl = τl, ∀l ̸= n, and f(y) = n.

However, in case (i), y is non-transient by statement 1); in
case (ii), client n is selected to transmit when the system state
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is (τ1, . . . , τn−1, 0, τn+1, . . . , τN ), which violates the fact that
policy f is an NE policy. Thus, statement 2) holds.

For statement 3), the proof is omitted due to space con-
straints; more details can be found in the online supplementary
material. !

In the following, it is assumed that for any NE policy, only
one communicating class exists. This is not restrictive for the
following reasons: First, by the first statement in Lemma 2,
there is only one non-transient communicating class. Also,
the existence of a singleton transient communicating class has
already been ruled out by the second statement of Lemma 2.
Second, we can restrict the state space to the non-transient
states, which form a single communicating class by the
first statement in Lemma 2. Denote pmax := maxN

n=1 pn

and τmax := maxN
n=1 τn. Further, let K :=

>
τmax(1 −

pmax)−τmax
?
.

Theorem 2: Let

θth :=
ln(K + 1)− ln(K)
2N (K + 1)

.

For the infinite-horizon MDP-2 with average cost criterion,
1) A stationary optimal policy exists when θ < θth;
2) This stationary optimal policy can be computed in a finite

number of steps.
Proof: Let TDb(x) be the first passage time from state x

to (τ1, . . . , τN ), i.e.,

TDb(x) := min
3
t > 0

))Y (t) = (τ1, . . . , τN ) , Y (0) = x
8
.

We first prove that for any stationary policy f ,

Ef [TDb(x)] ≤ K, ∀x, (15)

which is the so-called simultaneous Doeblin condition [14].
In the proof of the first statement of Lemma 2, we have

shown that for the system (8) evolving under the application of
an arbitrary scheduling policy, and starting with an initial state
x ∈ Y, if the system witnesses τmax consecutive transmission
failures, it hits the state τ . That is, from any initial state
x, the system hits the state τ within τmax time slots with
a probability no less than (1− pmax)τmax . Thus

Ef [TDb(x)] ≤
+∞$

j=1

jτmax
(1 − pmax)τmax

[1− (1− pmax)
τmax ]−(j−1)

=
τmax

(1 − pmax)τmax
. (16)

To prove the first inequality in (16), let us consider the event
that the state τ is not hit within (j − 1)τmax slots. The
probability of this event is at most [1− (1− pmax)

τmax ](j−1).
Further, if this event happens, the probability that the state τ is
hit within the next τmax slots is at least (1−pmax)τmax , leading
to (16). As a result, recalling the definition of K , we have (15).
By combining (15) with the [14, Th. 3.1], statement 1) follows.

For statement 2), the average cost of any NE policy can be
obtained by Lemma 2. Also, the average cost of any non-NE
policy can be trivially obtained. Thus, the cost associated with
any stationary policy can be computed. Since there are only a
finite number of stationary policies, and because a stationary
optimal policy exists by statement 1), statement 2) follows. !

VI. THE HIGH RELIABILITY ASYMPTOTIC APPROACH

While the stationary optimal policy can be computed in a
finite number of steps, as shown in Theorem 2, this procedure
suffers from a significant computational complexity issue:
If we denote by |Y| the cardinality of the state space in
MDP-2, then the total number of possible stationary policies is
N |Y|. Note that |Y| =

;N
n=1 (τn + 1), and so the cardinality

of the state space increases exponentially in the number of
clients N . To calculate the cost associated with each NE
policy, the spectral radius of a [0, 1]|Y|×|Y| matrix needs to
be calculated by Lemma 2. Policy iteration [27] cannot be
applied to this non-irreducible risk-sensitive problem whose
communicating class varies for different policies. Thus, to find
the optimal policy, one needs to compare all the stationary
policies with respect to their associated average costs. All
these factors lead to great computational complexity of the
approach.

We therefore propose a high-channel-reliability asymptotic
approach to obtain near optimal policies, and show that
this leads to a huge simplification with regards to com-
putational complexity. In essence, we are interested in the
scenarios when the channel reliability is relatively high, and
we take advantage of this asymptotic approach to design
policies of appealing structure and good performance. This is
achieved by analyzing the cases when the channel reliabilities
asymptotically approach 1, i.e. the high-reliability asymptotic
regime.

In this section, we obtain some important preliminary results
by applying the high-reliability asymptotic approach, which
facilitates the design of asymptotically optimal policies in the
next section. We begin by focusing on the two-client scenario
for ease of exposition. The results are generalized to the multi-
client scenario in Section VII.

A. Two-Client Scenario and the Modified-Least-Time-to-Go
(MLG) Policy

We begin with some notations. Consider a two-client sce-
nario with channel reliabilities p1 = 1 − b1ϵ, p2 = 1 − b2ϵ,
where ϵ > 0 is a small quantity and b1, b2 > 0. Without loss
of generality, we suppose that τ1 = τ and τ2 = τ +∆, where
∆ ≥ 0.

The modified-least-time-to-go (MLG) policy is defined as

fMLG(x)=
@
2 if x=(0, ∆−1),
max

3
argminN

n=1 (τn − xn)
8

otherwise.

It can be understood as follows: usually, the AP selects the
client with the least gap between its corresponding threshold
and its time elapsed since last delivery, i.e., the client with the
least value of τn − xn, to transmit. That is the “least time to
go”. However, there is one exception: when the system state is
x = (0, ∆−1), client 2 is selected to transmit instead of client
1 which has a smaller “gap” - τ1 − 0 = τ < τ2 − (∆− 1) =
τ + 1.

It will be shown in Section VII that when ϵ ↘ 0,
the MLG policy is asymptotically optimal. We begin with
some analyses.
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B. Regeneration Cycle

We define the cost incurred in time slots t1, t1 + 1, . . . , t2
as:

t2A

t=t1

exp

#
θ

N$

n=1

1 {Yn(t) = τn}
%

. (17)

In this system, we let the regeneration point of interest be
the time slot when the state (1, 0) is hit, i.e., when Y (t) =
(1, 0); and let the regeneration cycle be the time interval
between two such successive regeneration points. Thus, under
the application of a stationary policy f , MDP-2 evolves
statistically the same during different regeneration cycles.
Further, we denote by vcycle the cost incurred in a regeneration
cycle (17), and denote by lcycle the length of a regeneration
cycle. It directly follows that the random variables vcycle
and lcycle are independent and identically distributed (i.i.d.)
in different regeneration cycles. Consequently, the following
holds almost surely

J (f,x) = lim
T→∞

1
θ
· 1
T
lnV f

T (1, 0)

= lim
T→∞

1
θ

1
T
ln E

⎡

⎣
M (cycle)

TA

j=1

v(j)
cycle

⎤

⎦

= lim
T→∞

1
θ

M (cycle)
T

T
ln E [vcycle]

=
1
θ

ln E [vcycle]
E [lcycle]

, ∀x ∈ Y. (18)

where, the first equality holds by (13) and (14); v(j)
cycle is the

cost incurred during the j-th regeneration cycle, and M (cycle)
T

is the total number of regeneration cycles during T slots,
so the second equality in (18) follows from the definition of
V π

T (x) in (9); the third equality holds because v(j)
cycle, ∀j are

i.i.d..
By (18), the analysis of the long-term average cost J is

reduced to the analysis of the expected cost and expected
length of a regeneration cycle, which facilitates the following
discussion.

C. SS-Point and SS-Period

A time slot is called an SS-point if in the two successive
time slots preceding it, the packet transmissions are both suc-
cessful. We illustrate the SS-points in Fig. 2. More formally,
we define the j-th SS-point as

τss
j : =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min{t : t > 0 and slots t− 1, t− 2 have
successful transmissions} for j = 1

min{t : t > τss
j−1 and slots t− 1, t− 2 have

successful transmissions} for j = 2, 3, . . .
(19)

The time interval between two successive SS-points is called
an SS-period. The cost incurred during an SS-period is
denoted by vss(x) (recalling (17)), with x being the system
state at the first time slot of the SS-period. With a stationary
policy applied, for SS-periods with the identical starting state
x, the random variables vss(x) are i.i.d.

Fig. 2. SS-points and SS-periods illustrated in a two-client scenario.
(We arbitrarily allocate the time slots here for illustrative purposes.)

Now we begin with some preliminary results for NE policies
(recall NE policies in Section V).

First, with an arbitrary NE policy being applied, the fol-
lowing result holds for any value of the starting state x of an
SS-period,

P {vss(x) > 1} = O(ϵ). (20)

This follows from the following facts:
i) vss(x) > 1 only if Yn(t) = τn holds for some client n

and some time-slot t in this SS-period.
ii) For an SS-period, if there is no transmission failure, its

length is exactly one time slot.
iii) With an NE policy being applied, the system state x at

an SS-point satisfies xn ̸= τn, ∀n.
The statement i) holds by the definition of vss(x). The
statement ii) holds by the definition of the SS-point and
the SS-period. For statement iii), after successful delivery of
a packet, at least one element of the system state is zero.
Further, with an NE policy applied, if the system state is
(τ1, 0) then client 1 is selected to transmit; while if the state is
(0, τ2) then client 2 is selected to transmit. Thus, after another
successful delivery of a packet, the resulting system state x
must satisfy xn ̸= τn, ∀n. By these facts, and by combining
i) and iii), we conclude that if an SS-period incurs a cost
greater than 1, it consists of at least two time slots. Then,
it follows from ii) that if vss(x) > 1, there is at least one
transmission failure in this SS-period, leading to equation (20).

Here and in the sequel, we use the asymptotic big O and
little o notations [29]: z(ϵ) = O(ϵk) means that there exists
a positive δ and a positive L such that |z(ϵ)| ≤ Lϵk when
0 < ϵ < δ, i.e., lim supϵ→0+

|z(ϵ)|
ϵk < ∞, while z(ϵ) = o(ϵk)

means that for any positive ζ, there exists a positive δ such
that |z(ϵ)| ≤ ζϵk when 0 < ϵ < δ, i.e., limϵ→0+

z(ϵ)
ϵk = 0.

Second, let P (ss)
x denote the probability that in a regenera-

tion cycle, there is at least one SS-period whose starting state
is x. Then we have

E [vcycle] = 1 +
!

x P (ss)
x (E [vss (x)]− 1) + o(ϵk), (21)

where k ≥ 1 is an integer such that there exists d1, d2 > 0
satisfying d1ϵk ≤ E [vcycle] − 1 ≤ d2ϵk when ϵ is sufficiently
small. This result holds by noting the following facts:

1) Any regeneration cycle consists only of SS-periods.
2) If a regeneration cycle is associated with a cost vcycle > 1,

then at least one of the SS-periods included in it has a
cost vss(·) > 1.
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3) Whenever ϵ is small enough, the probability that
two or more SS-periods each incurs a cost vss(·) > 1
is much less than the probability that only one of these
SS-periods incurs a cost vss(·) > 1.

For statements 1) and 2), the proof is direct and omitted. The
statement 3) follows from (20). As a consequence, we have

E[vcycle] = P{vcycle = 1}·1 + P{vcycle > 1}E[vcycle|vcycle > 1]
= 1 + P{vcycle > 1} (E[vcycle|vcycle > 1]− 1)
= 1 + P{in a cycle, ∃SS-period such that vss(·)>1}

·(E[vcycle| ∃SS-period such that vss(·)>1]− 1)
= 1 + P{a cycle has one SS-period with vss(·)>1}

·(E[vcycle|one SS-period with vss(·) > 1]− 1)
+ o(ϵk) = 1 + o(ϵk) +

$

x

P (ss)
x

×P{vss(x) > 1}(E[vss(x)|vss(x) > 1]− 1)
= 1 +

$

x

P (ss)
x (E[vss(x)]− 1) + o(ϵk). (22)

In (22), the first equality follows from the law of total
expectation. The second equality is obvious. The third equality
follows from statements 1) and 2). The fourth equality follows
from statement 3), where k ≥ 1 is an integer such that there
exists d1, d2 > 0 satisfying d1ϵk ≤ E [vcycle] − 1 ≤ d2ϵk

whenever ϵ is sufficiently small. The fifth equality holds by
considering which SS-period in the given cycle causes a cost
vss(·) > 1, and recalling that P (ss)

x denotes the probability that
in a regeneration cycle, there is at least one SS-period whose
starting state is x. The sixth equality holds by noting that

E[vss(x)] = P{vss(x) = 1} · 1
+P{vss(x) > 1}E[vss(x)|vss(x) > 1]

= 1 + P{vss(x) > 1}(E[vss(x)|vss(x) > 1]− 1).

Thus, (21) directly follows from (22). Here, note that, by state-
ment 3) above, we can repeatedly ignore events with relatively
small probabilities for small enough ϵ. This “omission princi-
ple” technique captures the key aspect of the high-reliability
asymptotic approach, and will be frequently applied in the
following.

Now we consider a special regeneration cycle which consists
of only successful transmissions. Let Xss be the set of the
system states hit in such a regeneration cycle.

Lemma 3: The following results hold:
1) Under the application of any NE policy,

E [vcycle] ≥ 1 +
$

x∈Xss

(E [vss (x)]− 1) + o(ϵk), (23)

where k is an integer such that there exists d1, d2 > 0
satisfying d1ϵk ≤ E [vcycle] − 1 ≤ d2ϵk whenever ϵ is
sufficiently small.

2) With the MLG policy applied

E [vcycle] = 1 +
$

x∈Xss

(E [vss (x)]− 1) + o(ϵk) (24)

where k is similarly defined as in (23).
3) Further, with the MLG policy applied, if ∆ ≥ 2

Xss = {(1, 0), (0, x2), ∀x2 = 0, . . . , ∆− 1} (25)

E[lcycle] = ∆+O(ϵ); (26)

E[vss(1, 0)] = 1 + bτ−1
1 ϵτ−1 (exp(θ)−1)+O(ϵτ ), (27)

E[vss(0, x2)] = 1 +O(ϵτ ), ∀x2 = 0, . . . , ∆− 1. (28)

Similar results can be obtained for ∆ = 0, 1.
Proof: The proof is omitted with more details in the online

supplementary material. !

VII. ASYMPTOTICALLY OPTIMAL POLICIES

We now determine asymptotically optimal policies and treat
the general multi-client case in this section.

A. The MLG Policy in Two-Client Scenario

Consider a two-client scenario with channel reliabilities
p1 = 1 − b1ϵ, p2 = 1 − b2ϵ and inter-delivery thresholds
τ1 = τ , τ2 = τ +∆, where ∆ ≥ 0 is assumed without loss of
generality.

Theorem 3: The following results hold:
1) With the MLG policy applied, for any initial state x ∈ Y,

the risk-sensitive average cost is,

J(fMLG,x)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A0ϵτ−1 +O(ϵτ ) if ∆ = 0,
eθ − 1
2θ

ϵτ−1
$τ−1

j=0
bj
1b

τ−1−j
2 +O(ϵτ ) if ∆ = 1,

eθ − 1
θ∆

bτ−1
1 ϵτ−1 +O(ϵτ ) if ∆ ≥ 2,

where

A0 =
eθ − 1

θ

τ−2$

j=1

bj
1b

τ−1−j
2 +

e2θ − 1
2θ

6
bτ−1
1 + bτ−1

2

7
.

2) The optimal cost over all the stationary policies, denoted
J⋆(x) := minf J(f,x), satisfies the lower bound:

J⋆(x) ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A0ϵτ−1 + o(ϵτ−1) if ∆ = 0,
eθ − 1
2θ

A1ϵ
τ−1 + o(ϵτ−1) if ∆ = 1,

eθ − 1
θ

A2ϵ
τ−1 + o(ϵτ−1) if ∆ ≥ 2,

where

A0 is as in the statement above,
bmin := min{b1, b2},
A1 := bτ−1

1 + (τ − 1) bτ−1
min ,

A2 := min
@

bτ−1
1

∆
,
bτ−1
1 + (τ − 1)bτ−1

min

∆+ 1
, and

bτ−1
1 + (τ − 1)bτ−1

min +
!τ−1

j=1 bj
2b

τ−1−j
1

∆+ 2

F
.

3) The MLG policy is asymptotically optimal in the high
reliability asymptotic regime (i.e., when ϵ ↘ 0) if any of
the following conditions holds:

(i) ∆ = 0; (ii) ∆ = 1, and b1 ≤ b2;
(iii) ∆ ≥ 2, and bτ−1

1 ≤ ∆(τ − 1)bτ−1
2 .

Proof: In the following, we focus on the case when ∆ ≥ 2.
The proof for the cases when ∆ = 1 or 0 is similar and is
therefore omitted.
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For statement 1), with the MLG policy applied, the follow-
ing result follows from the second and the third statements of
Lemma 3,

E[vcycle] = 1 + bτ−1
1 ϵτ−1

6
exp(θ)− 1

7
+O(ϵτ ). (29)

As a result, by combining (18), (26) and (29), statement
1) follows. Here, we note that, for any positive d > 0,
ln
6
1 + dϵτ−1

7
= dϵτ−1 + O(ϵ2(τ−1)) holds. This follows

from the Taylor expansion of ln
6
1 + dϵτ−1

7
and the definition

of the asymptotic notation big O(·).
To prove statement 2), in the following, we first derive a

lower bound on E[vss(x)] for all possible starting states x of
an SS-period, and then analyze a lower bound for the average
cost J by further combining (18) and (23).

For the lower bound on E[vss(x)], we begin with the case
when the starting state x = (1, 0). That is, we focus on an
SS-period starting with state (1, 0) with an arbitrary stationary
policy applied, and analyze how the system evolves during
such a period. Depending on the policy applied, there are two
possibilities,
(a) The policy serves client 2 before the earlier of these

two events: i) a successful packet delivery for client 1,
ii) the system hits the value (τ, τ−1). Under such a policy,
it can be shown that a cost vss(1, 0) > 1 is incurred with
a probability strictly larger than dϵτ−2 for some d > 0.

(b) The policy does not serve client 2 before the earlier of
the following two events: i) a successful packet delivery
for client 1, ii) the system hits the value (τ, τ − 1). Then,
if failures occur in all of the first τ − 1 time slots for the
SS-period, the state (τ, τ − 1) will be hit. Thus, a cost
vss(1, 0) ≥ exp(θ) is incurred with a probability greater
than or equal to bτ−1

1 ϵτ−1.
The proof of (a) follows a similar argument as in the proof of
Lemma 3, and is thus omitted. Consequently, combining (a)
and (b) above, we have

E[vss(1, 0)] ≥ 1 + bτ−1
1 ϵτ−1 (exp(θ) − 1) + o(ϵτ−1).

A lower bound on E[vss(x)] for other possible starting states
of an SS-period can be obtained in a similar way. Here,
we summarize the results as follows,

i. ∀x ∈ {(0, x2)|x2 ≤ ∆− 1}, E[vss(x)] ≥ 1.
ii. ∀x ∈ {(0, x2)|x2 ≥ ∆+ 2}

G
{(x1, 0)|x1 ≥ 2},

E[vss(x)] ≥ 1 + dϵτ−2 + o(ϵτ−2), with some d > 0.
iii. E[vss(1, 0)] ≥ 1 + bτ−1

1 ϵτ−1 (exp(θ)− 1) + o(ϵτ−1).
iv. E[vss(0, ∆+1)] ≥ 1+

!τ−1
j=1 bj

2b
τ−1−j
1 ϵτ−1(exp(θ)− 1)+

o(ϵτ−1).
v. E[vss(0, ∆)] ≥ 1 + (τ − 1)bτ−1

min ϵτ−1(exp(θ) − 1) +
o(ϵτ−1).

Note that the possible starting states of an SS-period are of
the form (·, 0) or (0, ·). Thus, results i-v provide the lower
bounds on E[vss(x)] for all possible starting states x.

Now, note that by equality (18), the analysis of the average
cost is reduced to the analysis of E[vcycle] and E[lcycle], and
by the inequality (23), the lower bound on E[vcycle] can
be obtained by analyzing the SS-periods. Further, we note
that E[lcycle] is dominated by the length of a regeneration
cycle consisting only of successful transmissions, as illustrated
in (25) and (26). Combining these results, we obtain the
statement 2).

Statement 3) directly follows from statements 1) and 2). !
By Theorem 3, the optimality of the MLG policy for the

two-client scenario in the high-reliability asymptotic regime
has been established. Note that the conditions in the third state-
ment of Theorem 3 concern the difference of the inter-delivery
thresholds, and the ratio of the relative failure probabilities.

B. Asymptotically Optimal Policy in the General Case

Now, we generalize the results obtained in Section VI and
Section VII-A to the multi-client scenario. Consider a system
with a single AP and N clients connected to it through wireless
channels. The channel reliability of client n is pn = 1− bnϵ,
where ϵ > 0 is a small quantity and parameter bn > 0, ∀n.
Without loss of generality, we assume that the inter-delivery
thresholds are such that N ≤ τ1 ≤ τ2 ≤ · · · ≤ τN . In the
following, we focus exclusively on stationary policies, since
we have already shown the existence of a stationary optimal
policy in Theorem 2.

We begin with some notation. A regeneration point is
defined as the time epoch when the system hits the state
(0, 1, . . . , N−1), i.e., time t is a regeneration point if and only
if Y (t) = (0, 1, . . . , N−1). (This is similar to the regeneration
point in the 2-client scenario, which is the time epoch when
the state (1, 0) is hit.) Also, a regeneration cycle is defined as
the time interval between two successive regeneration points.
We further consider a special regeneration cycle which consists
only of successful transmissions. We note that, with a given
stationary policy, the system states which are hit during such
a regeneration cycle turn out to be a deterministic sequence,
which we denote by XsN. Denote by |XsN| the length of this
sequence, and by XsN(j) the j-th state in this sequence.

In addition, similar to the definition of SS-point in (19), a
time slot is called an SN-point if, in the N successive time slots
preceding it, all packet transmissions are successful. More
formally, the j-th SN-point is defined as

τsN
j : =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min{t : t > 0 and slots t− 1, . . . , t−N are
successful transmissions} for j = 1

min{t : t > τsN
j−1 and slots t− 1, . . . , t−N are

successful transmissions} for j = 2, 3, . . .
(30)

Then, the SN-period is defined as the time interval between
two successive SN-points. Also, similar to the two-client case,
we denote by vsN(x) the cost (17) incurred during such an SN-
period when the starting state of the SN-period is x.

Now we consider a time interval beginning with an arbitrary
starting state x ∈ Y, and ending when the system hits the
nearest SN-point that makes the length of this time interval
no less than N . Let the cost (17) incurred during such a
time interval be ṽsN(x). (The difference between ṽsN(x) and
vsN(x) is that while the former is the cost incurred during a
time interval of length greater than or equal to N , the latter
denotes the cost incurred during an SN-period which may have
a shorter length. We recall the example in Fig. 2 where an SN-
period of length 1 is illustrated for a two-client scenario. )

Lemma 4: If a policy f is optimal, then it must satisfy,

J(f,x) = O(ϵ), ∀x ∈ Y. (31)
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Moreover, for any policy f satisfying (31), the following
results hold:
1) For any initial state x ∈ Y, the average cost satisfies,

J(f,x) =
1

|XsN|

|XsN|$

j=1

6
E
(
vsN
6
XsN(j)

7*
− 1
7
+ o(ϵk) (32)

where k ≥ 1 is an integer such that there exist d1, d2 > 0
satisfying d1ϵk ≤ J(f,x) ≤ d2ϵk whenever ϵ is sufficiently
small.

2) For any possible state x at an SN-point, we have,

E[ṽsN(x)] = 1 +
N−1$

j=0

6
E
(
vsN(Sj(x))

*
− 1
7
+ o(ϵk) (33)

where S1(x) is the state that succeeds state x in the event
of a successful transmission when policy f is applied, i.e.,

S1(x) := (x1 + 1, . . . , xf(x)−1 + 1, 0,
xf(x)+1 + 1, . . . , xN + 1) ∧ τ ;

also

Sj+1(x) := S
6
Sj(x)

7
, j = 1, 2, · · · ;S0(x) := x,

and k is an integer such that there exist d1, d2 > 0
satisfying d1ϵk ≤ E [ṽsN(x)] − 1 ≤ d2ϵk whenever ϵ is
sufficiently small.
Proof: The proof is by arguments similar to those in the

two-client scenario (proof of (18), (20)–(24) in Section VI-B,
VI-C and Lemma 3). !

By (32) and (33), one may note that the average cost J
and E[ṽsN(·)] are closely related. This can be seen by noting
that Sj

6
XsN(1)

7
= XsN(j + 1), ∀j = 1, . . . , |XsN| − 1 and

|XsN| ≥ N . Thus, the r.h.s. of (33) and the r.h.s. of (32)
are closely related. By these observations, it is reasonable to
propose the following assumption.

Assumption 1: A stationary policy that minimizes
E[ṽsN(x)] for each system state x ∈ Y, also minimizes
J(f,x).

Motivated by Assumption 1, Algorithm 1 shown alongside
is proposed, which determines a stationary policy called an
“SN policy”. Here,

S̃n(x) := (x1 + 1, . . . , xn−1 + 1, 0,
xn+1 + 1, · · · , xN + 1) ∧ τ ,

i.e., S̃n(x) is the state that succeeds state x in the event of a
successful transmission under control U(t) = n.

In words, Algorithm 1 tends to minimize E[ṽsN(x)] for any
system state x ∈ Y. This is accomplished in the following
way: First, the algorithm classifies system states into sets,
Y0,Y1, . . . ,YminN

n=1{τn} , where,

Yk := {x : ∃A > 0,min
π
(E[ṽsN(x)]) = 1 +Aϵk + o(ϵk)},

(34)

for k = 0, 1, . . . ,minN
n=1{τn}. Then, it determines or approx-

imates the coefficient A in (34) for each system state x
(denoted A(x)), and finally obtains the optimal policy based
on A(x).

Algorithm 1 SN Policy Algorithm
input : N , θ, τ1, . . . , τN , b1, . . . , bN .
output: Policy g(x), ∀x ∈ Y.

1 Y0 = {x : ∃A > 0,minπ (E[ṽsN(x)]) = 1+A+ o(1)};

2 foreach x ∈ Y0 do
3 A(x) is as in Step 1;
4 g(x)← argminN

n=1 A(S̃n(x)) ;

5 Z← ∅; Yremain ← ∅
6 foreach k = 1 to (minN

n=1 τn) do
7 Z← Z ∪ Yk−1;
8 Yk ← {x : x+ 1 ∈ Yk−1 and x /∈ Z};
9 repeat Yk ← Yk ∪ {x : S̃n(x) ∈

Z ∪ Yk, ∀n and x /∈ Z ∪ Yk} until Yk not extend;

10 foreach k = 1 to (minN
n=1 τn) do

11 Y′
k ← Yk;

12 repeat
13 Y′′

k ← Y′
k; Y′

k ← ∅;
14 foreach x ∈ Y′′

k do
15 m← max{j : ∃n, S̃n(x) ∈ Yj};
16 Uset ← {n : S̃n(x) ∈ Ym};
17 if m > k then
18 [A(x), g(x)]← minn∈Uset bnA((x+1)∧τ );

19 else if ∃n ∈ Uset, A(S̃n(X)) not yet then
20 Y′

k ← Y′
k ∪ x;

21 else
22 [A(x), g(x)]← minn∈Uset A(S̃n(x)) +

bnA((x+ 1)∧ τ )1{(x+ 1)∧ τ ∈ Yk−1};

23 until Y′
k = ∅ or Y′

k = Y′′
k;

24 if Y′
k ̸= ∅ then

25 Yremain ← Yremain ∪ Y′
k; B(x)← 0, ∀x ∈ Yk;

26 foreach n = 1 to N − 1 do
27 foreach x ∈ Yk do
28 U ′

set ← g(x) or Uset;
29 B(x)← minn∈U ′

set
B(S̃n(x)) +

bnA((x+ 1) ∧ τ )1{(x+ 1) ∧ τ ∈ Yk−1}

30 foreach x ∈ Y′
k do

31 [A(x), g(x)]← minn∈U ′
set

B(S̃n(x)) +
bnA((x+ 1) ∧ τ )1{(x+ 1) ∧ τ ∈ Yk−1}

Theorem 4: When Assumption 1 holds and Yremain in Algo-
rithm 1 is empty, the SN policy is asymptotically optimal in
the high reliability asymptotic regime.

This directly follows from the design of the Algorithm.
Also, later in Section IX, we provide an example, illustrated
in Fig. 5 when these optimality conditions hold. 1

VIII. DESIGN OF AN INDEX-BASED POLICY

We now consider the scheduling problem in which M <
N clients are allowed to transmit packets simultaneously,

1Note that the Algorithm 1 can be further improved by using S̃(S̃(x)) in
Step 19–22.
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using possibly orthogonal channels. We propose “index-based”
policies, which are easily implementable and computationally
simple.

Let U(t) = (U1(t), . . . , UN (t)) be the control at time slot
t, where Un(t) = 1 if client n is selected to transmit in slot
t, and Un(t) = 0 otherwise. The constraint on the number of
orthogonal channels is

!N
n=1 Un(t) ≤ M, ∀t.

We propose an index-based policy similar to the Whittle
Index policy, which is designed for the restless multi-armed
bandit problem [17]. The key difference between Whittle’s
policy and our index-based policy is that unlike Whittle’s
policy, ours makes decisions in order to avert the risk. Another
key difference is that while Whittle’s Index policy draws inspi-
ration from the solution to “relaxed problem” [17], the same
is not true for the risk sensitive index-based policy proposed
by us. In fact, it turns out that in the risk sensitive setting,
even solving the relaxed problem is highly nontrivial, and no
known methods exist for it.

The first step towards deriving our policy is to consider the
following single-client “ω-subsidy” problem for each client n:

min
π

lim
T→∞

1
θ

1
T
ln Eπ

<
exp

4
θ

T−1$

t=0

1 {Yn(t) = τn}

−ω1 {Un(t) = 0}
5=

, (35)

where Yn(t) ∈ {0, 1, . . . , τn}. That is, compared with the
original problem, for each client, a subsidy ω is introduced
to reduce the cost whenever client n is not selected to
transmit. This is somewhat similar to the ω-subsidy problem
in Whittle’s policy design, and may be regarded as its risk-
sensitive version.

Now, we focus on the ω-subsidy problem of a single client
n. Thus, in the following, we omit the subscript n in pn,
τn, Un(t), and Yn(t) when no confusion is incurred. The
following Lemmas show that the optimal policy for the ω-
subsidy problem is of threshold type.

Lemma 5: Consider the single-client ω-subsidy problem
defined in (35) with,

ω <
1
θ
[− ln (1− p)] . (36)

Then, the following results hold:
i) ∀h ∈ {1, 2, . . . , τ}, there exists a unique (ω, λ) pair

satisfying the following equations,
(
e−θω − (1− p)

* 6
λeθω

7h
= p, (37)

0
λ

1−p

1τ−h 6
λeθω

7h−p
1−
4

λ
1−p

5τ−h

1−p−λ
=

p eθ

λ−eθ(1−p)
,

(38)

Denote this pair of (ω, λ) by W1(h), λ1(h).
ii) ∀h ∈ {0, 1, . . . , τ − 1}, there exists a unique (ω, λ) pair

satisfying (38) and

(
e−θω − (1− p)

* λ
6
λeθω

7h − p

1− p
= p. (39)

Denote this pair of (ω, λ) by W2(h), λ2(h).
Proof: The proof is omitted with more details in the online

supplementary material. !

A threshold-type policy with a threshold h ∈ {0, 1, . . . , τ}
applies the following control,

U(t) =

'
0, if Y (t) < h;
1, if Y (t) ≥ h.

Also, threshold value h = 0 refers to a policy which transmits
irrespective of the state value, while a policy with threshold
h =∞ refers to one that never transmits. It can be shown that
the problem (35) is solved by threshold-type policies.

Lemma 6: For the single-client ω-subsidy problem defined
in (35) with inequality (36), an h-threshold policy is optimal
if one of the following holds:
1) h = 0 and ω ≤ W2(0).
2) h ∈ {1, . . . , τ − 1} and W1(h) ≤ ω ≤ W2(h).
3) h = τ, ω =W1(τ), and additionally

W1(τ) =
ln
(
pe−θτ + (1− p)

*

−θ
. (40)

4) h =∞ and ω ≥ W1(τ).
Proof: The proof is omitted with more details in the online

supplementary material. !
Now we define the notion of indexability for a risk sensitive
MDP.

Definition 1: For the ω-subsidy problem (35), let B(ω)
denote the set of states where the optimal control is 0 (i.e., not
to transmit). An ω-subsidy problem is indexable if ω1 < ω2

implies that B(ω1) ⊂ B(ω2). The entire problem is indexable
if each ω-subsidy problems associated with any client n is
indexable.
If a problem is indexable, the index for a state i in the
ω-subsidy problem is defined as the smallest value of subsidy
ω under which the control 0 (not transmit) is optimal when the
state value is i, i.e., the index is given by inf{ω : i ∈ B(ω)}.
The index-based policy chooses the M clients which have the
largest index values, and transmits their packets.

Theorem 5: For the ω-subsidy problem, the following
results hold:

1) W1(h) =W2(h− 1), ∀h = 1, . . . , τ ;
2) W1(τ) satisfies the inequality (36);
3) When the inequality (36) is violated, the h-threshold

policy with h =∞ is optimal.
As a result, the ω-subsidy problem is indexable, and the index
for each state i is,

'
W2(i), for i = 0, 1, . . . , τ − 1;
W1(τ), for i = τ.

In addition, the MDP-2 is indexable.
Proof: For statement 1), first note that for W1(h) and

λ1(h), equations (37) and (38) are satisfied. Also, for W2(h−
1) and λ2(h− 1), the following equations are satisfied,

(
e−θω − (1− p)

* λ
6
λeθω

7h−1 − p

1− p
= p, (41)

0
λ

1−p

1τ−h−1 6
λeθω

7h−1−p
1−
4

λ
1−p

5τ−h−1

1−p−λ
=

p eθ

λ−eθ(1−p)
.

(42)
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Equations (41) and (42) are derived by replacing h by h− 1
in (38) and (39). Recall that there are unique W1(h), λ1(h)
and unique W2(h− 1), λ2(h− 1) by the statements i) and ii)
in Lemma 6. Thus, in the following, we prove statement 1)
by showing that (37) and (38) imply (41) and (42).

By (37),
6
λeωθ

7h
=

p

e−ωθ − (1− p)
. (43)

Then, by substituting (43) into (41), we have,

l.h.s. of (41) =
(
e−θω − (1− p)

* pe−θω

e−θω−(1−p) − p

1− p
= p = r.h.s. of (41). (44)

Thus, (37) implies (41).
Further, in a similar way, it can be shown that (37), (38),

and (41) imply (42). Thus, statement 1) holds.
Statement 2) simply follows from (40) and (36).
Statement 3) can be proved in a similar way as in the proof

of Lemma 6, and we omit it.
The results for indexability and the value of the index simply

follow from their definitions. !
Remark: Note that the numerical value of the index in Theo-

rem 5 can be simply obtained by bisection search. Specifically,
λ can be expressed as a function of ω by (37) or (39). Then,
by substituting it into (38), we can obtain an equation for
W1(h) or W2(h), which can be simply solved by bisection
search.

Remark: In designing the index-based policy, we have
generalized the Whittle Index policy for the risk-neutral case
to a risk-sensitive restless multi-armed bandit problem. In the
risk-neutral case, if a restless multi-armed bandit problem is
indexable, the Whittle Index policy is proved to be asymp-
totic optimal when the total number of clients increases to
infinity [30]. In this indexable risk-sensitive problem, from
the numerical results, our index-based policy also performs
well when the number of clients is sufficiently large, as shown
in Fig. 7.

Online Learning: We briefly describe a method that can
learn the indices online in case the equations (37)-(39) cannot
be solved either because the parameters are unknown or time-
varying, or because one wants to avoid the computational
expense involved. As stated above, after having eliminated the
λ by (37) or (39), we have a single equation involving only
the parameter ω to determine the index. Solving this nonlinear
equation with h set to i yields the index for state value i. Let
us denote this equation by Gn,i(ω) = 0, where the subscript
is used to identify the client n and state value i. We can use a
stochastic version of Newton’s method [31] corresponding to
solving the deterministic equation Gn,i(ω) = 0, as follows,

ωn,i(k + 1) = Γ

'
ωn,i(k)− αk

#
Gn,i(ωn,i(k))
G′

n,i(ωn,i(k))

%H
,

k = 1, 2, . . . , (45)

where αk = 1/k is the step size of the k-th iteration, G′
n,i(ω)

is the derivative of Gn,i(ω), and Γ{·} is the projection operator
that maps the iterates onto the compact set [0,− 1

θ ln (1− pn)].
Projections are needed in order to keep the “noisy iterates”
bounded, while the choice of step-sizes αk = 1/k is stan-
dard in stochastic approximation algorithms and is necessary

Fig. 3. Risk-sensitive average cost vs. risk-sensitive parameter θ for different
wireless scheduling policies. (The parameters are N = 2, p1 = 0.4,
p2 = 0.1, τ1 = 20, τ2 = 40).

to smoothen out the noise. See [32] for further details.
The scheduling is performed by choosing M clients having
the largest indices ωn,Yn(t), where Yn(t) is the state of client
n at time t. Thus, the method combines the updates of indices
in (45) with the index-based policy. Let ω⋆ be a root of the
equation Gn,i(ω) = 0, and ω0 be the initial point for our
iterations. The following conditions are needed in order to
ensure the convergence of this online learning method,

1) There is a neighborhood of radius δ > 0 around ω⋆,
denoted Nω⋆(δ), such that G′

n,i(ω) ̸= 0, ∀ω ∈ Nω⋆(δ).
2) G′′

n,i(ω) is continuous in Nω⋆(δ).
3) The initial point ω0 is sufficiently close to the root ω⋆.

Then, the index values decided by the recursions (45) converge
to the true value of the indices under the assumption that
each client n is scheduled infinitely often when in state i.
If this is not the case, one may artificially guarantee that such
an assumption is true by choosing, with a small probability
ϵt, a client uniformly at random, and with remaining 1 − ϵt

probability according to the index rule. The resulting algorithm
can be analyzed by the ODE method, as in [33] and [34].

IX. SIMULATIONS

We now present the results of a simulation study. In sce-
narios with heterogeneous inter-delivery thresholds and het-
erogeneous channel conditions, we implement the following
scheduling policies and present their performance with respect
to the risk-sensitive average cost:
• The optimal policy (OP) obtained by Theorem 2;
• The modified-least-time-to-go (MLG) policy (for the two-

client scenario) proposed in Section VII-A;
• The SN policy proposed in Section VII-B;
• The index-based policy designed in Section VIII;
• The heuristic packet-level round-robin policy (PRR): a

client keeps transmitting its packets until a successful
transmission, then the next client takes its turn to transmit;

• The largest-weighted-delivery-debt (WDD) policy, which
selects the client with the largest weighted delivery debt
to transmit, where:

Delivery Debtn =
t

pnτn
− M (n)

t

pn
. (46)

Note that, in (46), M (n)
t is the number of the packets delivered

for client n by time t, as in (1). The WDD policy has been
shown to be “timely-throughput” optimal [34].
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Fig. 4. Normalized risk-sensitive average cost (normalized by the cost of the
optimal policy) vs. failure transmission parameter ϵ in a two-client scenario.
(p1 = 1− 2ϵ, p2 = 1− ϵ, τ1 = 3 , τ2 = 5 , θ = 0.01.)

Fig. 5. Normalized risk-sensitive average cost (normalized by the cost of
the optimal policy) vs. failure transmission parameter ϵ in a multi-client
scenario. (The parameters are N = 3 , p1 = p2 = p3 = 1 − ϵ, τ1 = 4,
τ2 = 6 , τ3 = 8 , θ = 0.05 .) (a) Performance of PRR, WDD, and SN policies.
(b) Performance of Periodic Scheduling.

Fig. 3 demonstrates the costs of the scheduling policies in a
two-client scenario for different values of the risk-sensitivity
parameter θ. It can be seen that the optimal policy always
outperforms all the other policies.

Fig. 4 demonstrates the risk-sensitive costs for different
scheduling policies in a two-client scenario with different
channel reliabilities. It can be seen that even for moderate
channel reliabilities, e.g., p1 = 0.6 and p2 = 0.8, the MLG
policy still achieves near-optimal performance, and has a
smaller cost compared to all other heuristic policies. The
performance of the index-based policy is also shown. As dis-
cussed in Section VIII and shown in Fig. 7, the index-based

Fig. 6. Results for a multi-client scenario with parameters being N = 4,
p1 = p2 = p3 = p4 = 1− ϵ, τ1 = 4, τ2 = 5 , τ3 = 9 , τ4 = 10, θ = 0.05 .
(The risk-sensitive average cost is normalized by the cost of optimal policy.)
(a) The normalized risk-sensitive average cost vs. ϵ. (b) Performance for the
case of ϵ = 0.05 with SN policy.

policy performs well only when the number of clients is
sufficiently large. Therefore, it cannot be compared to the
MLG policy in this two-client scenario.

Fig. 5 (a) demonstrates the risk-sensitive cost for different
scheduling policies in a multi-client scenario with different
channel reliabilities. It can be seen that even for moderate
channel reliability probabilities, such as 0.8, the SN policy
still achieves near-optimal performance, and has a smaller cost
than all other heuristic policies. In Fig. 5 (b), the performance
of the periodic scheduling (PS) policy [25] is also presented.
The PS policy is known to be optimal when the failure
probabilities are exactly zero. However, it can be seen that
the PS policy has extremely poor performance even when the
failure probability is very small, e.g., 0.01. This illustrates
the importance of the asymptotic approach proposed: While
there is no guarantee that a policy that is optimal for the
case of zero channel failure probabilities also has a good
performance when the failure probabilities are relatively small,
in contrast, the policies resulting from the high-reliability
asymptotic approach yield near optimal performance when the
channel failure probabilities are sufficiently small.

In Fig. 6, we implement the policies in another multi-client
scenario when the optimality condition for the SN policy
stated in Theorem 4 is not satisfied. Fig. 6 (a) shows that in
this case, the SN policy still has a near-optimal performance
when the channel failure probability is small or even mod-
erate. To be specific, the normalized average costs associated
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Fig. 7. The risk-sensitive average cost per client vs. the number of total
clients for different policies.

with the SN policy are 1.031, 1.001, 1.046, 1.115, 1.167, 1.216
for ϵ = 0.01, 0.03, 0.05, 0.10, 0.15, 0.20, respectively. Also,
by comparing with Fig. 5, we find that the advantage of the SN
policy over other heuristic policies increases when the number
of clients increases. Fig. 6 (b) demonstrates the empirical
probabilities of the length of inter-delivery times for different
clients when the SN policy is implemented, for the case of
p1 = p2 = p3 = p4 = 0.95.

In Fig. 7, the performance of the index-based policy is
compared with other heuristic policies under a scenario where
at most 30% of the clients can transmit simultaneously.
The clients in this scenario are classified into two classes:
For any client n in the first class, pn = 0.6, τn = 10; while
for any client n in the second class, pn = 0.8, τn = 5. Also,
each class consists of exactly half of the clients. Further, θ is
set to 0.5. Here, the performance of the optimal policy is not
provided since its computational complexity is extremely high
when the number of clients is large. However, it can be seen
that the performance of the index-based policy is much better
than that of other heuristic policies when the number of clients
is sufficient large. In this case, when N > 50, the index-based
policy already well outperforms other policies.

X. CONCLUSION

We have addressed the problem of designing scheduling
policies to meet the packet inter-delivery time requirements
of wirelessly connected clients in cyber-physical systems. We
have proposed a novel risk-sensitive approach to severely
penalize the large “exceedance” of the inter-delivery times
over the desirable thresholds.

Although the resulting risk-sensitive MDP involves an
infinite state space, it can be converted into an equivalent
MDP that involves only a finite number of states. We thus
establish the existence of a stationary optimal policy, and
further determine an algorithm to obtain it in a finite number
of steps.

To further simplify the computational complexity we have
undertaken the following two approaches: i) When the chan-
nel reliabilities are close to 1 (high-reliability asymptotic
approach) we have analyzed low complexity policies such as
the modified-least-time-to-go (MLG) policy and the SN policy,
and have proved that they are asymptotically optimal, ii) In
the non-asymptotic case, we have extended risk-neutral index

policies to the risk-sensitive scenario. We have also conducted
a simulation study, and found that the proposed asymptotically
optimal policies provide near-optimal performance even for
moderate values of the failure probabilities, which justifies the
high-reliability approach. We have also shown that the index-
based policy well outperforms other heuristic policies when
the number of clients is sufficiently large.
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