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Throughput Optimal Decentralized Scheduling of
Multihop Networks With End-to-End Deadline

Constraints: Unreliable Links
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Abstract—We consider multihop networks serving mul-
tiple flows in which packets have hard deadlines. Packets
not delivered to their destinations by their deadlines are of
no value. The throughput of packets delivered within their
deadlines is called the timely throughput. We address the
design of packet scheduling, transmit power control, and
routing policies that maximize any specified weighted aver-
age of the timely throughputs of the multiple flows. We deter-
mine a tractable linear program (LP) whose solution yields
an optimal routing, scheduling, and power control policy,
when nodes have average-power constraints. The optimal
policy is fully decentralized, with decisions regarding any
packet’s transmission scheduling, transmit power level, and
routing, based solely on the age and location of that packet.
No knowledge of states of any other packets in the network
is needed. This resolves a fundamental obstacle that arises
whenever one attempts to optimally schedule networks. The
number of variables in the LP is bounded by the product of
the square of the number of nodes, the number of flows,
the maximum relative deadline, and the number of transmit
power levels. This solution is obtained from decomposition
of the Lagrangian of the constrained Markov decision pro-
cess describing the complete network state. Global coordi-
nation is achieved through a price for energy usage paid by
a packet each time that its transmission is attempted at a
node. It is fundamentally different from the decomposition
of the fluid model used to derive the backpressure policy,
which is throughput optimal when packets have no dead-
lines, where prices are related to queue lengths. If nodes
instead have peak-power constraints, then a decentralized
policy obtained by simple truncation is near optimal as link
capacities increase in a proportional way.

Index Terms—Communication networks, delay guaran-
tees in networks, quality of service, scheduling networks,
wireless networks.
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I. INTRODUCTION

R ECENTLY, the U.S. Federal Communications Commis-
sion released 3.85 GHz of licensed spectrum and 7 GHz

of unlicensed spectrum in the band above 24 GHz [1]. With this,
they aim to enable applications with high data rates including
those requiring low latency. Transmissions in this millimeter
wave band are directional and not subject to typical omnidirec-
tional interference [2], but are subject to absorption. Multiple
hops may be needed to traverse longer distances. This moti-
vates the problem studied in this paper: How to maximize the
throughput of packets meeting hard end-to-end delay bounds
over multihop wireless networks of unreliable links?

The past quarter century has seen the pioneering work of
Tassiulas and Ephremides [3], Lin and Shroff [4], Lin et al. [5],
Eryilmaz and Srikant [6], and Neely et al. [7] on max-weight
and backpressure-based scheduling policies for communication
networks that are provably throughput optimal, attaining any
desired maximal throughput vector on the Pareto frontier of
the feasible throughput region, when packets have no delay
constraints.

However, fluid-based policies such as the backpressure pol-
icy should not be expected to provide delay optimality, and are
indeed not optimal when packets have hard delay constraints.
They can in fact perform poorly with regard to delay perfor-
mance [8]. This is especially noticeable at light traffic when
there is no “pressure” and packets just move randomly in the
absence of any pressure driving them. Delay depends on fluctu-
ations, as illustrated, for example, by the Pollaczek–Khinchine
formula. The difference between throughput and delay is akin to
the difference between the law of large numbers and the central
limit theorem.

For optimal delay performance, one needs to start with a fun-
damentally stochastic framework that takes all randomness into
account, such as the complete Markov decision process (MDP)
describing the evolution of the complete network state. How to
analyze such a complete stochastic model, and obtain a tractably
computable, fully decentralized solution that is optimal, is ad-
dressed in this paper.

II. PROBLEM STUDIED

We consider multihop, multiflow networks in which packets
of flows have hard end-to-end relative deadlines. The deadline
is the time by which a packet is to be delivered to its destination
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Fig. 1. Possible usefulness of network state. Suppose that node i
wishes to transmit one packet, either a packet of flow 1 or a packet of
flow 2. Suppose packets of flow 1 are experiencing heavy downstream
congestion, but packets of flow 2 face no downstream congestion. Then,
one expects that serving a packet of flow 1 is not useful since it will just
get stuck in downstream congestion and not make it to its destination
in time. Hence, node i should serve a packet of flow 2. Therefore, one
expects that knowing downstream network state, i.e., which packets are
at which nodes, is useful information.

if it is to be useful, whereas the relative deadline is the remain-
ing time-till-deadline when a packet arrives. The throughput of
packets of a flow that meet their end-to-end relative deadline
constraint is called its timely throughput. The vector comprised
of the timely throughputs of all the flows is called the timely
throughput vector.

Nodes can transmit and receive packets simultaneously.
Nodes can transmit packets at varying power levels. We con-
sider the following two types of nodal power constraints: 1)
an average-power constraint at each node, or 2) a link-capacity
constraint on each network link, which bounds the number of
concurrent packets that can be transmitted on it at any given
time t, or, equivalently, a peak-power constraint at each node.

Since the wireless channel is unreliable, the outcome of packet
transmissions is modeled as a random process.1

Our goal is to design a decentralized, joint transmission
scheduling, power control, and routing policy, which maximizes
the weighted sum of the timely throughputs of the flows, for any
given nonnegative choice of weights (i.e., attain any point on
the Pareto frontier of the set of achievable timely throughput
vectors).

In general, optimally controlling a distributed system such
as a multihop network can be a challenge, since, as shown in
Figs. 1 and 2, one generally expects that the policy should be
dynamic enough and take into account in an online fashion the
following factors.

A. Routing: The policy will need to dynamically route pack-
ets so as to:

A.i. avoid nodes with lower power budgets; and
A.ii. avoid nodes that are currently congested and

experiencing a higher delay.
B. Scheduling and Power Control: The policy will need to

schedule a packet’s transmission time and transmission
power at a node:

1We do not consider mobility, which can lead to changing network topology.
However, if the time scale of mobility is minutes, whereas delay is of the order
of milliseconds, then one could treat it in practice as a quasi-static system and
employ the results obtained here.

Fig. 2. Challenge of decentralized scheduling. Similarly, it can con-
ceivably also be useful to know upstream network state information.
Suppose there is a packet of flow 2 just about to arrive at node i that has
a much larger time till its deadline. Then, node i may prefer to wait for
that yet-to-arrive packet and use its valuable energy on its transmission,
instead of transmitting the nearly late packet that is already at node i.
Therefore, one expects that complete network state is useful information.
This however creates a chicken and egg situation since instantaneously
obtaining network state information to make optimal decisions requires
zero-delay communication of information over the network, while the
very purpose of obtaining network state information is to provide low
delay communication. A fundamental result that we prove is that this
conundrum does not arise, and that network state is irrelevant and not
necessary to know in order to do optimal scheduling, when nodes have
average-power constraints.

B.i. based on its own time-till-deadline and the reli-
ability of the channel; and

B.ii. based on the times-till-deadline of other packets
in the pipeline.

Consideration (A.i) requires only static nonchanging infor-
mation, and (B.i) requires only local information that a packet
has about itself and the node it is at. In contrast, considerations
(A.ii) and (B.ii) require information about the states of all other
packets at all nodes. Obtaining such instantaneous information
about the state of the entire network—where all other packets
are, and their times-till-deadline—is a major obstacle in optimal
scheduling of networks since it itself requires communication
of information across the network, while the very purpose of
obtaining network state information is to transfer information-
bearing packets from sources to destinations. That is, it gives
rise to a chicken and egg situation. This is a major difficulty that
has stymied the field of optimal scheduling of networks.

We solve this challenge by proving the surprising result that
(A.ii) and (B.ii) are unnecessary, when nodes have average-
power constraints. This eliminates the need for knowing net-
work state in order to optimally schedule all packet transmis-
sions, their transmit power levels, and dynamically route them.
This allows us to obtain an optimal policy that is decentralized.
Moreover, we show that this decentralized optimal policy can be
computed offline with tractable complexity, simply by solving
a low dimensional linear program (LP).

Central to our solution is the result that packets can make
decisions regarding their scheduling, power control, and rout-
ing, independently of other packets, in a totally decoupled way.
We show that each packet can follow its own MDP, which
governs its actions, oblivious to all other traffic or network
state, in the case of average-power constraints at each node. In
this packet-level standalone problem, called an “optimal single-
packet transportation problem,” a packet optimizes its progress
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through the network, paying prices to nodes every time it re-
quests transmission, but is compensated with a reward if it
reaches its destination prior to the hard deadline. The optimal
prices paid to nodes for energy can be tractably computed of-
fline and stored. Some packets may need to randomize between
nonunique optimal actions. The overall network is optimally
scheduled by each packet simply following its own optimal
actions.

To compute at one shot the optimal randomized solutions
for all packets of all flows, one only needs to solve offline a
tractable LP with number of variables bounded by the product
of the square of the number of nodes, the number of flows, the
maximum relative deadline, and the number of transmit power
levels. This is a dramatic reduction from solving the gigantic
MDP that governs the evolution of the complete network state,
since that has an exponentially large number of states, rather than
polynomial as above. The reduction in the number of variables
is because of the central structural result that packet decisions
are taken based only on their own state, and not on network
state. We also show that the optimal policy can have a threshold
structure that can further simplify implementation.

If the nodes instead have peak-power constraints, then the
above decentralized policy can be simply truncated to yield a
policy that is quantifiably near optimal as link capacities in-
crease in a proportional way. This pursues Whittle’s relaxation
approach for multiarmed bandits [9] for networks with peak-
power constraints.

A preliminary announcement of some of these results was
presented in the conference paper [10]. The decoupling of the
problem into packets is mentioned there, as is the possibility of
using Whittle’s relaxation. Except for strong duality, no proofs
are presented. The need for an appropriate level of random-
ization to satisfy complementary slackness, the exploitation of
decentralization to obtain a tractable LP solution of the overall
problem with polynomial number of variables and constraints,
and the threshold structure are not mentioned there. This paper
contains a comprehensive treatment, including the treatment of
the tractable LP that solves the problem, and its proof, the proof
of threshold structure, the proof of asymptotic optimality for the
peak-power case, and explicitly solved examples to illustrate the
theory as well as other simulation examples.

This paper is organized as follows. In Section III, we summa-
rize some notable previous work. In Section IV, we describe the
system model. In Sections V–VIII, we address the case where
nodes have average-power constraints. In Section V, we show
that there is an optimal solution that is fully decentralized, and
determine its structure. In Section VI, we show how the de-
centralized optimal policy can be computed through a tractable
low-dimensional LP. In Section VII, we show that there can be
a further simplifying threshold structure for the optimal policy.
In Section VIII, we provide other iterative online methods for
determining the optimal prices. In Section IX, we determine an
asymptotically optimal policy based on truncation when there
are link-capacity constraints, and in Section X for peak-power
constraints at nodes. In Section XI, we address situations where
there are both real-time and non-real-time flows. In Section
XII, we address fading wireless channels. In Section XIII, we

Fig. 3. Multihop network serving F flows. Flow f , with source sf and
destination df , has several feasible routes. Its end-to-end relative dead-
line is τf . Node i has an average-power constraint Pi . A packet trans-
mitted on link ℓ = (i, j) at power level e has a probability pℓ (e) of being
successfully received by node j.

provide examples showing how the theory can be used to cal-
culate optimal decentralized policies, and present a compara-
tive simulation-based performance study of the truncated policy
for link-capacity constraints. Finally, conclusion is drawn in
Section XIV.

III. PREVIOUS WORKS

In addition to the work on max-weight and backpressure noted
in Section I, Kelly et al. [11] have shown in another seminal con-
tribution that the problem of congestion control of the Internet
can be formulated as a convex programming problem and have
provided a quantitative framework for design based on primal
or dual approaches. In another breakthrough, Jiang and Walrand
[12] have designed a novel adaptive carrier sensing multiple ac-
cess algorithm for a general interference model that achieves
maximal throughput through completely decentralized schedul-
ing under slow adaptation, without slot synchrony, if packet
collisions are ignored. Combined with end-to-end control, it
also achieves fairness among the multiple flows.

Concerning scheduling with hard delay constraints, there has
been considerable progress on the problem of scheduling an
access point, in which multiple one-hop flows with hard relative
deadlines share a wireless channel. The Pareto optimal frontier
of timely throughput vectors has been characterized, and simple
optimal policies have been determined [13]–[26].

IV. SYSTEM MODEL

We consider networks in which the data packets have a hard
delay constraint on the time within which they should be deliv-
ered to their destination nodes if they are to be counted in the
throughput.

The communication network of interest is described by a
directed graph G = (V,L), as shown in Fig. 3, where V =
{1, 2, . . . , |V |} is the set of nodes that are connected via com-
munication links. A directed edge (i, j) ∈ L signifies that node
i can transmit data packets to node j. We will call this link
ℓ = (i, j).

We assume that time is discrete, and evolves over slots num-
bered 1, 2, . . .. One time slot is the time taken to attempt a packet
transmission over any link in the network.
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There are a finite set E of possible transmit power levels at
which a packet can be transmitted. For convenience, we nor-
malize each time slot to 1 s so that power and energy of a
transmission are interchangeable.

The outcome of a transmission over a link between any two
nodes is allowed to be random, which enables us to model
unreliable channels. If a packet transmission occurs on the link
ℓ ∈ L at a certain power level that consumes energy e ∈ E , then
the transmission is successful with probability pℓ(e), which is
monotone increasing in e. We can model the phenomena of
wireless fading by allowing the success probability pℓ(t, e) to
also be a function of time that can be assumed to be governed
by a finite-state Markov process, whose state is known at the
transmitting node. However, for simplicity of exposition, we
consider time invariant pℓ(e)’s only. In this paper, we do not
consider contention for the transmission medium.

The network is shared by F flows. Packets of flow f have
source node sf and destination node df . They may traverse any
of several alternative routes.

The packet arrivals of a flow at its source node are indepen-
dent identically distributed (i.i.d.) across time slots, although
the distribution can vary from flow to flow. For simplicity of
exposition, we suppose that these distributions have bounded
support, i.e., the number of arrivals in a time slot is bounded,
although we can relax this to merely assuming they are finite
valued. Packet arrivals across flows are independent. The analy-
sis in the following carries over to the case when the arrivals and
relative deadlines (detailed in the following) are governed by a
finite-state Markov process. We will denote the average arrival
rate of flow f in packets/time slot by Af .

Each packet of flow f has a “relative deadline,” or “allowable
delay” τf . If a packet of flow f arrives to the network at time
t, then it needs to be either delivered to its destination node by
time slot t+ τf , or else it is discarded from the network at time
t+ τf if it has not yet reached its destination df . We suppose
that all relative deadlines of packets are bounded by a quantity
∆. We can allow packets of a flow to have random i.i.d. relative
deadlines, independent across flows; however, both for simplic-
ity of exposition as well as its importance, we will suppose that
all packets of flow f have the same relative deadline τf .

We assume that no matter the scheduling policy, there is a
positive probability for the network to reach an empty state
after some time, for example, by no arrivals for a period greater
than ∆. This ensures that the Markov chain has a single closed
communicating class.

The “timely throughput” rf attained by a flow f under a
policy is the expected value of the average number of packets
delivered prior to deadline expiry per unit time

rf := lim inf
T→∞

1
T

E
T!

t=1

δf (t) (1)

where the random variable δf (t) is the number of packets of a
packet of flow f that are delivered in time to their destination
at time t, with the expectation taken under the policy being
applied.

The vector r := (r1 , r2 , . . . , rF ) is called the “timely
throughput vector.” A timely throughput vector r that can be

achieved via some scheduling policy will be called an “achiev-
able timely throughput vector.” The set of all achievable timely
throughput vectors constitutes the “rate region,” denoted by Λ.
It is a compact convex set. The maximal (i.e., undominated) vec-
tors of this set constitute its Pareto frontier. In Sections V–VIII,
we consider an average-power constraint on each node i ∈ V .
If the total energy consumed by all the concurrent packet trans-
missions on link ℓ at time t is eℓ(t) units of energy, then the
nodal average-power constraints are required to satisfy

lim sup
T→∞

1
T

E
T!

t=1

!

ℓ:ℓ=(i,·)

eℓ(t)≤Pi ∀i ∈ {1, 2, . . . , V }. (2)

The second summation mentioned above is taken over all links
ℓ, where ℓ = (i, j) for some node j. We note that the above
constraint on the average power allows a node to transmit
packets simultaneously over several outgoing links, which can
be achieved by employing various techniques such as time-
division/frequency-division multiple access, code division mul-
tiple access, etc., [27]–[29]. We suppose that nodes can simul-
taneously receive any number of packets while they are trans-
mitting.

Given a weight βf ≥ 0 for the timely throughput of each flow
f , we define the “weighted timely throughput” as βT r, where
β = (β1 ,β2 , . . . ,βF ). We will derive completely decentralized
scheduling policies that maximize the weighted timely through-
put for any given weight vector β. We will also show how they
can be tractably computed.

In Section IX, as an alternative to (2), or in addition to it, we
will consider peak-power constraints on each link

eℓ(t)≤Cℓ ∀ℓ ∈ L, and t = 1, 2, . . . . (3)

Alternatively, we can constrain the number of concurrent pack-
ets that can be transmitted on a link ℓ at each time t. For either
of these situations, we will obtain quantifiably near-optimal de-
centralized scheduling policies.

V. OPTIMALITY AND STRUCTURE OF A DECENTRALIZED
SCHEDULING POLICY FOR MAXIMIZING WEIGHTED

TIMELY THROUGHPUT

In this section, we show that a decentralized policy is optimal
for the problem of maximizing the weighted timely throughput"F

i=1 βiri for a given weight vector β = (β1 ,β2 , . . . ,βF ) with
βi ≥ 0.

First, we note that the problem can be formulated as a fi-
nite state, finite action, constrained Markov decision Process
(CMDP) [30], where the goal is to maximize the average re-
ward subject to several average cost constraints, although the
number of states in the system will be exponentially large. The
state of an individual packet of flow f present in the network at
time t is described by the two tuple (i, s), where i is the node
at which it is present, and s is its time-till-deadline. The state
of the network at time t, x(t), is described by specifying
the state of each packet of each flow present in the network
at time t. Since the time spent by a packet in the network is
bounded by ∆, and since the number of arrivals in any time
slot is also bounded due to the bounded support assumption, the
system state x(t) ∈ X , a finite set, although it is exponentially
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large. A scheduling policy π has to choose, at each time t, based
on the past history, possibly in a randomized way, which packets
to transmit at each node from the set of available packets, and
over which links and at what powers. The link choice allows
routing to be optimized. The choice made at time t will be de-
noted U(t) ∈ U , a finite set. Since the probability distribution
of the system state x(t+ 1) at time t+ 1 depends only x(t) and
U(t), the problem of maximizing the timely throughput subject
to nodal average-power constraints (2) is a CMDP, where a re-
ward of βf is received when a packet of flow f is delivered to
its destination before its deadline expires

Maximize
π

lim inf
T→∞

1
T

E
!

f

T!

t=1

βf δf (t)

subject to (2)

where δf (t) is the number of packets of flow f delivered before
deadline expiry to df at time t.

As written above, the problem has a prohibitively large num-
ber of states. We will show in this section that it allows a packet-
by-packet decoupling that makes possible an elegant and simple
solution.

Our solution will be comprised of two aspects. First, at each
node v, we will have a “nodal price” λ⋆v ≥ 0 for energy. Every
packet requesting transmission at node v at a power level that
consumes energy e over an outgoing link (v, v′)will be charged
an amount λ⋆v e. It can choose to not get transmitted, which will
be regarded as requesting transmission over the self-loop (v, v),
and it will not be charged anything. Second, if a packet of flow
f reaches its destination df in time before its deadline expires,
then it obtains a reward βf .

In the solution, which we show to be optimal, each packet op-
timizes its scheduling, power control and routing decisions in a
completely decentralized way, independent of all other packets
and nodes in the network, so as to maximize its own total ex-
pected reward. With the state of the packet described by the two
tuple (v, s), where v is the node at which it is present, and s its
remaining time-till-deadline, it determines its optimal decisions
through the following simple dynamic programming problem,
which we call the “optimal single-packet transportation prob-
lem”:

V f (v, s) = max{V f (v, s − 1),

max
v ′:(v .v ′)∈L,e∈E

{− λ∗v e+ p(v ,v ′)(e)V f (v′, s − 1)

+
#
1 − p(v ,v ′)(e)

$
V f (v, (s − 1)+)}}

V f (df , s) = βf if s ≥ 0 (4)

where V f (v, s) is the optimal total expected reward for a packet
of flow f starting from state (v, s).

Any maximizer of the right-hand side (RHS) yields an opti-
mal action, i.e., whether to transmit or not, and if so, at what
level, and over which link. If there are two actions that achieve
the maximum, then the packet can choose either action. In par-
ticular, a packet can choose an action randomly from all those
that maximize the RHS of above according to a probability dis-
tribution. We will suppose that a packet employs an optimal

stationary randomized policy for its transportation problem, by
which it is meant that in each state (v, s) it chooses a probabil-
ity distribution supported on the set of actions that achieve the
maximum of the RHS and chooses an action independently of
all other actions according to this probability distribution.

Theorem 1 (Optimality of a fully decentralized policy):
1) Let λ⋆ =

#
λ⋆1 , λ

⋆
2 , . . . , λ

⋆
|V |
$

with λ⋆i ≥ 0. Denote by
πf (λ⋆) an optimal stationary randomized policy for pack-
ets of flow f that is optimal for the single-packet opti-
mal transportation problem (4), and by π(λ⋆) the pol-
icy that implements πf (λ⋆) for each packet belonging
to flow f . Suppose that, at every node i, either the
average-power constraint (2) is satisfied with equality
by π(λ⋆), or λ⋆i = 0 and the constraint (2) is respected.
Then, π(λ⋆) is an optimal policy for maximizing the
weighted timely throughput

"F
f=1 βf rf subject to the

average-power constraints (2).
2) There exists an optimal λ⋆ and an optimal π(λ⋆) that

satisfies the conditions of 1).
Proof: A history-dependent randomized policy for the

CMDP is one which, dependent on past network history
(x(0), u(0), . . . , x(t)), chooses u(t) according to a probabil-
ity distribution on U . A stationary randomized policy is one
where the probability distribution only depends on the current
state x(t).

A stationary randomized policy is optimal in the class
of all history-dependent randomized policies [30]. We
provide a self-contained proof of this2 because it will be
used in the following to define an equivalent LP. Denote
Prob(x(t+ 1) = j|x(t) = i, u(t) = u) by pij (u), and consider
the problem of maximizing a long-term average reward Max
lim infT→∞ 1

T E
"T

t=1 r(x(t), u(t)), subject to long-term aver-
age cost constraints lim supT→∞

1
T E
"T

t=1 c(x(t), u(t))≤C̄.
For any history-dependent randomized policy πhdr, con-
sider the induced “occupation measure” until time t,
ψπhdr(i, u; t) :=

1
t

#"t
s=1 P (x(s) = i, u(s) = u)

$
. Similarly

define ψπhdr(i; t). The infinite horizon reward is ≤
"

i∈X ,u∈U
ψπhdr(i, u)r(i, u), and the infinite horizon cost constraints are
≥
"

i∈X ,u∈U ψπhdr(i, u)c(i, u), for any limit point ψπhdr of the
sequence {ψπhdr(i, u; t)}(i,u)∈X× U along some subsequence tn .
Define a stationary randomized policy πsr as the one that takes
the action u when the system is in state i, with a probability
πsr(u|i) =

ψπ hdr (i,u)"
ũ ∈U ψπ hdr (i,ũ)

. We now complete the proof by
showing that its occupation measures ψπ sr(i, u; t)→ ψπhdr , thus
establishing that the reward/cost constraint values achievable by
any history-dependent policy are also achievable by a stationary
randomized policy. ψπhdr(i; t) =

1
t (
"t

s=1 P (x(s) = i))=
1
t (
"t

s=2
"
(j,ũ) P (x(s − 1) = j, u(s − 1) = ũ)pji(u)) + 1

t

P (x(1) = i)=
"

j

"
ũ ψπhdr(j, ũ; t − 1)pji(ũ) + 1

t P (x(1) =
i)=

"
j

"
ũ ψπhdr(j, ũ; t)pji(ũ) + 1

t P (x(1) = i) − 1
t P (x(t+

1) = i). Taking limits along the subsequence tn , ψπhdr(i)=
limn→∞

"
j

"
ũ ψπhdr(j, ũ; tn )pji(ũ) =

"
j

"
ũ ψπhdr(j, ũ)pji

(ũ)=
"

j ψπhdr(j)
"

ũ πsr(ũ|j)pji(ũ), where the last equal-
ity follows from the definition of policy πsr. However,

2At a reviewer’s suggestion.
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ψπ sr is the unique solution z of z(i) =
"

j∈X z(j)
"

u
πsr(u|j)pji(u),∀i ∈ X . Thus, it follows that ψπ sr = ψπhdr .
By stationarity, the limits also hold almost surely. Although
we have only shown that ψπ sr(i) = ψπhdr(i),∀i ∈ X , the
proof of ψπ sr(i, u) = ψπhdr(i, u),∀i ∈ X , u ∈ U is similar.
One could consider the quantity ψπ sr(i, u) and repeat the
equalities considered above to arrive at the equation z(i, u) =
πsr(u|i)(

"
j∈X z(j)

"
u πsr(u|j)pji(u)), ∀ (i, u) ∈ X × U .

This equation is uniquely solved by {ψπ sr(i, u)}(i,u)∈X× U .
Thus, it follows that ψπ sr = ψπhdr .

Since we can restrict ourselves to stationary randomized poli-
cies, we can replace lim sup and lim inf by lim and write the
CMDP as follows:

Max
π

lim
T→∞

1
T

E
!

f

T!

t=1

βf δf (t), subject to (5)

lim
T→∞

1
T

E
T!

t=1

!

ℓ:ℓ=(i,·)

eℓ(t)≤Pi ∀i ∈ {1, 2, . . . , V }. (6)

Moreover, by considering the occupation measure variables
of the stationary randomized policy as the decision variables, (5)
can be written as a linear objective in the decision variables, and
the constraints (6) can be written as linear inequalities in the
decision variables. Hence, the CMDP can be written as an LP.

Defining λi as the Lagrange multiplier associated with the
power constraint on node i, and λ :=

#
λ1 , λ2 , . . . , λ|V |

$
, we can

write the Lagrangian for (6) as

L(π, λ) = lim
T→∞

1
T

⎧
⎨

⎩ E
!

f

T!

t=1

βf δf (t)

−
!

i

λi

⎛

⎝E
T!

t=1

!

ℓ:ℓ=(i,·)

eℓ(t)

⎞

⎠

⎫
⎬

⎭ +
!

i

λiPi

(7)

where the expectation is w.r.t. the policy π that is being used,
the random packet transmission outcomes, and the randomness
of the packet arrivals and relative deadlines, if the latter are
random.

Denoting by eℓ,f ,n (t), the amount of energy spent on trans-
mitting the nth packet of flow f at time t on link ℓ, we have

eℓ(t) =
!

f ,n

eℓ,f ,n (t).

The Lagrangian (7) reduces to

L(π, λ) =
!

i

λiPi

+ lim
T→∞

1
T

!

f ,n

E
T!

t=1

⎛

⎝βf δf (t) −
!

i

λi

!

ℓ:ℓ=i(i,·)

eℓ,f ,n (t)

⎞

⎠ .

(8)

The key observation is that this can be decoupled completely on
a packet-by-packet basis for any fixed value of the vector λ, as
follows.

Let Packets(f) := set of all packets of flow f . We will denote
a packet by σ. Let Packets(f, t) := subset of packets of flow f
that arrive before time t. Let e(σ, i) := total energy consumed
by packet σ at node i, φ(σ) := flow that σ belongs to, and δ(σ)
be the random variable that assumes value 1 if packet σ reaches
its destination before its deadline, and 0 otherwise.

Since the relative deadlines of packets are bounded, L(π, λ)
can be rewritten as a sum over packets

L(π, λ) =
!

i

λiPi

+ lim
T→∞

1
T

E
!

f

!

σ∈Packets(f ,T )

/
βf δ(σ) −

!

i

λie(σ, i)

0
.

(9)

The term corresponding to packet σ of flow f

E

/
βf δ(σ) −

!

i

λie(σ, i)

0
(10)

can be interpreted as follows. The packet incurs a payment
of λi per unit energy used for transmission by node i, and
accrues a reward of βf if it reaches its destination before its
deadline expires. This is therefore the optimal single-packet
transportation problem whose solution is given by (4). Let R(f)
denote its optimal expected cost.

Due to the decomposition of (9) over packets, we can optimize
packet by packet. Hence, we obtain

Max
π

L(π, λ) =
!

f

Af Rf (λ) +
!

i

λiPi

since Af is the arrival rate of packets of flow f .
The dual function is

D(λ) = Max
π

L(π, λ). (11)

The dual problem is

Max
λ≥ 0

D(λ). (12)

There is no duality gap since the CMDP (6) can equivalently be
posed as an LP, in which the variables to be optimized are the
occupation measures defined above [30]–[33], induced by the
policy π on the joint state-action space. The dual function (11)
is therefore

D(λ⋆) = L(π(λ⋆), λ⋆). (13)

The result then simply follows from complementary slackness
[34] since the primal problem can be written as an LP over
variables that are occupation measures, as shown above. The
existence of λ⋆ and π(λ⋆) follows from the linear programming
solution and the dual. !

A. Features of Our Solution

The following features may be noted.
1) In order to solve the primal problem (5), (6) in its original

form, the network is required to make decisions based
on the knowledge of the network state x(t). With |V |
denoting the number of nodes, ∆ an upper bound on
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relative deadlines of flows, and F the number of flows,
the size of the state space in which the network state x(t)
resides is exponential, (V ∆)F ∆ , since there can be F∆
packets in the network, with each being in one of V ∆
states. It is therefore prohibitive to directly attempt to
optimize the control of the network. Thus, an approach
based on directly solving the constrained network-wide
MDP (6) is computationally intractable.

2) Moreover, the optimal policy requires the entire network
state information to be instantaneously known at each
node at each slot. Indeed, one of the key reasons why
optimal policies for communication networks (and other
distributed systems) are generally intractable is that ev-
ery decision requires instantaneous knowledge of the
complete network state, which is something that can-
not be obtained since the entire purpose of determining
the optimal policy is to communicate information with
deadlines. Thus, an approach based on implementing
the solution of the constrained network-wide MDP (5),
(6) would also have been implementationally futile.

3) In contrast, the solution we obtain is a completely decen-
tralized solution. Each packet makes its own decision at
each node on whether it wants to be transmitted, and
if so, at what power level, and over what link. No net-
work state knowledge is needed by a packet to determine
its optimal decision. Each packet’s actions are indepen-
dent of the actions chosen by all other packets in the
network.

4) The MDP for the “optimal single-packet transportation
problem” governs the behavior of each packet, oblivious
to all other traffic or network state. In this standalone
problem, a single packet optimizes its progress through
the network, paying prices to nodes, depending on the
energy consumption for transmission incurred by the
node, every time it requests transmission at a node at a
power level. The packet is compensated with a reward if
it reaches its destination prior to its hard deadline. The
reward it receives is equal to the weight of its flow in
the weighted timely throughput.

5) The optimal single-packet transportation problem has
a small-sized state space: |V |∆. Thus, one only needs
to solve a small dynamic programming problem over
a time horizon of ∆, with |V |∆ states. This is much
smaller than the exponentially large number (V ∆)F ∆

of network states.
6) Thus, we have reduced the computational complexity

from exponential to low degree polynomial. Moreover,
the resulting solution can be implemented locally at
each node. It is highly decentralized with no coupling
between flows or nodes or even packets.

7) Our solution exploits the Lagrangian dual of the CMDP.
The Lagrange multipliers associated with the average-
power constraints are interpreted as prices paid by a
packet for utilizing energy every time its transmission
is attempted by a node.

8) Complementary slackness requires that at each node,
either all the available power is fully used, or the price

of energy at that node is zero. In order to fully use up all
available power at a node, packets may need to random-
ize. Suppose that 1.5 W of power is available at a node,
but packets can only get transmitted at power levels 1 or
2 W. Then, to use up all the node’s power, 50% of the
packets will need to be transmitted at power level 1 W
and 50% at 2 W. This is the reason for randomization.

9) The only manner in which this optimal single-packet
transportation problem is coupled to the overall network,
nodal power constraints, other flows, and other packets,
is through predetermined prices for nodal energy. The
optimal prices can be tractably computed offline and
stored, as will be shown in Section VIII.

10) The key to these results is to pursue a fundamentally
stochastic approach that considers the Lagrangian of
the constrained network-wide MDP governing the en-
tire network, and showing how it decomposes into
packet-by-packet decisions. This decomposition ap-
proach allows treatment of all variability related as-
pects, since they affect delay. Through this decompo-
sition of the stochastic system, we can address timely
throughput optimality of packets that meet hard per-
packet delay deadlines, rather than just throughput
optimality.

11) This is in sharp contrast to the backpressure approach
that considers the decomposition of the Lagrangian
of the fluid model, and can only guarantee through-
put optimality. The stochastic decomposition approach
of this paper is able to address delay rather than just
throughput.

VI. TRACTABLE LP FOR COMPUTING THE DECENTRALIZED
RANDOMIZED OPTIMAL POLICY

We will now show that we can tractably compute the de-
centralized randomized optimal policies for all flows by taking
advantage of the decoupling of packet behaviors. We do this
by considering the associated LP involving “state-action proba-
bilities” for solving CMDPs [35]. (In this approach, we do not
need to first explicitly solve for the optimal prices. They could
be computed through the dual of this LP.)

This LP does not have an exponentially large number of vari-
ables equal to the product of the number of states of the network
and the number of possible network-wide actions, which is what
it would be if we were directly solving the MDP for the com-
plete network state. Instead, having determined that packets only
make decisions based on the node they are at and their time-till-
deadline, we see that for each flow, we only need to determine
for each of its packet’s states what that packet should do. Thus,
the number of decision variables is no more than the product of
the number of flows, the number of nodes that packets could be
at, the maximum relative deadline over all flows, the number of
potential next nodes that a packet could be transmitted to, and
the power level of that transmission. This is what allows us to
determine a tractable solution.

Theorem 2 (Tractable LP for determining decentralized ra-
ndomized optimal policy): Let {ξf (i, j, s, e)} be the optimal
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decision variables of the following LP:

Max
!

f∈F

τf!

s=0

!

i∈V

!

e∈E
βf Af ξ

f (i, df , s, e)pi,df (e) (14)

Subject to

!

f∈F

τf!

s=0

!

j ̸=i

!

e∈E
Af ξ

f (i, j, s, e)e≤Pi ∀i, (15)

!

j∈V ,j ̸=df

!

e∈E
ξf (j, i, s, e)pj,i(e)

+
!

m∈V

!

e∈E
ξf (i,m, s, e)(1 − pi,m (e))

=
!

k∈V

!

e∈E
ξf (i, k, s − 1, e) ∀f, i ̸= df , 1≤s≤τf (16)

!

j∈V

!

e∈E
ξf (sf , j, τf , e) = 1 ∀f (17)

ξf (i, j, s, e) ≥ 0 ∀i ̸= df , j, f, s, e (18)
!

j∈V

!

e∈E
ξf (sf , j, s, e) = 1 ∀f, s. (19)

Then, a decentralized, yet optimal, policy is for a packet of flow
f in node v with time-till-deadline s to transmit to node j at
power level e with probability ξ f (i,j,s,e)" ′

j

" ′
e ξ

f (i,j ′,s,e ′) .

Proof: From the proof of Theorem 1, we can restrict atten-
tion to randomized Markov policies where a packet of flow f
is transmitted with a certain probability over a certain outgoing
link at a certain power level, or not transmitted at all, with the
probabilities depending only on the state (i, s) of the packet.
Let ξf (i, j, s, e) denote the resulting “state-action probability”
that a packet of flow f is transmitted over link (i, j) at power
level e when its time-till-deadline is s. We let

"
e∈E ξ

f (i, i, s, e)
denote the probability that it is not transmitted, and also define
pii(e) ≡ 1. The probabilities {ξf (i, j, s, e)} are characterized
by the balance constraints (16), nonnegativity (18), normaliza-
tion (17), and the initial condition (19). The power constraint is
captured by (15), and the accrued reward by (14). Thus, the solu-
tion of the LP is an upper bound on accruable reward. However,
it is also achievable through the policy indicated. !

The LP exploits the structure of the optimal solution deter-
mined in Section V, that packet actions are determined only
by their own states, to dramatically reduce the complexity of
the LP to only |V |2F∆|E| variables and |V |+ |V |F∆+ F +
|V |2F∆|E|+ F∆ constraints. This is a dramatic reduction of
the exponential complexity of the network-wide optimal control
problem. Moreover, being an LP, it is eminently tractable.

VII. OPTIMALITY OF THRESHOLD POLICIES

In fact, there is even more structure in the optimal single-
packet optimal transportation problem that can simplify its im-
plementation. Here, we suppose that optimal prices are given
and consider only the solution of (4) given the prices. We do not
address the need for randomization to satisfy complementary
slackness of the power constraint. For simplicity, we illustrate

this structure when there is only one transmit power level that
corresponds to a fixed energy usage e for any transmission.
The structure we show is that each packet’s decision is simply
governed by a threshold on time-till-deadline.

Theorem 3 (Threshold policy): For each flow f , and node i,
there is a threshold τf (i), such that the optimal decision for
a packet of flow f at node i with a time-till-deadline s is to
be transmitted/not transmitted according to whether the time-
till-deadline s is strictly greater than/equal to or lesser than the
threshold τf (i).

Proof: In a state where the decisions to transmit/not trans-
mit are both optimal (i.e., the maximizer of the RHS of the
dynamic programming equation (4) is not unique), we choose
“not to transmit,” so that we thereby obtain an optimal policy
that uniquely assigns an optimal action to each state. (Note that
we are not addressing here the need for appropriate random-
ization to satisfy complementary slackness.) We will prove the
following property (P) of this optimal policy, from which the
theorem readily follows: (P) If the optimal decision is to not
transmit a packet at a node, then it is optimal to never again
transmit that packet at that node.

The reason is that one can then simply define τf (i) as the
maximum value of s at which the decision to not transmit is the
optimal action. Now we prove property (P) by using stochastic
coupling. Suppose that for a packet of flow f at a node i, it is
optimal to not transmit it at time-till-deadlines equal to σ,σ −
1, . . .σ − k, but it is optimal to transmit it when its time-till-
deadline is σ − k − 1. Consider a packet, called Packet-1, that
follows this optimal policy. It waits for k slots at node i, and
then gets transmitted when its time-till-deadline is σ − k. Now
consider another packet, called Packet-2, that waits no time at
node i, and is transmitted when its time-till-deadline is σ. We
will couple the subsequent experiences of Packet-1 and Packet-
2, i.e., whether a transmission at a link is failure or success,
after that transmission. Then, if Packet-1 reaches the destination
d in time, then so does Packet-2. Hence, the reward accrued
by Packet-2 is no less than the reward accrued by Packet-1,
while its costs are the same. Hence, the decision of Packet-2 to
immediately get transmitted at time-till-deadline σ is optimal.!

However, it is not advocated to search for an optimal policy
by trying to find the thresholds. It is preferable to search for
optimal prices since they are the same for all packets of all
flows, whereas the optimal threshold is only for a specific flow.
That is, the prices provide the right tradeoff between packets of
different flows.

VIII. DETERMINING THE OPTIMAL PRICES

Now we return to the problem of determining the correct
energy prices λ⋆ := {λ⋆i : i ∈ V } to be charged by the nodes.
One method is to just obtain them simply as the sensitivities of
the power constraints in the above LP. This however requires a
model of the network, its reliabilities, and the requirements of
all the flows. If one does not know the system model, then one
can employ “tatonnement” over a running system. Such price
discovery is based on the dual function (11). First, we discuss
a hybrid of optimization and simulation, and subsequently a
purely learning approach.
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A. Repeated Simulations

Price discovery can be performed offline by repeated simula-
tion. Since the Dual Problem is convex, each node can employ
subgradient descent on the optimal price vector λ⋆ . The sub-
gradient iteration is simply Walrasian tatonnement [36], which
attempts to drives the “excess power consumption” at each node
toward zero. Specifically, at the nth iterate of the price vector,
node i chooses

λn+1
i = λn

i + ϵ [Power consumed by node i − Pi ]

which simply amounts to a standard subgradient iteration with
a step size ϵ > 0. There are issues that need to be take into
consideration with respect to the subgradient method, such as
choice of step sizes, and the fact that it may not be a descent
method [37]. For any fixed price vector λ, one can solve the
dynamic programming equations for the optimal packet policy
π(λ).

B. Employing Online Learning

Instead of using simulation-based optimization to determine
the optimal prices, one can determine both the optimal policy
as well as the optimal policy contingent on that price, by using
two time-scale stochastic approximation [38]–[40]. The faster
time-scale stochastic approximation for the policy is

Vn+1(i, s) = 1n (i, s) {Vn (i, s) (1 − an )

+ an max{Vn (i, (s − 1)+),X}
1
+ (1 − 1n (i, s))Vn (i, s)

where X is the maximum, over all links ℓ = (i, j), of

λi,n + pℓ(e)Vn (j, (s − 1)+) + (1 − pℓ(e))Vn (i, (s − 1)+).

In the above equation, 1n (i, s) assumes the value 1 if the packet
state at iteration n is (i, s). {an} is a positive sequence that
satisfies

"
n an =∞,

"
n a2n <∞.

We can use a slower time-scale stochastic approximation for
the prices

λn+1 = λn (1 − bn ) + bn (P − P̄ (π(λn ))) (20)

where P is the vector consisting of nodal power bounds,
P̄i(π(λ)) is the average-power utilization at node i under π(λ),
and the sequence bn satisfies

"
n bn =∞,

"
n b2n <∞, as well

as
"

n (
b(n)
a(n) )

γ <∞, where γ ≥ 1 [39]. The iterations converge
to the optimal prices λ⋆ [41].

When network parameters are not known, one can both solve
for the optimal policy π(λ⋆) as well as the optimal nodal prices
λ⋆ in a decentralized manner. One way to achieve this task is
to perform the value iterations using reinforcement learning for
each price vector λ until convergence, and then to update the
price λ using a gradient descent method.

IX. LINK-CAPACITY CONSTRAINTS: THE NEAR OPTIMALITY
OF A TRUNCATION POLICY

So far we have focused on systems where nodes have
average-power constraints (2) or constraints on average
number of packets concurrently transmitted. In this section,
we consider peak link-capacity constraints on the number of

concurrent packets that can be scheduled at any given time slot
t. The quantity eℓ(t), now redefined as the number of packets
transmitted on link ℓ at time t, has to satisfy

eℓ(t)≤Cℓ ∀ links ℓ ∈ L, and t = 1, 2, . . . . (21)

The more stringent problem that results is

Maximize
π

lim
T→∞

1
T

E
!

f

T!

t=1

βf df (t)

subject to (21). (22)

Our approach to addressing this problem is similar to that
developed by Whittle [9] for multiarmed bandits. Since there is
no simple index policy [42] that is optimal when one is allowed
to pull n arms concurrently, if n > 1, Whittle has suggested
relaxing this constraint for each time t to a constraint that the
average number of arms concurrently pulled is n. This relaxed
problem has a tractable solution under an “indexability” con-
dition [43]. Importantly, it is near optimal when the number of
arms available goes to infinity, with the proportion of arms of
each type held constant [44]. Our approach pursues this idea for
multihop networks.

We now proceed to construct a decentralized policy with
a provably close approximation to optimality. We begin with
the policy π⋆ that is optimal for the relaxed version of the
problem (5)–(6) which involves average linkwise power
constraints

max
π

lim
T→∞

1
T

E
!

f

T!

t=1

βf df (t), subject to

lim
T→∞

1
T

E
T!

t=1

e(i,j )(t)≤C(i,j ) ∀ links (i, j) ∈ L. (23)

This optimal policy can be obtained in exactly the same fashion
as for the problem (5)–(6) with average nodal power constraints,
except that now there are link-based prices λ(i,j ) , instead of
nodal prices λi . This is similarly a decentralized policy, as we
have shown in the preceding sections, and is moreover tractable
to compute.

However, π⋆ only ensures that the constraint (21) is met on
average, and not at each time t. On the occasions that the num-
ber of packets that it prescribes for concurrent transmission does
not exceed the constraint (21), we just transmit all the packets
specified by that policy. However, on the occasions that it spec-
ifies an excessive number of transmissions exceeding the RHS
of (21), we simply truncate the list of packets by picking any
C(i,j ) of these packets and transmitting them. Clearly, this leads
to a policy that does satisfy the constraint (21) at each time in-
stant. Moreover, we eject from the network those packets that π⋆

dictated to be scheduled, but were not picked for transmission.
(Discarding the packets is not strictly required, but it simplifies
the discussion.) Let us denote this modified policy by π̃⋆ . It may
be noted that under this truncated policy, the evolution of the
network is not independent across different packets, as was the
case with π⋆ . We will show that this policy is nearly optimal in
a precise asymptotic sense quantified in the following.



136 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 1, JANUARY 2019

Theorem 4 (Asymptotic optimality of truncation policy): Con-
sider the sequence of systems described in problem (23) param-
eterized by N , in which the arrivals for the N-th system are i.i.d.
with binomial parameters (N,Af /N).3 The deviation from op-
timality of the N th system in the sequence operating under the
policy π̃⋆ is O( 1√

N
), and hence the policy π̃⋆ is asymptotically

optimal for the joint routing-scheduling problem (22) under hard
link-capacity constraints.

Proof: Let us denote by pf (τ, ℓ) the probability that under
π⋆ a packet (of flow f ) with age τ time slots would be attempted
on link ℓ. Since the arrival rate of flow f packets is Af , then, on
account of the fact that the policy π⋆ satisfies the average-power
constraints Cℓ imposed by the network, we have

!

f

∆!

τ=1

Af pf (τ, ℓ)≤Cℓ ∀ℓ ∈ E . (24)

We will now obtain lower bounds on the performance of the
policy π̃⋆ . The following arguments are based on analysis of the
evolutions of policies on an appropriately constructed probabil-
ity space. Let us denote by r0 the (average) reward earned by
policy π⋆ . First note that the reward collected by π̃⋆ (denoted by
r1) does not increase if it were to, instead of dropping a packet
because of capacity constraint violation, schedule it as dictated
by π⋆ , but no reward is given to it if this packet is delivered to
its destination node (denoted by r2). However, r2 is more than
the reward if now a penalty of βf units per packet was imposed
for scheduling a packet via utilizing “excess capacity” at some
link l ∈ E , but it were given a reward in case this packet reaches
the destination node (denoted by r3). r3 is certainly more than
the reward, which π⋆ earns if it is penalized an amount equal
to the sum of the excess bandwidths that its links utilize (de-
noted by r4) multiplied by βf , since any individual packet may
be scheduled multiple times by utilizing excess bandwidth. Let
Ef,ℓ,τ (t) denote the number of packets of flow f that have an
age of τ time slots, and are served on link ℓ at time t under the
policy π⋆ , and let MAD(X) := E|X − X̄| denote the mean ab-
solute deviation of X with respect to its mean X̄ . The deviation
from optimality satisfies

r0 − r4 ≤ lim
T→∞

1
T

E
T!

t=1

!

ℓ∈E

⎛

⎝
!

f ,τ

βf (Ef,ℓ,τ (t) − Cℓ)

⎞

⎠
+

= lim
T→∞

1
T

E
T!

t=1

!

ℓ∈E

⎧
⎨

⎩
!

f ,τ

βf

#
Ef,ℓ,τ (t) − Ēf ,l(t)

$

+
!

f

βf

#
Ēf ,l(t) − Cℓ

$
⎫
⎬

⎭

+

3An equivalent formulation is to keep the size of packets fixed, while the link
capacities for the N th system are scaled as NCℓ , with the arrivals being i.i.d.
with binomial parameters (N, Af ). A similar analysis can be performed for
this case.

≤ lim
T→∞

1
T

E
T!

t=1

!

ℓ∈E

⎧
⎨

⎩
!

f ,τ

βf

#
Ef,ℓ,τ (t) − Ēf ,l(t)

$
⎫
⎬

⎭

+

≤ lim
T→∞

1
T

E
T!

t=1

!

ℓ∈E

!

f ,τ

βf

2
Ef,ℓ,τ (t) − Ēf ,l(t)

1+

≤ lim
T→∞

1
T

E
T!

t=1

!

ℓ∈E

!

f ,τ

βf

#33Ef,ℓ,τ (t) − Ēf ,l(t)
$33

= lim
T→∞

1
T

T!

t=1

!

ℓ∈E

!

f ,τ

βf MAD (Ef,ℓ,τ (t))

= O

4
1√
N

5

where the the last equality follows from [45]. !

X. NEAR-OPTIMAL SCHEDULING UNDER
PEAK-POWER CONSTRAINTS

We can similarly address problems where there are peak-
power constraints on each node. The problem is formally stated
as

Maximize
π

lim inf
T→∞

1
T

E
!

f

T!

t=1

βf df (t), subject to (25)

lim sup
T→∞

1
T

E
T!

t=1

!

ℓ:ℓ=(i,j )

eℓ(t)≤Pi ∀i ∈ {1, . . . , V }

and
!

ℓ:ℓ=(i,j )

eℓ(t)≤Pmaxi ∀i ∈ {1, . . . , V } and t (26)

where Pmaxi (with value greater than Pi) is the peak-power
constraint on node i.

Theorem 5 (Asymptotically optimal policy for peak-power
constraints): Consider the sequence of networks operating under
the policy π̃⋆ , in which the arrivals for the N th system are
i.i.d. with binomial parameters (N,Af /N). The deviation from
optimality of the N th system in the sequence operating under the
policy π̃⋆ is O( 1√

N
), and hence the policy π̃ is asymptotically

optimal for the peak-power problem (25).
Proof: Denote the policy that maximizes the objective func-

tion (25) under the average-power constraints (26) by π⋆ . Now
we modify it to a policy π̃⋆ described as follows: At each time
t, each node i ∈ V looks up the decision rule π⋆ and obtains
the optimal power levels at which π⋆ would have carried out
transmissions of the packets available with it. For this purpose,
each node i only needs to have knowledge of the age of packets
present with it. Node i then chooses a maximal subset of the
packets present with it, such that the transmission power levels
assigned to them by π⋆ sum to less than the bound Pmaxi . One
way to choose such a set of packets and associated power levels
is as follows: Arrange the packets in decreasing order of the
transmission power assigned by π⋆ , and label them. Then, π̃⋆
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schedules the largest index packet such that the energy of all
packets upto that index sum to less than Pmaxi . The asymptotic
optimality of π̃⋆ follows as in Theorem 4. !

XI. JOINTLY SERVING REAL-TIME AND
NON-REAL-TIME FLOWS

In the previous sections, we have considered networks exclu-
sively serving real-time flows for which the utility of a packet
arriving after its deadline is zero. Often one is interested in net-
works that serve a mix of real and non-real-time flows [46],
[47]. The system model can be easily extended. To incorporate
this case, we simply set the relative deadlines of the packets
belonging to the non-real-time flows as +∞ so that they are
never dropped.

XII. WIRELESS FADING

We can also incorporate fading of the wireless channels as
follows. We model the channel state as a finite-state Markov
process Y (t), with the link transmission success probabilities
pℓ(Y (t), e), a function of the channel state Y (t), and the trans-
mit power level. As before, we assume that the probabilities are
monotone increasing in e.

The network state is then described by 1) the state of each
packet, and 2) the channel state Y (t). The optimal policy can
be determined along similar lines as before, by augmenting the
system state with the channel state Y (t). The optimal policy
will be of the following form: the decision to be taken by a node
i at time t will depend on the state of the packet and the channel
state Y (t).

The above assumes that the channel condition is known to
each transmitter. A simplification is possible if we assume that
the process Y (t) is i.i.d., which would eliminate the need for
communicating Y (t). Alternately, it could be deterministically
time-varying. A common model that can be approximated is
block fading [48], [49], under which the channel state needs
only to be communicated periodically.

XIII. ILLUSTRATIVE EXAMPLES AND SIMULATIONS

We first illustrate how the theory developed here can be used
to explicitly hand compute the optimal decentralized policy in
two examples. In the second example, the deadlines are slightly
more relaxed than in the first example, and we can see how the
prices change as a consequence, and how the optimal policy
reacts to this.

Subsequently, we consider a more complex example and pro-
vide a comparative simulation illustrating the performance of
the asymptotically optimal policy for the case of link-capacity
constraints, comparing it with the well known backpressure,
shortest path, and earliest deadline first (EDF) policies.

A. Two Illustrative Examples

Example 1: Consider the system shown in Fig. 4. It con-
sists of two flows traversing the nodes 1, 2, and 3 in opposite
directions. Flow 1, with source node s1 = 1 and destination
node d1 = 3, has an end-to-end relative deadline τ1 of two

Fig. 4. System considered in Example 1.

slots. Flow 2, with source node s2 = 3 and destination node
d2 = 1, also has an end-to-end relative deadline τ2 of two slots.
Packets cannot afford even one failure on any transmission if
they are to reach their destinations in time, since the relative
deadlines for the flows are exactly equal to the total number of
hops to be traversed. One packet of each flow arrives in every
time slot, so A1 = A2 = 1. Each packet transmission at any
node is at 1 W, so e = 1 since all time slots are 1 s. Nodes
1–3 have average-power constraints P1 = 0.5, P2 = 0.4, and
P3 = 0.5 W, respectively. Links (1, 2), (2, 3), (2, 1), and (3, 2)
have reliabilities of p(1,2) = 0.4, p(2,3) = 0.3, p(2,1) = 0.7, and
p(3,2) = 0.6, respectively. Denoting by r1 and r2 the timely
throughputs of flows 1 and 2, we wish to maximize 5r1 + 2r2 ,
i.e., packets of flow 1 are 2.5 times more valuable than packets
of flow 2. So, β1 = 5 and β2 = 2.

The dynamic programming equations for the optimal single-
packet transportation problem for flow 1 yield

V 1(1, 2) = Max{0, − λ1 + 0.4V 1(2, 1)}

V 1(2, 1) = Max{0, − λ2 + (0.3) · 5}.

So V 1(2, 1) = (1.5 − λ2)+ and V 1(1, 2) = [(0.6 − 0.4λ2)+ −
λ1 ]+ . Similarly, for flow 2, V 2(3, 2) = [(0.84 − 0.6λ2)+ −
λ3 ]+ and V 2(2, 1) = (1.4 − λ2)+ .

Packets of flow 1 at node 2 are more valuable than packets of
flow 2 at node 2, since packets of flow 1 have expected reward of
(0.3)5 = 1.5, whereas packets of flow 2 have expected reward
of (0.7)2 = 1.4. So, we will push as many packets of flow 1 as
possible to node 2.

In order for a packet of flow 1 to choose to be transmitted
at node 2, however, the price λ2 that it pays needs to be less
than the expected reward (0.3)5 that it can obtain in the future.
Hence,

λ2 ≤1.5.

Similarly, in order for a packet of flow 1 to choose to be trans-
mitted at node 1, the total expected price it expects to pay,
λ1 + 0.4λ2 (since λ1 is the price it pays at node 1, and if it
succeeds to reach node 2, which happens with probability 0.4,
it then pays a price λ2) must be less than the expected reward,
which is (0.4)(0.3)5. Hence,

λ1 + 0.4λ2 ≤0.6. (27)

But flow 1 can only push (0.5)(0.4) = 0.2 of its packets to node
2. So, there is spare capacity at node 2 that flow 2 can use. For
flow 2 to use that, we need λ2 ≤(0.7)2 = 1.4. Now, flow 2
needs to utilize the spare capacity of 0.2 left at node 2. So, it
needs to ensure a flow of 0.2 reaches node 2. To do that, it needs
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to transmit 13 of the packets that arrive since 1
3 (0.6) = 0.2. So,

it needs to randomize at node 3. By complementary slackness,
this can only happen if packets at node 3 are indifferent to being
transmitted or not. So

λ3 + 0.6λ2 = (0.6)(0.7)(2) = 0.84.

Since we want to maximize D(λ), we choose λ2 = 1.4, λ3 = 0,
and, from (27), λ1 = 0.04.

Therefore, we arrive at the following solution, where we de-
note by πf (i, s) the probability with which a packet of flow f
is transmitted at node i when the time-till-deadline is s:

λ⋆ = (0.04, 1.4, 0)

π1(1, 2) = 0.5,π1(2, 1) = 1

π2(3, 2) =
1
3
,π2(2, 1) = 1.

Now we verify that this policy is optimal. λ2 = 1.4 im-
plies π1(2, 1) = 1 since 1.4≤(0.3)5. Now λ1 + 0.4λ2 = 0.6
implies π1(1, 2) = 1 and π1(2, 1) = 0 are both optimal, i.e.,
a packet is indifferent to them, and so one may randomize
between them to satisfy the average-power constraint. Simi-
larly, λ2 = 1.4 implies that both decisions π2(2, 1) = 1 and
π2(2, 1) = 0 are optimal. Also, λ3 + 0.6λ2 = 0.84 implies both
π2(3, 2) = 1 and π2(3, 2) = 0 are both optimal. So, we can ran-
domize the transmission of packets of flow 2 in state (3, 2). The
average-power usages are 0.5 W at node 1, 0.4 W at node 2, and
1/3 W at node 3. The average-power constraints of P1 = 0.5 and
P2 = 0.4 at nodes 1 and 2, respectively, are met with equality.
The average-power constraint at node 3 is slack but λ3 = 0. So,
complementary slackness holds. Hence, the policy is optimal.

Example 2: We now consider the same system as in Example
1, except that we relax the relative deadlines to τ 1 = τ 2 = 3, so
that every packet can afford to have one hop that is retransmitted
and still make it to its destination in time.

Consider a packet that has just arrived at node 1. It can either
make it to its destination in two hops if both transmissions are
successful the first time they are attempted, or it can fail once
at node 1 and then be successful on subsequent transmissions
at nodes 1 and 2, or it can succeed the first time at node 1,
fail once at node 2, and then succeed at node 2 on the second
attempt. If it does so reach its destination, it obtains a reward
of 5. Hence, taking these possibilities into account, if a packet
of flow 1 gets transmitted at every available opportunity, then
the expected reward for a packet of flow 1 at its first visit to
node 1 = [(0.4)(0.3) + (0.6)(0.4)(0.3) + (0.4)(0.7)(0.3)]5 =
1.38. Similarly, expected reward for a packet of flow 2 at its first
visit to node 3 = 1.428, expected reward for a packet of flow 1
at its second visit to node 1 = 0.6, expected reward for a packet
of flow 2 at its second visit to node 3 = 0.84, expected reward
for a packet of flow 1 at its first visit to node 2 = 2.55, expected
reward for a packet of flow 2 at its first visit to node 2 = 1.82,
expected reward for a packet of flow 1 at its second visit to node
2 = 1.5, and expected reward for a packet of flow 2 at its second
visit to node 2 = 1.4.

Packets of flow 1 are more valuable at node 2 than flow 2.
So, we want to maximize the throughput of packets of 1 to node
2. If we transmit with probability 0.5 on the first attempt at

node 1, then all power is used up. The maximum power that
can be consumed by packets of flow 1 at node 2= (0.5)(0.4) +
(0.5)(0.4)(0.7) = 0.34 W. So, there is still 0.06 W left at node
2 that can be used by packets of flow 2. After arriving at node 2
for the first time, a packet of flow 2 can use a maximum power
of 1.3 W. So, flow 2 at node 3 needs to make 0.06

(1.3)(0.6) attempts,
which amounts to randomization with probability 1/13. In order
to transmit a packet of flow 2 on its second visit to node 2, the
price λ2 cannot be any more than the expected reward (0.7)2 =
1.4. So, we could attempt some of the packets of flow 2 that
arrive at node 3, and transmit some packets of flow 2 that arrive
at node 2.

With λ2 = 1.4, λ1 needs to satisfy λ1 + (0.4)λ2 +
(0.4)(0.7)λ2 = [(0.4)(0.7) + (0.4)(0.7)(0.3)]5, so λ1 =
0.068. Similarly, λ3 needs to satisfy, λ3 + (0.6)λ2 +
(0.6)(0.3)λ2 = [(0.6)(0.7) + (0.6)(0.7)(0.3)]2, which yields
λ3 = 0. The power constraint at node 3 is slack, but λ3 = 0.
So, the price vector is λ = (0.068, 1.4, 0). The corresponding
probabilities of transmission are as follows:

π1(1, 3) = 0.5,π1(1, 2) = 0

π1(2, 2) = 1,π1(2, 1) = 1

π2(3, 3) = 1/13,π2(3, 2) = 0

π2(2, 2) = 1,π2(2, 1) = 1.

The optimal single-packet transportation dynamic programming
equations yield

V 1(1, 3) = Max
2
0, − 0.068 + (0.6)V 1(1, 2) + 0.4V 1(2, 2)

1

= 0, so both choices are optimal,

permitting randomization

V 1(1, 2) = Max
2
0, − 0.68 + (0.6)(0) + 0.4V 1(2, 1)

1
= 0,

again, both choices are optimal,

permitting randomization

V 1(2, 2) = Max
2
0, − 1.4 + (0.7)V 1(2, 1) + (0.3)5

1
= 0.17

V 1(2, 1) = Max {0, − 1.4 + (0.3)5} = 0.1.

In all of the following, both choices are again optimal

V 2(3, 3) = Max
2
0, 0 + (0.6)V 2(2, 2) + 0.4V 2(3, 2)

1
= 0

V 2(3, 2) = Max
2
0, 0 + 0.6V 2(2, 1)

1
= 0

V 2(2, 2) = Max
2
0, − 1.4 + (0.3)V 2(2, 1) + (0.7)2

1
= 0

V 2(2, 1) = Max {0, − 1.4 + (0.7)2} = 0.

Note that the power consumptions are as follows:

P1 = (1)(0.5) = 0.5, so it is tight

P2 = (0.5)(0.4) [1 + (0.7)1] +
1
13
(0.6) [1 + (0.3)1]

= 0.4, tight

P3 =
1
13

.
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Fig. 5. Network with two source–destination pairs (s1 = 1, d1 = 4) and
(s2 = 4, d2 = 1). Arrivals are deterministic with rates A1 = A2 = 1 per
time slot. Link capacities are C(i ,j ) ≡ 1 packet/time slot for all links (i, j)
shown.

Fig. 6. Network with two source–destination pairs (s1 = 1, d1 =
4), (s2 = 2, d2 = 4). The arrivals are deterministic with rates A1 = A2 =
1 per time slot. Link capacities are C(i ,j ) ≡ 1 packet/time slot for all links
(i, j) shown.

Fig. 7. Prices of links for the network in Fig. 6.

The last constraint is loose, but then λ3 = 0, and we still have
complementary slackness. So, the solution is optimal.

B. Simulations

Now we consider the case of link-capacity constraints (or
equivalently peak-power constraints). We present a comparative
simulation study of the asymptotically optimal policy with re-
spect to the following two policies: 1) EDF scheduling combined
with backpressure routing (EDF-BP), and 2) EDF scheduling
combined with shortest path routing (EDF-SP) that routes pack-
ets along the shortest path from source to destination with ties
broken randomly. We consider the systems shown in Figs. 5
and 6. All link capacities are just 1, so the asymptotically op-
timal policy is noteworthy for its excellent performance seen

Fig. 8. Timely throughputs of the asymptotically optimal (labeled “Op-
timal”), EDF-BP and EDF-SP policies for the network in Fig. 5 as the
relative deadlines of both flows are increased.

in the following, even in the very much nonasymptotic regime.
The prices of the links are indicated in Fig. 7.

We compare the performance of the asymptotically optimal
policy π̃⋆ of Theorem 4, with the following EDF-SP policy.

1) The link ℓ = (i, j) chosen for scheduling packet trans-
missions for flow f lies on the shortest path that connects
the source and destination nodes of flow f .

2) Thereafter, on each link (i, j), it gives higher priority to
packets having earlier deadlines. It then serves a maxi-
mum of C(i,j ) packets in decreasing order of priority.

We also compare the performance with the EDF-BP policy.
Under the EDF-BP policy, each node i maintains queues for
each flow f and possible age s. Denoting by Qi,f (t, s), the
queue length at node i at time t, and by Qf,i(t) =

"
s Qi,f (t, s)

the total number of packets of flow f at node i at time t, the
policy functions as follows.

1) For each outgoing link ℓ = (i, j), EDF-BP calculates the
backlogs Qf,i(t) − Qf,j (t) of flow f .

2) On each link ℓ = (i, j), it prioritizes packets on the basis
of the backlogs associated with their flows. For packets
belonging to the same flow, higher priority is given to
packets having earlier deadlines.

3) It then serves a maximum of C(i,j ) highest priority pack-
ets from among the packets whose flows have a positive
backlog Qf,i(t) − Qf,j (t).

Both EDF-SP and EDF-BP eject packets that have crossed
their deadlines.

Figs. 8 and 10 show the comparative performances of the
policies for the networks in Figs. 5 and 6 as the relative deadlines
of the flows are varied. The performance of the asymptotically
optimal policy is superior even in the nonasymptotic regime.
Figs. 9 and 11 show the comparative performance as network
capacities are increased.

Observe that for the network in Fig. 6, a shortcoming of EDF-
SP is that it is unable to utilize the path 1→ 2→ 5→ 6→ 4,
and therefore performs worse than EDF-BP. Although it seems
that in a general network the EDF-BP should be able to utilize
all source–destination paths, it will neither be able to efficiently
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Fig. 9. Timely throughputs for the network in Fig. 5 as the relative
deadlines of flows are increased. Relative deadline of flow 1 is one more
than that of flow 2.

Fig. 10. Timely throughputs of the policies for the network in Fig. 6 as
link capacities and arrival rate are scaled. The relative deadlines for both
flows are set at six time slots.

Fig. 11. Timely throughputs for the network in Fig. 6 as link capacities
and arrival rates are scaled. Relative deadlines for flows 1 and 2 are 6
and 5, respectively.

prioritize packets based on their age, nor discover which paths
are more efficient at delivering packets within their deadlines.

XIV. CONCLUDING REMARKS

We have addressed the problem of designing optimal decen-
tralized policies that maximize the timely throughput of multi-

hop wireless networks with average nodal power constraints and
unreliable links, in which packets are useful only when they are
delivered by their deadline. The key to our results is the obser-
vation that if the nodes are subject to average-power constraints,
then the optimal solution is decoupled not only along nodes and
flows, but also along packets within the same flow at a node.
Each packet can be treated exclusively in terms of its time-till-
deadline at a node. The decision to transmit a packet is governed
by a “transmission price” that packets pay at each node, weighed
against the reward that it collects at the destination if it reaches
it before the deadline expires. The nodes need not share any in-
formation such as queue compositions, etc., among themselves
in order to schedule packets. This result may be of interest since
obtaining optimal decentralized policies for networks has long
been considered an intractable problem. The overall solution
is eminently tractable, being completely determined by an LP
that can be solved offline, with the number of variables equal to
the product of the square of the number of nodes, the number of
flows, the maximum relative deadline, and the number of trans-
mit power levels, rather than exponential in problem size. Thus,
this paper fills two important gaps in the existing literature of
policies for multihop networks: 1) hard per-packet end-to-end
delay guarantees, and 2) optimal decentralized policies.

This result should be contrasted with the backpressure-based
approach that has been developed over the past quarter century.
It essentially considers the Lagrangian of the fluid model, and
interprets the queue lengths as prices. It allows the design of
throughput optimal policies, but not delay optimality, as one
would expect from any fluid model-based analysis. In contrast,
our approach studies the problem of joint routing, scheduling,
and power control of packets under deadline constraints over a
multihop network for the complete stochastic system involving
all uncertainties, and consider its Lagrangian and the dual. This
captures delay performance fully, and allows us to address the
timely throughput optimality of packets that meet hard end-to-
end deadlines. The Lagrange multipliers are the prices for energy
usage paid by a packet to a node for transmitting its packet. They
are very different from the queue length-based prices used by
backpressure policies. We also consider the case of peak-power
constraints at each node, which may be present in addition to,
or as a replacement of, average-power constraints. A minor
modification of the optimal policy for the case of average-power
constraints, based on truncation, is asymptotically optimal as the
network capacity is scaled.

This approach of dualizing the stochastic problem has
broad ramifications, as has been explored in [50] and [51] for
problems such as video transmission and energy storage.

In addition to millimeter wave networks, these results are
also applicable to other networks where transmissions are di-
rectional, such as networks consisting of microwave repeaters,
networks with directed antennas, or even unreliable wireline
links.
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